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Supplementary Information section 1 
Processing of sequencing data 
 
Swapan Mallick*, Heng Li, Susanne Nordenfelt, Pontus Skoglund, Arti Tandon, 
Mengyao Zhao and David Reich 
 
*To whom correspondence should be addressed: (shop@genetics.med.harvard.edu) 
 
 
Sequencing 
For all samples, we submitted a minimum of 2.5 micrograms of DNA to Illumina Ltd. 
for their standard high coverage sequencing service.  
 
For Panel C (278 samples), all samples were all processed using the same PCR-free 
library preparation and sequencing protocol (all library preparation and sequencing 
took place between the dates of Feb 27 and Oct 16, 2013), minimizing the danger that 
systematic differences in processing could cause artifactual differences among 
samples. The samples were sequenced using 100 base pair paired-end sequencing on 
HiSeq2000 sequencers with an insert length distribution of 314 ± 20 bases.  
 
The Panel B samples (22 samples, of which 14 were previously reported1) were 
submitted to Illumina at an earlier time than Panel C. The libraries were prepared 
using a PCR-based library preparation protocol.  
 
After sequencing, the 300 samples reported in this study had a range of 33.59-83.23 
fold coverage (median 42.0-fold) (Fig. S1.1; Supplementary Data Table 1). 
 
Figure S1.1. Sequence coverage of the samples analyzed. Boxes give the 25th to the 
75th percentile points, and the median. Whiskers give the range of non-outliers.  
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Preprocessing and alignment 
We discovered that the raw data files supplied by Illumina retained some adapter 
sequences, which have the potential to contaminate genotyping results. We estimated 
that 0.27% of reads in the raw dataset retained adapters (range across samples of 
0.014% to 1.87%). To address this problem, we implemented an adapter trimming 
step. We extracted reads from the raw bams by shuffling with htslib1, which groups 
read pairs together while avoiding a computing-intensive sorting step. We converted 
the resulting file into an interleaved fastq format. We trimmed reads using trimadap2, 
and then aligned using bwa mem3 (v0.7.10-r1005-dirty) to the 'decoy' version of the 
human reference sequence (hs37d5). This reference is based on hg19, but contains an 
additional 35.4 Mb of decoy sequences, which improves alignment and subsequent 
variant calling in regions that are misassembled in the human reference genome or 
affected by common copy number variations.  We added read groups during the 
alignment step in order to facilitate downstream analysis. We marked optical 
duplicates using samblaster4, though it has a small chance (~1%) of mislabeling 
alignments as PCR duplicates for our PCR-free data, thus slightly reducing coverage. 
We converted the output reads in sam format to bam format, and then sorted.                                                                                                    
                                                                                                                                                                                              
The pipeline for this procedure is:                                                                                                                                                                                    
./htscmd bamshuf -Oun128 in.bam tmp-pre \                                                                                                                                                                    
| ./htscmd bam2fq -as aln-se.fq.gz - \                                                                                                                                                                       
| ./trimadap \                                                                                                                                                                                               
| ./bwa mem -pt8 hs37d5.fa - \                                                                                                                                                                               
| ./samblaster \                                                                                                                                                                                             
| samtools view -uS - \                                                                                                                                                                                      
| samtools sort -@4 -m512M - out-pre 
 
For researchers who wish to repeat our processing, but whose input dataset is in 
standard fastq format, the first two steps can be replaced with: “seqtk mergepe  
read1.fq.gz read2.fq.gz”.  
 
Genotyping 
Most analyses in this paper are based on single-sample genotypes determined using a 
reference-bias free modification of GATK5. We did not perform multi-sample 
genotyping as we were concerned that this could induce biases in population genetic 
analyses. Specifically, we were concerned that the GATK UnifiedGenotyper has a 
built-in prior for Bayesian SNP calling that assumes that the site is more likely to be 
homozygous for the reference allele than homozygous for the variant allele. For a 
diploid sample, the default priors for a homozygous reference, heterozygote and 
homozygous non-reference genotypes are (0.9985, 0.001, 0.0005), respectively. When 
there is ambiguity in a heterozygote, GATK prefers the reference homozygote. This is 
a reference bias, and while this bias is not typically problematic for medical studies, it 
can complicate interpretation of population genetics signals. With the Genome 
Sequencing and Analysis Group at the Broad Institute, we developed an alternative 
model that was integrated into the UnifiedGenotyper, allowing reference-bias free 
priors to be specified. We are using a prior (0.4995, 0.001, 0.4995). Details are at: 
https://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_gatk_tools_walkers_
genotyper_UnifiedGenotyper.php#--input_prior. 
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Once we aligned bams, we performed reference-bias free genotyping on a per-
chromosome basis using the following command (where CHR_ID is the 
chromosome). We did not treat chromosome Y or mtDNA in a special way 
 
( java -Xmx2g -jar /home/sm213/src/src_extended/gatk/GenomeAnalysisTK-2.5-2-
gf57256b/GenomeAnalysisTK.jar  -T UnifiedGenotyper -I srt.aln.bam -L CHR_ID -R 
/groups/reich/reference-genomes/h\ 
s37d5/unzipped/hs37d5.fa -dcov 600 -glm SNP -out_mode EMIT_ALL_SITES -
stand_call_conf 5.0 -stand_emit_conf 5.0 -inputPrior 0.0010 -inputPrior 0.4995 -D 
/groups/reich/sw/gatk/bundle/2.8/b37/dbsnp_138.b37.\ 
vcf -o CHR_ID.vcf -A GCContent -A BaseCounts >& CHR_ID.vcf.oe ; bgzip 
CHR_ID.vcf; tabix -p vcf CHR_ID.vcf. )                                                                                              
 
Polymorphism discovery and comparison to published SNP call sets 
We determined genotypes for each sample as described above, and restricted to 
positions passing filter level 1 (Supplementary Information section 2) where there was 
polymorphism among humans or comparing human to chimpanzee (panTro2). This 
results in a dataset of 62.60M sites. Restricting to sites that pass universal filters and 
are polymorphic in the samples (rather than being panTro2 specific differences) 
produced 32.50M sites on autosomes and 0.93M sites on chromosome X.   
Comparing autosomal with public datasets at autosomal sites (Table S1.1), we find: 
 
Table S1.1. Comparison of SGPD to other datasets at autosomal sites.  
Comparison set #sites specific 

to SGDP 
#sites overlapping 
comparison set 

#sites unique to 
comparison set 

GoNL9 23,486,021 9,015,983 8,303,703 
dbSNP (v137)8 25,244,229 7,257,775 6,544,167 
1kg7 (phase3) 10,582,114 21,919,890 46,554,050 
Note: This analysis restricts sites that pass the universal filter (Supplementary Information section 2). 
 
SGDP adds more than 10.5M autosomal SNPs to the 1000 Genomes Project dataset at 
positions passing the universal filter. The number of unique variants to this dataset 
(compared with 1000 Genomes Project) is evident in Supplementary Data Table 1 and 
Extended Data Fig. 1, where we present the faction of heterozygous genotype calls in 
each individual in the SGDP that are not known SNPs in the 1000 Genomes Project 
dataset. As expected, relatively few new variants are found for the large census size 
populations that have been analyzed extensively for medical genetics projects. 
However, in more isolated populations a substantial fraction of heterozygous 
positions are not in the database (Onge 4%; Papuans 5%; KhoeSan 11%).  
 
The Transition-to-Transversion ratio (Ti/Tv) of the SNPs in the dataset is 2.02 for all 
positions, consistent with high quality and low error rate. 
 
Principal Component Analysis (PCA) 
We started with the filter level 1 calls in the previous step, and obtained genotypes for 
1,152,838 autosomal SNPs, chosen based on the Panel 1 and Panel 2 SNP sets 
described in ref. 6. Extended Data Fig. 4 shows a plot of the first and second Principal 
Components, which maximizes differences between sub-Saharan and non-African 
populations on PC1, and differences between West Eurasian and East Eurasian 
populations on PC2. This qualitative picture is typical of previous studies of 
worldwide human population structure. 
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Supplementary Information 2 
Filter construction and quality control 
 
Nick Patterson*, Mengyao Zhao, Heng Li, Niru Chennagiri, Arti Tandon, David 
Reich and Swapan Mallick 
 
*To whom correspondence should be addressed: (nickp@broadinstitute.org) 
 
Overview 
Our basic strategy for filter design was to use divergence from chimpanzee as a 
figure-of-merit. We interpreted higher divergence from chimpanzee as evidence of a 
higher error rate. We designed cutoffs that minimized this divergence, and 
secondarily checked that divergence to the human reference genome was reasonable 
based on our understanding of patterns of human genetic variation.  A consequence of 
this filtering strategy is that we may be biasing toward regions of lower true mutation 
rate. This means that estimates of mutation rate per base pair based on the literature 
may tend to be too high for the regions passing our filters. For analyses where we 
wish to convert genetic divergence estimates to absolute time, we therefore use a 
mutation rate that we recalibrate to be exactly appropriate to the parts of the genome 
we are actually analyzing as described in Supplementary Information section 9. 
 
We assigned filter levels at each nucleotide in the genome for each sample as a single 
character (0-9), both in fasta format and as an annotated field (“FL”) in per-sample 
vcf files (we provide annotation in both formats to permit both fasta and vcf style 
processing). The characters “?” or “N” indicate that the site should not be used.  
 
We believe that for most applications, including for SNP discovery, filter level 1 is 
likely to be most useful, achieving a good balance between sensitivity and low error 
rate.  For applications in which the goal is to drive down errors rates as far as 
possible, filter level 9 is recommended (but it loses a substantially higher fraction of 
the genome), as shown in Figure S2.1. If positions are already known to be 
polymorphic, filter level 0 is reasonable.  
                                                                                                                                                                          
The filtering strategy used here is highly specific to the SGDP dataset. On a different 
dataset with different mean coverage for instance, we would not expect it to work as 
well without some modifications.     
 
Inputs to filtering algorithm 
Several inputs are required for the filtering engine, which are either sample-specific or 
all-samples (valid for all samples): 
 
(i) rawvcf: a sample-specific file, produced from GATK genotyping (Supplementary 

Information section 1). It includes per-base metrics such as DP (depth), MQ (root 
mean square of mapping quality) and MQ0. MQ0 counts the number of reads with 
MAPQ = 0 for the sample, with high counts tending to occur in regions where it is 
difficult to make confident calls. The rawvcf file is produced using “-out_mode 
EMIT_ALL_SITES” which produces metrics at non-variant and variant sites.  

 
(ii) hetfa: a sample-specific file that encodes the genotypes into a fasta type file using 

IUB encoding. This is constructed using the tool vcf2hetfa. 
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(iii) cnv: a sample-specific file that encodes copy number variant data. This is 

constructed using the tool bam2cnv. 
 
(iv) an all-samples filter which comprises of 3 parts: i) a structural filter, which 

contains problematic regions mostly caused by CNVs identified by 1kg data, ii) a 
compositional filter, including low-complexity regions, and iii) a mapability filter 
where the 75-mer centered at the base is unique in the human reference genome. 
Details of the construction of this filter are described in Supplementary 
Information section 3.   

 
The inputs used for these filters are either available for download from our ftp site as 
described in Supplementary Information section 6, or are outputs of the Unified 
Genotyper from GATK1. 
 
Filter construction on a per-sample basis 
 
Step 1 – Filtering out of nucleotides based on non-GATK filters: 
Bases that fail the all samples filter, or the sample-specific cnv filter, or that do not 
have a valid reference allele (human) are marked as N, as we do not think that they 
should be used in most analyses. Also, bases without a valid diploid call are marked 
N. Subsequent filters are based on three fields of the vcf file (MQ, MQ0, DP).  
 
Step 2 – Depth-based-filtering based on GATK outputs:  
(i) For each possible read depth interval [l,h], restricting to nucleotides with MQ=60, 

MQ0=0 and depth l ≤ d ≤ h, we compute: 
 (a) Coverage, that is, the proportion of bases as a total of the genome  
 (b) # matches and mismatches to chimpanzee (PanTro2).    
 We insist that the boundary values l and h each cover ≥1000 positions.    
(ii) For each targeted coverage, find the [l, h] interval that has the minimal divergence 

to chimpanzee.  This builds a filter that is optimized to a targeted coverage level. 
(iii) Prune the resulting list of "optimal" intervals.  We first insist that for each 

coverage X and coverage Y  (X < Y) the interval for X is a subset of the interval 
for Y.  This avoids paradoxical behavior, especially for extreme choices of 
coverage.  We now set y0 to be the maximum coverage (expressed as a fraction of 
all nucleotides in the genome). y0 will be <1 as nucleotides are discarded by a 
number of filters (for example, the all samples filter). We set y1 = 0.5.   At filter 
levels (k=1…9), set the desired coverage to be  C(k) = (y1k + y0(9-k))/9. We set 
the interval (on the DP field) for level k to be [l(k), h(k)] as the  "optimal" interval 
for coverage C(k). This allows us to determine 10 filter intervals that attain 
increasingly low divergence to chimpanzee at the expense of reduced coverage. 

 
Step 3 - Annotation:   
This requires a second pass through the vcf, in which we annotate each nucleotide 
according to the highest filter level that it achieves according to the depth intervals 
[l(k), h(k)] learned in Step 2.  We further mark nucleotides as filter level 0 if they are 
not already marked N, and also have MQ0 = 0 and MQ > 50. We record the mask 
values in a fasta file and compute a .fai index.     
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For most applications, we recommend filter level 1.  If only the best quality sites are 
required, we recommend filter level 9. For pulling down genotypes onto a known set 
of polymorphic SNPs, it is reasonable to use filter level 0, and this is the default for 
cpulldown.  Statistics of divergence to chimpanzee and the human genome reference 
sequence by filter level are generated by the software, but note that the human 
reference genome is not used to set the filter level values (except insofar as requiring 
it to be covered). Furthermore, although chimpanzee is used to set the filter 
parameters, we do NOT require chimpanzee data when setting the filter value.  
 
The whole filtering procedure is implemented in the program cmakefilter, which is 
available for download (see Supplementary Information section 6). 
 
Example of command line for a sample (20G of memory is required): 
 
cmakefilter -p S_Eskimo_Sireniki-1.par 

 
cmakefilter is driven by a parameter (.par) file; example is S_Eskimo_Sireniki-1.par: 
 
XXX:  LP6005443-DNA_B03 
SDIR:  /n/data1/hms/genetics/reich/1000Genomes/cteam_remap/A-samples/XXX 
sdir:  SDIR 
vcfdir:  SDIR/rawvcf 
vcfsuffix:  vcf 
hetfa:   SDIR/rawvcf/rawvcf.hetfa.fa 
cnv:  /n/data1/hms/genetics/reich/1000Genomes/cteam_remap/A-
samples/XXX/depth_filt/hs37d5_maskCNV_soft.fa 
gender:  M 
fixeddbase:   /home/np29/cteam/release/fixedfilters 
sampname: S_Eskimo_Sireniki-1 
debug:  NO 

 
The gender of the sample must be supplied; this may be obtained by examining the 
ratio of reads aligning to the X and Y chromosomes, or a gender prediction tool2.  
 
Post-filtering Quality Control 
The filtering engine produces files sample.mask.fa and sample.mask.fa.fai, which 
specify the filter level at each nucleotide of the genome. 
 
After we generate the .mask.fa files by running cmakefilter, we run a quality control 
(QC) step to make sure the .mask.fa files have expected features. We do this by 
running the program filtstats (available for download, see Supplementary Information 
section 6), with command: 
 
filtstats -p S_Eskimo_Sireniki-1.par 

 
Parameter files are the same as that for cmakefilter. For a sample.mask.fa, this outputs 
the divergence to both chimpanzee and human reference genomes for each filter level. 
 
One example output of filtstats (the output of the above command) is as follows. The “base 
count” here gives the total number of alleles in each mask category. Because humans are 
diploid except for males on chromosomes X and Y, this is two times the length of the 
analyzable reference genome. The “divergence” number here gives the divergence as a to the 
reference genome specific to the sample being analyzed.  
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chimp_divergence 
#1_mask_level 2_base_count 3_divergence  
no mask:  500576324     0.019997 
       0  632059598     0.015103 
       1  132733944     0.014027 
       2  196627594     0.013657 
       3  124172884     0.013414 
       4  300574334     0.013211 
       5  174208320     0.012998 
       6  186528610     0.012905 
       7  201977194     0.012784 
       8          0     0.000000 
       9 2405268900     0.012272 
  Total: 4854727702     0.013700 
 

Href_divergence 
no mask:  705187112     0.001783 
       0  698686562     0.001143 
       1  143095222     0.001027 
       2  210454102     0.000996 
       3  132282554     0.000977 
       4  318804508     0.000957 
       5  184104838     0.000931 
       6  196666104     0.000917 
       7  212586160     0.000907 
       8          0     0.000000 
       9 2509201540     0.000841 
  Total: 5311068702     0.001036 
 

Figure S2.1: Filtering results over all samples; shaded area indicates one standard 
deviation. (a) By design, increasing filter levels minimize divergence to chimpanzee. 
(b) Divergence to the human reference genome also decreases monotonically with 
filter level, even though the human reference genome is not used in filter design. (c) 
The number of bases retained at each filter level. (d) Stratifying by region shows only 
a slight variation which might be indicative of alignment bias to the reference, which 
is comprised mostly sequences of European, African and East Asian descent.  

 

 

a b
 

c d 
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Annotating vcf files 
We added the filter level in the “FORMAT” field of the vcf. For each sample, this takes the 
FL value from the .mask.fa file created above and annotates the vcf. This is done using the 
tool: annotate.pl  (available by ftp, see Supplementary Information section 6). 
 
input: raw vcf files (one vcf file for each chromosome), gzipped. 
 
output: sample.annotated.vcf.bgz 
 
Example of command line for each sample: 
 
annotate.pl S_Eskimo_Sireniki-1.par | bgzip -c > S_Eskimo_Sireniki-1.annotated.vcf.bgz 

 
The parameter files is the same as that for cmakefilter. 
 

References 
1 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, 

Garimella K., Altshuler D., Gabriel S., Daly M., DePristo M. (2010) The 
Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data, Genome Research 20:1297-303. 

2 Skoglund P., Storå J., Götherström A., Jakobsson M. (2013) Accurate sex 
identification of ancient human remains using DNA shotgun sequencing, 
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Supplementary Information section 3 
Data access, formats and tools 
 
Mengyao Zhao, Swapan Mallick, Arti Tandon, David Reich and Nick Patterson* 
 
*To whom correspondence should be addressed: (nickp@broadinstitute.org) 
 
Overview 
The 300 samples that constitute the SGDP dataset are divided into two categories: (i) 
279 (of which 263 are in Panel C) that are fully publicly available, and (ii) 21 (of 
which 15 are in Panel C) that require a signed letter for access (Table S3.1).   
 
Table S3.1: Samples by geographic region 

Region C Panel 
fully public 

B Panel  
fully public  Signed letter Total 

Africa 39 5 11 55 
America 20 2  22 
CentralAsiaSiberia 27   27 
EastAsia 45 2   47 
Oceania 22 3  25 
SouthAsia 39  10 49 
WestEurasia 71 4  75 
Total 263 16 21 300 
 
Repositories for the raw data 
Raw data, results bams, annotated vcfs (which include filtering annotations), and 
hetfa (encoded genotypes) are available in one of two repositories: 
 
(i) Fully public samples:  EBI (http://www.ebi.ac.uk/) 
Accession number: PRJEB9586, secondary accession number: ERP010710. 
 
(ii) Signed letter samples: dbGAP (http://www.ncbi.nlm.nih.gov/gap) 
dbGAP will provide raw data using their mechanism for controlled data sharing.  
[Accession number to be released upon publication] 
 
In addition to the per-sample files, we are distributing two versions of all multi-
sample files (such as multi-sample vcfs and cteam-lite; see below), corresponding to 
the fully public data (n=279 samples), and the complete dataset (n=300 samples). 
 
Distribution of packed files that we expect will be of greatest value to many users 
Most analyses of interest to users will be possible using reduced versions of the 
dataset that are available on the Reich laboratory website. This consists, most 
importantly, of “cteam-lite”, a dataset that consists of packed hetfa files and masks 
allowing both variant and non-variant sites to be analyzed at user-specified filter 
levels. This may be used for example to extract raw data for divergence calculations, 
which is not possible with typical vcfs restricted to variant sites. In the mask files, we 
assign filter levels at each nucleotide in the genome for each sample as a single 
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character (0-9, N, ?) in fasta format. The nucleotides with filter level 9 have the 
highest quality. The characters “?” or “N” indicate that the base should not be used.   
 
In addition to the SGDP, cteam-lite also provides two reference genomes and five 
ancient genomes with enough coverage to allow diploid calls. The references include 
the human reference build 19 (https://genome.ucsc.edu/cgi-bin/hgGateway?db=hg19) 
and a chimpanzee genome in human coordinates (from EPO alignments of panTro2, 
http://hgdownload.cse.ucsc.edu/goldenPath/panTro2/bigZips/). The five ancient 
genomes are the Altai Neanderthal sequenced to 52-fold coverage1, the Siberian 
Denisovan genome sequenced to 31-fold coverage2, the Upper Paleolithic Siberian 
Ust-Ishim genome at 42-fold coverage3, the Mesolithic European Loschbour genome 
at 22-fold coverage4, and the early European farmer Stuttgart genome at 19-fold 
coverage4. For the ancient genomes, we used previously published filters, and 
therefore include mask files for the five ancient genomes at only two levels (0 and 1).  
Thus, users who wish to analyze these samples using cteam-lite must not specify 
minfilterlevel as more than 1.  We hope that these 5 fasta files will provide a 
convenient way to access these genome sequences in conjunction with the SGDP. 
 
The entire cteam-lite dataset takes up 129 Gb and thus may be downloaded by ftp 
[address upon publication], thus eliminating the practical difficulty in accessing raw 
whole genome genotype data for hundreds of samples.  
 
Fast tools for processing hundreds of whole genome sequences 
Cteam-lite is supplied with software: “cTools” (https://github.com/mengyao/cTools). 
This is comprised of three major components:  
 
(i) cascertain which allows discovery of sites from whole genome data according to 
user specified ascertainment rules. Rules may be quite complex and are built from a 
mini-language, allowing for queries such as: “Identify sites where S_Yoruba_1 is 
heterozygous and either Altai or Denisova has a derived allele (chosen at random) 
EXCEPT where both Altai and Denisova are both heterozygous”;   
 
(ii) cpulldown which allows genotype calls to be extracted at user-specified filtering 
levels, given a set of known positions, such as those in a genotype array;  
 
(iii) cpoly, which pulls down all the SNP sites that are polymorphic in a specified 
sample list from one or multiple bams. 
 
The cTools software suite is designed to access data without unzipping individual 
cteam-lite files, though users may wish to do so for their own needs in which case the 
dataset expands to ~10 Tb.  
 
Additional tools and data available 
Our lab website (http://genetics.med.harvard.edu/reich/Reich_Lab/Software.html) also 
supplies the full suite of software (the mapping and filtering and QC pipeline) used to 
generate the dataset, which we hope will allow researchers who generate their own 
data to combine their data with the data reported here. 
 
The individual files available from the ftp site are: 
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Filtering tools: 
CTEAM_TOPDIR/tools/filters/ 
- For generating inputs: 
- cnv: bam2cnv 
- hetfa: vcf2hetfa 
- mappability75: datafile: a universal filter indicating bases where the 75-mer 
centered at the base is unique in human reference 
- hs37d5 (Href): human reference 
- Chimp: in human coordinates 
 
Programs for running the filter engine: 
- cmakefilter 
 
Programs for postprocessing the filters: 
- filtstats 
- annotate.pl 

 
cteam-lite dataset 
- CTEAM_TOPDIR/cteam_lite/ 
- cteam-lite: access 
 
Multi-sample VCF file 
- CTEAM_TOPDIR/data/multi_sample_vcf/ 
- from the processing of Supplementary Information sections 1 and 2, where calls are 

made using single-sample genotyping using GATK 
- from the process of Supplementary Information section 3, where calls are made 

based on de novo assembly, and multi-sample processing 
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Supplementary Information section 4 
Comparison of genotypes obtained by different methods 
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Universal mask construction 
To allow a fair comparison of several methods of SNP calling, we defined a universal 
mask. The universal mask is a sample independent mask that identifies complex 
regions in the human reference genome where variant calling can be challenging. 
 
The universal mask has three components: (a) mapability mask; (b) low complexity 
regions; and (c) regions enriched with aberrant SNP calls from the 1000 Genomes 
Project. The final mask is the union of the three components. This universal mask is 
used as one of the inputs for the filters in Supplementary Information section 2. 
 
(a) Mapability mask 
At each position in the human reference genome, we extracted all possible 75-mers 
overlapping the position and mapped them back to the reference genome with BWA. 
We kept the position unmasked if 38 or more overlapping 75-mers cannot be mapped 
elsewhere with at most one mismatch or gap. The rest of positions are masked. 
 
(b) Low-complexity mask 
The low-complexity mask has three sub-components: a) low-complexity regions 
identified by the mDUST program 1  (command options “-w 7 -v 28”); b) 
homopolymers 7 bp or longer; c) DNA satellites and low-complexity regions as 
identified by RepeatMasker (extracted from the file “rmsk.txt.gz” from the UCSC 
Genome Browser: http://genome.ucsc.edu). These regions are merged together with 
10 bp flanking added to each end. This gives the final low-complexity mask. 
 
(c) Regions enriched with aberrant SNP calls 
We acquired the samtools pre-filtered SNP calls on the 1000 Genomes Project phase 
III data. For each SNP, we computed from the genotype likelihoods the inbreeding 
coefficient, and the P-value under the Hardy-Weinberg equilibrium assumption. We 
focused on SNPs with negative inbreeding coefficient (i.e. excessive heterozygotes). 
We further selected SNPs satisfying one of two criteria: (1) P<10-10; or (2) the P-value 
is below 10-5 and the total read depth is above 22,000 on the autosomes or 19,000 on 
the X chromosome. We clustered the selected SNPs that are close to each other, 
added 150bp of flanking bases to each cluster, and merged the resulting intervals to 
generate the final mask. This mask identifies regions susceptible to mis-assemblies in 
the human reference genome or common copy number variations (CNVs). 
 
Properties of the universal mask 
The unmasked region covers 87% of A/C/G/T bases in GRCh37, 93% of GenCode 
protein coding regions and 96% of pathogenic variants in the ClinVar database. The 
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universal mask is a mild mask. It retains the majority of reference genomes, especially 
functional regions and variants. 
 
Another commonly used mask for SNP calling is the regions used by the Genome-In-
A-Bottle project1. The unmasked regions here covers 78% of A/C/G/T bases in the 
GRCh37 autosomes, 74% of GenCode coding regions and 79% of ClinVar 
pathogenic variants. This mask imposes a significant penalty on functional regions 
and is specific to sample NA12878. Our universal mask is more permissive (albeit at 
the cost of a higher error rate) and not influenced by variants in a single genome. 
 
Comparison of Variant Call Sets 
 
Additional variant call sets 
The GATK call set (Supplementary Information section 1) excludes Indels and multi-
allelic SNPs. To account for these additional short variants, we called variants with 
FermiKit-0.82 for the 263 fully public samples from Panel C of the SGDP. FermiKit 
assembles short reads into unitigs, maps them to a reference genome, and then calls 
variants without using a complex statistical model. This procedure is very different 
from a typical mapping-based SNP calling pipeline. We have also called SGDP 
samples from an earlier BWA-based mapping of a subset of samples using the 
Platypus3 software. This call set is only discussed here only for the comparison 
purposes (we do not release the calls, as the underlying read mappings are out of 
date). The Platypus call set contains 259 out of the 263 public samples. 
 
Comparison of call sets 
Figure S4.1 shows the Euler diagram of the three call sets, restricted to the region not 
covered by the universal mask. The call sets largely agree, suggesting they are all of 
high quality. The GATK call set is smaller probably due to the more aggressive 
filtering (we retain SNPs at which at least one sample passes filter level 1). Of the 
FermiKit-, Platypus- and GATK-specific SNPs, 73%, 76% and 68%, respectively, are 
singletons or doubletons. The percentages are higher than the overall rate of 
singletons and doubletons:  about 57% in all three call sets. In the following sections, 
we use the FermiKit call set which includes both indels and multi-allelic SNPs. 

 
 
 
Figure S4.1. Comparing 
SNPs discovered by 
different methods. We 
compare GATK, FermiKit, 
and Platypus calls for 
samples and sites that 
overlap. 
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Characteristics of Variants 
 
Overall statistics 
Across all the autosomes, FermiKit called 37.4M SNPs, 3.0M insertions and 3.8M 
deletions relative to the human reference genome. In the high quality unmasked 
regions, it called 30.0M SNPs, 0.7M insertions and 1.4M deletions. The number of 
indels is affected more by masking because the universal mask includes low-
complexity regions that are enriched in short tandem repeats. 
 
Notably, the universal mask filters 20% of SNPs, although it has only masked 13% of 
the human genome, including long recent segmental duplications and centromeric 
regions that are inaccessible to 100 bp short reads. We speculate that a substantial 
fraction of the 7.4M (=37.4-30.0) SNPs in the masked regions are false positives due 
to CNVs or misassemblies in the human genome that have been filtered out by the 
universal mask. For this reason, we focus on the unmasked variants in the following 
analyses. It is important to note that our universal mask excludes most short-tandem 
repeats (STRs). Supplementary Information section 5 characterizes the STRs. 
 
Allele frequencies 
Suppose ϕnk is the rate of observing k non-reference alleles out of n haplotypes. Let 
ψnk=kϕnk/Σjjϕnj. Then, ψnk is the fraction of non-reference alleles on a single haplotype 
which occur k times out of n. If the sample haplotypes and the reference haplotype all 
come from a single uniform population, the Wright-Fisher expectation of ψnk is 1/n. In 
the continuous form, if ϕ(x) is the allele frequency spectrum, let: 
 

𝜓 𝑥 =
𝑥𝜙(𝑥)

𝑦𝜙 𝑦 𝑑𝑦!
!

 

 
Here ψ(x)dx is the probability of seeing, on a single haplotype, a non-reference allele 
of frequency in the range of [x,x+dx). The Wright-Fisher expectation is ψ(x)=1.  
 
In practice, population demography is not Wright-Fisher as the SGDP samples do not 
come from a homogeneous population and populations have not been constant in size 
over time. We therefore do not expect ψ(x)=1. Figure S4.2 shows the empirical ψ(x) 
of each of seven regionally grouped populations for both SNPs and short indels. A 
point above 1 indicates excess in comparison to the ideal Wright-Fisher expectation. 
The empirical ψ(x) of SNPs and indels are broadly similar. We observe an excess of 
rare variants, which could either be due to population expansions or the fact that our 
samples from multiple populations have substantial population structure. In addition, 
for non-African samples, variants at frequency of around 5% are depleted. We 
hypothesize that this is caused by the common bottleneck shared in non-Africans. 
 
A related question is for a single sample, what is the fraction of heterozygous 
positions that have substantial non-reference allele frequency among other samples. 
Figure S4.3 shows that given a new East Asian and European sample, ~97% of 
heterozygous SNPs are seen at >1% frequency in the rest of SGDP. The percentage 
drops to 96% for Papuans, 85-90% for sub-Saharans of non-hunter-gatherer 
background, and as low as 80% for San samples. 
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Figure S4.2: Ratio of empirically observed rate of sites in a given frequency band 
vs. Wright-Fisher expectation. (a) SNPs. (b) Indels. Horizontal line at ψ(x)=1 shows 
the Wright-Fisher expectation. 

	
  
 
Figure S4.3: Fraction of heterozygous positions observed in a new sample that 
are at >1% frequency in the other SGDP samples. 

	
  
 
Compositional biases 
Figure S4.4a shows the fraction of CpG-related transitions as a function of minor 
allele frequency. We observe an excess of instances in which the ancestral state in 
characteristic CpG mutations is the major allele at the low-frequency end. This is 
unsurprising given that the mutation rate is known to be higher at CpG sites, which 
leads to more young mutations that have lower frequency in the population. Due to 
this effect, more CpG-related SNPs have C/G as the major allele at low frequency 
(blue dots in Figure S4.4b).  
 
For transversions and non-CpG transitions, we observe a signal in the same direction 
albeit a weaker one: C/G tends to be the major allele at low frequency (Figure S4.4b). 
To understand what the ratio means, it is illustrative to examine a population at 
Wright-Fisher equilibrium with C/G-to-A/T mutation rate θ  and A/T-to-C/G 
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mutation θw across both C/G and A/T sites. In this model, the number of C/G-major 
alleles at minor allele count k<n/2 is proportional to: 
 

𝑛 − 𝑘
𝑛 ∙

𝜃!
𝑘 +

𝑘
𝑛 ∙

𝜃!
𝑛 − 𝑘 

 
Similarly we can derive the number of A/T-major alleles. The ratio in Figure S4.4b is: 
 

(𝑛 − 𝑘)!𝜃! + 𝑘!𝜃!
𝑘!𝜃! + (𝑛 − 𝑘)!𝜃!

 

 
Or if we let f=k/n being the minor allele frequency, the equation above becomes: 
 

(1− 𝑓)!𝜃! + 𝑓!𝜃!
𝑓!𝜃! + (1− 𝑓)!𝜃!

 

 
This ratio equals 1 at f=0.5 and approaches θs/θw at low f. Therefore, Figure 3.4b 
implies that even at non-CpG sites, there is a mutational bias favoring C/G-to-A/T 
mutations, in agreement with previous studies4-6.  
 
Figure S4.4: Over-representation of different types of mutation as a function of 
minor allele frequency. 
 

	
  
 
It is important to point out that GC-biased gene conversation—which has the effect of 
causing a shift in the allele frequency spectrum toward GC-major alleles at sites that 
are GC/AT polymorphisms7—could also be playing a role in the patterns observed in 
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Fig. S4.4b. However, GC-biased gene conversation cannot be explaining entire signal, 
and in particular, cannot explain the stronger signal at CpG transitions.  
 
We finally observe a bias in which the major allele tends to be longer than the minor 
at Indel sites (Figure S4.4c). This signal is even stronger that the compositional biases 
observed at SNPs, and could similarly be explained by a scenario in which mutation 
favors deletions over insertions.  
 
To further probe these compositional biases, we examined whether the C/G-to-A/T 
bias is the same across populations. Given two populations, we draw a haplotype from 
each population and then collect C/G vs. A/T single-nucleotide differences between 
them. Let A be the number of times the first population has the C/G allele and B the 
number of times the first population has the A/T allele. Define D=(A-B)/(A+B). The 
neutral expectation is D=0. We can compare all pairs in two populations to derive D 
between two populations8. 
 
We computed D for all pairs of the seven super-populations. Between any pair of non-
African populations, D is below 0.001. The maximum Z-score is 3.2, which is not 
significant after accounting for the number of hypotheses tested. Between African and 
non-African populations, the D value is around 0.002. The Z-scores become 
significant (between 5.0 and 8.5), but at such small D values, the apparently 
significant Z-scores may be caused by reference biases or the higher heterozygosity of 
African samples, which generally make variant calling harder. Thus, we view these 
results as interesting, but do not view them as compelling evidence for a difference in 
C/G-to-A/T bias across populations. 
 
We applied a similar approach to 1-4bp biallelic Indels and asked whether a 
population prefers the longer allele in an INDEL variant. We observed differences in 
this analysis: D values reach 0.062 to 0.100 between African and non-African 
populations (Z-scores over 50), suggesting that African samples tend to have longer 
alleles. We tried a more aggressive universal mask to filter out more potential low 
quality variant calls. The D values stay the same, though the Z-scores become smaller 
as there are fewer variants. We have also performed a similar analysis on the indel 
calls from the 1000 Genomes Project. The D values between African other 
populations are 0.026 (Z>24), 0.067 (>51), 0.059 (>51) and 0.053 (>46), when the 
other population is American, East Asian, South Asian and European, respectively. 
The magnitude of D is smaller. We speculate that the asymmetry of allele lengths is 
caused by artifact, though we have not been able to identify the source. 
 
Functional analysis 
We acquired ClinVar database version 20150806 and found that 509 out of 26,411 
pathogenic non-reference alleles are present in the fully publically available samples. 
Each sample has 21.7 ± 9.2 (mean ± 2SD) potential pathogenic alleles, and 4.8 ± 4.7 
pathogenic homozygotes on average. ClinVar may include common variants 
identified from GWAS. Having a pathogenic allele or even a homozygote does not 
necessarily imply disease status. 
 
We annotated SNPs and Indels with Ensembl Variant Effect Predictor (VEP) version 
80. The effect of a variant is associated with the transcript that harbors it. We always 
select the most significant effect if there are multiple associated transcripts. Thus if an 

19



indel falls in the intron of one transcript but causes a frame-shift in another transcript, 
the effect of this indel is marked as frame-shift. 
 
In average, each sample has 55.2 ± 13.2 gains of stop codons and 81.7 ± 17.8 frame-
shift events. Our numbers are about twice as large as those obtained by MacArthur et 
al.9 We can see four potential explanations for this difference. Firstly, loss-of-function 
(LoF) variants are more susceptible to artifacts. Before aggressive filtering and 
experimental validation, MacArthur et al. 9 identified over 300 LoF variants per 
sample. The error rate of our LoF variants may be higher than the overall rate, too. 
Secondly, gene annotations, the effect predicting software and the choice of 
transcripts may have a sizable influence on LoF10. MacArthur et al. were using a 
different pipeline and set of gene annotation. Thirdly, LoF variants are rare: 70% are 
singletons among our analyzed 263 samples. With 36 bp reads at <4-fold coverage 
(the authors were not using exome sequencing data from the 1000 Genomes Project), 
the previous study should have low power on singletons which cannot be rescued by 
imputation, either. Fourth, the authors aggressively filtered LoF variants, which may 
affect sensitivity (MacArthur, personal communication). In conclusion, our number of 
LoF variants per sample may not be inconsistent with previous studies. Our results are 
achieved without aggressive filtering and without experimental validation. 
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Supplementary Information section 5 
Characterization of sequences missing from the reference genome GRCh38 
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Generating the dataset 
We performed a de novo assembly of 254 SGDP samples using a pre-released version 
of FermiKit (https://github.com/lh3/fermikit).  
 
For each sample and for each fosmid and BAC clone from GenBank (v203), we 
extracted >500bp segments on which each 101-mer is absent from the human 
reference genome GRCh38, including all ALT contigs. We mapped these segments to 
GRCh38 plus HLA (from IMGT/HLA 3.18.0), and dropped sequences that had fewer 
than 20 mismatches/gaps or over 99% identity to GRCh38+HLA. We dropped a 
subset of 15 samples that we found provided far more novel sequences than did other 
samples in the study. Manual BLAST checking indicated to us that most novel 
sequences identified from these samples are due to microbial contamination. 
 
After obtaining individual novel sequences, we merged them (4.5Gbp sequence in 
total) and dropped sequences that were substrings of another novel sequence (1.0Gbp 
left). We further discarded sequences highly enriched in the GGAAT motif, a 
characteristic centromeric repeat, as well as sequences that were fully low-complexity 
according to DUST1 (85Mbp left). We aligned the remaining novel sequences against 
each other in four rounds with different mapping settings and thresholds, in order to 
minimize redundant sequences (68Mbp left). We mapped the low-redundancy contigs 
to the “nt” database and removed those whose best matches were to unicellular 
organisms, which could reflect microbial contamination (65Mbp left). We applied 
two additional rounds of all-vs-all mapping between contigs to identify additional 
redundant segments. This gave 12,296 contigs over 500bp, totaling 13Mbp in length. 
 
We ran RepeatMasker-4.0.5 (on RepBase-19.07) and classified the contigs into three 
categories: low repeat content, enriched with interspersed repeats, and enriched with 
centromeric repeats. We set a length threshold of 1000bp for the first two categories 
and 2000bp for the last. This left us with 2,385 contigs totaling 5.8Mbp. These 
SGDP-derived sequences, which we propose can be used as new decoy sequences to 
improve mapping efficiency, have been submitted to NCBI and made available at the 
GRC FTP site for public download. 

Population structure of previously unknown human sequences 
We assembled 261 public SGDP samples with a more accurate version of FermiKit-
0.8 (Supplementary Information section 3). We mapped the new contigs to GRCh38 
plus the decoy and calculated the coverage of each contig for each sample. We define 
a sequence as present in a sample if over 90% of the sequence is covered, absent if 
less than 10% of the sequence is covered, and otherwise call its genotype ambiguous. 
With this classification, we find that 264 previously unreported sequences are present 
in all 261 samples. A total of 4 sequences, all from GenBank clones, are completely 
absent; these could be rare sequences in humans or contamination in GenBank. We 
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also found 1,515 sequences that are present in some samples but absent in others. 
They represent variation across populations. The rest of the previously unreported 
sequences are either present in some samples but ambiguous in others, or absent from 
some samples but ambiguous in others. 
 
We performed principal component analysis (PCA) for the 1,515 previously un-
reported sequences that are variable among samples. To prepare a cleaner dataset, we 
dropped sequences that are ambiguous in more than 130 samples or that have <1% 
minor allele frequency among samples. We also identified two clusters of contigs that 
are strongly linked. All the contigs in one cluster map to a 120kbp CHM1 PacBio 
contig LCYE01013315.1. The SGDP samples either have the whole PacBio contig or 
do not have it, explaining why contigs in this cluster are strongly linked. We 
hypothesize that the strong linkage in the other cluster is due to a similar reason, but 
the haploid samples CHM1 and CHM13 do not carry this haplotype. For population 
genetic analyses, we excluded contigs in these two clusters, leaving 950 sequences for 
PCA (Figure S5.1). The plot is broadly similar to a PCA of SNPs: the first principal 
component (PC1) separates Africans from others, and PC2 separates West Eurasians, 
East Asians and Oceanians. The most extreme populations on PC2 are Oceanians, 
who are not typically the most extreme population in SNP PCAs. We hypothesize that 
this is due to the fact that they are least closely related to the individuals whose DNA 
was used to construct the human genome reference sequence of the non-Africans in 
SGDP, and thus their contribution in terms of never-before-reported sequences is 
larger than for West or East Eurasians2. Overall, these results show how variation in 
unreported sequence, like other types of variation, is sensitive to population structure. 
 
Figure S5.1. PCA of 261 public SGDP samples across 950 sequences. 
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Variation at the Immunoglobulin heavy chain (IgH) locus 
The human reference genome GRCh38 replaces the IgH locus in GRCh37 with the 
haplotype from the CHM1 haploid genome3. However, the GRCh37 haplotype is not 
added back to GRCh38 as an ALT contig. It is thus unsurprising that our analysis 
finds the GRCh37 sequence at the IgH locus. Its coordinates are chr14:106531321-
25074982 in GRCh37 and chr14:106075079-106112834 in GRCh38. 
 
For these two ~38kb sequences, we genotyped the 261 public samples by mapping 
their assemblies to the two haplotypes. We define a haplotype as called if at least 
20,000bp of the contig is covered. With this threshold, 42 samples have both 
haplotypes, 125 have the GRCh37 haplotype only, 49 have the GRCh38 haplotype 
only and 45 samples have neither haplotype. If we decrease the coverage threshold by 
10-fold to 2,000bp, the four numbers become 69, 128, 47 and 17, respectively. Thus, 
varying the coverage threshold does not have a qualitative effect on our assessment. 
Consistent with the observation of ref. 3, the GRCh37 haplotype has higher frequency. 
 
The observation of the lack of both haplotypes in some samples suggests that there 
might be other rarer IgH haplotypes different from those in GRCh37 and GRCh38. 
However, assembling Illumina short reads in the IgH region is technically challenging 
due to multiple gene copies and segmental duplications. It is tempting to think that 
KI270846, which is listed as a third IgH haplotype in GenBank, could be present in 
some of the individuals who have neither the GRCh37 nor the GRCh38 haplotype. 
However, KI270846 is identical to the GRCh38 haplotype in the 38kb region; indeed, 
the relevant subsequence of KI270846 is made of CHM1 BAC AC247036 according 
to its tiling path. Thus, KI270846 is not an independent observation. 

Variation around the HLA-A gene 
One of the sequences we detect, KN707908, is homologous to gorilla BAC 
CU104664 in the MHC region. According to a dot plot (Figure S5.2), this BAC lacks 
the HLA-A counterpart, but has an HLA-A-like gene Gogo-AL that is not present in 
humans4. It has two homologs in macaque BAC AC148670, but is absent from a 
chimpanzee BAC HM629932 in MHC (Figure S5.2).  KN707908 is thus likely to 
reflect an ancient copy number variation (CNV) that arose over 20 million years ago 
and has persisted to the present. Among 261 public samples, 82 have the KN707908 
haplotype, and it is easy to genotype: if a sample does not have this haplotype, the 
coverage of the decoy is <0.6%, and if a sample has it, the coverage is >97.5%.  
 
KN707908 may also be linked with the HLA-Y pseudogene5, believed to be a non-
functional ortholog of Patr-AL/Gogo-AL. Out of 82 samples with KN707908, 32 have 
contigs that are homologous to HLA-A but are different from all known HLA-A alleles 
in the IMGT/HLA database. In contrast, of the 179 samples not carrying KN707908, 
only one sample has such contigs. Given that Gogo-AL is close to KN707908 on the 
gorilla BAC, linkage between HLA-Y and KN707908 seems plausible. 

Conclusions 
We identified over two thousand sequences that are absent from or highly divergent to 
the latest human reference genome GRCh38. The majority are variable among SGDP 
samples and are informative about population structure. We have shown that these 
sequences capture complex events in the HLA and IgH regions, suggesting that there 
are likely to be still undetected large-scale structural variations in these highly 
polymorphic regions. Long-read or clone sequencing might shed light in these cases. 
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Figure S5.2. Dot plot at HLA-A reveals a 20 million year old structural variant. 
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Summary 
We generated the most comprehensive catalog of short tandem repeat (STR) 
genotypes to date, based on 300 deeply sequenced human genomes. Genotypes show 
strong concordance with capillary electrophoresis and accurately recover population 
structure. We used this call set to characterize allele frequency spectra, analyze 
sequence determinants of STR variation, and to identify common loss of function 
alleles. STR genotypes are available in raw and interactive format at 
strcat.teamerlich.org.  
 
Genotyping STRs 
We analyzed STRs using lobSTR1, a custom algorithm for genotyping short tandem 
repeats. We modified lobSTR’s allelotyping tool to be able to call STRs directly from 
alignments generated by tools besides the lobSTR aligner. This greatly reduces the 
run time and allows rapid STR genotyping from large sequencing panels that have 
already been aligned using alternative indel-sensitive methods. We used raw reads 
aligned to GRCh37 using BWA-MEM (http://bio-bwa.sourceforge.net/) (version 
0.7.10) with default parameters (Supplementary Information section 1). These 
alignments were used as input to lobSTR’s allelotyper (Github revision 3.0.3.24-
892e). We used optional parameters “--filter-mapq0 --filter-clipped --max-repeats-in-
ends 3 --min-read-end-match 10” and a noise model trained on PCR-free sequencing 
data. We jointly genotyped samples at sites in lobSTR’s reference panel: 1.6 million 
loci with motif lengths ranging from 1-6bp. The reference is part of the GRCh37 
lobSTR resource bundle available at http://lobstr.teamerlich.org/download.html. 
Table S6.1 provides a summary of the reference panel. 
 
Table S6.1 Composition of GRCh37 lobSTR reference panel. We list motifs that 
occur >5,000 times in the reference, in order from most to least common.  

 
Quality controls 
lobSTR generated genotypes for an average of 1.5 million loci per sample (Figure 
S6.1a) with an average of 15.3 informative reads (reads that completely span the 

Motif 
length 

No. of 
loci 

% in ref-
erence 

Common motifs % genotyped 
(after filtering) 

1 795,043 48.5 A, C 99.9 (70.3) 
2 310,761 19.0 AC, AT, AG 96.2 (88.5) 
3 84,869 5.2 AAT, AAC, AGG, AAG, ATC 97.6 (95.6) 
4 262,179 16.0 AAAT, AAAC, AAAG, AAGG, 

AATG, AGAT, AGGG, ATCC, ACAT 
94.3 (91.8) 

5 106,481 6.5 AAAAC, AAAAT, AAAAG 97.4 (93.1) 
6 79,246 4.8 AAAAAC, AAAAAT, AAAAAG 97.4 (93.3) 
All 1,638,516 100.0  97.9 (81.1) 
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repeat region) for each autosomal call. All samples had call rates within 3 standard 
deviations of the mean. For population genetic analysis, we removed individuals from 
the Bergamo and Hazara populations, as some of these individuals were outliers. Each 
locus had genotype calls for an average of 280 samples (95%) (Figure S6.1b). We 
were not able to genotype 2% of loci in our reference. Most of these loci have allele 
lengths greater than 100bp that could not be spanned by Illumina reads. Genotype 
quality scores, which report the likelihood of the genotype call divided by the sum of 
likelihoods of all considered genotypes, tended to decrease for longer STRs and 
increase with motif length, with homopolymers showing significantly lower quality 
scores than other classes (Figure S6.1c). For the majority of loci, we found no 
directional bias in allele length compared to the reference allele. However, as the 
reference track increases, calls become biased toward shorter alleles, again reflecting 
the limitation of calling STR genotypes using 100bp reads (Figure S6.1d). 
 
Figure S6.1: STR call set quality metrics. a. Distribution of the number of STR 
calls per sample. b. Distribution of the number of samples with calls for each STR. c. 
Mean genotype quality score decreases with the length of the STR. Each line 
represents a different repeat motif length (gray = homopolymers, red = dinucleotides, 
yellow = trinucleotides, blue = tetranucleotides, green = pentanucleotides, purple = 
hexanucleotides). d. Mean length deviation from the reference allele as a function of 
reference length (black). As the reference track increases in length, calls tend to be 
biased toward alleles shorter than the reference allele (black). The red line gives the 
Cumulative Distribution Function (CDF) of calls vs. reference length. Gray shading: 
loci that were filtered from analysis. Beige: loci retained for downstream analysis. 

 
 
We subjected the resulting genotypes to stringent filtering to ensure high quality calls. 
We based our filters on coverage, call rate (percent of samples with a genotype call 
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for a given locus), and the metrics Q and DISTENDS reported in the VCF file 
generated by lobSTR. Q reports the genotype quality score as described above. 
DISTENDS reports the mean distance between the STR boundary and the end of the 
read. Specifically, we calculate the difference in distance between the STR and the 
left and right read ends, and take the average difference across all reads for a given 
call. We find that high quality calls tend to have DISTENDS close to 0, meaning there 
is no bias towards a specific end of the read on which the STR occurs. On the other 
hand large positive or negative DISTENDS scores often indicate that a locus has 
problematic alignments. 
 
The specific filters listed below are described in the “Best practices for using BWA-
MEM alignments with lobSTR” section of the lobSTR website. We filtered loci with 
the following properties: 

• Average coverage <5× 
• Average -log10(1-Q)<0.8 
• Call rate <0.8 
• Reference allele length >80bp 

 
After filtering loci we additionally filtered individual calls with: 

• Coverage <5× 
• -log10(1-Q)<0.8 
• Absolute value of DISTENDS score >20 

 
After filtering, 1.3 million loci remained for analysis. 
 
Validation  
We compared lobSTR results to genotypes generated using capillary electrophoresis, 
the gold standard for STR genotyping. We evaluated concordance with two panels: Y 
chromosome STRs (mostly tetranucleotide loci), and the Marshfield set of mostly di- 
and tetranucleotide autosomal loci. 
 
We obtained Y-STR genotypes for 39 loci for which there was data from capillary 
genotyping from the CEPH-HGDP website (ftp://ftp.cephb.fr/hgdp_supp9/genotype-
supp9.txt). We calibrated capillary calls to the lobSTR format using the reference 
alleles annotated in Supplementary Table 5 of Gymrek et al.2 As reported there, 
markers DYS481 and DYS594 are off by one unit in the CEPH data, and we 
corrected the lobSTR calls to reflect this. We discarded marker DYS640 due to 
ambiguous nomenclature. For 74 samples that overlapped between the SGDP dataset 
and the dataset on the HGDP website, we observed a genotype concordance of 99%. 
 
We downloaded genotypes and additional metadata for the Marshfield markers for 
627 loci from the Rosenberg lab website as reported by Pemberton et al3, of which we 
were able to convert 468 capillary genotyped loci to loci in the lobSTR GRCh37 
reference. Capillary genotypes were reported as the size of the PCR product and we 
converted these to lobSTR format as described on the lobSTR webpage. We rounded 
all genotypes to the nearest repeat unit. A total of 127 samples overlapped between 
the SGDP dataset and this capillary dataset. The overall genotype concordance rate 
was 93%. We compared STR dosage, defined as the sum of lengths of the two alleles, 
across methods and found strong correlation (r2=0.92) between the two datasets 
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(Extended Data Figure 2a). In discrepant calls, lobSTR tended to underestimate the 
true allele length compared to the capillary data, again reflecting a bias toward 
detecting shorter alleles due to the read length limitation. Notably, the majority of 
errors originated from a small set of loci (Figure S6.2a), with many errors potentially 
due to discrepancies in STR annotations between the datasets. For instance, marker 
TATT031_20 has a 4bp indel nearby the annotated STR sequence that is strongly 
linked to particular STR alleles. lobSTR only considers variation within the annotated 
sequence when making calls, whereas the capillary calls consider all length variation 
contained in the product amplified by PCR during genotyping, resulting in discordant 
genotypes. Thus, both methods are correct by their own definitions, despite the 
apparent discrepancy. An example discordant call affected by this issue is shown in 
Figure S6.2b.  
 
Figure S6.2: Concordance between lobSTR and capillary genotypes. a. 
Concordance by marker, ordered from the marker with lowest to highest concordance. 
The red dashed line gives the overall concordance. b. Example marker with poor 
concordance between lobSTR and capillary data due to an annotation error. In this 
sample, marker TATT031_20 has a genotype of “-4,0” reported by lobSTR. However, 
the capillary data reports “-4,4”, due to an extra 4bp “TCTC” indel (blue box) in the 
flanking regions that is linked with the STR allele “0”. Because this indel is not 
included in the annotated STR sequence (gray box) lobSTR does not consider it when 
making a genotype call. We visualized the alignment using PyBamView4. 

 

We next sought to assess the accuracy of homopolymers in our data. These markers 
are not part of the capillary data discussed above and were excluded in previous 
studies of STR variation5. To this end, we tested whether the lobSTR calls from these 
loci could recapitulate known differences among population groups based on 
principal component analysis (PCA). As a positive control, we first analyzed 
autosomal tetranucleotides with heterozygosity greater than 10% that were called in at 
least 90% of samples. These loci represent a relatively high quality STR call-set. The 
28,403 tetranucleotides passing the above filters were able to accurately recover 
known population differences in these samples (Extended Data Figure 2b), with the 
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first principal component separating non-African from African samples and the 
second primarily separating European and Asian samples. Remarkably, repeating the 
same analysis with 53,002 homopolymer loci, we were able to recover the majority of 
the structure seen by tetranucleotides (Extended Data Figure 2c), a testament to the 
quality of the calls in our catalog for these difficult-to-genotype loci. 
 
STRs improve resolution of population structure inference 
Encouraged by the ability of STR calls to distinguish population structure, we sought 
to determine whether STRs increase the resolution of population inference beyond 
that which can be obtained by genome-wide SNPs. We used the smartpca tool from 
the EIGENSOFT6 package to compute FST and block jackknife standard errors 
between all pairs of populations. We first computed FST and standard errors using 
SNPs (Supplementary Information section 2). We obtained genotypes for 1,152,838 
autosomal sites from a panel of SNPs known to be informative for population 
structure, built from a union of SNP Panels 1 and 2 of ref. 7. We then repeated this 
analysis using a dataset that combined SNP and STR genotype data. To encode STRs 
in bi-allelic format, we followed the convention suggested by Patterson et al.8, and 
encoded each STR allele in the frequency range of 5-95% as a separate bi-allelic 
marker. This gave 357,863 STR “markers” from 160,530 unique STR loci for a total 
of 1.51 million markers for the combined SNP+STR analysis. Whereas the two 
datasets gave highly concordant FST values (slope of best fit line = 0.96, Pearson 
r2=0.999) (Extended Data Figure 2d), the combined dataset has decreased standard 
errors compared to SNP variation alone (slope = 0.86), documenting the added value 
provided by STRs for discerning population structure (Extended Data Figure 2e). 
 
Patterns of STR variation 
We used our catalog to examine overall trends in polymorphism at STRs. Of the 1.3 
million genotyped loci, 32.2% show more than two common alleles (defined as 
having an allele frequency ≥ 0.01), and some loci have more than 20 common alleles. 
The remaining loci are either fixed across all individuals (47.6%) or have only two 
common alleles (20.5%). These patterns changed significantly when stratifying by 
motif length, with longer motif lengths showing less variability. For instance, only 
23% of homopolymers are fixed compared to 70% of tetranucleotides. (Figure S6.3).  
 
As has been previously shown, we found that STR variability depends strongly on 
properties of the STR itself and on local sequence features. We examined the ability 
of these features to explain differences in variability for all STR loci with at least two 
common alleles. We used heterozygosity as a metric of variation, which is defined as 
1− 𝑝!!!

!!! , where 𝑝!   is the frequency of allele 𝑖 and 𝑛 is the total number of alleles. 
As mentioned above, heterozygosity tends to decrease with motif length. 
Additionally, we found that heterozygosity is positively correlated with STR sequence 
purity (r = 0.21, p<10-200) and reference track length (r = 0.17, p<10-200) (Figure S6.4). 
Both these observations agree with previously reported results5,9. We also observed a 
positive correlation with local recombination rate (r = 0.028, p<10-209) (deCODE 
recombination maps10 available on the UCSC genome browser). A joint linear model 
including all of these features explained 53% of variation in heterozygosity across 
loci. When restricting to STRs with no sequence imperfections (interruptions in the 
STR), these features explained 70% of variation. 
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Figure S6.3: Allele frequency spectra of STRs. a. Distribution of the number of 
common alleles per locus. b. Stratification by motif length (gray=homopolymers, red 
= dinucleotides, yellow = trinucleotides, blue = tetranucleotides, green = 
pentanucleotides, purple = hexanucleotides). 

 
 
 

Figure S6.4: Sequence determinants of STR variation. a. Median heterozygosity 
by motif length. STRs with longer motif lengths tend to be less polymorphic. b., c. 
Mean heterozygosity as a function of reference track length and local recombination 
rate (gray = homopolymers, red = dinucleotides, yellow = trinucleotides, blue = 
tetranucleotides, green = pentanucleotides, purple = hexanucleotides). 

 
 
Potential loss-of-function variants at STRs 
We used our catalog to identify STRs in coding regions with common loss-of-
function (LoF) variants, which we identified as frameshifting variants in coding exons 
as defined by Refseq. We restricted to alleles found in at least 10 individuals. 
Seventeen loci with potential common frameshifts passed these criteria, five of which 
have a frameshift as the major allele (Table S6.2). Four of the five common LoF 
alleles with periods 2-6 reported by Willems et al. using an independent dataset are 
included in our list (TMEM254, GP6, FAM166B, and DCHS2), and more than half 
were reported in dbSNP, suggesting that these putative LoF do not represent 
genotyping errors.  
 
In 13 of the 17 cases, the potential LoF variant occurs in the last exon of the gene or 
toward the end of a single-exon gene, reducing its potential impact on protein 
function. The variants in TMEM254 and LFNG occur in an internal exon. In both 
cases there are alternative transcript annotations that do not contain the affected 
exons. The putative LoF variants for PTEN and RYK occur in the first exons of these 
genes. On visual inspection, the CCG repeat for RYK occurs in a difficult-to-align 
GC-rich area and likely represents an alignment artifact. The variant in PTEN is fixed 
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at a 1bp deletion from the reference sequence adjacent to the CGG repeat. This 
deletion is annotated as a 1bp intron in Refseq (Figure S6.5). Notably this region is 
not annotated as coding by Ensembl, Gencode, or UCSC and the frameshift allele is 
fixed across all samples, suggesting an error in gene annotation. In conclusion, most 
common STR frameshift variants are unlikely to affect protein function. 
 
Figure S6.5 The major allele at an STR in PTEN is an apparent frameshift from 
the reference sequence. The red box denotes the CGG repeat. The 1bp deletion at the 
adjacent “T” nucleotide is fixed across samples, has poor conservation compared to 
surrounding bases, and is not annotated as a coding region in other gene annotations, 
suggesting it may in fact be a misannotation and not a true frameshift variant. 

 
 
Table S6.2 Common loss-of-function alleles at STRs. We give the combined allele 
frequencies of all frameshift alleles for each locus. dbSNP data is from versions 141 
and 142. * entries are LoF alleles previously reported by Willems, et al. + entries are 
low confidence alleles likely due to alignment artifacts or stutter errors. 

  
 
 
 
 
 
 

STR Locus Gene Motif LoF allele(s) 
(freq.) 

dbSNP 
chr13:51530580 RNASEH2B A 1bp (0.030) rs200320729 (-/A) 
chr14:23528485 ACIN1+ AGAGGG -2bp (0.030)   
chr10:81841429 TMEM254* AAAG -4bp (0.034) rs143538725 (-/AAAG) 
chr3:133969414 RYK+ CCG 1bp (0.036)   
chr15:83677271 C15orf40 A 1bp (0.078)   
chr19:55526092 GP6* ACAG 4bp (0.093) rs138680589 (-/CAGA) 
chr5:147861098 HTR4+ AAAAAG 1bp, -1bp (0.095)   
chr12:55820959 OR6C76 A -1bp (0.218)   
chr20:3026346 GNRH2 CCCCG 5bp (0.320)   
chr16:58577316 CNOT1 A -1bp (0.367)   
chr9:35561913 FAM166B* ACCC 1bp, -8bp (0.402) rs143266743 (-/CCCACCCT) 

chr6:31380147 MICA AGC -1bp, -4bp, 2bp,  
11bp (0.810) 

rs547446871 (-/G) and  
rs41293539  (-
/CT/CTGCTGCT 
/CTGCTGCTGCT) 

chr7:2552851 LFNG ATCC 4bp, -4bp (0.422)   
chr4:155244402 DCHS2* AAAC -4bp (0.846) rs140019361 (-/TTTG) 
chr10:125780753 CHST15 C -1bp (0.895) rs5788645 (-/C) 
chr10:89623845 PTEN CCG -1bp (1.000) rs71022512 (-/A) 
chr5:72743281 FOXD1 CCG 2bp (1.000) rs587745355 (-/GC) 
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Conclusion 
We have presented the highest quality catalog of STR variation to date, which can 
serve as a reference panel of STR polymorphisms across diverse populations. 
Additionally, our dataset provides unprecedented opportunities to study STR variation 
that were not possible using previous studies either due to the small number of 
markers or to the low quality of individual genotypes5. Importantly, it contains the 
first panel of previously inaccessible homopolymer genotypes and allows in-depth 
study of these extremely polymorphic loci for the first time. We envision that this 
dataset will be an invaluable resource for future studies of STR polymorphism. 
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Statistics 
Define the derived allele frequency at position i in a sample (a single individual or a group of 
individuals) from population A as 𝑝!! , and in a sample from population B as 𝑝!! . The expected 
number of alleles that are derived in population A but not B is 𝑝!! (1− 𝑝!! ), and derived in 
population B but not A is (1− 𝑝!! )𝑝!! . This allows us to define the expected number of alleles 
LA,not B that are derived in population A but not B and similarly LB not A integrating over all N 
nucleotides i in the genome: 
 
 𝐿!,      !"#  ! = 𝑝!! (1− 𝑝!! )!

!!!  (S7.1) 
 𝐿!,      !"#  ! = (1− 𝑝!! )𝑝!!!

!!!  (S7.2) 
 
We define the normalized differences of accumulated mutations on the sample A lineage to 
that on the sample B lineage since they diverged in a compartment of the genome as: 
 
 𝐷(𝐴,𝐵,𝐶ℎ𝑖𝑚𝑝) = !!,      !"#  !!!!,      !"#  !

!!,      !"#  !!!!,      !"#  !
 (S7.3)  

 
This is similar to the quantity analyzed in 1, although there the statistic was expressed as a 
ratio 𝑅(𝐴,𝐵,𝐶ℎ𝑖𝑚𝑝) = 𝐿!,      !"#  !/𝐿!,      !"#  ! and the question of interest was if this quantity 
was consistent with 1 (here, we instead test whether 𝐷(𝐴,𝐵,𝐶ℎ𝑖𝑚𝑝) is consistent with 0). 
 
We computed this on both chromosome X (excluding the pseudo-autosomal regions) and on 
the autosomes for all pairs of samples in the dataset. 
 
We also computed divergence per base pair over all sites that passed filters for both samples 
being compared. For the numerator, we analyzed all sites that were called as polymorphic in 
the dataset. For the denominator, the number of sites was very large making computation 
impractical (given the large number of sample pairs), so we sampled every 100th nucleotide, 
and then multiplied by 100. The total number of counts in the denominator is an order of 
magnitude larger than the numerator even after the 100-fold downsampling, so we do not 
expect the fact that we did not count all sites in the denominator to add substantial noise. 
 
 𝐷𝑖𝑣(𝐴,𝐵) = !!,      !"#  !  !  !!,      !"#  !

!"#$%&  !"  !"#$!  !"##$%&  !"#$%&'  !"  !"#!  !"#$!"#  !  !"#  !
 (S7.4) 

 
Data curation 
For each pairwise comparison of samples, we initially restricted to nucleotides where both 
individuals had a genotype passing filter level 9, and where we had an ancestral allele 
assignment from comparison to chimpanzee (PanTro2). We use chimpanzee to determine an 
ancestral allele instead of a consensus based on multiple primates2, since we were concerned 
that the algorithm used to determine the consensus could produce a bias in population genetic 

34



	
  

analyses due to its reliance on the human reference sequence (which is of predominantly 
European ancestry3). Use of the chimpanzee genome is expected to produce an incorrect 
assignment at about a percent of SNPs, too small to cause a substantial bias for the analysis 
reported here or for population genetic analyses such as D-statistic tests of admixture3. For 
the convenience of users of this dataset, in the combined VCF file (Supplementary 
Information section 3), we not only provide an ancestral allele assignment based on 
chimpanzee, but also based on multiple primates. 
 
To obtain as clean a dataset as possible, we restricted all analyses to populations that were 
represented in our dataset by at least two samples, and for which we could identify subsets of 
at least two samples that had similar statistical profiles. 
 
We defined a statistic QVW(Stat) that measured how similar two samples V, W were with 
respect all other samples in the dataset. For each statistic Stat of interest, we looped over all 
samples in the dataset (excluding V and W), computing the sum of the squared difference 
between V and that sample, and W and that sample.  
 
 𝑄!"(𝑆𝑡𝑎𝑡) = (𝑆𝑡𝑎𝑡(𝑉,𝑍)− 𝑆𝑡𝑎𝑡(𝑊,𝑍))!!""  !"#$%&!  !"#!$%  !"#  !  !"#  !

!!!  (S7.5)
  
This gives a measurement of how similar a given statistic “Stat” (either D(A,B,Chimp) or 
Div(A,B)) is for samples V and W from the same population. If the data were error-free, the 
statistics would be expected to be consistent for the two samples assuming the populations 
were homogeneous. Thus, requiring that they be similar restricts to pairs of samples that 
likely both have low error rates (or alternatively, error rates of the same magnitude). 
 
We rank-ordered QVW over all possible pairwise comparisons, for all four statistics of interest, 
(D(V,W,Chimp) and Div(V,W) on both chromosome X and the autosomes). We used human 
judgment to identify a cut-point beyond which there was evidence for samples with 
systematic difference in their genotype calls relative to other sample pairs in the dataset. 
When a pair of samples had a QVW in the tail and were the only two from that population in 
the dataset, we filtered out both. When there were more than two samples from a population, 
we looked for individuals overrepresented in the tail, and filtered those out.  
 
Our filtering steps took us from 300 genomes to 235 (covering 108 distinct populations). The 
reasons for filtering were as follows. These filters were applied in order, so that once a 
sample was filtered for one reason we did not filter it out for another: 
  
22 samples that were from panel B and thus processed differently from the majority of others: 

B_Australian-3, B_Australian-4, B_Crete-1, B_Crete-2, B_Dai-4, B_Dinka-3, B_French-
3, B_Han-3, B_Ju_hoan_North-4, B_Karitiana-3, B_Mandenka-3, B_Mbuti-4, B_Mixe-1, 
B_Papuan-15, B_Sardinian-3, B_Yoruba-3, BR_Kashmiri_Pandit-1, BR_Kharia-1, 
BR_Kurumba-1, BR_Mala-1, BR_Onge-1, BR_Onge-2 

 
17 samples based on only having one sample per population: S_Albanian-1, S_Altaian-1, 

S_Atayal-1, S_Chane-1, S_Chechen-1, S_Chukchi-1, S_Czech-2, S_Eskimo_Chaplin-1, 
S_Hawaiian-1, S_Itelman-1, S_Khonda_Dora-1, S_Kongo-2, S_Maori-1, S_Norwegian-
1, S_Polish-1, S_Samaritan-1, S_Somali-1, S_Daur-2 

 
12 samples based on a very different autosomal divergence vector to other samples relative 

to others from the same population: S_BantuTswana-1, S_Gambian-1, S_Mixtec-1, 
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S_Mozabite-1, S_Thai-1, S_Tlingit-1, S_BantuTswana-2, S_Gambian-2, S_Mixtec-2, 
S_Mozabite-2, S_Thai-2, S_Tlingit-2 

4 samples based on a very different autosomal D(A,B,Chimp) vector relative to others from 
the same population: S_Russian-1, S_Finnish-3, S_Naxi-2, S_Russian-2 

 
2 samples based on a very different X chromosome divergence vector to others from the same 

population: S_Masai-1, S_Masai-2 
 
2 samples based on a very different X chromosome D(A,B,Chimp) vector relative to others 

from the same population: S_Jordanian-1, S_Papuan-3 
 
5 samples based on missing X chromosome data in an initial processing, for themselves or a 

second sample: S_Finnish-1, S_Finnish-2, S_Mansi-1, S_Mansi-2, S_Palestinian-2 
 
Our filtering meant that all samples within the same population had a correlated vector of 
D(A,B,Chimp) relative to samples from other populations. Thus, we pooled samples from 
each, and averaged all statistics from individual genome comparisons for a given pair of 
populations, to obtain a slightly more precise statistic to represent that pair of populations. 
 
Worldwide variation in heterozygosity on chromosome X and the autosomes 
We restricted all subsequent analyses to the 235 samples passing the filters of the previous 
section, and to nucleotides where both individuals being compared had a genotype passing 
the strongest filter (filter level 9), and where there was an ancestral allele.  
 
For each population, we computed expected heterozygosity (number of differences per base 
pair between pairs of chromosomes from the same population) on chromosome X and the 
autosomes (Fig. S7.1). For this analysis we estimated heterozygosity using the Div(A,B) 
statistic comparing across samples from the same population. This computation is not based 
on the number of differences between two chromosomes of the same individual, which adds 
robustness to our analyses, as accurately calling heterozygous genotypes within diploid 
individuals is a difficult problem with substantial rates of false-negatives and false-positives.  
Encouragingly, we find that in our chromosome X data curation (previous section), we do not 
tend to find outliers at a higher rate in comparisons of males and females than in comparisons 
of two individuals of the same sex. Thus, the genotyping appears to be sufficiently accurate 
that the profound difference in females and males on chromosome X—with one sex being 
diploid and the other being haploid—is not causing a measurable bias. 
 
Lower X-to-autosome ratio in pygmies than in other sub-Saharan Africans 
Figure S7.2 plots the ratio of heterozygosity on chromosome X to that on the autosomes. We 
replicate the previous finding of a higher X-to-autosome heterozygosity ratio in sub-Saharan 
Africans than in non-Africans4, while generalizing this result by showing its applicability to a 
much wider diversity of sub-Saharan Africans than has previously been analyzed (including 
Khoesan) and a much wider diversity of non-Africans (including New Guineans, Australians, 
Native Americans, Near Easterners, and indigenous Siberians). 
 
The one exception to the uniformly higher X-to-autosome heterozygosity ratio in sub-
Saharan Africans than in non-Africans is in Pygmies (eastern Mbuti and western Biaka). This 
is illustrated in Fig. 1b and Fig. S7.3, which shows a scatterplot of heterozygosity on the 
autosomes, against the X-to-autosome heterozygosity ratio. There are two primary clusters: 
sub-Saharan Africans, and all other populations. Within these clusters, there is no visually 
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evident differentiation among groups in X-to-autosome ratio with the exception of the two 
Pygmy groups, who have high autosomal heterozygosity, but relatively low X-to-autsome 
ratios (for Mbuti, closer to non-Africans than to Africans). 
 
Figure S7.1. Heatmap of heterozygosity per base pair on the autosomes 

 
 
 

Figure S7.2. Ratio of X-to-autosome heterozygosity 

 
 
To evaluate the robustness of this observation, we repeated the analysis removing 36% of 
chromosome X that falls within regions that have been identified in two independent 
publications as consistently affected by strong linked selection in great apes5 or in the human-
chimpanzee, gorilla ancestral population6. Specifically, we masked out from our X 
chromosome analysis the union of all regions identified as under strong selective constraint in 
those two studies, with the exception that we did not include in the mask the list of regions 
identified in ref. 5 as discovered as being under constraint in humans (we wished our mask to 
be built in a way that was blinded to patterns of genetic variation in humans). After applying 
this mask, we find that the X-to-autosome ratio is 1.21-fold higher on average across human 
populations, reflecting the profound selective constraint in the masked regions. However, the 
empirical patterns of differences across human populations persist (Figure S7.3). In 
particular, as shown in Table S7.1, when we remove the selectively constrained regions, we 
find that the reduction in X-to-autosome heterozygosity ratio in non-Africans compared to 
Africans, and in Pygmies compared to non-Pygmies, if anything grow larger.  
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Figure S7.3. Heterozgyosity on the autosomes vs. X-to-autosome heterozygosity ratio. 
There are two main clusters with respect to the X-to-autosome heterozygosity ratio: sub-
Saharan Africans and all others. However, the pygmies shown in red triangles have a pattern 
that is surprising for sub-Saharan Africans of high heterozygosity and relatively low X-to-
autosome ratio. (A) Analysis with pseudoautosomal regions of chromosome X removed. (B) 
Analysis with regions of functional constraint across diverse ape populations removed. 

 
 
Table S7.1. Disparities in the X-to-autosome heterozygosity ratios are not reduced by 
restricting to regions that are not selectively constrained.  

Population comparison 
All chromosome X 
excluding PARs 

Excluding 36% of chromosome X known 
to be selectively constrained  

All non-African / All African 0.836 0.821 
All pygmy / All non-pygmy Africans 0.967 0.966 
Mbuti / All non-pygmy Africans 0.936 0.929 
 
These results based on excluding the third of chromosome X most affected by linked 
selection provide new support for previous claims that the reduction in the X-to-autosome 
heterozygosity ratio in non-Africans relative to Africans is driven at least in part by 
demographic history 4,7-9. The claim was initially made based on sub-dividing chromosome X 
and the autosomes based on bins of B-value (a proxy for selective constraint at linked sites10), 
and then computing the empirical ratios of X-to-autosome heterozygosity in Africans and 
non-Africans in each bin and observing that the ratios did not change8,9. A potential critique 
is that levels of selective constraint are difficult to compare on chromosome X and the 
autosomes, so it is not clear whether the analyses in 8,9 adequately control for similar levels of 
selective constraint. Our analysis, by contrast, cannot be confounded by differences in the 
scales of selective constraint on the autosomes and chromosome X. We simply mask strongly 
constrained loci on chromosome X, and find that the overall difference between Africans and 
non-Africans remains the same or possibly becomes greater, suggesting that the observed 
patterns are unlikely to be explained by selection. 
 
The novel observation that comes from our analysis is that there also appears to be a 
substantial reduction in the X-to-autosome ratio in pygmies relative to other sub-Saharan 
Africans (Figure S7.4 and Table S7.1). What history could explain these observations?  
 
It is known that Pygmy populations are admixed with ancestry of non-Pygmy origin11,12, and 
as shown in Figure 2 in western Biaka pygmies the admixture is from people related to 
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present-day Bantu speakers and dates to the last few thousand years. From anthropological 
and genetic studies of mitochondrial DNA and the Y chromosome, it is known that this 
mixture is highly sex-biased, with matings between non-Pygmy fathers and Pygmy mothers 
producing offspring who are raised among the Pygmies12-15. The direction of our observations 
is concordant with these previous observations. Male-biased non-Pygmy admixture into the 
Pygmies would introduce greater genetic diversity in the parts of the genome that harbor 
equal amounts of ancestry from males and females (the autosomes) than into the parts of the 
genome that harbor more ancestry from females (chromosome X). The direction of this effect 
would be expected to drive down the X-to-autosome heterozygosity ratio in such populations, 
compared to populations of similar heterozygosity, as we observe in Pygmies. 
 
In two previous simulation studies reported by Keinan and colleagues, it was shown that a 
scenario of repeated waves of male mixture into an already mixed population could be 
responsible for the extreme reduction in the X-to-autosome ratio in all non-African compared 
to most African populations 7,16. Such a scenario is actually much more speculative for the 
history of all non-African populations than it is for Pygmies. In the deep shared history of 
non-Africans, there is no anthropological evidence for such a sex-based gene flow history. 
The model was only proposed to explain a genetic observation. In the case of the Pygmies, 
there is strong anthropological support for sex-biased gene flow15. 
 
Fewer accumulated divergent sites in Africans than in non-Africans  
To understand whether some human populations have accumulated mutations at a higher rate 
than others, we computed D(PopA,PopB,Chimp), which compares the accumulated number of 
mutations in two lineages PopA and PopB, restricting to the same set of 235 samples from 108 
populations analyzed in the previous section. 
 
To increase the power of this analysis, we pooled samples into 8 worldwide groupings. We 
divide Africans into three categories: “Pygmy” (Mbuti and Biaka, n=5), “Khoesan” 
(Khomani San and Ju_hoan_North, n=5), and “Africa” (n=22), which includes all other 
African samples except populations north of the Sahara because of their West Eurasian 
related ancestry (we exclude Saharawi and Mozabite). We group the non-African populations 
into the categories “America” (n=23), “CentralAsiaSiberia” (n=21), “EastAsia” (n=42), 
“WestEurasia” (n=61), and “Oceania” (n=19). We performed analyses separately on the 
autosomes and chromosome X (excluding pseudoautosomal regions). We used a Weighted 
Block Jackknife 17 to compute a standard error and a Z-score for being different from zero. 
 
This analysis reveals significant evidence of differences in the rate of accumulation of 
mutation across populations (Extended Data Table 1), and specifically fewer accumulated 
mutations in sub-Saharan Africans that in non-Africans. Depending on which population pool 
comparison we analyze, the significance ranges from 3.3<|Z|<9.4, with 0.0013< 
D(Africa,Non-Africa,Chimp)<0.0037.  The average value of D(Africa,Non-Africa,Chimp) is 
0.0025, which corresponds to a 0.5%=2×0.0025 higher rate of accumulation of mutations in 
non-Africans than in Africans since divergence. This might seem small, but considering that 
all the differences in accumulation of mutations in non-Africans and in Africans must have 
occurred since population divergence, and that population divergence is less than a tenth of 
average genetic divergence (Fig. 2), these results reflect a quite substantial difference in the 
accumulation of mutations since population divergence of >5%=10×0.005.  
 
Two lines of evidence suggest that these patterns are due to a real difference in the rate of 
accumulation between Africans and non-Africans since they separated.  
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First, we tested a population genetic prediction. If the difference in the rate of accumulation 
of mutations is driven by events since Africans and non-African populations separated, we 
would expect the observed signal to be greater in subsets of the genome where the time since 
populations split (and thus the time since mutation accumulation rates have been different) is 
a larger proportion of the total history. We validated this in three subsets of the genome. 
(A) X-chromosome: 2.19× enhancement. The average time since the common ancestor is 

predicted to be larger on chromosome X than on the autosomes due to a lower effective 
population size. As expected, chromosome X skews in D(PopA,PopB,Chimp) are 
substantially larger than autosomal ones (Fig. S7.4A) (Extended Data Table 1). 

(B) Lowest B quintile: 2.04× enhancement. The average time since the common ancestors is 
known to be reduced closest to functional elements10. As expected, skews in 
D(PopA,PopB,Chimp) in the fifth of the genome closest to functional elements are 
substantially larger than autosomal ones (Fig. S7.4B) (Extended Data Table 1). 

(C) Highest B quintile: 0.43× shrinkage. The average time since the common ancestors is 
known to be increased furthest from functional elements10. As expected, skews in 
D(PopA,PopB,Chimp) in the fifth of the genome furthest from functional elements are 
substantially smaller than autosomal ones (Fig. S7.4C) (Extended Data Table 1). 

 
Figure S7.4. D(PopA,PopB,Chimp) is most extreme in subsets of the genome where the 
population split time comprises a larger fraction of the total time since the most recent 
common ancestor. As a result, any differences in mutation rate accumulation since the 
population split have a larger proportional effect. 
 
   A (All autosomes vs. X)              B (Autosome vs. low B quintile)       C (Autosomes vs. high B quintile) 

 
 
 
Second, we tested whether there is evidence that our findings could be arising as artifacts of 
the bioinformatics analysis. One area of concern is that the human reference genome is 
primarily of West Eurasian ancestry3. If short reads map more easily to a reference sequence 
to which they are more closely related, a subtle difference in the rate of detection of sites that 
differ from the reference sequence could arise. A second area of concern is that when 
heterozygous positions are misread (the most common mode of genotyping error), they tend 
to be miscalled as the allele matching the reference genome because of reference mapping 
bias. This error mode is expected to occur more often in Africans than in non-Africans 
because of the higher rates of heterozygous positions in Africans (African are the most 
diverse present-day humans). We were concerned that this could be an artifactual explanation 
for the evidence of reduced accumulation of mutations in Africans. 
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To eliminate the concern about the predominantly West Eurasian ancestry of the reference 
sequence being more closely related to some human populations than to others, we remapped 
sequencing reads to the chimpanzee genome PanTro2.  
 
To eliminate the concern that differences in heterozygosity across populations could be 
causing bias, we performed this remapping analysis on the X chromosome in males. Males 
have only one X chromosome copy, so there are no heterozygous positions (outside of the 
pseudo-autosomal regions). Thus differences in heterozygosity across individuals from 
different populations are not expected to bias these analyses. 
 
To implement this approach, for a large number of pairs of human male samples (S1, S2) we 
performed the following analysis. For each 51-mer on the chimpanzee X chromosome that is 
unique within the entire chimpanzee genome, we retrieved all human reads containing the 51-
mer and counted each type of read base next to the 51-mer. We ignored the 51-mer if:  

(1) The most common allele in either sample is supported by ≤4 reads  
(2) The second most common allele count of either sample is ≥3 
(3) The most common allele is the same for two samples. 

Requirements #1 and #2 make sure that we are mostly looking at well-supported haploid 
regions of human chromosome X.   
 
We determined an allele to represent each individual at each nucleotide by majority rule. This 
allowed us to compute D(S1, S2,Chimp). 
 
We randomly selected 78 African-non-African male sample pairs and computed 
D(African,non-African,Chimp) stratified by transition/transversion. Extended Data Fig. 5 
shows that at transversion sites, D(African,non-African,Chimp)is around zero, the expected 
value. However, at transition sites, D(African,non-African,Chimp)is usually positive. Thus, 
the observation of non-African samples having more accumulated mutations is not an artifact 
due to human reference bias or different heterozygosities across populations. 
 
Assuming that the effects we are observing are real, is there evidence that they are due to an 
acceleration of the rate of mutation accumulation in non-Africans, or a deceleration within 
Africa?  An acceleration in non-Africans is most parsimonious, as it could explain the 
observations by a single historical/biological process. In contrast, a deceleration in Africans 
is not parsimonious. Given the phylogeny of Africans in which the KhoeSan and Pygmy 
branch most deeply, there is no single population in which a deceleration could explain the 
fact that the strongest signals always involve non-Africans (Extended Data Table 1). 
 
What type of process could cause an acceleration of mutation accumulation in non-Africans? 
We discuss four possibilities. 
 
(1) After the dispersal of modern humans out of Africa, there could have been changes in life 
history traits such as the generation interval, which affected mutation rates18.  
 
(2) Living at higher latitudes or in colder climates could have resulted in accelerated mutation 
rates in non-Africans.  
 
(3) GC-biased gene conversion against newly arising A or T alleles could have worked more 
effectively in Africans than in non-Africans after population separation. An enhanced impact 
of gene conversion could arise because Africans are more genetically diverse that non-
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Africans, which leads to more heterozygous positions per genome that can be acted upon by 
gene conversion. In addition, the larger average effective population size in Africans than in 
non-Africans since population separation would have made the trajectories of alleles under 
the pressure of gene conversion more deterministic, and thus could have made gene 
conversion more effective.  
 
(4) We considered—but ruled out as unlikely—the possibility that mutation rates in 
Neanderthals have been higher than those in modern humans since separation. In this case, 
Neanderthal admixture into the ancestors of non-Africans but not into the ancestors of sub-
Saharan Africans ~50,000 years ago could contribute to the observed greater accumulation of 
mutations in non-Africans. To explain our observations, the rate of accumulation of 
mutations in Neanderthals must on average have been ~20% higher than in modern humans 
since separations since only a few percent of mutations accumulated on non-African lineages 
compared to African lineages owe their origin to Neanderthal admixture, and thus a greatly 
increased rate of accumulation of mutations on these segments is needed to explain the 
genome-wide excess of ~0.5% of mutations in non-Africans19. There is no evidence for a 
higher mutation rate in Neanderthals, however, as Prüfer et al. showed that the number of 
mutations accumulated in a deeply sequenced Neanderthal genome from the Altai mountains 
compared to present-day human genomes is not more than one would expect from the 
hypothesis of the mutation rate having been constant in both taxa since separation; indeed, if 
anything it is less than what one would expect given the date of the sample19.  
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Approach 
Previous work has established that present-day humans outside of Africa harbor 
appreciable amounts of ancestry from archaic humans, both Neanderthals1-4 and 
Denisovans2,4,5.  However, these inferences have been based on genome-sequences 
from only a handful of populations. To date, there has been no fine-grained 
assessment of variation in the proportion of Neanderthal and Denisova ancestry. 
 
To carry out a survey of how Neanderthal and Denisovan ancestry varies across 
populations—and to distinguish these two sources of ancestry—we took the approach 
of studying genome-wide rates of sites that are diagnostic of deriving one of these 
sources of archaic ancestry or the other. We caution that these are not intended as 
absolute estimates of Neanderthal and Denisovan ancestry such as have been reported 
previously, and instead as relative estimates. 
 
To identify sites that are diagnostic of Neanderthal or Denisovan ancestry, we use the 
strategy first described in Supplementary Information section 13 of Prüfer et al. 
20143. At each of ZT positions on the autosomes (chr. 1-22) for which we have 
coverage from chimpanzee allowing us to infer the ancestral allele, for which there is 
a valid call passing the Map35_50% filter of ref. 3 in both Neanderthal and Denisova, 
and for which there is a Test population sample passing filter level 1, we compute: 
 
𝑝!!  = frequency of the derived allele in the Altai Neanderthal (0, 0.5 or 1) at position i 
 
𝑝!!  = frequency of the derived allele in Denisova (0, 0.5 or 1) at position i 
 
𝑝!!  = frequency of the derived allele in the Test population at position i 
 
𝑝!!  = frequency of the derived allele in a panel of 107  Yoruba individuals that have 
been sequenced to medium coverage (average of 7.1×) by the 1000 Genomes Project6. 
We restrict to sites where each Yoruba called have coverage from at least three reads 
with a map quality of MAPQ≥37 and base quality of ≥30, and then call a single allele 
to represent each of these individuals based on majority rule. 
 

𝛿!!  = indicator variable: 𝛿!!=1 if 𝑝!!=0, and 𝛿!! =0 otherwise. 
 
We are interested in the rate of observing in the Test population x two classes of sites: 
 
nd10 sites diagnostic of Neanderthal ancestry 

These are sites where a randomly drawn chromosome from Neanderthal is 
derived, a randomly drawn chromosome from Denisova is ancestral, and all sub-
Saharan African chromosomes are ancestral (this filters out alleles that were 
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polymorphic in modern humans before archaic introgression). We have previously 
shown that such sites are likely to derive from Neanderthals and not Denisovans.  

 
nd01 sites diagnostic of Denisova ancestry 

These are sites where a randomly drawn chromosome from Denisova is derived, a 
randomly drawn chromosome from Neanderthals is ancestral, and all sub-Saharan 
African chromosomes are ancestral. We have previously shown that these are 
highly likely to derive from Denisovans and not Neanderthals. 

 
In the entire dataset, the expected number of nd10 and nd01 sites across the genome is 
quite large: 
 
 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝐶𝑜𝑢𝑛𝑡!"!" = 𝑝!!(1− 𝑝!!)!

!!! 𝛿!! = 373,637   
 
 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝐶𝑜𝑢𝑛𝑡!"!" = (1− 𝑝!!)𝑝!!!

!!! 𝛿!! = 445,320   
 
However, in any one Test modern human population only a small fraction of these 
sites are expected to be derived, reflecting the fact that most of the alleles that any 
modern human individual carries are not of archaic origin. For example, in Papuans, a 
population with a substantial proportion of both Neanderthal and Denisovan ancestry, 
the mean and standard deviation of alleles that are expected to be derived, measured 
on a per-haploid genome basis, are 9232±270 for nd10 and 7273±330 for nd01.  
 
In practice, we study rates per base pair of derived nd10 and nd01 sites in any Test 
population, as we need to normalize by the number of nucleotides that pass filter level 
1, which varies from population to population. 
 

 𝑅𝑎𝑡𝑒!"!"! =    !
!!

𝑝!!   𝑝!!(1− 𝑝!!)!
!!! 𝛿!!   

 𝑅𝑎𝑡𝑒!"!"! =    !
!!

𝑝!!   (1− 𝑝!!)𝑝!!!
!!! 𝛿!!   

 
As described previously3,7, this approach provides a high resolution estimate of a 
quantity that is proportion to the fraction of a population’s ancestry they inherit from 
Neanderthals (proportional  to  𝑅𝑎𝑡𝑒!"!"! ) or Denisovans (proportional  to  𝑅𝑎𝑡𝑒!"!"! ). 
To convert to an absolute estimate, we need to use information on the proportion of 
ancestry in a specified reference population, for example taking it as a given that the 
proportion of Neanderthal ancestry in French is NFrench=2% (following the example of 
ref. 7), and that the proportion of Denisovan ancestry in Papuan is DPapuan=5%. To 
convert Rate to an absolute estimate, we can then subtract out the background rate of 
false-positives, which we infer in practice by analyzing a sub-Saharan African 
populations (we use Dinka following ref. 7): 
 

 𝑁! = 𝑁!"#$%!
!"#$!"!"

! !!"#$!"!"
!"#$%

!"#$!"!"
!"#$%!!!"#$!"!"

!"#$%   
  

 𝐷! = 𝐷!"#$%!
!"#$!"!"

! !!"#$!"!"
!"#$%

!"#$!"!"
!"#$"%!!"#$!"!"

!"#$%    

 
If the Yoruba population used in the ascertainment of the sites was symmetrically 
related to all modern human populations, this strategy would provide an unbiased 
estimate of a quantity proportional to Neanderthal and Denisova ancestry. However, 
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this assumption is not fully accurate. One caveat is that Yoruba are known to have on 
the order of a couple percent West Eurasian ancestry3, and thus requiring that Yoruba 
always have the ancestral allele will tend to filter out SNPs that are indicative of 
Neanderthal ancestry in West Eurasians and result in underestimates of Neanderthal 
ancestry in West Eurasians relative to populations that have not contributed ancestry 
to Yoruba8. A second issue is that some human populations have received gene flow 
from Yoruba related populations; for example, populations in the Near East and North 
Africa that have received historical period sub-Saharan African gene flow9. A third 
issue is that for sub-Saharan Africans that are most distant from Yoruba, such as 
Khoesan and Pygmy, the filtering to remove sites that were present in the modern 
human ancestral population since separation from Neanderthals is expected to be least 
effective, and we thus expect a higher background rate of false-positive nd10 and nd01 
sites relative to other sub-Saharan Africans (and non-Africans). We believe that the 
apparent excesses of nd10 and nd01 in these hunter-gatherer African populations 
relative to other sub-Saharan Africans, documented in Table S8.1, is due to this 
artifact. Despite these caveats, these statistics give relatively accurate estimates of 
quantities informative about archaic ancestry, and we show results from them here.  
 
Results 
Rates of nd10 and nd01 sites per world region are summarized in Table S8.1, showing 
the mean rate and standard deviation across individuals within each group. 
 

Table S8.1: Rates of nd10 and nd01 sites in present-day humans (by world region) 
  𝑅𝑎𝑡𝑒!"!"!   (×10!!)	
   𝑅𝑎𝑡𝑒!"!"!   (×10!!)	
  
  Mean	
   Std.	
  Dev.	
   Mean	
   Std.	
  Dev.	
  
Africa	
   0.659 0.681 0.37 0.333 
Africa	
  excluding	
  HG*	
   0.573 0.745 0.203	
   0.075	
  
Africa	
  HG*	
   0.927	
   0.291	
   0.886	
   0.288	
  
America	
   3.929	
   0.222	
   0.456	
   0.04	
  
Central	
  Asia	
  &	
  Siberia	
   4.216 0.261 0.474	
   0.053	
  
East	
  Asia	
   4.291 0.231 0.52	
   0.052	
  
Oceania	
   3.937 1.379 2.47	
   1.437	
  
South	
  Asia	
   3.834 0.264 0.501	
   0.089	
  
West	
  Eurasia	
   3.507 0.307 0.307	
   0.029	
  
*	
  HG	
  =	
  African	
  Hunter	
  Gatherers	
  
 

We converted the rate of derived nd10 (likely Neanderthal-derived) sites to a by-
sample estimate in Supplementary Data Table 1  (Figure S8.1) by assuming that the 
French value is NFrench=2%. The qualitative patterns are consistent with previously 
documented evidence of far more Neanderthal ancestry in non-Africans than in 
Africans, and more Neanderthal ancestry in eastern non-Africans than in West 
Eurasians. Fig. 2c shows the by-sample plots. There is clear evidence of Neanderthal 
ancestry in northeastern Africa, which can be ascribed to the documented evidence of 
West Eurasian ancestry in these populations10. We do not plot African hunter 
gatherers (Khoesan and Pygmy), since as discussed above and shown in Table S8.1, 
the elevations in these populations (and similar ones for Denisovan ancestry) are 
likely due to the fact that we use Yoruba to screen out sites that are likely derived in 
modern humans, and this is less effective in the sub-Saharan African populations that 
are most distantly related to Yoruba.  
 

46



 
 
 
  

S_Dusun-1
S_Igorot-1
S_Papuan-5
S_Igorot-2
S_Papuan-7
S_Papuan-8
S_Hawaiian-1
S_Papuan-2
S_Papuan-4
S_Papuan-13
S_Papuan-9
S_Papuan-14
B_Papuan-15
S_Papuan-11
S_Papuan-10
S_Dusun-2

B_Australian-3
S_Papuan-6
S_Maori-1

B_Australian-4
S_Bougainville-2
S_Papuan-12
S_Papuan-1
S_Papuan-3

S_Bougainville-1

S_Makrani-2
S_Balochi-1
S_Sindhi-2
S_Punjabi-3
S_Balochi-2
S_Kusunda-2
S_Kalash-2
S_Kalash-1
S_Brahui-1
S_Pathan-2
S_Brahmin-2
S_Brahui-2
S_Makrani-1
S_Punjabi-4
S_Relli-1
S_Kapu-2

S_Punjabi-2
S_Madiga-1
S_Burusho-1
S_Madiga-2
S_Pathan-1
S_Mala-3
S_Mala-2
S_Irula-2
S_Relli-2

S_Hazara-2
BR_Kharia-1

BR_Kashmiri_Pandit-1
S_Hazara-1
S_Kapu-1

S_Brahmin-1
BR_Onge-2
S_Irula-1
BR_Onge-1

S_Khonda_Dora-1
S_Kusunda-1
S_Burusho-2
S_Sindhi-1
BR_Mala-1
S_Bengali-1
S_Yadava-2
T_Tibetan-1
S_Yadava-1

BR_Kurumba-1
T_Sherpa-2
S_Bengali-2
S_Punjabi-1
T_Tibetan-2
T_Sherpa-1

S_Jordanian-1
S_BedouinB-2
S_Samaritan-1
S_Jordanian-2

S_Yemenite_Jew-1
S_Palestinian-1
S_Spanish-2
S_BedouinB-1
S_Jordanian-3
S_Druze-2
S_Iranian-1

S_Abkhasian-2
S_Palestinian-2
S_Palestinian-3

S_Tajik-1
S_Finnish-2

S_Iraqi_Jew-1
S_Greek-1
S_Turkish-2

S_Yemenite_Jew-2
B_French-3
S_French-1
S_Iranian-2
B_Crete-1

S_Georgian-2
S_Greek-2

B_Sardinian-3
S_Bulgarian-2
S_Bergamo-1
S_Druze-1

S_Orcadian-2
S_Estonian-1
S_French-2
S_Chechen-1
S_English-1

S_Bulgarian-1
S_Iraqi_Jew-2
S_Armenian-2
S_Basque-2
S_Basque-1

S_North_Ossetian-1
B_Crete-2
S_Lezgin-2
S_Adygei-2
S_Finnish-1
S_Czech-2

S_Abkhasian-1
S_Armenian-1
S_English-2
S_Polish-1
S_Turkish-1

S_Hungarian-1
S_Estonian-2
S_Adygei-1
S_Finnish-3

S_Hungarian-2
S_Spanish-1
S_Lezgin-1
S_Russian-1
S_Icelandic-2
S_Sardinian-1
S_Orcadian-1
S_Norwegian-1
S_Bergamo-2

S_Tajik-2
S_Sardinian-2
S_Russian-2
S_Icelandic-1
S_Tuscan-1
S_Albanian-1
S_Tuscan-2

S_Georgian-1
S_Saami-1
S_Saami-2

S_North_Ossetian-2

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03

/groups/reich/shop/work/cteam_remap/B-an
alysis/BA-nd10_sites_redo_homhalf__filt_
filt50/hits/C-analysis/scanrate_normAncP
ercentByFrench.addlatlong.forbar.a

WestEurasia
SouthAsia
Oceania

S_Mandenka-2
S_Esan-1

S_Yoruba-2
S_Esan-2
S_Igbo-1

B_Yoruba-3
S_Igbo-2

S_Yoruba-1
S_Lemande-2
S_Lemande-1
S_Gambian-1
S_Kongo-2

S_Mandenka-1
S_Dinka-1

S_BantuKenya-2
S_Mende-2
S_Mende-1

B_Mandenka-3
S_Gambian-2

S_BantuHerero-1
S_Luo-2

S_Luhya-1
S_Luhya-2

S_BantuKenya-1
S_BantuTswana-2
S_BantuTswana-1

S_Biaka-2
S_Biaka-1
B_Mbuti-4
S_Mbuti-1
S_Mbuti-2
S_Mbuti-3
S_Masai-1
S_Masai-2

S_Khomani_San-2
B_Ju_hoan_North-4
S_Ju_hoan_North-2
S_Ju_hoan_North-1
S_Khomani_San-1
S_Ju_hoan_North-3

S_Somali-1
S_Mozabite-2
S_Saharawi-2
S_Mozabite-1
S_Saharawi-1
B_Dinka-3

S_BantuHerero-2
S_Luo-1

S_Dinka-2

B_Mixe-1
S_Karitiana-2
S_Surui-1
S_Surui-2

S_Piapoco-2
S_Piapoco-1
S_Karitiana-1
S_Nahua-2
S_Mixtec-1
S_Mixtec-2
S_Mixe-3

S_Zapotec-1
S_Cree-1

B_Karitiana-3
S_Mayan-1
S_Pima-2
S_Mixe-2

S_Zapotec-2
S_Nahua-1
S_Pima-1
S_Chane-1

S_Quechua-3
S_Quechua-1
S_Mayan-2

S_Quechua-2
S_Cree-2

S_Chipewyan-1
S_Chipewyan-2

S_Mansi-2
S_Mansi-1
S_Kyrgyz-2
S_Chukchi-1
S_Tlingit-1
S_Ulchi-2
S_Yakut-2

S_Eskimo_Sireniki-1
S_Even-2

S_Itelman-1
S_Even-3
S_Aleut-2

S_Mongola-2
S_Eskimo_Naukan-1

S_Even-1
S_Tlingit-2

S_Eskimo_Chaplin-1
S_Tubalar-1

S_Eskimo_Naukan-2
S_Altaian-1
S_Mongola-1
S_Tubalar-2
S_Aleut-1

S_Eskimo_Sireniki-2
S_Kyrgyz-1
S_Ulchi-1
S_Yakut-1

S_Hezhen-1
S_Japanese-2
S_Uygur-2

S_Japanese-3
S_She-2

S_Uygur-1
S_Japanese-1

B_Dai-4
S_Burmese-2

S_Ami-1
S_Lahu-1
S_Daur-2
S_Naxi-1
S_Han-2
S_Daur-1
S_Miao-2
S_Lahu-2
S_Dai-1
S_Xibo-2

S_Oroqen-2
S_Tujia-2

S_Cambodian-2
S_Thai-2

S_Atayal-1
S_Dai-2
S_Kinh-2
S_Miao-1
S_Tujia-1

S_Korean-1
S_Dai-3

S_Oroqen-1
S_Naxi-3
S_Ami-2
S_Kinh-1
S_Tu-1

S_Hezhen-2
S_Burmese-1

S_Han-1
S_Cambodian-1

S_Yi-1
S_Korean-2
B_Han-3
S_Naxi-2
S_Yi-2
S_Tu-2
S_Thai-1
S_Xibo-1
S_She-1

0.01 0.0120.0140.0160.018 0.02 0.0220.0240.0260.028 0.03

/groups/reich/shop/work/cteam_remap/B-an
alysis/BA-nd10_sites_redo_homhalf__filt_
filt50/hits/C-analysis/scanrate_normAncP
ercentByFrench.addlatlong.forbar.b

EastAsia
CentralAsiaSiberia

America
Africa

Figure	
  S8.1:	
  Proportion	
  of	
  Neanderthal	
  ancestry	
  estimated	
  per	
  sample	
  
	
  

47



  

S_Igorot-2
S_Igorot-1
S_Dusun-2
S_Dusun-1

S_Hawaiian-1
S_Maori-1

S_Bougainville-2
S_Bougainville-1

S_Papuan-9
S_Papuan-7
S_Papuan-11
S_Papuan-10
S_Papuan-4
S_Papuan-5
S_Papuan-2
S_Papuan-6
S_Papuan-8
S_Papuan-14
B_Australian-4
B_Papuan-15
B_Australian-3
S_Papuan-1
S_Papuan-13
S_Papuan-12
S_Papuan-3

S_Makrani-2
S_Brahui-1
S_Balochi-2
S_Balochi-1
S_Makrani-1
S_Kalash-2
S_Brahui-2
S_Kalash-1
S_Pathan-2
S_Burusho-2
S_Burusho-1
S_Sindhi-1
S_Sindhi-2
S_Hazara-2

BR_Kashmiri_Pandit-1
S_Pathan-1
S_Hazara-1
S_Punjabi-4
BR_Onge-1
S_Brahmin-2
S_Yadava-2
S_Punjabi-1
S_Kapu-1

S_Punjabi-2
S_Mala-3

S_Brahmin-1
S_Kapu-2

S_Kusunda-2
S_Bengali-1
S_Yadava-1
S_Irula-1
S_Mala-2

T_Tibetan-1
S_Relli-2
S_Relli-1
BR_Mala-1
BR_Onge-2
S_Kusunda-1
S_Bengali-2
S_Madiga-1
S_Punjabi-3
S_Irula-2

T_Sherpa-1
T_Tibetan-2

S_Khonda_Dora-1
BR_Kharia-1
T_Sherpa-2
S_Madiga-2

BR_Kurumba-1

S_Jordanian-2
S_Greek-2

S_Icelandic-1
S_Bulgarian-1
S_Greek-1

S_Jordanian-3
B_French-3

S_Yemenite_Jew-1
S_Georgian-2
S_BedouinB-1
S_Jordanian-1
S_Druze-2

S_Bergamo-2
S_Finnish-2

S_Armenian-2
S_Lezgin-2

S_Norwegian-1
S_Samaritan-1
S_Palestinian-2
S_Palestinian-3
S_Spanish-2
S_Turkish-2
S_French-1
S_Czech-2

S_Abkhasian-2
S_Bulgarian-2

S_Yemenite_Jew-2
S_Druze-1

B_Sardinian-3
S_Basque-2
S_Basque-1
S_English-1
S_Adygei-2

S_Hungarian-1
S_Spanish-1
S_English-2
S_Orcadian-1
B_Crete-1

S_Abkhasian-1
S_Lezgin-1

S_Orcadian-2
S_Turkish-1
S_Georgian-1
S_Armenian-1
S_Icelandic-2
S_Estonian-1
S_Sardinian-1
S_Hungarian-2
S_BedouinB-2
S_Albanian-1
S_Chechen-1
S_Saami-1

S_Iraqi_Jew-2
S_Finnish-1
S_Finnish-3

S_Palestinian-1
S_Tajik-2
B_Crete-2
S_Tuscan-1
S_Russian-2
S_Polish-1
S_French-2
S_Iranian-1

S_North_Ossetian-2
S_Iranian-2
S_Estonian-2
S_Adygei-1

S_Iraqi_Jew-1
S_Bergamo-1

S_Tajik-1
S_North_Ossetian-1

S_Tuscan-2
S_Russian-1
S_Saami-2

S_Sardinian-2

0 0.01 0.02 0.03 0.04 0.05 0.06

/groups/reich/shop/work/cteam_remap/B-an
alysis/CA-nd01_sites_redo_homhalf__filt_
filt50/hits/C-analysis/scanrate_normAncP
ercentByPapuan.addlatlong.forbar.a

WestEurasia
SouthAsia
Oceania

S_Dinka-1
B_Yoruba-3
S_Yoruba-2
S_Esan-1
S_Igbo-1
S_Esan-2

S_Mandenka-1
S_Igbo-2

S_Mandenka-2
S_Gambian-1
S_Yoruba-1
S_Gambian-2
S_Lemande-1
B_Mandenka-3
S_Lemande-2
S_Mende-1
S_Kongo-2

S_BantuKenya-2
S_Mende-2
S_Luhya-2
S_Luo-1

S_BantuKenya-1
S_Luo-2

S_Mozabite-2
S_BantuHerero-2
S_Mozabite-1
S_Saharawi-2
S_Luhya-1

S_Saharawi-1
S_BantuHerero-1

S_Dinka-2
B_Dinka-3
S_Masai-1
S_Masai-2
S_Somali-1

S_BantuTswana-2
S_BantuTswana-1

S_Biaka-1
S_Biaka-2
B_Mbuti-4
S_Mbuti-1
S_Mbuti-2
S_Mbuti-3

S_Khomani_San-1
S_Khomani_San-2
S_Ju_hoan_North-2
B_Ju_hoan_North-4
S_Ju_hoan_North-1
S_Ju_hoan_North-3

S_Mixtec-2
S_Chane-1

B_Karitiana-3
S_Nahua-2

S_Quechua-3
S_Quechua-1
S_Karitiana-2
S_Chipewyan-1

S_Surui-1
S_Pima-2
S_Mixtec-1
S_Surui-2
S_Mixe-2

S_Quechua-2
S_Pima-1

S_Zapotec-1
S_Cree-1

S_Piapoco-2
B_Mixe-1

S_Zapotec-2
S_Karitiana-1

S_Cree-2
S_Mayan-1
S_Mixe-3

S_Piapoco-1
S_Nahua-1

S_Chipewyan-2
S_Mayan-2

S_Mansi-2
S_Aleut-1
S_Tlingit-1
S_Kyrgyz-2
S_Aleut-2
S_Mansi-1
S_Tlingit-2

S_Eskimo_Sireniki-1
S_Eskimo_Sireniki-2
S_Eskimo_Chaplin-1

S_Even-3
S_Itelman-1
S_Kyrgyz-1

S_Eskimo_Naukan-1
S_Tubalar-1
S_Chukchi-1
S_Altaian-1
S_Mongola-1
S_Ulchi-1

S_Mongola-2
S_Yakut-1
S_Yakut-2
S_Even-2

S_Tubalar-2
S_Eskimo_Naukan-2

S_Ulchi-2
S_Even-1

S_Tu-1
S_Ami-2

S_Japanese-1
S_Kinh-1
S_Dai-3

S_Atayal-1
B_Dai-4

S_Hezhen-2
S_Han-2

S_Oroqen-2
S_Ami-1

S_Korean-2
S_Hezhen-1

S_Cambodian-1
S_Thai-2

S_Japanese-2
S_Japanese-3

S_Thai-1
S_Uygur-1
S_Daur-1
S_Xibo-1
S_Uygur-2
S_Oroqen-1
S_Burmese-1

S_She-1
S_Daur-2
S_Kinh-2
S_Naxi-2
S_Dai-2
B_Han-3

S_Korean-1
S_Lahu-2
S_She-2
S_Miao-1
S_Lahu-1

S_Burmese-2
S_Yi-1
S_Tu-2
S_Xibo-2
S_Naxi-1
S_Han-1
S_Dai-1
S_Naxi-3
S_Yi-2

S_Tujia-1
S_Cambodian-2

S_Miao-2
S_Tujia-2

0 0.01 0.02 0.03 0.04 0.05 0.06

/groups/reich/shop/work/cteam_remap/B-an
alysis/CA-nd01_sites_redo_homhalf__filt_
filt50/hits/C-analysis/scanrate_normAncP
ercentByPapuan.addlatlong.forbar.b

EastAsia
CentralAsiaSiberia

America
Africa

S_Dinka-1
B_Yoruba-3
S_Yoruba-2
S_Esan-1
S_Igbo-1
S_Esan-2

S_Mandenka-1
S_Igbo-2

S_Mandenka-2
S_Gambian-1
S_Yoruba-1
S_Gambian-2
S_Lemande-1
B_Mandenka-3
S_Lemande-2
S_Mende-1
S_Kongo-2

S_BantuKenya-2
S_Mende-2
S_Luhya-2
S_Luo-1

S_BantuKenya-1
S_Luo-2

S_Mozabite-2
S_BantuHerero-2
S_Mozabite-1
S_Saharawi-2
S_Luhya-1

S_Saharawi-1
S_BantuHerero-1

S_Dinka-2
B_Dinka-3
S_Masai-1
S_Masai-2
S_Somali-1

S_BantuTswana-2
S_BantuTswana-1

S_Biaka-1
S_Biaka-2
B_Mbuti-4
S_Mbuti-1
S_Mbuti-2
S_Mbuti-3

S_Khomani_San-1
S_Khomani_San-2
S_Ju_hoan_North-2
B_Ju_hoan_North-4
S_Ju_hoan_North-1
S_Ju_hoan_North-3

S_Mixtec-2
S_Chane-1

B_Karitiana-3
S_Nahua-2

S_Quechua-3
S_Quechua-1
S_Karitiana-2
S_Chipewyan-1

S_Surui-1
S_Pima-2
S_Mixtec-1
S_Surui-2
S_Mixe-2

S_Quechua-2
S_Pima-1

S_Zapotec-1
S_Cree-1

S_Piapoco-2
B_Mixe-1

S_Zapotec-2
S_Karitiana-1

S_Cree-2
S_Mayan-1
S_Mixe-3

S_Piapoco-1
S_Nahua-1

S_Chipewyan-2
S_Mayan-2

S_Mansi-2
S_Aleut-1
S_Tlingit-1
S_Kyrgyz-2
S_Aleut-2
S_Mansi-1
S_Tlingit-2

S_Eskimo_Sireniki-1
S_Eskimo_Sireniki-2
S_Eskimo_Chaplin-1

S_Even-3
S_Itelman-1
S_Kyrgyz-1

S_Eskimo_Naukan-1
S_Tubalar-1
S_Chukchi-1
S_Altaian-1
S_Mongola-1
S_Ulchi-1

S_Mongola-2
S_Yakut-1
S_Yakut-2
S_Even-2

S_Tubalar-2
S_Eskimo_Naukan-2

S_Ulchi-2
S_Even-1

S_Tu-1
S_Ami-2

S_Japanese-1
S_Kinh-1
S_Dai-3

S_Atayal-1
B_Dai-4

S_Hezhen-2
S_Han-2

S_Oroqen-2
S_Ami-1

S_Korean-2
S_Hezhen-1

S_Cambodian-1
S_Thai-2

S_Japanese-2
S_Japanese-3

S_Thai-1
S_Uygur-1
S_Daur-1
S_Xibo-1
S_Uygur-2
S_Oroqen-1
S_Burmese-1

S_She-1
S_Daur-2
S_Kinh-2
S_Naxi-2
S_Dai-2
B_Han-3

S_Korean-1
S_Lahu-2
S_She-2
S_Miao-1
S_Lahu-1

S_Burmese-2
S_Yi-1
S_Tu-2
S_Xibo-2
S_Naxi-1
S_Han-1
S_Dai-1
S_Naxi-3
S_Yi-2

S_Tujia-1
S_Cambodian-2

S_Miao-2
S_Tujia-2

0 0.01 0.02 0.03 0.04 0.05 0.06

/groups/reich/shop/work/cteam_remap/B-an
alysis/CA-nd01_sites_redo_homhalf__filt_
filt50/hits/C-analysis/scanrate_normAncP
ercentByPapuan.addlatlong.forbar.b

EastAsia
CentralAsiaSiberia

America
Africa

Figure	
  S8.2:	
  Proportion	
  of	
  Denisovan	
  ancestry	
  estimated	
  per	
  sample.	
  
	
  

48



 
A heat map of the rate of derived nd01 (likely Denisova-derived) sites by population is 
shown in Fig. 2d. We recapitulate previous evidence of more Denisova ancestry in 
Australia and New Guinea than in mainland Eurasians4,5, as well as in Oceanian 
populations like Maori and Hawaiians known to have New Guinean admixture. We 
also recapitulate the finding of more Denisova ancestry in eastern than in western 
Eurasians3,11. A novel finding is the observation of a peak of Denisovan ancestry in a 
subset of South Asian populations, which is most evident in a heatmap (Fig. 1d). The 
per-sample estimate of Denisova ancestry is shown in Figure S8.2. 
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Demographic inference 
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9.1 Overview 
 
We used PSMC1 and MSMC2 to infer population sizes and split times for selected 
SGDP populations. Split time estimation requires phased haplotypes, so we phased 
the SGDP samples using both SHAPEIT3 and IMPUTE24. Though the relative 
ordering of more ancient population splits is fairly robust to the phasing and inference 
method used, we found that there was considerable uncertainty in the absolute split 
times inferred, limiting our ability to make strong statements about history.  
 
9.2 Phasing 
 
We first made a list of all SNPs that passed filter level 1 in any sample, and then 
genotyped each of these SNPs in all SGDP samples, removing any sites with more 
than two alleles in the data. We phased the samples at all of these sites, and later 
restricted to sites that passed sample-specific filters for downstream analysis. We used 
three different phasing strategies, which we refer to as PS1-3: 
 
(PS1) We used SHAPEIT together with the 1000 Genomes phase 3 haplotypesa as a 
reference panel, phasing each sample separately using SHAPEIT (using the --input-
ref and --no-mcmc options). We left heterozygous sites not in the 1000 Genomes data 
as unphased.  

 
(PS2) We used SHAPEIT without a reference panel, phasing all samples together. 
This phases all sites in the sample. 

 
(PS3) We used IMPUTE2 to phase the 1000 Genomes reference panel, but also 
phasing all sites in the sample (using the -no_remove and -fill_holes options). We 
split up chromosomes into 5 Mb chunks and then joined them randomly, introducing 
switch errors at a rate of 1 per 10 Mb (2-3 orders of magnitude less than the rate of 
switch errors from statistical errors).  
 
Ideally we would use SHAPEIT (which is faster and more accurate than IMPUTE2) 
to phase using a reference panel and within-sample, as in PS3, but this option is not 
available. In principle this is possible by using the output of PS1 as a scaffold and 
then running SHAPEIT with the -call and --input-scaffold options, but this failed for 
us with numerical underflow errors, even for small regions. Therefore we are left with 
a tradeoff between accuracy, completeness of phasing, and potential systematic 
differences between populations (for example, when we use a reference panel, 
samples from SGDP populations that are closely related to populations in the 1000 
Genomes Project are likely to be better phased than populations that are not).  
                                                        
a Downloaded from “https://mathgen.stats.ox.ac.uk/impute/1000GP Phase haplotypes 6 October 3 
2014.html” on 12th October 2014 
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To compare rates of phasing error, we used previously generated experimentally 
phased data for three samples which are included in the present study5 (Table S9.1). 
 
 PS1 PS2 PS2* PS3 
B_Australian-4 0.012 0.014 0.009 0.019 
B_Australian-3 0.029 0.046 0.019 0.056 
B_Mixe-1 0.026 0.031 0.025 0.032 

Table S9.1. Switch error rates per kb estimated using experimentally 
phased samples. PS1-3 are as described above. PS2* is the same as PS2, 
but with sites not found in 1000 Genomes excluded. 
 
We find that PS3 (IMPUTE2 phasing) is less accurate than SHAPEIT phasing, even 
when using SHAPEIT without a reference panel. We also find that switch errors are 
concentrated at sites that are not included in 1000 Genomes, even without a reference 
panel (compare PS2 and PS2*). These results should be interpreted with caution, 
since these samples, for which experimentally phased data is available, are not 
representative of the SGDP. In particular, the Australian samples are not closely 
related to any 1000 Genomes populations. However, this analysis is consistent with 
our expectations that SHAPEIT performs better than IMPUTE2, and that using a 
reference panel improves phasing for samples that have a closely related population in 
the reference panel.  
 
In summary, we could not find an optimal phasing strategy. PS1 likely produces the 
best phasing, but leaves many unphased sites for populations that are not in 1000 
Genomes (for example Australians and San). PS2 and PS3 both perform worse than 
PS1, but this is largely because population-private sites are poorly phased. PS2 
performs better than PS3 for the three tested samples, but we cannot rule out the 
possibility that PS3 would perform better for populations that are close to populations 
in the 1000 Genomes Project study. Finally, it is possible that the different strategies 
produce qualitatively different patterns of phase errors, with differential effects on 
demographic inference. For this reason, we compared results from all three strategies 
in downstream analysis.  
 
9.3 Uncertainty in mutation rate and generation interval 
 
There is substantial uncertainty about the human mutation rate, which we 
parameterize by the mean autosomal per-base per-generation mutation rate µ, the 
mean generation interval g or, equivalently, the mean per-base per-year mutation rate 
ν, where µ=νg. We do not model their dependence on time, sex and genomic context6. 
Here we briefly describe this uncertainty and its consequences for our analysis. 
 
Generation interval g: The average human generation interval g is typically assumed 
to be in the range of 27-31 years, based on data from contemporary hunter-gatherer 
societies, although there is considerable variation across populations7,8.  
 
Mutation rate µ, ν: Human mutation rates have been estimated empirically in a 
number of ways. Relatively high mutation rates based on human-chimpanzee 
divergence and split times based on calibration to the fossil record are now generally 
considered to be unreliable, likely due to shifts in mutation rate hundreds of thousands 
or millions of years ago9. The per-generation mutation rate µ can be estimated directly 
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by counting mutations among parent-child trios10-12, which gives estimates ranging 
from 0.96-1.20×10-8, corresponding to ν=3.1-4.4×10-10 if we assume generation times 
between 27 and 31 years. An alternative approach is to use the recombination clock to 
calibrate the mutation rate13,14 which gives higher estimates of µ=1.61×10-8, 
corresponding to ν=5.2-6.0×10-10. Finally, ν has been estimated to be 3.9-4.7×10-10 by 
comparing a 45,000 year-old modern human genome from Siberia to present-day 
genomes15.   
 
Genomic context and filtering: Per-base mutation rates vary substantially along the 
genome. De novo rates vary because of factors like sequence context12 and replication 
timing16, while long-term rates also vary due to differential selection and 
recombination rates across the genome. This means that studies that apply different 
filters, and access different parts of the genome, are likely to report different mutation 
rates. One way to make studies that look at different regions comparable is to scale by 
the reported heterozygosity in some reference population, for example northern 
Europeans.  
 
At filter level 1, we estimate the effective heterozygosity in our filtered regions for the 
French population to be 0.68×10-3 by computing the observed heterozygosity in our 
MSMC input files. Two studies that reported French heterozygosity in their called 
genomes both reported higher values of 0.77×10-3 and 0.75×10-3, suggesting that, to 
apply these mutation rates to our data, we might wish to use a mutation rate 
approximately 11% lower than they report. We summarize these results in Table S9.2. 
 

Table S9.2. Mutation rate estimates rescaled using heterozygosity to be 
comparable to the filtering using in this study. Three studies that estimate µ or ν, 
rescaled to give a value of ν appropriate to our dataset where the heterozygosity of 
French is 0.68×10-3. For these computations we assume the generation interval 
averaged 27 to 31 years.   
 
However, rescaling by realized heterozygosity may not always be correct. Regions of 
high heterozygosity that are filtered out by strict filters may be regions with high error 
rates, rather than regions with high mutation rates. More subtly, removing regions of 
high heterozygosity may remove regions with ancient but not recent coalescence that, 
for MSMC analysis, would predict a large effect on estimates for ancient but not 
recent times. Thus the appropriate scaling factor would be a function of time, rather 
than a constant. For this reason, we do not rescale our results in the main text. 
 
Parental age and sex-specific effects: Most de novo mutations arise paternally, due to 
the larger number of cell divisions to produce male gametes11. Since cells in the male 
germline, unlike the female germline, continue to divide over a man’s lifetime, the 
average number of mutations increases with paternal age. Thus, the sex-averaged 
mutation rate depends in a complicated way on the exact values of the male and 
female mutation rates and the average male and female generation interval.  There is 
still considerable uncertainty about the values of these parameters and about the 
appropriate mutational model6, so we do not attempt to take these details into account 

Method Ref µ ν π(French) Rescaled ν Notes 
Direct Kong et al.11 1.20e-08 3.9-4.4e-10 

 
3.5-4.0e-10 Called 2.5Gb. Assume π=7.5e-4 

Ancient  Fu et al.15 
 

3.9-4.7e-10 7.7e-4 3.4-4.1e-10 Table S14.2 
LD Lipson et al.13 1.61e-08 5.2-6.0e-10 7.5e-4 4.7-5.4e-10 
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here. However, we caution that it is possible that these vary across populations, which 
might complicate interpretation of MSMC analyses.  
 
Summary: Based on these estimates, we report times scaled by ν=4.3×10-10. This is 
the midpoint of the PSMC-based branch-shortening estimate calibrated to a directly 
dated ancient genome15, which we consider to be the most relevant for this analysis 
(and also is very similar to the estimates from de novo mutation rate studies). When 
we plot MSMC results, we show the times scaled to this range on the x-axis. Times 
can easily be converted to alternative mutation rates by scaling by a constant (for 
example, it would be reasonable to rescale to ν=3.4-6.0×10-10, the most extreme 
values of ν from Table S9.1).  
 
9.4 MSMC analysis 
 
We processed our phased genomes into MSMC formatb. For each analysis here, we 
used two phased genomes in four-haplotype MSMC format. We included only sites 
that passed filter level 1 or higher. Following the MSMC paper, we report the cross-
coalescence rate: the ratio of the between- and mean within-population inferred 
coalescence rates. We ignored unphased sites using the “--skipAmbiguous” option. If 
the nth variant site in one sample is unphased, this excludes all sequence between the 
n-1th and nth site. 
 
MSMC produces population size estimates that are size-scaled by twice the mean 
autosomal per-base per-generation mutation rate µ, and time-scaled by the mean per-
base per-year mutation rate ν, where µ=νg, and g is the mean generation interval. We 
assume all of these parameters are constant over time. For cross-coalescence rate 
estimation, only ν is required.  
 
Reporting MSMC results: MSMC makes no assumptions about the structure of 
population splits. However to summarize results in a way that can be compared with 
other estimates that assume instantaneous splits, we convert the MSMC results into a 
range of split times by taking the most recent time at which the cross coalescence is 
above 0.25 and 0.75. If we give a point estimate without a range, or a midpoint, we 
quote the time at which the cross-coalescence rate rises above 0.5. Sometimes we 
quote the time of “initial split”, by which we mean the oldest time for which the 
cross-coalescence rate is <1. When we report MSMC estimates of effective 
population size, we scale by 2µ=2.5×10-8, assuming ν =4.3×10-10 and g=29 years.  
 
Effect of phasing errors on simulations: to understand how phasing would affect 
inferences from MSMC, we simulated a simple two-population split model using 
scrm17, and added phasing errors to the simulated haplotypes. We then ran MSMC to 
infer cross coalescence rates. We found (Figure S9.2) that phasing errors tend to make 
splits look older by breaking up long recent haplotypes. The effect is more severe for 
more recent splits, suggesting that inference of the time of more ancient events will be 
more accurate than inference for recent events, which are more prone to being 
overestimated.   
                                                        
b We modified multihetsep.py from https://github.com/stschiff/msmc-tools to take into 
account our site- and sample-specific filters.  
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Figure S9.1. Reporting MSMC results. This figure shows an example of how we 
report MSMC results, in this case, the cross-coalescence rate for Yoruba and 
ǂKhomani San. In the figure legend we report the times at which the cross-coalescence 
rate crosses 0.25, 0.5, and 0.75, in this case as (57/87/120 kya).  
 
Effect of phasing strategy in practice: We compared the three phasing strategies on 
different pairs of populations.  We found that in cases where the split is old, and the 
populations are closely related to 1000 Genomes populations (for example, Figure 
S9.3; French-Yoruba split) the MSMC cross-coalescence rates are insensitive to 
phasing. This is true even for more recent splits (Figure S9.4; French-Han). Even 
when one population is not closely related to a 1000 Genomes population, the MSMC 
results are still fairly robust to phasing for old splits (Figure S9.5 French-Mbuti) but 
can be dramatically different for recent splits (Figures S9.6 and S9.7; French-New 
Guinean and Australian-New Guinean). In all cases, recent effective population size 
estimates are lower for PS1, suggesting that removing sites not in 1000 Genomes 
leads to an underestimate of the population size in recent times. However, it is also 
possible that these sites are enriched with genotype errors. 
 
In summary, MSMC results are robust to phasing for old splits, or more recent splits 
where the populations are represented in the 1000 Genomes Project and therefore 
well-phased, but not for recent splits, particularly when the populations are not 
represented in 1000 Genomes. For the plots in this note we report cross-coalescence 
rates inferred using PS1 and effective population sizes inferred using PS2. For the 
plots in the main text (Fig. 2), we report cross-coalescence rates inferred using PS1 
and effective population sizes inferred using PSMC (PSMC does not require phasing, 
and provides qualitatively similar population size reconstructions as MSMC). 
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Figure S9.2. Effect of switch errors on MSMC inference of split times. Inferred 
cross-coalescence rates for simulated data with added phasing errors. We simulated 
ten 100Mb chromosomes for each of two diploid individuals from two populations 
that split abruptly at 10, 20, 50 and 100 kya (Ne=14,000 and µ=1.2×10-8 per-base per-
generation). Low, medium and high error rates correspond to setting both the single- 
and multi-site switch rates to 0.5×10-5, 1.0×10-5 and 1.5×10-5 per base. 
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Figure S9.3: French-Yoruba cross coalescence rates (upper panel) and effective 
population size (lower panel) inferred using MSMC with different phasing strategies.  
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 Figure S9.4 French-Han cross coalescence rates (upper panel) and effective 
population size (lower panel) inferred using MSMC with different phasing strategies. 
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Figure S9.5 French-Mbuti cross coalescence rates (upper panel) and effective 
population size (lower panel) inferred using MSMC with different phasing strategies 
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Figure S9.6 French-New Guinean cross coalescence rates (upper panel) and effective 
population size (lower panel) inferred using MSMC with different phasing strategies 
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Figure S9.7 Australian-New Guinean cross coalescence rates (upper panel) and 
effective population size (lower panel) inferred using MSMC with different phasing 
strategies. 
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Effect of filter level: We investigated whether the filter level affected the analysis. 
This might have two effects, first by restricting to higher quality sites, and second by 
changing the overall heterozygosity and thus changing the appropriate mutation rate 
(although, as discussed in Section 9.3, this might not be linear). In practice we found 
that the effect of changing filter levels was minimal (Figure S9.3) and certainly much 
less than the uncertainty due to phasing error. Thus, we performed all further analysis 
at filter level 1.  
 

Figure S9.8 Effect of filter levels. We ran MSMC for three pairs of populations at 
filter levels 0,1 and 9 (using PS1 phasing). Heterozygosity in our data at these levels 
(0/1/9) is 0.89/0.88/0.84 for ǂKhomani San, 0.96/0.94/0.89 for Yoruba, 0.70/0.68/0.64 
for French and 0.68/0.66/0.62 for Han. Filtering to level 9 reduced heterozygosity by 
around 10% compared to level 0 and increases some split time estimates by up to 
10%; however not all estimates are equally affected. For this reason, we do not scale 
by heterozygosity when reporting our results in the main text. All results in the main 
text are reported at filter level 1. 
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Supplementary Information section 10 
Sequenced Australians form a clade with previously studied Australians 
 
Pontus Skoglund* and David Reich 
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We considered the possibility that the Australian samples, from the European Collection of 
Cell Cultures cell line diversity panel1, might not be a typical population of Australians.  
 
The possibility that the Australian genomes we sequenced have different ancestry from other 
Australians that have been previously analyzed is important, as in this paper we show that the 
Australian samples we sequenced are consistent with descending from the same modern 
human dispersal out of Africa as other non-Africans today (Supplementary Information 
section 11). A previous claim that Australians harbor ancestry from a distinct migration into 
Asia1 was based on a different Australian individual than the ones sequenced as part of the 
SGDP, and thus it is important to determine if that individual had similar ancestry to the one 
we sequenced. 
 
To evaluate this question, we took advantage of the fact that there is published genome-wide 
data from three different indigenous Australians groups from different geographic locations 
across Australia whose phylogenetic relationship to New Guineans we can compare: 
(1) Australian_ECCAC (3 individuals, 2 of which are in the SGDP)  

Sampling location unknown. We use genotyping data from the Affytmetrix Human 
Origins SNP array2.  

(2) Australian_WGA  (5 individuals) 
Sampled in Arnhem Land in northeastern Australia. We use genotyping data from the 
Affymetrix Human Origins SNP array2.  

(3) Australian_Kalgoorie (1 individual)  
This is the low-coverage genome reported by Rasmussen et al1, derived from hair 
sampled in the early 20th century close to Kalgoorie in southwestern Australia. We 
restricted to reads with a phred-scaled mapping quality of ≥30 and to sites on the reads 
with base quality of ≥30. At each site in the Affymetrix Human Origins SNP array 
covered at least once by a base passing these filters, we selected the allele with the 
highest count, or in case there was a tie we randomly selected a single read to represent 
the site. We obtained coverage on the individual for 605,986 SNPs (97.8% of all targets). 

 
To test whether the three Australian samples were symmetrically related to New Guineans, 
we computed all possible D-statistics of the form D(Han, New Guinean; Australiani, 
Australianj), using the HGDP Papua New Guineans from which the SGDP New Guinean 
genomes are drawn. This statistic tests whether the two Australian groups are symmetrically 
related to Han Chinese and New Guineans. If there are differences in relatedness to New 
Guineans among the three Australian groups (e.g. due to recent gene flow), we would expect 
the allele frequency differences between the Australian groups to be correlated to be allele 
frequency differences between Han and New Guineans. However, we find no evidence of 
such differences, since the Z-scores (the number of standard errors that the D-statistic is from 
zero according a Block Jackknife) for all pairs of Australian groups tested are |Z| < 3. 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 https://www.phe-culturecollections.org.uk/pages/M074%20EDP-1%202ug%20Data%20Sheet%20.pdf 
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We also used TreeMix 1.123 to automatically fit a maximum likelihood phylogenetic tree to 
the three different Australian groups, the New Guineans, eastern non-Africans, and sub-
Saharan Africans, dividing the data into 720 contiguous blocks to obtain standard errors. 
Figure S10.1 shows that a TreeMix tree without admixture events provides a fit to the data 
within the resolution of the analysis, with the Australian genomes consistent with being a 
clade with respect to New Guineans. Within Australians, the samples included in SGDP 
(Australian_ECCAC) are more closely related to the Australian_Kalgoorlie population than 
either is to the Australian_WGA. Thus, the TreeMix analysis suggests that the 
Australian_ECCAC genome is not from a population with an unusually close relationship to 
New Guineans compared to Australian groups with known sampling locations. 
 

Figure S10.1: The sequenced Australians are not atypical in relatedness to New 
Guineans. We used TreeMix to automatically fit a phylogenetic tree to three different 
sampled Australian populations, New Guineans, other eastern non-Africans, and sub-Saharan 
African outgroups. There is no significant evidence for admixture (all |Z|-scores <3). Note 
that the long external branch leading to Australian_Kalgoorlie is due to only haploid 
genotypes being used for this individual. 

 
 
We conclude with two clarifications about what we have and have not established.  
(1) What we have established is that the Australians we sequenced form a clade with 

Australian groups with known geographic locations for which genome-wide data are 
available (Kalgoorlie and Arnhem Land). The samples we sequenced are typical of other 
Australian genomes that have been studied in the sense that all are consistent with 
descending from common ancestors since separation from the ancestors of Papuans.  

(2) What we have not established is that the patterns we observe in the genomes we 
sequenced are typical of all Australians. Thus, it is possible that there are Australian 
populations that we have not sampled that might have different ancestry, such as speakers 
of non-Pama-Nyungan languages or indigenous Tasmanians. 
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Summary 
Using the SGDP data, we study Australians, New Guineans, and Andamanese and do not find 
evidence that they have ancestry from a deeply diverging modern human source population. 
Furthermore, we show that if such an ancestral population did exist, its contribution to the 
ancestry of these groups is bounded at a few percent. 
 
Motivation 
It is widely agreed that anatomically modern humans arose in Africa ~200 thousand years 
ago (kya). However, the timing and mode of the migrations out of Africa is controversial [1].  
 
Among models proposing multiple dispersals into Eurasia, one of particular interest is the 
“southern route” hypothesis, which suggests that an early migration through southern Asia 
brought modern humans as far as Australia, and moreover that some or all of the ancestry of 
present-day indigenous Australians, New Guineans, and “Negritos” (of the Andaman Islands, 
the Philippines, and Malaysia) can be traced to this migration [2]. 
 
The first line of evidence that has been proposed to support this hypothesis is from physical 
anthropology, in particular morphological similarities between Australians, New Guineans, 
and Andamanese and some African groups [2-4]. However, morphological characters can be 
discordant with population histories (due either to shared retained features or convergent 
evolution). For example, two ancient DNA studies showed that skeletal remains argued on 
morphological grounds to reflect distinct migrations into the Americas were in fact derived 
from the same ancestral population as most other Americans [5-6]. 
 
Archaeological evidence has also been interpreted as providing evidence of an early southern 
route dispersal. Modern humans inhabited Australia by ~47 kya [7], and a new analysis 
suggests occupation before 50 kya [8], earlier than all known modern human remains in 
Europe and northern Asia [1]. There is also evidence (thus far only lithic [1]) that modern 
humans may have spread into Arabia >100 kya [9] and into India >74 kya [10].   
 
From a genetic perspective, the most notable study supporting the southern route hypothesis 
was that of Rasmussen et al. [11], who analyzed a historical period Aboriginal Australian 
genome sequence by modeling allele frequency correlation and linkage disequilibrium 
patterns and estimated an earlier split of Australians from Europeans and East Asians than of 
the latter two from each other. Two subsequent papers fit genetic data to spatial migration 
models [3] and a different set of divergence statistics [12] and inferred an early split of New 
Guineans from mainland Eurasians. However, the methods used in these studies are all 
potentially confounded by more recent demographic events, including population size 
changes, archaic introgression [13-16], and other admixture. In particular, if the several 
percent of Denisovan ancestry present in Australians and New Guineans is not accounted for 
(as in [11] and [3]), then these populations may appear inaccurately deeply diverged.  
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In this note, we describe the details of our tests for evidence of an early dispersal of modern 
humans out of Africa using the SGDP data. We ask whether the patterns in the genetic data 
are best explained by a model in which Australians, New Guineans, and Andamanese have 
ancestry from an early dispersal predating the later diversification of northern Eurasian 
lineages, or alternatively by a model in which these populations and northern Eurasians 
descend from the same dispersing population. We also place an upper bound on the 
proportion of ancestry that could derive from an early dispersal. 
 
Difficulty of interpreting MSMC results 
We first explored whether we could use MSMC [17] to test for evidence of an early dispersal 
of modern humans out of Africa that differentially affected present-day French, Han, 
Australians, and New Guineans (Fig. 2). However, inferences involving Australians and New 
Guineans were very different depending on phasing strategy (Supplementary Information 
section 9). In addition, we did not know how the 3-6% Denisovan ancestry in Australians and 
New Guineans [14] would affect MSMC inferences. Because of these considerations, we 
were concerned that we could not reliably use MSMC to investigate the early dispersal 
hypothesis. 
 
Admixture graph construction 
We fit an admixture graph (a phylogenetic tree based on shared genetic drift, augmented with 
point admixture events) relating Australians, New Guineans, and Andamanese to other 
present-day and ancient populations. Unlike previous tests of early modern human dispersal 
hypotheses [3, 11-12], we modeled archaic admixture. In all, we co-modeled 10 groups: 
Chimpanzee, Denisova [15], Altai Neanderthal [16], Dinka, Kostenki 14 [18], Ami, Dai, 
Onge, New Guinean, and Australian. We represented West Eurasians by Kostenki 14 rather 
than by a present-day population because of known complications of later admixture [18-19]. 
 
We used diploid genotype calls from SGDP individuals and merged with data from the other 
samples on the set of SNPs (~2.9 million) ascertained as polymorphic among the four SGDP 
Mbuti. While this means that the SNPs are not polymorphic at the root of the tree (as would 
be desirable), this property does hold within the modern human sub-tree (disregarding archaic 
introgression), for which Mbtui serves as an outgroup [20]. The graph is built from shared 
drift relationships (f-statistics) among the populations, as computed on this set of SNPs [21]. 
 
Admixture graph model fits well without an early modern human dispersal 
We used ADMIXTUREGRAPH [21] (downloadable as part of the ADMIXTOOLS package: 
http://genetics.med.harvard.edu/reich/Reich_Lab/Software.html) to optimize the parameters 
of the admixture graph. After the user specifies a graph topology (including admixture 
events), the program finds the best-fitting branch lengths and admixture proportions and 
returns a list of outlier statistics (f-statistics relating populations in the graph that deviate 
significantly from their model expectations) as well as an approximate log-likelihood for the 
graph as a whole [21]. While the program does not search over the space of possible 
topologies, its behavior when the specified branching order is incorrect is usually to create an 
artificial trifurcation (where one split point should be on a different branch), in which case we 
manually adjust the topology.  
 
We find that four archaic admixture events are necessary to provide a good fit to the data:  
(1) Shared Neanderthal introgression into all non-Africans;  
(2) Denisovan gene flow into the ancestors of Australians and New Guineans;  
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(3) Extra Neanderthal ancestry in Kostenki 14 (which dates to 36-39 kya), consistent either 
with more extensive admixture or with purifying selection against Neanderthal ancestry 
(which has had more time to operate in present-day non-Africans [22] than Kostenki 14); 

(4) Unknown basal archaic admixture in Denisova [16].  
 
Given these admixtures, we optimized the positions of the 10 populations and found that all 
other relationships were consistent with a tree-like history, as the best-fitting graph (Fig. 3; 
Fig. S11.1) correctly predicted all f-statistics to within 2.1 standard errors. 
 
Figure S11.1: Admixture graph relating Australians, New Guineans, Andamanese, and 
diverse other populations. Dotted lines denote admixture events, with proportions shown. 
Edge labels are branch lengths in drift units: a constant (1000) times f2 distances (average 
squared differences in allele frequencies [21]). Terminal nodes are sampled populations, and 
internal nodes are hypothesized ancestral populations. Fig. 3 is a redrawn version of this. 
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Notably, the topology of the tree does not specify an early divergence of the lineage leading 
to Australians, New Guineans, and Andamanese. Apart from the Denisovan introgression, 
these populations are unambiguously placed in an eastern Eurasian clade together with East 
Asians (p<10-15), to which the ancient West Eurasian Kostenki 14 is an outgroup. In an early 
dispersal scenario, by contrast, at least a portion of the modern human ancestry in these 
populations would be an outgroup to a clade consisting of the other East and West Eurasians. 
We speculate that one reason why some studies have not inferred Australians and New 
Guineans to be sister groups to East Asians is that their Denisovan ancestry causes them to 
appear more deeply diverged. However, other studies have recovered an eastern clade (East 
Asians plus New Guineans) even without allowing archaic gene flow [23-24]. 
 
We also tested the robustness of this model to two perturbations outside of the eastern 
Eurasian clade (see next section for further robustness checks). First, as mentioned above, we 
believe that Kostenki 14 is more appropriate as a representative West Eurasian than later 
populations because of several layers of complicated admixtures experienced by later 
Europeans [19]. However, we did re-fit our model using the ~7 kya Neolithic Stuttgart farmer 
– which lacks some of the most recent gene flow into Europe but is closely related to present-
day Sardinians [19] – in place of Kostenki 14, and the graph topology was unchanged. All f-
statistics were correct to within 2.9 standard errors, with the poorer quality of fit due to 
admixture in Stuttgart (all f-statistics without Stuttgart remained correct to within 2.1 
standard errors). 
 
Second, we experimented with manually changing the proportion of Neanderthal gene flow 
into non-Africans. While the inferred proportion of 3.2% Denisovan introgression into 
Australians and New Guineans in our best-fitting model is reasonable, the inferred shared 
Neanderthal introgression is inflated at 4.1%. We believe that this may be due to the 
ascertainment of SNPs as polymorphic in present-day Africans; as noted previously, this 
scheme is desirable for studying modern human ancestry in non-Africans, but it could cause 
some branch lengths leading to archaic humans to be underestimated. Even if this is the case, 
however, the algebraic shared drift relationships in other parts of the graph should be 
unaffected by the larger Neanderthal mixture proportion. To test if this reasoning is correct, 
we manually set the shared Neanderthal gene flow into non-Africans at 2.5%, a reasonable 
value for eastern Eurasians. The topology of the model is unchanged, with all f-statistics 
remaining correct to within 2.4 standard errors. Finally, we verified that, as in the next 
section, adding a putative early dispersal ancestry component to Australians and New 
Guineans (with or without Onge) in the model with lower Neanderthal gene flow did not 
improve the fit (see below). 
 
Including admixture from an early modern human dispersal does not improve model fit 
Although the graph shown in Fig. S11.1 fits the data to within the limits of our resolution, it 
is possible that adding an additional admixture event could further improve the fit. 
Specifically, we considered the possibility that Australians, New Guineans, and Andamanese 
are inferred to be a clade with East Asians because of later gene flow; that is, the former 
groups have ancestry from an early dispersal that has been diluted due to admixture with 
populations related to East Asians. To explore this scenario, we built more complex graphs in 
which Australians, New Guineans, and Andamanese are descended from an admixture 
involving an East Asian-related component as well as a deeper, early dispersal component 
that we model as absent in East Asians. While this might not be accurate in the event of 
bidirectional gene flow, we hypothesize that the early dispersal component would be present 
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in a smaller proportion in East Asians. Thus, our analysis can be viewed as studying the 
difference in early dispersal ancestry between the two groups. 
 
First, we added early dispersal admixture into the common ancestor of Australians, New 
Guineans, and Andamanese and allowed its position and proportion to vary (only 
constraining the source to split somewhere on the branch above the “non-African” node). In 
this case, the best fit was obtained with the split at the “non-African” node itself, which is 
algebraically equivalent to the graph in Fig. S11.1. In other words, no parameters for a model 
specifying early dispersal ancestry provide a better fit than the simpler model. This was true 
for the full graph, the full graph without Onge, and the full graph without Australian and New 
Guinean. We also replicated the result for the full graph using Mbuti as the African outgroup 
population in place of Dinka. The topology was such that it was more straightforward to 
model the early dispersal admixture prior to the Denisovan gene flow, but the order of these 
events (including potential Denisovan admixture into the early dispersal lineage) does not 
affect the shared drift relationships. 
 
Comparison with Basal Eurasian ancestry in Neolithic Europeans 
As a positive control, we carried out an analogous modeling procedure with the Stuttgart 
Neolithic farmer, which has been shown to be descended in part from a “Basal Eurasian” 
population that diverged prior to the main eastern/western Eurasian split point [19]. First, we 
added Stuttgart to our main graph model, with Kostenki 14 present as well. When assumed to 
be unadmixed, it fit best as a sister group to Kostenki 14, but several significant f-statistic 
outliers were present, with Z-scores up to 4.1. All of the most significant of these statistics 
indicated that Stuttgart shares excess alleles with outgroups to the main non-African clade 
(for example, f4(Dinka, Onge; Kostenki 14, Stuttgart) << 0, |Z| > 4). We then allowed 
Stuttgart to be admixed, with one component splitting closest to Kostenki 14 and the other 
(the Basal Eurasian component) splitting above the “non-African” node (as in the previous 
section). This new model fit better, with no outliers above |Z| = 2.9 and the overall log-
likelihood 10.5 higher (p<10-4, likelihood ratio test). This is in contrast to our finding that no 
such admixture for Australians, New Guineans, and/or Andamanese improved the model fit. 
While the ability to detect admixtures depends in part on the reference populations available, 
we have three topologically distinct sets of references in both cases: Kostenki 14, eastern 
Eurasians, and outgroups (Dinka, archaic humans, and chimp) for Stuttgart, and equivalently 
East Asians, Kostenki 14, and outgroups for Australians, New Guineans, and Andamanese. 
 
Upper bound of a few percent early dispersal ancestry  
Even though our best-fitting model contained no early dispersal component, we wished to 
determine the maximum fraction of such ancestry in Australians and New Guineans that 
would be consistent with the observed drift relationships. Again, we added an early dispersal 
source mixing into the common ancestor (for simplicity, for this analysis we focused on 
Australia and New Guinea and omitted Onge from the graph). We fixed the split point of this 
source at 0.01, 0.02, or 0.03 units above the “non-African” node, where the total length of the 
branch (from the common ancestor of eastern and western Eurasians back to the common 
ancestor of Dinka and non-Africans) is 0.037. Previous studies arguing for an early dispersal 
have placed this split tens of thousands of years before the subsequent Eurasian ancestor [3, 
11-12], where calendar-year divergences are roughly proportional to our admixture graph 
drift units times the effective population size. For example, Rasmussen et al. estimated that 
Europeans and East Asians split 25-38 kya, Aboriginal Australians 62-75 kya (followed by 
later gene flow from a lineage related to East Asians), and Africans 81-88 kya [11]. This 
chronology would place the early dispersal split approximately 35-40 ky earlier than the 
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eastern/western Eurasian split and approximately two-thirds of the way back to the 
Eurasian/African split. Thus, our tested points, from ~30-80% of the way back to the 
Eurasian/African split (in drift units), represent a plausible range of split times (with the 
estimate from [11] at the high end of the range). Given that non-African population sizes 
were sharply decreasing over this time period [14-15, 25], the range is shifted downward in 
terms of calendar years, with the low end on the order of 10-20%, or ~10 ky predating the 
eastern/western split according to the time scale indicated by our MSMC analyses (Fig. 2; 
Supplementary Information section 9). 
 
In Fig. 3 inset, we plot the relative likelihood of the graph model (using the multivariate 
normal approximation from [21]) as a function of the split point and the mixture proportion. 
The deeper the split, the more divergent the early dispersal ancestry, and hence the less of 
this ancestry that that can be accommodated while still being consistent with the data. By 
integrating the area under the curves, we estimate 95% confidence upper bounds of 5.3%, 
2.7%, and 1.9% of the deeper ancestry for the 0.01, 0.02, and 0.03 split points, respectively. 
(By the linearity of f-statistics, the bound is expected to be inversely proportional to the split 
point distance; see Fig. S11.2.) 
 
To complement the full likelihood analysis (Fig. 3 inset), we also computed the absolute Z-
score (point estimate divided by standard error) of the most significant outlier in the graph 
(Figure S11.2). Below a few percent of the early dispersal ancestry, the worst outlier 
remained as in our best-fitting model, but above this threshold, the worst outlier was 
f4(Dinka, Kostenki 14; Dai, New Guinean), which showed too much shared drift in the model 
between New Guinean and Dinka. The Z-score increased linearly as a function of ancestry 
proportion, reaching |Z| = 2.5 at roughly 9%, 5%, and 3% for the three split positions. 
 
Figure S11.2: Results of adding putative early dispersal admixture to the graph model, 
as a function of the position of the early lineage. The position of the early lineage is 
defined here as its split point along the branch above "Non-African" as a fraction of the total 
drift, from 0 at the base to 1 at the "Modern" node. In blue is the 95% confidence upper 
bound of the early dispersal ancestry proportion (dotted line, best-fit with functional form 
1/x). In red is the largest outlier f-statistic in the graph when the common lineage leading to 
Australians and New Guineans is assumed to have 5% early dispersal ancestry (dotted line, 
best-fit piecewise linear function). 
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Conclusion 
Based on patterns of cross-population coalescence and allele frequency correlations, the best-
fitting model of Australian, New Guinean and Andamanese history does not involve ancestry 
from an early-diverging source. Some deep ancestry may be present, but its proportion 
(beyond that in East Asians) is very likely limited to a few percent. 
 
A caveat is that at present, we are not aware of any ancient DNA data from skeletal remains 
associated with the earliest putatively modern human archaeological sites in southern Asia or 
Australia. As a result, our work addresses the specific question of whether present-day 
Australians, New Guineans, and Andamanese have inherited substantial modern human 
ancestry that diverged tens of thousands of years earlier than the East Asian/West Eurasian 
split, rather than the broader question of whether there were any early dispersals at all. In 
western Eurasia, we know that there existed early modern humans (represented by Ust’-Ishim 
[26] and Oase 1 [27]) that have no evidence of contributing to present populations. 
Conversely, even without access to a directly ancestral sample, it has been shown that 
present-day West Eurasians are descended in part from an early-diverging “Basal Eurasian” 
lineage [19]. This contrasts with the evidence presented here that present-day Australians, 
New Guineans, and Andamanese lack an analogous deep ancestry component. Thus, while 
we cannot rule out the possibility that, in the future, evidence of an early dispersal will be 
identified from ancient remains, we can confidently conclude that such dispersals did not 
leave a substantial genetic impact on populations living today. 
 
References 

1 Groucutt, H. S. et al. Rethinking the dispersal of Homo sapiens out of Africa. Evolutionary 
Anthropology: Issues, News, and Reviews 24, 149-164 (2015). 

2 Lahr, M. M. & Foley, R. Multiple dispersals and modern human origins. Evolutionary 
Anthropology: Issues, News, and Reviews 3, 48-60 (1994). 

3 Reyes-Centeno, H. et al. Genomic and cranial phenotype data support multiple modern human 
dispersals from Africa and a southern route into Asia. Proceedings of the National Academy of 
Sciences 111, 7248-7253 (2014). 

4 Reyes-Centeno, H., Hubbe, M., Hanihara, T., Stringer, C., & Harvati, K. Testing modern human 
out-of-Africa dispersal models and implications for modern human origins. Journal of Human 
Evolution doi:10.1016/j.jhevol.2015.06.008 (2015). 

5 Rasmussen, M. et al. The ancestry and affiliations of Kennewick Man. Nature 523, 455-458 
(2015). 

6 Raghavan, M. et al. Genomic evidence for the Pleistocene and recent population history of Native 
Americans. Science doi: 10.1126/science.aab3884 (2015). 

7 O'Connell, J. F. & Allen, J. The process, biotic impact, and global implications of the human 
colonization of Sahul about 47,000 years ago. Journal of Archaeological Science 56, 73-84 
(2015). 

8 Clarkson, C. et al. The archaeology, chronology and stratigraphy of Madjedbebe (Malakunanja 
II): A site in northern Australia with early occupation. Journal of Human Evolution 83, 46-64 
(2015). 

9 Armitage, S. et al. The Southern Route “Out of Africa”: Evidence for an Early Expansion of 
Modern Humans into Arabia. Science 331, 453-456 (2011). 

10 Blinkhorn J. et al. Middle Palaeolithic occupation in the Thar Desert during the Upper 
Pleistocene: the signature of a modern human exit out of Africa? Quaternary Science Reviews 77, 
(2013). 

11 Rasmussen, M. et al. An Aboriginal Australian genome reveals separate human dispersals into 
Asia. Science 334, 94-98 (2011). 

12 Tassi, F. et al. Early modern human dispersal from Africa: genomic evidence for multiple waves 
of migration. bioRxiv preprint doi: http://dx.doi.org/10.1101/022889 (2015). 

71



13 Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710-722 (2010). 
14 Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. 

Nature 468, 1053-1060 (2010). 
15 Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. 

Science 338, 222-226 (2012).  
16 Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. 

Nature 505, 43-49 (2014). 
17 Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple 

genome sequences. Nature genetics 46, 919-925 (2014). 
18 Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years. 

Science 346, 1113-1118 (2014). 
19 Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day 

Europeans. Nature 513, 409-413 (2014). 
20 Pickrell, J. K. et al. The genetic prehistory of southern Africa. Nature Communications 3, 1143 

(2012). 
21 Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065-1093 (2012). 
22 Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in present-day humans. 

Nature 507, 354-357 (2014). 
23 Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide 

allele frequency data. PLoS Genetics 8, e1002967 (2012). 
24 Lipson, M. et al. Efficient moment-based inference of admixture parameters and sources of gene 

flow. Molecular Biology and Evolution 30, 1788-1802 (2013). 
25 Li, H. & Durbin, R. Inference of human population history from individual whole-genome 

sequences. Nature 475, 493-496 (2011). 
26 Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 

514, 445-449 (2014) 
27 Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 

doi:10.1038/nature14558 (2015). 
 
 
 
 

72



Supplementary Information section 12 
No evidence for a shared human selective sweep in the last ~100,000 years 
 
Fernando Racimo*, Heng Li and David Reich* 
 
*To whom correspondence should be addressed: F.R. (fernandoracimo@gmail.com) 
or D.R. (reich@genetics.med.harvard.edu) 

 
Scan for positive selection 
We used the 3P-CLR method1 to 
scan the genome for positive 
selection. We were primarily 
interested in detecting evidence of 
selection in the ancestral 
population of all present-day 
humans: before the final split of 
KhoeSan and non-KhoeSan, but 
after the split from archaic humans.  
 
3P-CLR examines patterns of 
allele frequency differentiation in a 
tested region of the genome—not 
just at a single SNP but over an 
extended window—and computes 
the approximate composite 
likelihood for a positive selective 
sweep, maximized over a range of 
selection coefficients. Specifically, 
it compares this likelihood to the approximate composite likelihood of the region 
under a neutral model of evolution. 3P-CLR can model selection that happened before 
the split of two populations (after the split from an outgroup), or in either population 
after the split (Figure S12.1). 
 
To prepare a dataset for 3P-CLR analysis, we restricted to sites for which we have 
genotype information from two high-coverage archaic humans (the Altai Neanderthal 
and the Siberian Denisovan), at least 20 African non-KhoeSan individuals, and at 
least 3 KhoeSan individuals.  
 
To represent the non-KhoeSan, we sampled as many individuals as passed filters at 
each point in the genome from non-KhoeSan Africans and combined them with an 
equal number of non-Africans. To obtain as much diversity as possible among the 
non-Africans, we required that the non-African half of the non-KhoeSan sample be 
composed in equal parts of individuals from South Asia, West Eurasia, Oceania, East 
Asia and Central Asia / Siberia. The individuals making up the non-African half of 
the non-KhoeSan sample were chosen randomly, and if insufficient genotypes from 
each of these populations were available, the site was not used. As 3P-CLR requires 
the outgroup sample to be polymorphic, we discarded sites where both archaic 
humans (Neanderthal and Denisovan) were homozygous derived or where both were 
homozygous ancestral. We used an African American recombination map2 to convert 

Figure S12.1. Schematic of 3P-CLR scan. 
We used allele frequency differentiation along 
a 3-population tree to search for positive 
selection in the modern human ancestral 
population, in non-Khoesan, or in Khoesan. 
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physical distances into genetic distances. We applied 3P-CLR in windows that were 
0.25 cM long and that each contained 100 randomly sampled SNPs. Each window 
was centered on a particular SNP that acted as the candidate beneficial site for that 
window. We tested a central beneficial SNP every 20 SNPs along the genome. 
 
In Extended Data Fig. 6, we show the 3P-CLR scores along the autosomes for the 
KhoeSan scan, the non-KhoeSan scan, and the scan in the common ancestral 
population of modern humans. In Supplementary Data Table 2, we give the numerical 
results for all windows falling in the 99.9% percentile of the distribution of scores for 
each scan (we combine contiguous windows that pass this threshold).  
 
(i) Scan in the common ancestral population of all modern humans  
In the scan in the common lineage of all modern humans, we do not observe any 
strong outliers (Extended Data Fig. 6). This result may reflect limited statistical 
power. Nevertheless, the absence of strong outliers in this scan is of interest because 
if there had been strong selective sweeps in the common ancestral population of all 
modern humans since the separation from our archaic human relatives, it is in this 
scan that such signals would be expected to manifest. The 38 largest peaks we 
observe (the top 0.1% of peaks in the scan) substantially overlap those recovered 
earlier using 3P-CLR1 with 1000 Genomes data3, when partitioning the daughter 
branches into African / Non-African, instead of  KhoeSan / non-KhoeSan3.  
 
(ii) Scan on the lineage leading to all modern humans except for KhoeSan 
Among the top 5 genes, two are in intergenic regions. The largest signal overlaps 
IQCJ-SCHIP1, an antisense RNA gene that is highly expressed in the brain4. The 
third highest signal overlaps with MDPZ, a gene associated with congenital 
hydrocephalus5. The fourth highest signal region overlaps with several genes: RAP1B, 
NUP107, MDM2. RAP1B is involved in platelet aggregation6, NUP107 plays a role in 
the assembly of the nuclear pore protein complex7, and MDM2 is associated with 
accelerated formation of tumors8. 
 
(iii) Scan on the lineage leading to KhoeSan 
We observe several strong outliers in the scan leading to the KhoeSan (Extended Data 
Fig. 6). The largest signal, which is 1.5-times larger than the second highest-scoring 
signal, corresponds to a region overlapping two genes: FBN2 and SLC27A6 (Figure 
S12.2). We replicate this signal using the SNP-specific PBS statistic9, which identifies 
SNPs with locally extended branch lengths exclusive to the San population (Figure 
S12.2). The signal persists even if we do not condition on the archaic individuals 
being polymorphic: by computing SNP-wise Fst

10-12 between KhoeSan and Non-
KhoeSan, we observe a cluster of highly differentiated SNPs in the region identified 
by 3P-CLR (Figure S12.3). 
 
SLC27A6 codes for a protein that transports long-chain fatty acids across the plasma 
membrane13 and may be involved in the uptake of these fatty acids into cardiac 
myocytes14. FBN2 codes for a fibrillin that is a structural component of connective 
tissue and regulates elastic fiber assembly15. Mutations in this gene have been found 
to produce congenital contractural arachnodactyly16-18. 
 
We selected the SNPs with PBS>0.7 in the FNB2/SLC27A6 region, and used CADD19 
to generate conservation, regulatory and genic annotations at each site. We also 
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queried GWASdb20 to check if any of the sites were genome-wide significant GWAS 
hits, and the GTEx database21 to check if any of the sites were genome-wide 
significant cis-eQTLs. We find that none of the sites are GWAS hits or coding 
changes. Instead, all of them are genome-wide significant cis-eQTLs for FBN2, 
suggesting that the putatively selected haplotype may alter FBN2 expression in the 
following tissues: tibial artery, tibial nerve, blood, thyroid, subcutaneous adipose and 
lung. Among the SNPs with high PBS scores, we find that four that have high (>10) 
CADD functional disruption scores: rs59567527 (CADD=12.28), rs61375240 
(CADD=20.8), rs56766733 (CADD=10.37) and rs6898190 (CADD=10.59). 
 
Figure S12.2. Candidate targets for selection in the Khoesan. a. The region with 
the highest 3P-CLR score for the Khoesan branch overlaps two genes: FNB2 and 
SLC27A6. b. PBS scores for the Khoesan branch for SNPs in the highest-scoring 3P-
CLR region. The red lines denote the boundaries of the candidate region. The statistic 
was computed on the same sites used for 3P-CLR score. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The SNP with the highest CADD score (rs61375240) is in a GERP conserved 
element22 and has high PhastCons conservation scores23 across primates, mammals 
and vertebrates. Based on Roadmap Epigenomics (RE) chromatin states24, the SNP 
lies in an enhancer region specific to placenta and foreskin keratinocytes. 
 

 
 
 
 
 
 
 

Figure S12.3. Fst between KhoeSan and Non-KhoeSan shows a cluster of highly 
differentiated SNPs at FBN2/SLC27A6. We computed Fst at each SNP in the region, 
without requiring the archaic individuals to be polymorphic, as when computing 3P-
CLR. The Fst values were log-transformed to reflect additive branch lengths. The red 
lines denote the boundaries of the candidate region identified by 3P-CLR. 
 
 
 

a 
 

b 
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The third highest-scoring CADD SNP (rs6898190) lies in an Ensembl promoter 
flanking regulatory region (ENSR00001289613) that is upstream of FBN2. The RE 
chromatin states indicate that this is a promoter/enhancer region specific to various 
tissues: placenta, foreskin, astrocytes, breast, bone marrow, skin, muscle, adipose and 
lung. The latter two are also tissues for which we see that the SNPs are cis-eQTLs, 
further indicating that this or linked SNPs may alter expression in those tissues. 
 
Scan for loci where the great majority of present humans share a recent ancestor 
It has been proposed that the behavioral changes documented in the archaeological 
record after around 50 kya might have been driven by a new mutation in a gene 
affecting neurological capacity that swept to high frequency25. The evidence from 
MSMC26 (Fig. 2a) indicates that the ancestors of some present-day populations were 
substantially isolated by at least 100 kya, which would be an obstacle to the spread of 
such a mutation across the ancestors of all populations. However, the MSMC analyses 
also suggest that gene flow among the great majority of ancestral populations of 
modern humans continued until around 50 kya (Fig. 2a). Thus, we cannot rule out the 
possibility that an advantageous mutation that arose in one ancestral population, 
spread through the others by migration, and then rose in frequency in each population 
separately under the pressure of natural selection. 
 
To investigate directly whether the genetic data provide evidence of a selective sweep 
that contributed to all modern humans within this time frame, we took advantage of 
the fact that the PSMC method produces a posterior decoding—an estimate of the 
time since the most recent common ancestor (TMRCA) of the two chromosomes that 
it is comparing—at each position in the genome. This estimate is generated in units of 
genetic divergence per base pair. To convert this quantity to an estimate in calendar 
years, we used a previous inference that the average time since the common ancestor 
of two French chromosomes is 900 ky, based on calibrating to missing evolution in a 
radiocarbon dated early modern human genome from Siberia (Table S14.6 of ref. 28).  
 
Concretely, from the PSMC posterior decoding, we obtained the average TMRCA of 
two chromosomes being compared in a given pair of genomes j at a locus i (𝑡!

!), and 
divided this by the average TMRCA for the two autosomes of a French person 
!
!

𝑡!!"#$%!!
!!!  averaged over N loci spaced every 10,000 bp along the genome. This 

gave us a local estimate of the TMRCA for a test sample j as a fraction of the average 
autosome-wide TMRCA for a French person. We then multiplied this by the absolute 
estimate of the TMRCA for French: 
 

𝐿𝑜𝑐𝑎𝑙  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒  𝑜𝑓  𝑇𝑀𝑅𝐶𝐴  𝑓𝑜𝑟  𝑠𝑎𝑚𝑝𝑙𝑒  𝑗  𝑎𝑡  𝑙𝑜𝑐𝑢𝑠  𝑖 = (900  𝑘𝑦𝑎)
𝑡!
!

1
𝑁 𝑡!!"#$%!!

!!!   
   

 

We computed this quantity at equally spaced loci every 10,000 bp along the genome 
for each of 40 PSMC runs chosen to oversample African genomes. We considered the 
alternative strategy of analyzing the results of PSMC runs for all SGDP samples, but 
chose not to do this because with this strategy, >80% of the run would correspond to 
pairs of non-African genomes. Thus, a selective sweep that occurred in the common 
ancestral population of all non-Africans, but not in the common ancestor of all 
modern-humans, could give a significant signal in our scan. The 40 runs were: 
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24 PSMC runs on Africans: S_Biaka-1, S_Biaka-2, B_Dinka-3, S_Dinka-1, S_Dinka-
2, B_Ju_hoan_North-4, S_Ju_hoan_North-1, S_Ju_hoan_North-2, S_Ju_hoan_North-
3, S_Khomani_San-1, S_Khomani_San-2, S_Mandenka-1, S_Mandenka-2, S_Masai-
1, S_Masai-2, B_Mbuti-4, S_Mbuti-1, S_Mbuti-2, S_Mbuti-3, S_Yoruba-1, 
S_Yoruba-2, S_Luhya-1, S_Luhya-2, S_Mende-1 
 
8 PSMC runs on non-Africans: S_Dai-1, S_Han-2, B_Australian-3, S_Papuan-1, 
S_Mala-2, S_French-1, S_Sardinian-1, S_Punjabi-1 
 
8 PSMC runs comparing experimentally two phased genomes from four Africans to a 
haploid genome of European ancestry CHM129: HGDP01029 (Ju_hoan_North), 
HGDP0456 (Mbuti), HGDP0927 (Yoruba), HGDP1284 (Mandenka) 
 
Extended Data Fig. 7a shows the percent of pairwise coalescent events inferred by the 
PSMC to be below specified dates.  For the 100 kya cutoff, the largest fraction of 
pairwise PSMC comparisons inferred to be below this threshold—anywhere in the 
genome—is 68%. This result is difficult to reconcile with the theory that a genetic 
mutation important to modern human behavior rose to fixation on the human lineage 
in the last 100 kya. If there was such a locus in the part of the genome we scanned, we 
would expect a much larger fraction of TMRCAs to be below 100 kya.  
 
A second way to look at this is through the time depth at which the great majority of 
human genome pairs are inferred to coalesce to a common ancestor based on the 
PSMC. Extended Data Fig. 7b results for the 80th percentile (“TMRCA80”), the 95th 
percentile (“TMRCA95”), and the 100th percentile points (“TMRCA100”). The peaks 
of these distributions are 1300 kya, 1600 kya, and 2000 kya respectively, all far older 
than the 100 kya cutoff.  
 
A third way to look at this is by studying the extreme low ends of the distribution. As 
Extended Data Fig. 7c shows, for the 95th percentile point (“TMRCA95”): 
�  None of the genome has TMRCA95 < 130 kya 
�  1/10000th of the genome has TMRCA95 < 300 kya  
�  1/1000th of the genome has TMRCA95 < 500 kya 
�  1/100th of the genome has TMRCA95 < 810 kya 

These results highlight how the fraction of the genome that has a prospect of 
harboring a selective sweep in the common ancestral population <100 kya is minimal.  
 

 
To investigate the reliability of the PSMC estimates of TMRCA95, we carried out 
computer simulations of genome-wide data using the software ms. We simulated 80 
haploid genomes (300 chromosomes of 10 Megabases each) assuming a demographic 
history that has previously been inferred for the French population30. We combined 
these genomes in 40 pairs, and ran PSMC on each of the resulting diploid genomes.  
 
To analyze these data, we examined the PSMC inference of TMRCA as well as the 
true TRMCA every 10,000 base pairs along the simulated genomes (a total of 300,000 
positions). At each of these locations, we sorted the 40 individuals based both on their 
inferred TMRCA and their true TMRCA, and recorded the 95th percentile point for 
each. We recognize that the demographic history of the real samples we are analyzing 
is substantially different from that of the simulated French. However, the goal of these 
simulations is only to study how accurately PSMC infers the true TMRCA95. 
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We generated histograms of the ratio of [Estimated/True] TMRCA95, both for all 
positions in the simulated genomes (Figure S12.4a), and for the 300th of the genome 
inferred to have the lowest TMRCA95 (Figure S12.4b). Figure S12.4 suggests that 
great majority of loci have a ratio of [Estimated/True] TMRCA95 of 0.6-1.8. Thus, 
our estimated TMRCA is unlikely to be more than a factor of 2 different from the true 
value. These results imply that it is unlikely that there was a selective sweep common 
to the great majority of modern humans in the last 50-100 ky, as Extended Data Fig. 7 
has negligible density in the range 25-200 ky. 
 
Figure S12.4. Simulations of the PSMC inference of TMRCA95. We present the 
ratio of the [Truth / Estimate] of the time by which 95% of the 40 simulated genomes 
coalesce to a common ancestor for (A) all loci, and (B) the 300th of the genome with 
the lowest true TMRCA95. 
 

 
 
We also used the PSMC analysis to specifically examine the 38 largest peaks that 
emerged in the 3P-CLR scan for selection in the common ancestors of all modern 
humans. We infer that all these 38 peaks are inferred have TMRCA95 >427 ky. This 
provides further evidence against these peaks corresponding to sweeps at the time that 
the archaeological record shows accelerated evidence of behavioral modernity25.  
 
Table S12.1 also shows the PSMC results at FOXP2, which when mutated it cause 
speech and language pathologies, and which has evidence for natural selection on the 
lineage leading to modern humans31. We estimate that TMRCA50 = 150 ky, far less 
than the genome average of ~900 ky years, a pattern that might reflect the partial 
selective sweep previously detected at this locus31. However, there is no evidence for 
a complete sweep since the advent of anatomically modern humans, as TMRCA95 = 
1,020 ky, far older than the first known anatomically modern humans (~200 kya). 
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Table S12.1. Time since most recent common ancestor distribution at FOXP2 
 
 

 
 
 
 
 

We conclude with two caveats to the PSMC-based analyses. First, our scan only 
analyzed the autosomes at loci not covered by the universal mask of Supplementary 
Information section 4. Thus, we have not searched for evidence of sweeps on 
chromosome X, or in repetitive or difficult-to-analyze sections of the genome. 
Secondly, there is statistical noise in the PSMC posterior decoding, which means that 
even if there was a locus in which >95% of present-day human sample pairs share a 
common ancestor <100 kya, it is likely that some would artifactually be inferred to 
have a substantially older TMRCA. However, as discussed above, the fraction of the 
genome in which 95% of inferred coalescences below a very lax threshold of 300 kya 
is minimal (<1/10000th of the genome). Given that our simulations indicate that the 
TMRCA95 inferences is almost always right within a factor of 0.6-1.8, this gives very 
little opportunity for <100 ky sweeps in the common ancestors of all modern humans. 
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