Ecological genetics: a key gene is identified in mimicry and
melanism
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Mimicry and melanism in Lepidoptera were the first convincing examples of
natural selection. DNA sequencing technologies now allow detailed genetic
analysis of loci underlying adaptation. Surprisingly, mimicry in Heliconius
butterflies and melanism in peppered moths are switched at precisely the
same gene, cortex.

The major revolution in Charles Darwin’s “On the Origin of Species” was the
proposal that evolutionary change took place by natural selection. The “Origin”
was highly influential primarily because of its convincing, logical argument, but
in 1859 Darwin was unable to provide a single empirical case of natural
selection. By the late 19" century, two key examples of natural selection
became known: mimicry in heliconian butterflies, and rapid increases in
melanic forms of the peppered moth (Biston betularia) as well as of many
other moth species in industrial Britain [1, 2]. However, only now are we
beginning to catch a glimpse of the genetics underlying these adaptive
changes. Remarkably, two independent and different-looking colour pattern
switches in Lepidoptera — one in wing colour patterning and one that
melanizes all scales over the wings and body — have been mapped to exactly
the same gene in Heliconius and Biston [3, 4].
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Mimicry and camouflage has long been a battleground for debates about the
nature of adaptive evolution. Mimicry is the matching of colour pattern by a
less protected species towards another that is unpalatable to predators,
whereas camouflage is in essence mimicry of the local background
environment (in the case of melanic Biston, this environment is the bark of
trees blackened by soot pollution during the Industrial Revolution). In both
cases, vulnerable species copy colour patterns seen as inedible to predators.

Early geneticists found that many polymorphisms in nature were inherited as
single Mendelian loci. For example, Reginald Punnett reviewed evidence that a
mimicry polymorphism in Papilio polytes was inherited as a single Mendelian
locus [5]. This led early Mendelians to argue that melanism and mimicry



evolved by mutational leaps rather than the slower, multiple factor,
incremental processes of natural selection envisaged by Darwin [5-7]. Genetic
crosses also showed a single major-effect locus in melanism in peppered
moths, but J.B.S. Haldane negated the Mendelians’ arguments by
demonstrating that the rapid increase of melanic Biston in Britain was most
likely due to strong natural selection, and in so doing developed maybe the
first ever estimate of the strength of natural selection on a gene locus in
nature [8]. Ronald Fisher, on the other hand, attacked Punnett’s mimicry
claims and vigorously defended a more gradualistic Darwinian explanation [9].
He acknowledged that some major phenotypes, for example the phenotype of
sex, are controlled at a single switch locus in some species. However, females
could not possibly have arisen from males, nor vice versa, by a single lucky
mutation. Therefore, it is more likely that the single-locus sex switch arose via
progressive recruitment of multiple unlinked “modifier loci” that enhanced and
amplified the effects of that locus. By analogy, Fisher argued, a mimicry switch
locus should evolve gradually, by recruiting more and more modifiers until its
own effect was major [10]. As we shall see, today’s empirical findings could
hardly have been imagined by either opposing camp.

Early genetic studies had indeed correctly shown that melanism in Biston and
mimicry phenotypes in some butterflies were inherited as single loci. However,
the debate about whether mutation or natural selection were chiefly
responsible for new phenotypes was carried on in ignorance of how any actual
“genes” for melanism or mimicry might specify different colour patterns. The
problem was hard to resolve because until a decade ago tools to identify
changes in DNA responsible for shifts in the wing colours of a lepidopteran
were unavailable or prohibitively expensive.

Lepidoptera lack the genetic resources and functional genomic tools of model
organisms such as Drosophila fruitflies, but provide some advantages for
evolutionary genetics. In addition to dramatic adaptive phenotypes such as the
melanism and mimicry, Lepidoptera usually have 20-30 chromosomes, many
more than in Drosophila, each of which will undergo recombination at every
meiosis. Lepidoptera also generally lack inversion polymorphisms that inhibit
recombination within chromosomes and make fine-scale mapping of adaptive
traits in natural populations of flies difficult. Recombination mapping in
controlled lab crosses and association mapping in natural populations, in
combination with high-throughput genotyping, can therefore be very efficient
in Lepidoptera. Finally, Lepidoptera have relatively compact genomes, at least



compared with vertebrates, so that whole genome resequencing is today a
readily applied tool for population studies. In Biston and Heliconius, this type of
classical recombination mapping coupled with advances in sequencing
technology and comparative genomics have enabled accurate pinpointing of
candidate genomic regions underlying melanism and mimicry [11].

Van’t Hof et al. [3] recently completed what they dubbed in an interview with
the BBC the “excruciatingly tedious process” of checking all the nucleotide
differences, one by one, between melanic and non-melanic Biston in just such
a candidate region. Reduced polymorphism in the region for the melanic form
complicates recombination mapping, but clearly indicates that a rapid selective
sweep took place. In fact, a single ~400 kb haplotype is still found around this
region in approximately half of all melanics; recombination over the past 200
years since its origin has been insufficient to break up the initially favoured
haplotype. After exhaustive elimination, only a 22 kb transposable element
insertion within a large intron of the gene cortex correlated perfectly with the
melanic phenotype (Fig. 1). The gene is a surprising one, as the only previously
reported function of cortex was in cell-cycle regulation in Drosophila meiosis.
Nonetheless the insertion is also associated with up-regulation of one isoform
of the gene at a critical period of wing development in the pre-pupal stage of
Biston. The two intact copies of the novel transposable element within the
insertion appear not to be transcribed and are now presumably inactive, and
van’t Hof et al. therefore conclude that the insertion led to a change in cortex
cis-regulation leading via a yet unknown mechanism to increased melanization.
Melanism in the peppered moth now joins a long list of cases where
transposable elements have been exploited by natural or artificial selection
during rapid adaptive change, for example in the evolution of insecticide
resistance and the domestication of corn [12, 13].

In Heliconius butterflies a similar process of recombination mapping, high-
throughput sequencing, and association analysis has led simultaneously to the
conclusion that its major mimicry switch locus also is located at cortex [4]. In
Heliconius there are many nucleotide differences associated with the different
morphs, but genetic divergence between morphs within cortex is much greater
than outside the gene. Most DNA divergence is found in the large introns of
this gene, and are again correlated with expression differences of some
isoforms of cortex in the developing pupal wing. Whereas melanism in the
peppered moth likely took place via a single change, multiple changes were
almost certainly required to fine-tune complex mimicry patterning across the



wings of these butterflies. In one of the species, H. numata, an inversion spans
cortex and several other genes, and strongly suppresses recombination,
allowing maintenance of a mimetic polymorphism that is rarely broken down.
Although expression evidence points mainly to the cortex gene itself, the
authors do not entirely rule out effects of unidentified non-coding RNAs or cis-
regulatory effects on other genes in the region. Perhaps the most surprising
feature of these discoveries is that the cortex region acts not only in Biston and
Heliconius, but is also implicated in the development of colour pattern in other
Lepidoptera such as the butterfly Bicyclus and the silk moth Bombyx.

It now seems clear that Fisher was in detail wrong at least about some major
switch loci: Biston melanism clearly arose by a single “hopeful monster”
mutation, a transposable element insertion that just happened to give its
carrier a major fitness advantage in industrial regions. Melanism involves a
simple increase in melanin expression over the entire wing and body surface,
so perhaps in this case a major-effect mutation was particularly likely. Its
success as a phenotype did, however, require strong natural selection to
spread a single mutant haplotype to high frequency in industrial regions.

In contrast, we have hints in butterfly mimicry that occasional large-effect
inversions may trap multiple sites that give rise to different morphs, but that
the evolution of detailed pattern-matching mimicry likely required a more
gradual accumulation of multiple changes, contrary to the views of both
Punnett and Goldschmidt [5, 6]. Nonetheless, we are led to a somewhat
modified view of how this gradual change occurred. Whereas Fisher envisaged
that multiple, unlinked loci were recruited to produce and fine-tune divergent
phenotypes triggered by a switch locus, we now begin to understand that
many of the nucleotide changes in a mimicry switch are tightly linked and
contained within perhaps a single gene and its associated cis-regulatory
elements. Similar recent work in Heliconius and other mimicry systems seems
to bolster this view: for example a 130 kb inversion around the sex-
determination gene doublesex is the locus of a mimicry switch in Papilio
polytes [14, 15]. In his argument with Punnett, Fisher used the sex-locus as an
analogue of a mimicry switch: it seems unlikely that he would have predicted
that a sex-switch locus itself could be the same as the mimicry locus. A bizarre
coincidence is that in Papilio polytes, the sex-switching doublesex gene turns
out to be the very mimicry locus that Punnett and Fisher argued over a century
ago [5].



Now the functional work must begin to elucidate precisely how genes as
seemingly unlikely as cortex or doublesex were co-opted into regulating wing
colour patterns across the Lepidoptera. And why cortex was re-used so often?
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Fig. 1. Haplotypes of the melanic form of Biston betularia around the cortex
gene, showing evidence for a rapid selective sweep. (Modified from Nature by
permission of the authors).

The intron and exon structure of the cortex gene is shown at top (maroon;
exons 1A and 1B are alternative first exons; yellow: transposable element
insertion). Below, 400 kb melanic haplotype sequences near the cortex gene
are shown dark grey where inferred to be identical with the original melanic
insertion haplotype, or pale grey if the region results from recombination with
ancestral non-melanic haplotypes (intermediate grey represents breakpoint
uncertainty). Fifty-four, about half the melanic sequences are unrecombined
since the origin of the melanic haplotype in the late 18" or early 19t century.



