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Recent work demonstrates that human face identification is most efficient when based on horizontal, 
rather than vertical, image structure. Because it is unclear how this specialization for upright (compared 
to inverted) face processing emerges in the visual system, the present study aimed to systematically 
characterize the orientation sensitivity profile for face identification. With upright faces, identification 
performance in a delayed match-to-sample task was highest for horizontally filtered images and 
declined sharply with oblique and vertically filtered images. Performance was well described by a 
Gaussian function with a bandwidth around 25°. Face inversion reshaped this sensitivity profile 
dramatically, with a downward shift of the entire tuning curve as well as a reduction in the amplitude 
of the horizontal peak and a doubling in bandwidth. The use of naturalistic outer contours (vs. a 
common outline mask) was also found to reshape this sensitivity profile by increasing sensitivity to 
oblique information in the near-horizontal range. Altogether, although face identification is sharply 
tuned to horizontal angles, both inversion and outline masking can profoundly reshape this orientation 
sensitivity profile. This combination of image- and observer-driven effects provides an insight into the 
functional relationship between orientation-selective processes within primary and high-level stages of 
the human brain.

The remarkable efficiency of human face recognition presents a challenge to our understanding of the visual sys-
tem. Research on the face inversion effect (FIE) indicates that this efficiency is likely derived from observer-driven 
biases at high-level stages of visual processing that are selective for the higher-order properties of upright faces 
(e.g., features like eyes, nose, and mouth and their canonical spatial arrangement within the face1–5). How such 
high-level specialization emerges from earlier stages of visual encoding is largely unknown.

In the brain, visual processing begins with the encoding of local edge orientation in primary visual cortex 
(V1). The responses of V1 neurons typically reveal a preferred orientation that produces a peak level of response, 
with decreasing responsiveness for edges angled away from the preferred orientation6,7. The function relating 
V1 neuronal responses to orientation is a Gaussian whose bandwidth reflects the sharpness of the tuning to ori-
entation. Electrophysiological recordings in monkey V1 have shown that the tuning bandwidth for most single 
neurons is between 20 and 50° full-width at half-maximum8,9. Mechanisms with similar tuning bandwidths have 
been argued to underlie the human perception of tilt contrast and the tilt aftereffect10,11. However, it is clear that 
our efficiency at processing faces does not arise at this computational level. The inversion of a face in the picture 
plane produces a dramatic impairment in face perception12 despite the fact that it preserves the orientation con-
tent of the image (aside from flipping its sign) and should not therefore significantly alter V1 responses at the 
population level13.

Recent evidence nonetheless suggests that the high-level mechanisms selectively recruited for upright face 
identification are orientation-selective. When upright faces are filtered to preserve information in narrow orien-
tation ranges (Fig. 1a), human identification performance peaks in the horizontal band, declines progressively 
as stimulus orientation departs from horizontal, and reaches its minimum in the vertical range14. With face 
inversion, however, human sensitivity to facial identity becomes comparable for horizontal and vertical image 
structure. These findings suggest that high-level face-specialized mechanisms are particularly sensitive to the 
horizontal range of facial information15–17. Accordingly, the removal of the horizontal components of the facial 
image has been found to disrupt face-specialized processing (as marked by the FIE) in several of the high-level 
visual regions responding preferentially to faces in the human and monkey brain (i.e., FFA13,18,19).
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Our recent developmental studies indicate that the maturation of face-specialized processing over the lifespan 
(indexed by an increase in FIE size) depends on the extensive experience humans acquire at encoding the hori-
zontal information conveyed by upright faces20 (see also refs 21 and 22). The horizontal advantage is likely to arise 
because this orientation range gives access to the most stable and informative facial cues to identity, namely the 
vertical arrangement of the horizontally-oriented bands containing the eyes, brows, and mouth2,23–26.

These findings suggest that the high efficiency of face recognition is driven by a heightened sensitivity to the 
horizontal orientation range of the facial image. However we are still missing a complete picture of the orienta-
tion sensitivity profile of face-specialized processing. Most previous studies have examined only a limited range 
of orthogonal orientations (e.g., horizontal versus vertical orientation bands, e.g., refs 17,21 and 27) therefore 
preventing the systematic quantification of the tuning function potentially relating face processing to orienta-
tion. Only two studies have manipulated the orientation content of face stimuli in a semi-continuous manner. 
Dakin and Watt14 found a Gaussian tuning profile for the recognition of upright orientation-filtered face stim-
uli. However, without the concurrent measurement of the selectivity for inverted face recognition it is difficult 
to unequivocally attribute the reported results to the specialized mechanisms that are selectively recruited for 
the processing of upright faces. In the second study16, contrast thresholds in a face identification task revealed 
a peak in the horizontal range, but the overall pattern did not show the same Gaussian modulation as a func-
tion of orientation. Although this was likely due to the particularly challenging conditions required by the 
authors’ ideal observer approach, it nonetheless casts doubt on the precise shape of the orientation sensitivity for 
face-specialized processing.

Figure 1. (a) Example stimuli used in the present experiments. Greyscale face pictures were filtered in steps of 
22.5° from vertical (here, 0°) to horizontal orientations (90°) and back to vertical again. The outlines of filtered 
faces were either seen through a rounded triangular aperture (i.e., ‘masked’), or not (‘naturalistic’). (b) Line 
graphs illustrate the Gaussian tuning function describing the hypothetical pattern of human sensitivity (d’) 
to face identity as a function of orientation range, both for upright faces (black line) and for faces inverted in 
the picture plane (grey line). Bar graph insets represent the same hypothetical data with an exclusive focus on 
cardinal orientations.
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The aim of the present study was therefore to systematically characterize the orientation sensitivity profile of 
upright and inverted face processing and to yield novel quantitative insights into how the specialization of upright 
face processing emerges in the visual system. Theoretically, if we assume the underlying sensitivity profile to be 
Gaussian in shape, the specialization of upright compared to inverted face processing (as indexed by the FIE) 
may arise through changes in four different tuning properties (Fig. 1b): peak location (i.e., the orientation range 
with highest sensitivity), peak amplitude, bandwidth, or base amplitude (i.e., an overall change in sensitivity at all 
orientations). Past evidence enables us to preclude some of these potential accounts immediately. For example, 
a peak shift is unlikely on its own, as it would not lead to the overall decrease in human sensitivity that conven-
tionally results from inversion. Further, considering previous reports of a differential FIE size in the horizontal 
and vertical ranges of face information, we do not expect inversion to result in a pure broadening or downward 
shift of the tuning curve. The specialization of face processing may therefore result from a combination of these 
tuning specificities.

An additional source of uncertainty about the orientation selectivity of face-specialized processing relates to 
the influence of external facial features such as facial outline. It is standard practice to mask the outline of face 
stimuli in order to investigate the contribution of internal facial features to face perception. Accordingly, past 
studies on the orientation selectivity of face perception have employed outline-masked face stimuli, with the 
exception of Dakin and Watt14 who conserved all external facial cues (hair, ears, neck, outline, paraphernalia, 
and even scene background). As a matter of fact, facial outline contributes to face identification28–30 and its pro-
cessing recruits face-specialized mechanisms28,31–33. Since outline cues are mainly conveyed by non-horizontal 
orientation ranges, their masking attenuates image amplitude at oblique/vertical orientations. This is shown for 
our stimuli in Fig. 2, using methods similar to prior studies34 (see methods for details). It may be that the attenu-
ation of this oriented structure has led to an overestimation of the importance of horizontal information for face 
identification. It is therefore important to take facial outline into account in order to advance knowledge about 
the orientation tuning properties of face-specialized processing.

We therefore investigated the influence of inversion and outline masking on face processing in the orienta-
tion domain. Face images with masked or naturalistic outlines were filtered using 15°-wide Gaussian filters cen-
tered on orientations from vertical to horizontal in steps of 22.5° (Fig. 1a). Participants discriminated face image 
pairs at both upright and inverted planar orientations in the different filtering conditions. We then estimated the 
parameters of the tuning function that relates face-matching performance to image orientation content.

Results
The influence of inversion and outline masking on sensitivity in the horizontal and vertical 
ranges. For the sake of comparison with our previous work, where the FIE was tested in the horizontal and 
vertical orientation ranges only, we first ran an ANOVA with picture-plane and filter orientation as within-subject 
factors and outline masking as a between-subject factor. In agreement with previous findings, we found significant 
main effects of filter orientation and planar orientation (F(1,73) =  166, p <  0.0001, η 2 =  0.695 and F(1,73) =  149, 
p <  0.0001, η 2 =  0.671). These effects reflect the finding that our participants were most sensitive to identity differ-
ences in the horizontal (vs. vertical) orientation range and in upright (vs. inverted) viewing conditions (Fig. 3a). 
The interaction between these two factors was also significant (F(1,73) =  9.95, p <  0.002, η 2 =  0.12).

Figure 2. Fourier energy analyses for our stimuli. Outline masking alters the face image at non-horizontal 
orientation ranges. The line graph shows the summed Fourier amplitude values in distinct orientation ranges, 
separately for naturalistic and masked outline conditions. Error bars are the 95% confidence intervals (see 
Methods for image analysis details). The inset bar graph shows the difference in energy obtained by subtracting 
energy in the masked outline condition from the naturalistic condition in each orientation range.
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We explored the significant picture-plane orientation by filter orientation interaction using Bonferroni-corrected  
paired t tests and found that the inversion effect was significant in both horizontal and vertical orientation ranges 
(t(1,74) =  11.91, p <  0.0001 and t(1,74) =  6.66, p <  0.0001, respectively). Nonetheless, the difference in sensitiv-
ity between upright and inverted conditions was larger in the horizontal than the vertical range (t(1,74) =  3.18, 
p <  0.002). We also found significantly better sensitivity in the horizontal than the vertical range both in upright 
and inverted viewing conditions (t(1,74) =  12.15, p <  0.0001 and t(1,74) =  7.31, p <  0.0001, respectively). The 
horizontal-vertical sensitivity difference was largest when faces were viewed upright (t(1,74) =  3.18, p <  0.002). 
In contrast, outline masking had no significant influence on sensitivity in the horizontal and vertical orientation 
ranges (F <  1, p =  0.4, η 2 =  0.01), nor did it modulate the influence of picture-plane and filter orientation upon 
matching sensitivity (Fs <  1.9, ps >  0.18, η 2 <  0.025).

Altogether, the above results replicate previous findings to show that the horizontal range of face information 
carries more useful cues for face identification than the vertical range, and that the extraction of horizontal iden-
tity cues is particularly vulnerable to inversion. We therefore confirm that the specialization of face identification 
pertains to its stronger reliance on horizontal than vertical face cues. We found no significant influence of outline 
masking on the processing of horizontal and vertical face information. However, because they are restricted to a 
few discrete orientation ranges, the above analyses and results may not be sufficiently sensitive to reveal the influ-
ence of outline masking on the orientation selectivity of face processing. They also fall short of explaining exactly 
how the latter is modulated by picture-plane inversion (Fig. 1b). In the next analyses, we investigate how inversion 
and outline masking affects the function relating face identification performance to orientation.

Figure 3. (a) Performance with horizontally- versus vertically-filtered face images. Group-averaged face 
matching sensitivity is plotted in the horizontal and vertical orientation ranges in each outline by picture-
plane orientation condition. Error bars are 95% confidence intervals. (b) The orientation sensitivity profile 
of identification performance. Group-averaged face matching sensitivity is plotted as a function of filter 
orientation separately for each outline by picture-plane orientation condition. Dots and lines illustrate group 
averages and the best fitting Gaussian tuning functions, respectively. Error bars are 95% confidence intervals.
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The influence of inversion and outline masking on orientation sensitivity. The variation in 
matching sensitivity for upright faces as a function of filter orientation was described by a Gaussian function, 
with best-fitting parameters that gave a peak at around 90° and a full-width at half-maximum of 30° and 23° for 
naturalistic-outline and masked-outline faces, respectively (Fig. 3b; Table 1). Sensitivity variations for inverted 
face recognition were similarly well described by Gaussian functions, with peak values again around 90° and 
FWHM values of 55.7° and 47.4° for naturalistic- and masked-outline faces, respectively.

To explore the influence of inversion (i.e., picture-plane orientation) on the orientation-tuning curve, we boot-
strapped the difference between upright and inverted Gaussian parameter estimates, separately for naturalistic- 
and masked-outline faces (Table 1). These analyses revealed that in both naturalistic- and masked-outline 
conditions inversion significantly shifted the base of the tuning curve downwards by approximately 50%, reduced 
peak amplitude by about 20% and doubled tuning bandwidth. The FIE in each parameter estimates was compa-
rable across masked- and naturalistic-outline conditions (rightmost columns of Table 1).

Next, we investigated the influence of outline masking on the orientation tuning of upright and inverted face 
identification performance (see Table 1). For both upright and inverted faces, the masking of facial outline slightly 
but significantly displaced peak location (by 2°) and decreased tuning bandwidth (by 22% in upright and by 14% 
in inverted condition). For upright faces, it additionally impaired sensitivity across all orientation ranges by 9%. 
However, when compared directly, the influence of outline masking on parameter estimates was comparable 
between upright and inverted conditions.

In sum, we found that variation in the sensitivity to facial identity as a function of orientation structure is well 
described by a Gaussian function, sharply tuned to the horizontal range. Inversion impaired sensitivity across all 
orientations but more so in the horizontal range (i.e., peak amplitude was decreased). Inversion also drastically 
disrupted the orientation selectivity of face processing (i.e., broadening the tuning bandwidth) so that a greater 
range of orientation values contributed more similarly to face processing in inverted than upright viewing condi-
tions. In contrast to previous analyses, which did not reveal any influence of outline masking on performance, the 
present analyses showed that the masking of facial outline increased the selectivity of face processing to the hori-
zontal band (i.e., via a decreased tuning bandwidth). In the next section, we take a finer-grained look at the orien-
tation tuning of face-specialized mechanisms via the analysis of the function relating the FIE to filter orientation.

FIE orientation tuning. Group-level FIE size was estimated in each planar-orientation and outline masking 
condition based on 10,000-bootstrapped Cohen’s d coefficients. As shown on Fig. 4, FIE size followed a differ-
ence of Gaussian (DoG) function with a peak value close to horizontal for both naturalistic- and masked-outline 
faces (Fig. 4 and Table 2). When moving from horizontal towards vertical extremes, FIE size dropped abruptly to 
reach two minima in the right- and left-oblique ranges. After reaching its left and right oblique minima, FIE size 
increased slightly when reaching the vertical range.

Outline masking increased the amplitude of the peak of the DoG FIE tuning curve by 21% and shifted the 
whole DoG FIE function downwards by 15%. In addition, it decreased the bandwidth of the DoG FIE tuning 
curve by 9%, which resulted in closer oblique minima in the masked than the naturalistic condition. Outline 
masking further boosted the amplitude of the right-oblique minimum by 30% (i.e., 1st minimum on Fig. 4). 
In contrast, outline masking negligibly but significantly reduced the amplitude of the left-oblique minimum  
(i.e., 2nd minimum). This suggests that right-oblique more importantly than left-oblique orientations contribute 
to the specialized processing of (upright) facial outline, at least for the faces in our stimulus set.

Parameter
Naturalistic outline Masked outline Masked vs. Naturalistic

mean CI mean CI mean CI

Peak location
Upright 86,7 [85,7 87,6] 88,8 [87,3 90,4] 1,95 [0,96 2,94]*
Inverted 86,5 [84,5 88,4] 88,5 [86,1 91] 1,98 [0,14 3,82]*

Upright vs. Inverted 0,19 [− 2,33 2,71] 0,31 [− 2,63 3,24] 0,12 [− 3,8 4,03]

Peak amplitude 
Upright 1,13 [1,05 1,2] 1,17 [1,11 1,24] 0,06 [0 0,11]
Inverted 0,92 [0,8 1,04] 0,92 [0,68 1,16] − 0,04 [− 0,15 0,08]

Upright vs. Inverted 0,21 [0,04 0,37]* 0,25 [0,01 0,5]* 0,05 [− 0,25 0,35]

Bandwidth
Upright 29,9 [28,4 31,5] 23,2 [21,4 24,9] − 6,69 [− 7,92 − 5,46]*
Inverted 55,7 [51,1 58,1] 47,4 [34,3 60,5] − 12,43 [− 18,01 − 6,84]*

Upright vs. Inverted − 25,81 [− 30,08 − 21,53]* − 24,25 [− 37,52 − 10,99]* 1,56 [− 12,36 15,47]

Base
Upright 1,52 [1,46 1,59] 1,38 [1,32 1,45] − 0,13 [− 0,18 − 0,08]*
Inverted 0,66 [0,52 0,79] 0,65 [0,38 0,92] − 0,05 [− 0,26 0,16]

Upright vs. Inverted 0,87 [0,69 1,04]* 0,74 [0,46 1,01]* − 0,13 [− 0,46 0,2]

Table 1.  Means and 95% CI of the Gaussian parameter estimates (n = 5,000 trimmed group-level 
bootstrapped estimates), for naturalistic and masked outlines in upright and inverted faces, separately. 
Mean and 95% CI of the Gaussian parameter difference between upright and inverted (for naturalistic and 
masked outlines, separately; n =  5,000 trimmed group-level bootstrapped estimates) and between naturalistic- 
and masked-outline (for upright and inverted faces, separately; n =  5,000 trimmed group-level bootstrapped 
estimates). Means and 95% CI of the difference in inversion effect across masked and unmasked conditions  
are also included. Asterisks denote significant differences at p <  0.05.
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Discussion
Our findings provide further evidence that the human visual system deciphers facial identity most efficiently 
based on horizontally oriented information. The fact that a high-level perceptual ability like face recognition 
could be orientation-selective, as in earlier stages of visual processing, opens interesting avenues to study the 
way that visual signals are transformed from primary to high-level stages of the visual system13,35. However, a 
systematic quantitative characterization of the orientation sensitivity profile for face processing was still missing 
– previous studies have mainly relied on the comparison of performance between selected orientation values 
(Fig. 3a). The present work has filled this gap by investigating facial identity discrimination over a more com-
plete range of orientation values. We compared the orientation sensitivity profile for the recognition of both 
upright and inverted faces in order to isolate genuine, (upright) face-specialized processes from more low-level 
contributions. We further examined the way that the masking of facial outline, a method conventionally used to 
restrict processing to inner facial cues, impacts the orientation tuning profile of face processing and revealed clear 
observer-driven modulations in sensitivity as a result.

We report that human sensitivity to identity is strongly tuned to horizontal angles (consistent with previous 
findings14), with a bandwidth of about 25° FWHM (see Table 1). This tuning bandwidth is remarkably compa-
rable in size to previous reports on the average orientation selectivity in V1 neurons, as well as the breadth of 
psychophysical tilt after-effects10,11,36,37. It may be that the orientation selectivity of V1 sets a lower limit on the 
range of orientations that can be enhanced to more efficiently recognise faces. That is, at the image level, faces 
clearly have the most energy within the horizontal bands (Fig. 2). For the visual system to enhance sensitivity to 

Figure 4. Group-averaged Face Inversion Effect (FIE) size in Cohen’s d as a function of orientation for 
masked and naturalistic contour conditions. Dots and lines illustrate group averages and the best fitting 
difference-of-Gaussians (DoG) functions, respectively. Error bars are 95% confidence intervals. The inset shows 
the difference in FIE size obtained by subtracting FIE size in the masked outline condition from the naturalistic 
condition in each orientation range.

Parameter
Naturalistic outline Masked outline Masked vs. Naturalistic

mean CI mean CI mean CI
Peak location 86,1 [85,8 86,5] 86 [85,4 86,7] − 0,08 [− 0,9 0,7]
Peak bandwidth 19,2 [18,6 19,8] 17,3 [16,8 17,8] − 1,79 [− 2,46 − 1,12]*
Peak amplitude 0,44 [0,41 0,47] 0,55 [0,5 0,59] 0,12 [0,05 0,18]*
Base 0,97 [0,95 0,99] 0,81 [0,79 0,84] − 0,15 [− 0,18 − 0,12]*
Minima separation 112,4 [111,1 113,8] 99,9 [97,2 102,6] − 13,9 [− 17,3 − 10,4]*
1st minimum amplitude 0,53 [0,51 0,56] 0,75 [0,71 0,79] 0,22 [0,18 0,26]*
2nd minimum amplitude 0,48 [0,45 0,5] 0,35 [0,31 0,39] − 0,12 [− 0,17 − 0,08]*

Table 2.  Means and 95% CI of the parameter estimates of the Difference-of-Gaussians (DoG) function 
relating FIE size to orientation (n = 5,000 trimmed group-level bootstrapped estimates), for naturalistic 
and masked outlines, separately. Means and 95% CI of the masked vs. naturalistic difference of the trimmed 
DoG parameter estimates. Asterisks denote significant differences at p <  0.05.
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this information within face-selective stages, the lower limit on the range of orientations that can be selectively 
enhanced may be the values set by V1 orientation selectivity.

Prior studies have found that inversion affects facial identity processing with horizontally-filtered faces to a 
far greater extent than with vertically-filtered faces16,17,19. This was taken to suggest that face processing speciali-
zation resides in a boost of sensitivity to the horizontal facial information, though the exact tuning characteristics 
underlying such specialization were still undetermined (Fig. 1). Here we show that the orientation sensitivity 
profiles of upright and inverted face processing diverge at three levels: the base, peak amplitude, and bandwidth. 
Hence, inversion decreased identity discriminability across all orientations (i.e., a downward base shift) but to a 
significantly greater extent in the horizontal range (i.e., reduced peak amplitude). Inversion additionally doubled 
the bandwidth of the tuning curve, literally reshaping the orientation sensitivity profile of face identification. 
These results indicate that what makes (upright) face identity processing special is not only its boosted sensitivity 
to horizontal orientations but also its sharper tuning to the horizontal range.

In line with the above findings, the difference between upright and inverted sensitivity, expressed as the mag-
nitude of the Face Inversion Effect (FIE), was found to be finely tuned to horizontal angles (with a bandwidth 
of about 20°). This pattern was well-described by a Difference-of-Gaussian function, which reached minima 
at the right and left oblique angles (Fig. 4), with a rise in magnitude for the vertical ranges. In other words, the 
orientation range with the least change in sensitivity with inversion is not vertical but rather the adjacent oblique 
orientations. A simple comparison between vertical and horizontal orientation ranges does not therefore convey 
the full extent of the FIE. Rather, it seems that it is the orientation sensitivity profile as a whole that underlies our 
face processing specialization.

Although inversion decreased sensitivity to horizontal angles and increased the breadth of the sensitivity 
profile, it did not shift the peak in orientation tuning away from horizontal. This preservation of the horizontal 
advantage for inverted faces hints at the existence of a general horizontal bias for visual recognition. In a related 
vein, Goffaux and Dakin17 reported that, as with faces, the discrimination of car pictures is better at horizontal 
than vertical angles. This general horizontal advantage may be explained by the fact that the structure of stimuli 
like (upright and inverted) faces and cars is predominantly biased towards horizontal angles, as we show for our 
stimuli in Fig. 4, and as shown by others34 (though differences have been reported for other stimulus types38). 
Another aspect likely conferring a special status to horizontal information for visual recognition in general is 
that the left-right bilateral symmetry of stimuli is particularly salient in the horizontal structure of the image39–41. 
However, the salience of this bilateral symmetry applies to both upright and inverted face images equally, mean-
ing that these image properties cannot fully account for the peculiar orientation sensitivity profile when process-
ing upright faces.

Rather, the modulation of the base, peak amplitude, and bandwidth of facial orientation selectivity by inver-
sion must stem from observer-driven mechanisms specialized for the processing of the higher-order properties 
of upright faces. That is, the detection of the main facial features (e.g., eyes, eyebrows, and mouth) in a canonical 
upright arrangement would activate a sharp tuning to the horizontal range14,16,17,42.

The horizontal bias in face processing has so far been demonstrated based on facial stimuli viewed through 
circular or elliptical apertures (with one exception14). However, masking the natural facial outline in this way has 
been shown to deteriorate the efficiency of face processing28–30. Accordingly, we found that outline masking made 
upright face identification less efficient overall (seen in the downward shift of the FIE tuning curve in Fig. 4). 
Furthermore, since the facial outline is mainly represented in the oblique and vertical angles, its masking reduces 
energy solely in these ranges (Fig. 2). We were therefore concerned that this manipulation would artificially 
exaggerate the contribution of horizontal angles to face processing. Our results suggest that this is true to some 
extent, as outline masking made the processing of both upright and inverted faces more sharply tuned to the 
horizontal range. We addressed the influence of outline masking on face-specialized processing more specifically 
by analyzing the orientation sensitivity profile of FIE size for naturalistic- and masked-outline conditions sepa-
rately (Fig. 4). FIE size peaked in the horizontal range irrespective of outline masking, further corroborating the 
generalizability of this tuning property. Outline masking diminished FIE size across all orientations, in line with 
past evidence that contour cues contribute to face-specialized processing32. It additionally increased the (hori-
zontal) peak amplitude and sharpened the bandwidth of the FIE orientation sensitivity profile. In other words, 
masking facial outline inflated the horizontal selectivity of the FIE both by increasing the dependence to the 
horizontal range and diminishing the contribution of other orientations. FIE size was most drastically reduced 
by outline masking at right-oblique angles, resulting in an asymmetric orientation sensitivity profile when view-
ing outline-masked faces. In contrast, when naturalistic contour variations were preserved in the stimulus, the 
orientation tuning was symmetric with more comparable FIE size in the left- and right-oblique angles (Fig. 4 and 
Table 2). This suggests that the breadth of orientation selectivity for faces becomes broader as more information 
(e.g., outline) is added to the image. Contour masking should therefore be used with caution as it distorts the 
properties of the face image, impairs face processing efficiency and disengages face-specialized processing mainly 
due to the disrupted processing of the oblique elements of the outline. Precisely where in the image these tilted 
contour cues derive (i.e., lower-right chin, and/or upper-left hairline) and how these cues respectively affect the 
perception of facial configuration are unanswered questions.

It is interesting to note that while the masking of naturalistic outlines produced a strong decrease in energy in 
the vertical orientation range, as well as the adjacent oblique angles (Fig. 2), the primary difference in FIE mag-
nitude produced by these manipulations was for the right oblique angles, with little-to-no effect in the vertical 
range (Fig. 4). In other words, adding information in orientation ranges that are not prioritised by face-selective 
identification processes (i.e. around vertical) had no effect on FIE orientation sensitivity profile (Fig. 4). 
Through the combination of orientation filtering and variations in image content we can therefore visualize the 
observer-driven biases of face recognition in action.
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Since we used only one picture per face identity, participants did not have to match identity across different 
poses as in everyday life. One may therefore argue that face identification mechanisms were not fully engaged 
here and that participants relied on picture-matching strategies. But the large inversion effect found around the 
horizontal range indicates that this account is unlikely as inversion should have little-to-no effect on picture 
matching. Moreover, we have previously shown that the ability to generalize face identity across viewpoints (e.g., 
between frontal and ¾ view) preferentially relies on horizontal information17. We explained this by the fact that 
when a head rotates in the horizontal plane the vertical arrangement of the main features (e.g., the eyes-mouth 
distance) as well as the horizontal structure of those features is preserved better than facial cues at other orienta-
tions (e.g., nose, eye separation2). Therefore we predict that presenting face identities under varying viewpoints 
would render face identification performance even more sharply tuned to the horizontal range due to the particu-
lar stability and diagnosticity of the identity cues conveyed in this range.

Altogether, our quantitative approach has revealed (1) that face identification is sharply tuned to horizon-
tal angles, and (2) that inversion and outline masking profoundly reshape this orientation sensitivity profile. 
Compared to past studies that focused on selected orientation values (as in Fig. 3a), we present richer information 
on the complex relationship that exists between the sampling of primary visual information and high-level and 
specialized processing in the human brain. The similarities in orientation sensitivity profile between basic visual 
functions (e.g., tilt perception) and high-level face identification indicate there might be more continuity in the 
features encoded at primary and high stages of visual processing than is commonly assumed, opening new leads 
for a more comprehensive approach to human vision. That is, face perception research often relies on the com-
parison between a few divergent stimulus conditions (aligned versus misaligned top and bottom face halves33, 
features isolated from versus embedded in a congruent versus incongruent face context43–45, etc). Although 
such methods have yielded important insights, the present work underlines the potential for more quantitative 
approaches to reveal functional aspects of face processing specialization46,47.

Methods

Subjects. We tested 75 healthy young adults (15 males; 2 left-handers; age range: 21 ±  1.7 years). All subjects 
reported normal or corrected-to-normal visual acuity, provided informed consent prior to participation, and 
were naïve to the purpose of the experiments. Experimental protocols adhered to the Declaration of Helsinki and 
were approved by the local ethics committee (Faculty of Psychology and Neuroscience, Maastricht University; 
ECP-7-11-2004-A1).

Stimuli. We used forty unfamiliar greyscale pictures of faces (190 by 250 pixels; half male) posing in a neutral 
expression (Fig. 1a). Face pictures were cropped in Adobe Photoshop to remove hair, neck and ears. Models were 
alumni Psychology students (aged 18–25 years) of the Université Catholique de Louvain (Belgium). First we 
normalized face images to obtain a root-mean square (RMS) contrast of 1. Next, images were fast Fourier trans-
formed, with the amplitude spectra multiplied with wrapped Gaussian filters (with a standard deviation of 15°) 
centered on 0° to 157.5° (cf.14,17; see Fig. 1a for example), where 0° is vertical and 90° horizontal. After the inverse 
Fourier transform, the luminance and RMS contrast of all resulting images was adjusted to match the average 
luminance and RMS contrast of the original image set. We created outline-masked stimuli by embedding the 
output faces in a rounded triangular aperture to eliminate and mask the outer facial outlines (Fig. 1a). Aperture 
shape was identical across outline-masked stimuli. In contrast, the outer shape of the naturalistic-outline stimuli 
was created through the removal of hair, neck and ears, and varied across exemplars. Inverted stimuli were created 
by vertically flipping each image. During the experiment, images were framed by a 3 pixel-wide light grey square 
border (at 75% of the maximum luminance).

All testing was performed on an LCD monitor with 1024 ×  768 pixels resolution. At a viewing distance of 
60 cm, stimuli were presented on a mid-grey background and subtended a visual angle of 6.6 by 8.7°.

Image analyses. To consider the effect of outline masking at the image level, we computed the Fourier 
energy of our filtered stimuli in each outline condition. Images were first padded with grey values to extend image 
dimensions to 512 ×  512 pixels. A two-dimensional fast Fourier Transform was then taken to obtain the ampli-
tude and phase spectra for each image. Similar to the filtering performed on our stimuli, amplitude spectra were 
multiplied with wrapped Gaussian filters, with peak orientations between 0–157.5° in 22.5° steps and a standard 
deviation of 15°. Amplitude values at all spatial frequencies within each of these orientation ranges were summed 
and divided by the overall amplitude sum for each image. In order to reduce pixel- and image-based artifacts, we 
conducted the analyses with each image rotated by 0–180° in 22.5° steps, cropping the result to preserve the image 
size48. Filter orientations were similarly rotated, with the final outputs then rotated back to be consistent with an 
upright face. The final amplitude sum for each orientation range in each image was then taken as the average of all 
the rotated image analyses. The output of these image analyses is shown in Fig. 2.

These amplitude values were submitted to a repeated-measures ANOVA with outline masking and orienta-
tion range as within-subject factors (where each face is treated as a ‘subject’). The main effects of outline masking 
and orientation range and their interaction were all significant (Fs >  132, ps <  0.0001, η 2s >  0.87). For both sets 
of faces, there was a clear peak in energy within the horizontal range. Naturalistically-outlined faces had higher 
energy around the vertical and the adjacent oblique ranges than masked faces, with no or little change around 
horizontal (Fig. 2).

Procedure. In a delayed match-to-sample task, participants were instructed to decide whether two successive 
face identities matched (“same”) or not (“different”). Each trial started with the presentation of a white fixation 
cross at screen center for 300 ms, followed by the first face picture (i.e., the target face) for 500 ms. In “same” trials, 
the exact same image was presented twice. To prevent subjects from relying on local image comparison strategies, 
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the screen position of the target face was randomly jittered around the screen center by 20 pixels in both x and y 
planes on each trial. A rectangular mask of the same size as face images (190 by 250 pixels) filled with Gaussian 
white noise immediately followed for 200 ms, with the same luminance, contrast, and screen location as the target. 
The second face (i.e., probe face) then appeared for 400 ms at screen center. The trial ended by the presentation of 
a white fixation cross at screen center (average duration of 2000 ms, range: 1750–2350 ms).

Participants indicated whether target and probe faces were the “same” or “different” by pressing the “s” and “l” 
keys with the left- or right-hand index finger. Responses given later than 3000 ms after the onset of the probe face 
were coded as errors.

Before the test began, subjects were randomly assigned to group A or B. In group A, naturalistic variations 
of facial outline across the different identities were preserved, whereas facial outline was masked in group B. 
Participants first practiced the task with 70 trials randomly selected from the list of the experimental trials. 
During practice, resting pauses were provided every 10 trials along with written feedback on their performance 
accuracy. Practice was repeated until subjects achieved at least 70% accuracy. During the experiment, pauses with 
the accuracy feedback were provided every 32 trials. Pause duration was self-paced.

There were 4 experimental factors (Filter orientation: 0, 22.5, 45, 67.5, 90, 112.5, 135, or 157.5°; Picture-plane 
orientation: upright, inverted; Outline masking: present, absent; Similarity: same, different) and a total of 32 
experimental conditions. Since there were 16 trials per conditions, the experiment was 512 trials in total (approx-
imate duration: 42 minutes). Picture-plane orientation (upright, inverted) varied randomly every 8 trials whereas 
all other factors randomly varied at the trial level.

Data analyses. We recorded the accuracy and the reaction time of participants’ manual responses. However, 
because task performance was unspeeded (with subjects instructed to emphasise accuracy over speed), we focus 
here on the accuracy data. To this end, we estimated individual sensitivity (d’) based on hit and correct rejection 
rates in each condition, following the log-linear procedure49.

We first focused our analyses on the horizontal and vertical filter orientation ranges. We submitted sensitivity 
measures to a three-way mixed effects ANOVA with outline masking as a between-subject factor, and with filter 
orientation and planar orientation as within-subject factors. For post-hoc two-by-two comparisons, we used 
paired t tests. Statistical threshold was Bonferroni-corrected for the total number of comparisons, resulting in an 
alpha value of 0.0083.

Next, we investigated the effects of picture-plane orientation and outline masking more continuously as a 
function of filter orientation (from 0° to 180° in steps of 22.5°). The group averaged sensitivity profile was com-
puted separately for upright and inverted picture-plane orientation conditions, and likewise for naturalistic and 
masked outline conditions. Performance in all cases was well described by Gaussian functions fit to the data with 
four free parameters (Fig. 3b). Best-fitting parameters for peak location, peak amplitude, bandwidth and overall 
height at the group level were estimated via bootstrapping (n =  10,000 repetitions; Fig. 3b). To exclude outliers, 
analyses were carried on the 25%-trimmed bootstrapped estimates (two-tailed50). This procedure was run sep-
arately in each Picture-plane orientation by Outline masking condition (Table 1). To explore the influence of 
inversion on the orientation tuning curve separately derived for naturalistic and masked outline conditions, we 
subtracted inverted from upright trimmed parameter estimates (Table 1) separately for naturalistic and masked 
outline conditions. Upright vs inverted differences were reported as being significant if the 95% confidence inter-
val around the mean for each condition excluded a value of zero. We used the same procedure to explore the 
influence of outline masking on the orientation tuning curve (Masked vs Naturalistic) for upright and inverted 
conditions separately (Table 1).

Group-level FIE size was estimated in each orientation and outline masking conditions based on 
10,000-bootstrapped Cohen’s d coefficients. Cohen’s d coefficients quantified not only the strength but also the 
consistency of the FIE at the sample level. They were computed by subtracting the averaged inverted from upright 
sensitivity and dividing the difference by the pooled standard deviation for each bootstrapped sample (Fig. 4). 
The function relating FIE size (in Cohen’s d) to orientation resembled a difference of Gaussians (DoG) function, 
i.e. a central Gaussian function bilaterally flanked by two minima. The function was fit with 7 free parameters: the 
location, amplitude, and bandwidth of the central peak, the difference in location and amplitude of the first and 
second minima, and the overall baseline height. Fits estimated via bootstrapping (n =  10,000 repetitions). After 
trimming the upper and lower 25% of the DoG parameter estimates, we computed the difference between Masked 
and Naturalistic outline masking conditions. A difference was reported as being significant if its respective 95% 
CI excluded a value of 0 (Table 2).
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