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Abstract 

This paper explores the use of geodemographic classifications to investigate the social, economic and 

spatial dimensions of participation in higher education. Education is a public service that confers very 

significant and tangible benefits upon receiving individuals: as such, we argue that understanding the 

geodemography of educational opportunity requires an application-specific classification, that exploits 

under-used educational data sources. We develop a classification for the UK higher education sector, 

and apply it to the Gospel Oak area of London. We discuss the wider merits of sector specific 

applications of geodemographics, with particular reference to issues of public service provision. 
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1. Introduction 

 

This paper addresses the development and application of geodemographic classifications to better 

understand participation in UK higher education to higher education. Our motivation originates in the 

observation that general purpose classification systems (such as those marketed by commercial 

providers) can claim no particular status in accounting for the consumption of the various services 

provided by the public sector
1
, the more so because of the ‘black box’ nature of the weighting schemes 

used to derive such classification systems. Moreover, there is clearly a spatial, as well as a socio-

economic, dimension to the pattern of participation in higher education (Sa et al 2003).  

 

Accordingly, we seek instead to develop a bespoke geodemographic clustering system to account for 

decision making in relation to prevailing provision of Higher Education (HE), using HE data provided 

by the Higher Education Statistics Agency (HESA: www.hesa.ac.uk) and Universities and Colleges 

Admissions Service (UCAS: www.ucas.ac.uk). As is the case with most commercial classifications, 

Census data account for a substantial part or in the unique case of the People and Places (P2) from 

Beacon Dodsworth
1
 all of the data, but our approach is to supplement these with systematically 

collected HE domain-specific data rather than the mélange of shopping questionnaires and other 

sources that are used in developing commercial classifications. While a number of commercial 

geodemographic systems have been used to account for differences in the uptake of HE between 

different groups, we believe that our classification is the first to have been specifically designed for this 

purpose.  

 

Our methodology is dependent upon the National Statistics Output Area Classification (OAC: Vickers 

and Rees, 2007), which is an open source geodemographic typology built entirely from the 2001 

Census data. Unlike commercial solutions, the derivation of this classification is in the public domain, 

the classification can be reproduced entirely from public data sources and it has the status of a national 

statistic. OAC divides neighbourhoods into a hierarchy consisting of 7 Supergroups, 21 Groups and 52 

Subgroups in a way that is designed to present balanced summary measures of demographic and socio 

economic conditions. For present purposes, however, it is deficient in data that are directly linked to 

                                                
1
 One partial exception is Health Acorn (www.caci.co.uk/acorn/healthacorn.asp). This does not directly 

include health sector data, but does include other data relating to health outcomes, e.g. diet information. 



participation in collectively provided education services. In seeking to remedy this, a technical 

contribution of this paper is to create a further level to the OAC hierarchy, further dividing the 

Subgroups into 176 “Microgroups” that can be used to classify all UK Output Areas (OAs). HE data 

are appended to these Microgroups, which are then re-clustered to build a new two level hierarchical 

classification informed directly by education domain data.  

 

We suggest that this is a valid and useful reworking of the OAC classification prior to its use as part of 

a bespoke (i.e. application specific) educational geodemographic system, and that it has wider 

implications for the development of bespoke geodemographic discriminators for which domain specific 

data can be made available at fine spatial levels of granularity. We suggest that this approach has 

inherent advantages over attempts to ‘re-badge’ commercial classifications, and that it has wider 

implications for applications concerning the uptake and use of public goods and services. Moreover, 

we argue that transparency in the construction and weighting of geodemographic classifications is an 

important consideration when applications raise issues of social equity in the allocation of public goods 

and services.  

 

In the remainder of this paper we begin by describing the creation of a bespoke geodemographic 

classification that combines public domain and HE sector-specific data, using clearly specified 

techniques and tools. We then develop a pilot application which might be refined and deployed as a 

service to Higher Education (HE) for a range of applications. 

 

2. University enrolment and HE data  

 

The Universities and Colleges Admissions Service (UCAS) centrally manages the application process 

for almost every full time undergraduate HE course in the UK. Applicants make an initial selection of 

six choices (applications) which each identify an institution, course and campus. UCAS is the 

custodian of these data along with various attributes on the individual applicant. The majority of 

applicants submit their applications electronically and much of the data processing is automated.  

 



In order for HE funding councils to apportion funds appropriately based on student admissions through 

UCAS, data are required on the size, and nature of each institution’s annual intake. These data are 

acquired through HESA, which serves as the “central source for collection and dissemination of 

statistics about publicly funded UK higher education” (HESA, 2006). All publicly-funded UK HE 

institutions are required to submit an annual “HESA Return”, which follows a standard format that 

details the numbers and characteristics of students within the institution. Various data are collected: 

however the most important source in terms of volume is derived from UCAS sources supplied at the 

end of each annual application cycle. Institutions are encouraged to maintain and update these data as 

they can have bearing on aspects of central government funding in subsequent academic years. Data 

sourced by HESA through UCAS and other sources make it possible for Higher Education Funding 

Council for England (HEFCE) to calculate institutional allocations of additional government funding to 

support widening participation initiatives amongst young participants (defined as aged less than 21): in 

this case, the measure is derived by students being grouped into participation rate assigned by the ward 

in which they reside (HEFCE, 2005). The two key datasets for the HE sector are assembled by UCAS 

and HESA, and it is the former of these that is specifically associated with undergraduate admissions. 

Both UCAS and HESA made data available for this study, and the variables that are of interest are 

discussed below. 

 

Having asserted that the nature and consequences of decision-making in HE justifies the development 

of a bespoke geodemographic system, it is incumbent upon us to outline the range of applications in 

which such geodemographic discriminators may be useful. HE activities including institutional 

marketing, extending access, widening participation or subject specific targeting are all candidate 

applications, and these should therefore be borne in mind when identifying candidate input variables 

for inclusion within the classification. In the literature on widening participation from which these 

applications predominantly extend there are a range of discussions on the determinants of access to HE 

inequalities. Reid (1998) discusses that there are two interpretations of inequality in Higher Education: 

first, that there is bias in the university selection process; and second, social class has an inhibitor effect 

on the perceived availability or benefits of Higher Education. The first of these interpretations was 

publicly highlighted in 2001 with the case of Laura Spence. Her rejection by the University of Oxford 

on the basis that she “did not show potential” created a media circus that even involved the then 



Chancellor of the Exchequer (and now Prime Minister) who declared it “an absolute scandal”. The 

second of these interpretations relates to how middle class parents ‘invest all kinds of effort, including 

significant material resources in developing social capital’ (Walker, 2003:172), creating environments 

where socialisation processes can occur, and creating advantage or disadvantage under certain 

situations (Bourdieu & Passeron, 1977). Outside of the social, cultural and economic actors on human 

capital accumulation the 2003 Higher Education White Paper (DfES, 2003:68) accepted that ‘the single 

most important cause of the social class division in Higher Education participation is differential 

attainment in schools and colleges’. It is therefore important to select input variables for their ability to 

stratify both recorded causes of participation disadvantage such as variable attainment, and also attempt 

to measure those conceptual causes such as human capital accumulation. The data available for this 

study are for 2001 and cover all students domiciled in England and studying at English institutions. 

This database contains a variety of suitable variables for inclusion in the cluster analysis and those 

selected for our analysis are shown in Table 1, and the undergraduate courses to which they relate are 

shown in Table 2. The variables selected aim to measure the characteristics of participation in terms of 

their stratification between different groups of people (e.g. ethnic groups, independently educated, 

course choices, distance travelled), include direct measures of participation (e.g. participation rate) and 

finally those causes of these inequalities (e.g. Social Class and A-Level scores). The core advantage in 

informing a classification with application specific data at the build stage is that the groups which 

result from the clustering procedures should better fit the underlying dimensions which they seek to 

represent. Thus, for an application in HE, it is sensible to include variables relating to those actual 

participants in HE, rather than a blend of possibly undisclosed variables which may show some 

correlation to the social, economic and spatial patterns they are seeking to measure. 



 

 

Table 1: HE input variables to the cluster analysis. 

 

Variable Numerator Denominator 

Young participation rates First year students aged 18-19. Census 2001 18-19  

Average distance from student’s home 

to institution 

N/A N/A 

Average A-Level Score of students N/A N/A 

Proportion of students from low social 

class groups 

Undergraduate degree students from 

the three lowest social classes (IIIM, 

IV, V) 

All undergraduate degree 

students 

Proportions participating in particular 

degree course groupings* 

Students studying undergraduate 

degree courses within groupings (A-

X).* 

All undergraduate degree 

students 

Proportion from ethnic minority 

Groups* 

Undergraduate students from ethnic 

minority groups. 

All undergraduate degree 

students  

Proportion of students previously 

educated in Independent Schools in 

Years 12 & 13 

Undergraduate students who 

previously attended independent 

schools. 

All undergraduate degree 

students 

 

* = Course and Ethnic Groups are defined in Table 2. 
 

Table 2: Course and ethnicity groupings. 

 

Course Groups Short 

Code 

Ethnicity Groups 

Medicine & Dentistry A White 

Subjects allied to Medicine B Black or Black British – Caribbean 

Biological Sciences C Black or Black British – African 

Veterinary Science, Agriculture & 

Related. 

D Other Black background 

Physical Sciences F Asian or Asian British – Indian 

Mathematical & Comp Sciences G Asian or Asian British – Pakistani 

Engineering H Asian or Asian British – Bangladeshi 

Technologies J Chinese or Other Ethnic background – Chinese 

Architecture, Build & Plan K Other Asian background 

Social Studies L  

Law M  

Business & Administration Studies N  

Mass Communications and 

Documentation 

P  

Linguistics, Classics & related Q  

European Languages, Literature & Related R  

Non-European Languages and Related T  

Historical & Philosophical Studies V  

Creative Arts & Design W  

Education X  

 

 

 

 

In a traditional statistical model it would not be appropriate to include use the same data as both 

dependant and independent variables, and as such the variables selected above could be critised for a 



degree of circularity. For example, a core aim of the classification is to stratify participation, however 

participation is included as an input variable. In defence of this decision it should be noted that cluster 

analysis does not suffer those same limitations of regression based statistical models as the algorithm 

seeks similarity rather than explanation. Furthermore, to provide further reassurance that the 

classification would be safe to use, it might only be used for profiling data from a separate sampling 

frame, e.g. a separate year of HE data. 

Although young participants as defined by HEFCE are applicants accepted by an HE institution who 

are aged 21 years or younger, in practice the majority that were accepted through UCAS during the 

period 2000-2004 were aged 18-19. For purposes of estimating participation rates, a base population of 

18-19 year olds was extracted from the 2001 Census and compared with the average number of same 

age band students from the HESA data known to be attending HE. If a 2001 Census base count of all 

residents aged 21 or less had been used this would of course produce far lower ‘participation’ rate 

figures, and might be biased – for example, in underestimating participation rates in new estates with 

young families whose offspring are only just entering the 18-21 cohort. 

 

The use of distance travelled to accept a degree place provides a useful proxy for the geographic 

constraints upon choice (Sa et al 2003) that are particularly incumbent upon some applicants from 

lower socio-economic groups, either because of the financial cost of travel to a distant institution or the 

social networks which may bind them to their local communities (Reay et al, 2005). Straight line 

(‘crow fly’) distance between the accepting institution and the student’s home is used in this analysis, 

on grounds of simplicity and ease of calculation. (It is, of course, the case that mobility may be more 

prevalent in and around metropolitan areas which have public transport hubs.) The co-ordinates for 

student home locations (i) and chosen HE destinations (j) were taken from the 2001 All Fields 

Postcode Directory. Including distance in the classification is useful to identify areas where students 

are less likely to travel, particularly if they reside at home, a factor which often indicates limited 

financial means. 

 

The 2001 HESA data measure UK A-Levels attainment on a points scale, ranging from 10 points for an 

A grade to 2 points for an E, and summed across all subjects of study. Prior attainment, particularly 

with regard to traditional academic qualifications such as A-Level have been seen as “key to the 



reaffirmation of middle class privilege in education and employment” (Leathwood and Hutchings, 

2003: 153) and as such is likely to provide a good discriminator of neighbourhood inequality of 

outcome. Where these scores are not recorded in the HESA data, applicants will usually have qualified 

for HE through a non A-Level route; for purposes of this analysis these are recorded separately as a 

binary non-A level variable. 

 

In 2001, HESA data on social class were recorded using the Registrar General's Social Scale, which 

groups occupations into 7 different categories. Low rates of participation by those from households 

with earners in skilled manual, partly skilled and unskilled occupations have been documented ever 

since the Robbins Report (Robbins, 1963), and the extent to which these social barriers have been 

successfully addressed is debatable. In order for the classification to discriminate between the higher 

and lower social echelons, a variable was created to record the frequency of students from these three 

social groups. 

 

The 2001 HESA data used the Standard Classification of Academic Subjects (SCAS) to aggregate 

individual courses into subject groupings. The extent to which different neighbourhood types 

participate across these subjects is critical for both marketing and widening participation initiatives. 

The inclusion of the proportion of students within each subject grouping is intended to improve the 

ability of the classification to discriminate according to subject of study. Information on student 

ethnicity was included because membership of some ethnic minority groups has been observed to be 

associated with low participation in some subjects and markedly higher participation with others 

(Gilchrist et al, 2003).  

 

An index score can be used to show the overrepresentation of a target group by a discrete classification 

when compared to its proportions in a base population – as in Equation (1) where index scores I are 

calculated by comparing the proportion of a variable n within a target population t relative to a base 

population b. 
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Table 3 shows index scores created using the 2005 UCAS acceptance data that illustrate the differing 

propensities of ethnic groups to participate in different courses. It can be seen, for example, that 

students of Asian ethnicity are almost 2.5 times more likely to study Medicine or Dentistry than the 

student population as a whole. 

Table 3: Indexed participation rates in different subject groupings according to ethnicity and 

subject of study (source: 2005 UCAS acceptances). 

 

 Asian  Black  Mixed  Other  White  

 A Medicine & Dentistry 246 63 124 188 88 

 B Subjects allied to Medicine 152 135 76 116 93 

 C Biological Sciences  68 76 100 83 107 

 D Veterinary Science ,Agriculture & Related  26 16 36 27 117 

 F Physical Sciences  54 36 75 41 113 

 G Mathematical & Computer Sciences  190 137 93 137 85 

 H Engineering  123 137 96 130 94 

 J Technologies  72 64 73 100 106 

 K Architecture, Building & Planning  97 85 88 101 101 

 L Social Studies  92 158 110 99 97 

 M Law  178 147 108 140 88 

 N Business & Administrative Studies  165 159 94 126 87 

 P Mass Communications and Documentation  57 111 129 104 104 

 Q Linguistics, Classics & Related  41 38 112 73 112 

 R European Languages, Literature & Related  24 30 121 76 116 

 T Non-European Languages and Related  42 31 195 116 111 

 V Historical & Philosophical studies  28 20 90 70 116 

 W Creative Arts & Design  40 67 118 92 107 

 X Education  46 50 53 51 112 

 

 

The inclusion of a variable identifying whether a student previously attended independent school is 

designed to improve the ability of the classification to identify those neighbourhoods which supply 

disproportionate numbers of students previously educated outside the state sector. One of the HEFCE 

widening participation performance indicators is based on proportion of students coming from state 

schools, so the inclusion of this variable is in line with this performance measure. 

 

The full range of additional variables included in the cluster analysis is detailed in Table 4, along with 

the short codes that are used in the presentation of results. 



 

Table 4: Variables included in the cluster analysis and their short code references. 

 

Variables  

A-Level points Social studies 

Distance travelled to attend institution Politics & Law 

Lower Social Class Business and Administrative Studies 

Black Caribbean Mass communications and Documentation 

Black African Linguistics, Classics and related subjects 

Other Black European Languages, Literature and related subjects 

Asian Indian Eastern, Asiatic, African, American and Australasian Languages. 

Asian Pakistani Humanities 

Asian Bangladeshi Creative arts 

Chinese Education 

Other Ethnicity Combined and general courses not otherwise classified 

18-19 Young Participation Rates No A-Level Points (i.e. non A-Level Qualifications) 

Medicine and Dentistry  

Subjects allied to medicine  

Biological Sciences  

Agriculture and related subjects  

Physical Sciences  

Mathematical sciences and Informatics  

Engineering  

Technology  

Architecture, Building and Planning  

  

 

 

3. Creating the building blocks of an open source geodemographic classification 

 

In recent years, the more proactive stance of UK government departments towards the dissemination of 

public statistics, including the Census of Population, has made it possible for a greatly broadened 

constituency of interested parties to develop their own classifications of neighbourhood characteristics. 

However, the construction of geodemographic classifications is a skilled task, and this new freedom 

inevitably raises issues surrounding the inter-correlation of census measures, as well as considerations 

of how compound indicators might be construed as representing a single or multiple construct of 

reality. Many of these issues have already received detailed investigation in the creation of successful 

general purpose classifications, and thus there is merit in building upon the achievements of such 

classifications as a base upon which to add bespoke elements. The UK Office of National Statistics’ 

(ONS) Output Area Classification (OAC: Vickers and Rees 2007) was created from the 2001 Census 

using 41 variables common across all of the UK, and describes the demographic, household 

composition, socio-economic and employment characteristics of each Census Output Area (OA) in 

England, Scotland, Wales and Northern Ireland. Vickers and Rees used K-means clustering to create a 



high order classification comprising seven Supergroups. The input data pertaining to the OAs that had 

been classified into these seven clusters were then subdivided, and each re-clustered to create a second 

tier comprising 21 groups. This process was then repeated a third tier of 52 Subgroups (see Figure 1). 

OAC has been ratified it as a UK national statistic by ONS, and the classification can be downloaded 

from its user group website (www.areaclassification.org.uk). The classification has recently been 

appended to a series of large national datasets including the National Statistics Postcode Directory and 

the 2001 Census of Population. 

 

Figure 1: The National Statistics Output Area Classification hierarchy. 

 

The variables included in OAC were selected to “represent the main dimensions of the 2001 Census” 

(Vickers and Rees, 2007: 383), and although these do include a single variable on HE attainment, they 

do not incorporate direct measures of area HE participation rates in either aggregate form, or broken 

down by subject preference. It is the aim of our classification to infuse spatial variation in 

socioeconomic characteristics pertinent to HE participation into the OAC classification hierarchy. 

Vickers and Rees (2007: 381) take the established line that when clustering data “there is no right or 

wrong answer”, just a range of different combinations leading to an “infinite number of parallel 

classifications”. This view is also presented by Gordon (1981), who contends that the statistical process 

of “clustering” of attribute space can better be considered to be a process of dissection, wherein clusters 

should not be conceived as discrete objects existing within a multidimensional space, but rather as the 

outcome of dissecting more subjective and fluid categories, the boundaries of which can be 

repositioned to create alternative representations. 

In the context of these arguments, there are two broad methods which might be used to build upon the 

experience of the OAC classification in order to construct an educationally weighted geodemographic 

classification: 



 

1. Re-cluster a new classification from OA level upwards, based upon the documented 

experience of creating OAC, but including educational data alongside the original OA data in 

the ‘bottom up’ classification. 

2. Adapt the existing OA classification, by re-clustering it from a finer scale created as a 

disaggregation of Subgroups, and after adding sector specific data. 

 

There are a number of problems associated with the former option. First, the classification would need 

to be recreated from first principles, and the valuable qualitative experience of creating the OAC would 

need to be re-learnt, for example, with respect to comprehensive evaluation and normalization of input 

variables. Second, while the variables used in the OAC classification are generally quite highly 

variable interval scale counts derived from decennial census data, participation rates in HE tend 

inevitably to fluctuate at fine geographical scales between years (Corver, 2005). This is likely to create 

an uneven geographical coverage which would either increase the prevalence of outlier values or 

require many structural zeroes to be accommodated in the geographic matrix, with deleterious 

consequences for the classification procedure. This in turn would lead to a need for standardisation and 

careful population weighting. For these reasons, we chose to pursue the second option.  

 

The first stage in developing the bespoke educational classification entailed the creation of a new finer 

tier in the OAC typology. This proceeded in a way analogous (albeit different procedurally) to 

Experian’s (Nottingham, UK) Mosaic Segments product, which provides a 243 cluster disaggregation 

of its 61 Mosaic Types. Previous work using the Mosaic classification (Singleton and Farr, 2004) has 

suggested that this fine level of disaggregation is effective for re-clustering of education data.  

 

Commercial classification builders tend to cluster at the finest level first and then aggregate these fine 

segments into successively larger groups. The OAC methodology created the classification in the 

opposite way, disaggregating first at the highest level and then dividing these groups into the smaller 

clusters which form the lower two tiers. OAC was created using the k-means clustering method 

(MacQueen, 1967). This is an iterative relocation algorithm that assigns each data point into one of k 

clusters based on a standardised Euclidean minimum distance metric. The algorithm seeds the initial 



locations of the k cluster centroids as random data points within this data matrix. The distance of the 

data points to each cluster centroid is then calculated, and each data point is provisionally assigned to 

its nearest cluster centre. A clustering criterion statistic is then applied to measure the homogeneity 

within these temporary cluster allocations. After the first iteration of the model, the k-means algorithm 

attempts to find a local optimum through an objective function that reallocates data points iteratively 

from their initial assignments. Each data point is considered for reallocation to other clusters, and after 

each test the model objective function is recalculated. Where reassignment of data points does occur, 

the cluster centroid values for the gaining and losing clusters are recalculated. Once the objective 

function is minimised, or the user-specified maximum number of iterations is reached, no further 

reallocation of data points takes place. However, writing in the 1970s, Everitt (1974: 26) observed that 

“there is no way of knowing whether or not the maximum of the criterion has been reached”. This is 

because in a single k-means model there are likely to be multiple local optima, since the random 

placement of the initial cluster seed centroid means that multiple locally optimised models are possible. 

Using the data from the OAC classification, Figure 2 illustrates the problem of running models starting 

from two different initial values to convergence, with k = 9 and two variables (Black versus Asian - 

Indian, Pakistani or Bangladeshi). 

Model Run 1 Model Run 2 

  
Figure 2: An illustration of the effect of random initial seed locations upon final model outcome. 

 

These graphs show how the path of the cluster centroid can converge upon entirely different locations, 

depending upon the random placing of the initial seed. Furthermore, as each iteration of the model 

reallocates data points to cluster centroids, “making the ‘best’ decision at each particular step does not 



necessarily lead to an optimal solution over-all” (Harris et al, 2005: 162). While the partitioning of the 

input data in any given cluster model is globally optimised, this outcome may be critically dependent 

upon initial conditions – specifically the random placing of the cluster seeds – and there is no 

benchmark of global model performance for an individual data set. However, recent experimentation 

with multiple seeding algorithms (Brunsdon and Charlton 2006) suggests that, given sufficient 

computational power, a globally optimised local model can be obtained by running k-means multiple 

times to convergence, comparing the results from each cluster analysis and saving the best performing 

classification. Figure 3 shows the results from the same k=9 model which was run with a random seed 

allocation 150 times: for each model an R-squared statistic was generated in order to estimate the 

quality of the model discrimination. This graph highlights the variability in overall model performance 

arising from placement of the initial seeds. 

 

Figure 3: R-squared results from repeated runs of a nine cluster model. 

A further issue with the k-means algorithm is the a priori decision to define an “appropriate” number of 

clusters. In describing the construction of OAC, Vickers and Rees (2007) cite the prevailing views of 

geodemographic practitioners about appropriate cluster frequency, based on understanding of what has 

been deemed successful practice in commercial products. This leads them to advocate a three tier 

partitioning of 2001 Census data, first into 7, then 21 and then 52 partitions of their OA data. A further 

method demonstrated in a geographical context by Debenham (2001) is to calculate the average 

distance between the data points and their assigned cluster centroid at model convergence for a range 

of different k values. A judgement can then be made on an appropriate number of clusters, weighing up 

the relative merits of a cluster taxonomy which can be readily interpreted by end users, and a level of 

detail which yields reasonably homogenous within-cluster characteristics. 



 

The non-educational input data used to create the finer level classification consisted of the same set of 

standardised 2001 Census variables at OA level that was used to construct OAC. This dataset was split 

into 52 separate groupings of Output Areas mirroring their assignments in the OAC subgroup 

classification and each of the resulting 52 datasets was separately re-clustered using the k-means 

algorithm of the SAS (www.sas.com) statistical software. 

 

Different numbers of OAs are assigned to each OAC Subgroup and it is necessary to take this into 

account in any further partitioning of Subgroups in order to maintain a balanced degree of uniformity 

between the newly created Microgroups at OA level. The alternative of dividing each of the 52 datasets 

by the same k value would create clusters of quite starkly varying sizes because the totals of the 18-19 

year old population contained within each of them would differ. The outline objective was to create a 

total of around 264 clusters (Microgroups) of approximately similar size across all 52 separate datasets, 

in order to create a classification that was comparable with commercial offerings. The population 

distribution shown in Figure 4 was used to estimate the initial frequency of the divisions required to 

create the Microgroup classification. The x axis records the 52 OAC Subgroups (ordered by ascending 

population size), and the y axis denotes the total percentage of 18-19 year olds within each OAC 

subgroup as measured in the 2001 Census. The initial estimated divisions (k values) that would be 

required to create the Microgroup classification with even population between clusters are denoted on 

the bars. These estimates are calculated by apportioning the total Microgroups required (264) within 

each Subgroup using percentage figures of the 18-19 year old population. Some measure of 

accommodating variable target population size within OAC Subgroups is necessary, since partitioning 

all of the OAC Subgroups evenly (e.g. 264 / 52 = ~5) would create Microgroups with a very uneven 

distribution in the 18-19 population cohort. It was found that if uneven clusters such as these were used 

as the basis upon which to build a bespoke educational classification, they caused the formation of a 

new classification with very uneven population size and as such with limited applicability.  



 

Figure 4: Percentages of all 18-19 year olds falling into each OAC Sub Group and their assigned 

k values. 

Even after apportioning initial clustering values using 18 – 19 year old population size, the clustering 

algorithm still created a number of outlier clusters. In order to minimise the number of small population 

counts within clusters, thus improving the uniformity of between Microgroup population, a number of 

the k values were therefore manually assigned in order to create more evenly distributed clusters. 

Although this is not desirable in a classification designed with a transparent and defendable build 

process, it was deemed necessary to prevent very small outliers being created, and as such having a 

negative effect in the final classification. Where the initial division of Subgroup datasets had created 

outlier clusters (of small population size), different values of k were re-assigned and then tested in 

order to assess whether they might create more uniform cluster populations. The final outcome was the 

creation of the Microgroup classification which divided all Output Areas into 176 Microgroups. This 

was fewer than the initial aim (264), but resulted in a classification with a reasonably even population 

distribution of 18-19 year olds. This Microgroup classification provided the classification onto which 

the education data were appended. 

4. Building the bespoke HE geodemographic classification 

Individual student records from HESA data were georeferenced to home unit postcodes and linked to 

Output Areas using the All Fields Postcode Directory
2
. These output areas were then joined to the 

Microgroup classification, thereby assigning each student from the HESA database to one of the 176 

clusters. A series of binary scores (e.g. to represent subject of study) was created for a number of 

                                                
2
 This is now called the National Statistics Postcode Directory and is available from the ONS website: 

http://www.statistics.gov.uk/geography/nspd.asp 



categorical attributes about the individuals contained within in the database. Additionally a number of 

continuous variables (see Table 1) were also created for each student (e.g. distance travelled from home 

to study at university). Using Microgroups as an aggregating field, the HESA data were grouped using 

Structured Query Language (SQL). Binary variables were summed to create total frequencies of 

students according to Microgroup for a range of attributes, and the median values of continuously 

scored student variables were created for each Microgroup. Thus, the output dataset consisted of 176 

rows for the Microgroups and a series of columns for both frequency counts or average scores for a 

range of variables relating to those students classified by the Microgroups.  

 

The frequency counts for each Microgroup were converted to index scores (where 100 denoted average 

incidence, 200 double the incidence, and so forth) derived from a base distribution of the total 

frequency of students recorded in the HESA database. The “young participation” variable, taken from 

the 2001 Census, used a base score of the total number of 18-19 year olds. The continuous variables 

(e.g. distance) that were averaged by Microgroup were not converted to index scores, however, because 

the clustering model required that all input data are measured on the same scale both the frequency and 

the average variables were converted to z-scores. The clustering algorithm treats all variables as 

continuous and as such the scale must be comparable between variables, otherwise those variables with 

a larger range will have adverse affect on the final assignment of clusters, skewing results towards their 

extreme values. The process of conversion to z-scores was used to control for the different scales used 

to measure the input variables, representing all variables using a standard deviation unit of 

measurement. Before clustering, the Microgroups with their standardised input variables were weighted 

by the total population within each cluster, thereby reducing the influence of those Microgroups with 

smaller population sizes. Unweighted k-means is often used for outlier detection in multidimensional 

datasets, but in geodemographic applications, very low population counts in some clustering units can 

reduce the efficiency with which it is possible to both describe and discriminate between clusters.  

 

Additionally, before performing cluster analysis, the data were explored to examine the correlations 

between the variables. It is the case that high correlations amongst the raw variables included within a 

cluster analysis result in data redundancy and can have undesirable effects in the final assignments to 

clusters (Vickers and Rees, 2007). Harris et al (2005) also emphasise the importance of including 



variables that add new information rather than repeat what is already known. It is claimed, for example, 

that the methodology employed by Experian in the construction of Mosaic allows correlations to be 

accommodated through the use of weighting schemes, albeit at the expense of introducing subjective 

value judgments to the classification procedure. Insofar as such weights are not made public, such 

weighting also renders classifications opaque and non-reproducible by other researchers. For these 

reasons our own interim view is that, for clustering applications in the public sector, weighting schemes 

are difficult to justify if they are not empirically grounded and are potentially influenced by the 

predilections and experiences of the clustering solution creator. This essentially inductive view is that 

the disbenefit of noise and uncertainty generated by data led generalisation are outweighed by the 

greater risk of straightjacketing a classification to realise pre-ordained outcomes. Only recently have 

studies been conducted into how weighting schemes can be automated through an adaptation of the k 

means algorithm (Huang et al, 2005): such algorithms remain relatively untested and have not as yet 

been implemented in commercially available statistical software. Other applications of cluster analysis 

have side-stepped the complexities of including multiple variables with their related correlations 

through the reductive technique of Principal Component Analysis (PCA), where “each component 

represents a weighted combination of the original variables” (Voas and Williamson, 2001: 65). 

Although some view PCA as useful to filter variables that may be redundant or have negative effects 

upon classification outcomes (Debenham et al, 2002), a contrary view is that the technique results in 

undesirable information loss and creates complexity in results which are difficult to interpret (Harris et 

al, 2005).  

 

Correlations between input variables have the effect of adding extra weight to one or more dimensions 

of the classification, thereby creating a very similar effect to manual weighting of raw variable scores. 

In the absence of manual weighting of correlated variables, the only way to avoid such weighting 

effects would be to disregard highly correlated variables, raising the question of which of the correlated 

variables to remove. The analysis of correlation effects and identification of the thresholds at which 

they should be deemed undesirable presents difficult decisions in practice. 

 

Geodemographic classification through cluster analysis therefore inevitably presents a dilemma 

between seeking to let the data speak for themselves (Everitt and Dunn 1983) and using manual 



intervention to create a classification that is intuitive, fit for purpose and defensible. Unlike commercial 

classifications, the clustering procedures which created OAC were performed without weighting, and 

although these weighting schema could have improved overall classification performance and possibly 

aid discrimination between areas, the argument of Vickers and Rees (2007) is that it would have added 

potential bias and introduce subjectivity into the composition of output clusters. We are persuaded by 

these arguments in the creation of our own classification for what is essentially a range of public sector 

applications.  

 

A key purpose of the HE classification under development here is discrimination between areas that are 

characterized by abnormally high or low participation rates. One would expect the various factors 

which lead to these patterns of inequality to be highly correlated – for example A-Level points score 

with social class as it is well documented in the literature that there are relationships between these 

variables (Reid, 1998). Both of these variables contribute towards low participation and as such should 

be included in a classification wishing to measure this dimension. Their potential correlation re-

enforces an important dimension of the classification and as such should be allowed to manifest in the 

final cluster assignment.  

 

In order to further understand the pattern of correlation amongst the Microgroups within the data, a 

correlation matrix of all input variables was created using a Pearson correlation coefficient (though not 

reproduced here for reasons of space). High intercorrelation was apparent between A Level points 

score, education at independent schools, distance travelled to accept a place and HE participation rates 

of those aged 18-19. As one would expect, each of these variables exhibits a strong negative correlation 

with low social class and entry through routes other than A-levels. These patterns are unsurprising and 

the variables are core to the ability of the classification to discriminate between areas of high and low 

participation. One would also expect the values of these variables to correspond with subject of study, 

given that entry grades vary between subject groups, subjects appeal to different types of people and 

subjects are not evenly distributed across HE institutions. For example there was a high negative 

correlation between low social class and participation in Medicine and Dentistry. The variables chosen 

for the bespoke educational classification developed here includes a range of variables that are each 



directly relevant to educational outcomes. The correlation matrix revealed some of these were 

correlated, but the decision was made not to use variable weighting for the reasons discussed above. 

 

The k-means algorithm clusters the input data matrix into the k groups specified by the researcher. 

Unless the number of groups that should emerge from the dataset is known a priori, a method of 

selecting an appropriate cluster frequency is required. One method of doing this has been demonstrated 

by Debenham (2001), and entails running the k-means algorithm for multiple iterations of k and 

plotting the average distance between each data point and its closest cluster centroid. Charts may be 

used to identify the homogeneity of each solution for a range of cluster frequencies. In general, the 

higher the number of clusters, the smaller the mean distances between each data point and its nearest 

cluster centroid. The charts constructed by this method thus illustrate the trade-off between mean 

distance and classification complexity.  

 

Debenham (2001) conducts his analysis by running a single cluster analysis for each k value. This has 

the disadvantage, described earlier, that the k-means algorithm is sensitive to the location of initial 

seeds  – a problem that can be largely circumvented through repeated analysis using multiple initial 

seed values. Debenham (2001) selects a final k value based on interpretation of apparent breakpoints in 

the plot of cluster homogeneity against number of clusters. However, unless the cluster analysis routine 

is repeated multiple times, these observations may be anomalous because of inappropriately selection 

of initial random seeds. Thus although this method is useful in principle, it needs to be adapted in order 

to provide more robust results. 

 

The method adopted in this study builds on Debenham (2001) and runs the algorithm for kn-2 models 

where n is the total number (176) of Micro-Groups within the dataset. However, in order to improve 

the confidence with which the trade off between cluster homogeneity the k initial seeds were randomly 

repositioned 10,000 times. The median, minimum and maximum distances were averaged over the 

10,000 runs for each k value and are graphed in Figure 5. In this Figure, the dark line represents the 

median and the whiskers the minimum and maximum values. 

 

 



 

Figure 5: Average distances between cluster data points and closest cluster centroid (k = 2 – 175). 

Either side of the median trend line there is a large amount of variability between the most (lower error 

bar) and least (upper error bar) homogenous solution for each k value. This makes it likely that the step 

functions identified by Debenham (2001) arise because of a small number of particularly good or poor 

models rather than success in identifying an appropriate cluster frequency through induction. An 

alternative method is to use R-squared statistics that can be calculated from the clustering output by 

regressing the cluster mean centroid from within the input data matrix against each variable in the input 

dataset
2
. Using a similar presentation method to the distance chart in Figure 5, the median, minimum 

and maximum R-squared scores are presented for each k value in Figure 6. This graph shows that the 

R-squared statistic increases with the number of clusters specified, although not in a linear fashion. 

Furthermore, as k decreases so the variability of the R-squared statistic increases, providing further 

justification of the need for multiple model runs to attain robust information, particularly at lower 

values of k. The increased variability in R-squared at most of the lower k values is caused by the 

grouping of the data points into a smaller number of clusters and this indicates a greater volatility in the 

assignment of final case allocations between clusters, since this increases the variability of the final 

classification performance. 

 

 

 

 



 
Figure 6: Cluster performance measured by R-squared scores (k = 2 – 175). 

 

Furthermore, these results illustrate how further increases in k result in successively smaller 

improvements in the R-squared statistic and how, at the crudest aggregations, much information is lost. 

The R-squared plots are useful for selecting an appropriate cluster number for the dataset, as the loss in 

performance of the classification can be assessed and compared for each reduction in k. Figure 7 shows 

the difference in R-squared scores arising from increasing the frequency of k from n to n+1. The 

incremental increase in R-squared is consistently low beyond k < 45 with considerable increases for 

each incremental value for which k  25.  

 

Figure 7: Incremental differences in R-squared values. 

 

Geodemographic classifications typically consist of a hierarchical series of aggregations. This allows 

end users greater flexibility over the detail they can present and also the number of groups into which 

their own data are divided. Having a classification with a small number of large aggregations may be 



useful when profiling data from a small population, e.g. an unpopular course against all courses at a 

university. In this context, it is useful to consider the numbers of clusters and levels suggested by a 

range of classification providers. These are summarised in Table 5. With the exception of OAC, little 

justification is given as to why particular levels of detail are chosen. 

Table 5: Classification levels (source: adapted from Vickers 2005:35). 

 

Classification System  Clusters in Level 1  

(<12 Clusters) 

Clusters in Level 2 

(>=12, <50 Clusters) 

Clusters in Level 3  

(>50 Clusters) 

Mosaic 2001 11  - 61  

Cameo  10  - 58  

ACORN  5  18  57  

PRiZM  - 16  60  

Super Profiles  10  40  160  

OAC 7 21 52 

 

The commercial classification used most widely in HE since 2001 has been Mosaic, with its two 

hierarchical levels of 11 and 61 clusters. It was considered preferable to keep our bespoke education 

classification in line with similar levels and cluster frequencies, in order not to confuse potential end 

users with radically different aggregations. The final classification should be fit for a range of purposes. 

Most importantly the classification should provide an effective way of discriminating between those 

areas of high and low participation in aggregate, and also disaggregated by course types to allow more 

specific targeting strategies. As in commercial geodemographic classification, it is useful for a bespoke 

educational classification to have multiple levels, since this creates flexibility when analysing target 

groups of different sizes. This classification will mainly be used to discriminate between 18-19 year 

olds as they form the majority of HE cohorts, and so a HE classification should aim to have a relatively 

even distribution of this age range between the final cluster assignments. The selection of variables was 

detailed earlier, although it is also appropriate to investigate the most appropriate value of k. Figure 6 

shows that the average R-squared statistic does not show any discrete jumps in performance following 

successive changes in the number of clusters, and thus that there is no optimum value of k in terms of 

model parsimony. 10,000 separate cluster analyses were run for k=50 through k=65. These values of k 

are in a similar range to the finest level of aggregation of the Mosaic 2001 geodemographic product. 

The median, minimum and maximum R-squared results are presented in Figure 8. 



 

Figure 8: R-squared results from the 10,000 iterations of cluster analyses (the continuous dark 

line charts the median R-squared value and the whiskers link minimum and maximum values). 

 

Each of these assignments of k appears to be successful in discriminating within the input data matrix 

and, as demonstrated in the earlier exploratory analysis, the minimum and maximum bars further 

illustrate the need to optimise each k allocation. The total 18-19 year old population from the 2001 

Census were aggregated by k=50 to k=65 cluster models in order to ensure that no outliers of this key 

target population had been created in the clustering process. The model demonstrating the most even 

distribution of 18-19 year olds across the new clusters was k=53 (see Figure 9) and as such was chosen 

as the final model. In practice, the distribution of 18-19 year olds is nevertheless strongly skewed. The 

solid line shown in Figure 9 at 1.88% divides the principal applicant cohort equally between the 53 

clusters (i.e. 100/53). Uneven distribution of household and population counts is characteristic of most 

geodemographic classifications: in the Mosaic classification, for example, the allocation of households 

to the 61 Mosaic Types ranges from 0.17% - 3.82%. 

 

 

 

 



 

Figure 9: Distribution of 18-19 age cohort between geodemographic clusters (k = 53). 

 

Our educational classification is therefore defined as comprising of 53 clusters (henceforth referred to 

as Types). However, as discussed earlier, it is often useful to have a second tier in a classification into 

which the Types fit hierarchically (henceforth referred to as Groups). The Ward hierarchical clustering 

algorithm (Ward, 1963) measures changes in variance or ‘information loss’ and was used to aggregate 

the 53 Types into Groups. Information loss by this merging procedure is defined by an error sum of 

squares criterion (ESS), which measures the total sum of the squared deviation for all variables from 

each of the 53 Types to the means of the clusters to which they might be assigned. At each step in this 

process the algorithm iterates through all possible unions for the 53 Types, and at each pairing an 

assessment is made to identify the increase in the ESS. The union that results in the smallest increase in 

ESS is actioned, and the process continues through further iterations until all 53 Types have been 

progressively assimilated into a single cluster. The hierarchical organisation of Types into Groups can 

have multiple arrangements depending on the frequency of Groups required. The performance of these 

Group classifications for predicting a target variable (e.g. participation) will depend upon the level of 

correlation between the variables used in cluster analysis and the target variable. Harris et al (2005) 

suggest that Group level classifications should ideally have populations no lower than 4% and no 

greater than 20%, and should also contain between 2 and 7 constituent Types. Using these guidelines 

the Ward method produced the classification shown in Figure 10. 



 

Figure 10: Dendrogram showing derivation of clusters. 

 

5. An illustrative case study: Gospel Oak in North London. 

 

We illustrate how our bespoke classification discriminates between OAs, with respect to the Gospel 

Oak area of North London that comprises a full range of neighbourhoods ranging from the very 

affluent to the very deprived. A criticism of the standard OAC geodemographic classification has been 

its performance within London, where large areas are assigned to the umbrella “Multicultural” 

Supergroup. These assignments apparently fail to discriminate the more subtle characteristics of the 

people living within these areas, and for this reason, this issue provides a useful test bed for our 

application specific classification. More important, however, is the impact that the cocktail of standard 

census variables and even more refined measures of affluence is likely to have upon attitudes towards 

human capital formation, choice of vocational versus academic subjects, and so forth. The census, and 

indeed most all commercial classifications, contain only legacy information about participation of past 

generations of students, and is not differentiated according to institution or programme of study. 

 

Figure 11 shows the distribution of the educational OAC Group assignments by OA. Using these data 

one can explore some of the patterns that have emerged in the classification for North London. When 

the Gospel Oak Ward is examined it can be seen that the Output Areas to the North and South West are 

mainly categorised as belonging to Group G, with the remaining OA in Group I. These divisions seem 



to reflect the geographical distribution of affluence. Measures of affluence are not included in the 2001 

Census and as such are not included in the OAC classification, although they are in the commercial 

Experian Mosaic™ product (see Figure 12). Comparison of these figures suggests that one effect of 

introducing additional variables which correlate with wealth and educational opportunity (Singleton, 

2007), such as educational performance and participation, is that we begin to highlight the spatial 

variation in these dimensions which may be hidden in classifications utilising only census data. 

 

Figure 11: Educational OAC Groups in North London. 

 

 

 

 

 

 

 

 

 



 
Figure 12: Experian Mosaic™ Groups in North London.  

 

 

In order to go one step further and examine the HE characteristics of these areas, the educational Group 

level classification was appended to UCAS acceptance data for 2002 - 2004 by georeferencing the 

home unit postcodes of accepted applicants to the educational classification at the Output Area scale. 

Index scores for educational groups were calculated using Equation (1) for the following variables, 

where propensity refers to the extent that a target variable is overrepresented within a Group when 

compared to the total population: 

• Propensity for course level participation. 

• Propensity to attend a Russell Group
3
 institution 

The index scores for the first of these variables are shown in Figures 13 and 14. The Joint Academic 

Course Coding System (JACS) is a hierarchical classification of course types that has been used by 

UCAS and HESA since 2002 to classify courses of study into a fine level of 1281 ‘Lines’ which 

aggregate up into 19 ‘Groups’ (UCAS, 2007). Examining the Groups present in Gospel Oak, Figure 13 

illustrates the variable propensity to participate across the range of JACS course Groups within 

Educational OAC Group G and Figure 14 shows the same data but for Group I. The data used to 

calculate these index scores are taken from the total population of participants to single honours JACS 

courses during 2002 - 2004 as classified by UCAS acceptances. The course level participation rates 



differ markedly between these two groups, with neighbourhoods belonging to Group G showing a 

much higher propensity to supply medical students, for example. Group G has an index score of 150 

with respect to acceptances of places at Russell Group Institutions, whereas Group I has a score of just 

67. 

 

Figure 13: Propensity to accept HE places by course type in Educational OAC Group G. 

 

 
 

Figure 14: Propensity to accept HE places by course type in Educational OAC Group I. 

 

The applicability of using index scores created from a national dataset to predict local variation of 

behaviours between areas can be assessed by comparing the predicted rates one would expect within an 

area against those that actually occur. The Wards shown in Figure 11 and 12 are all from within the 

London Borough of Camden. Within Camden during 2004 there were a total of 969 people attending 



HE and studying single honours degree courses from within the main JACS groups A-X. These are 

distributed across eleven educational OAC Types (See Table 6). 

Table 6: Distribution of Gospel Oak students between Educational OAC Types. 

 

Educational 

OAC Types 

E26 G39 G41 I44 I45 I46 I47 I48 I49 J53 G38 

Sum 3 15 150 112 220 242 144 16 53 2 12 

Mean  0.16 0.79 7.89 5.89 11.58 12.74 7.58 0.84 2.79 0.11 0.63 

 

Expected values of what one would expect if all students studying JACS courses were distributed 

evenly across all educational OAC Types can be devised by dividing the total population within these 

groups by the total number of JACS Group (19) - for example, Type I46 is expected to have 12.74 

students in Camden (=242/19). Differences between observed and expected numbers of students can be 

calculated by taking the student average (expected value) within each of the Educational OAC Groups 

and multiplying it by the index scores, i.e. the difference from the average (see Table 7). 

Table 7: Predicted minus observed scores.  

 

 E26 G39 G41 I44 I45 I46 I47 I48 I49 J53 G38 

A Medicine & Dentistry 0.2 1.0 -1.2 0.3 3.4 -5.1 1.2 0.8 0.5 0.2 1.1 

B Subjects Allied to Medicine 0.2 -0.3 0.3 -2.8 -5.0 2.0 -4.5 0.9 -1.9 0.1 0.5 

C Biological Sciences 0.1 0.8 -4.4 -3.9 -6.4 -5.9 -7.6 -0.3 0.8 0.1 0.6 

D Veterinary Sci., Agric. & Related 0.1 0.6 3.6 0.2 0.3 4.9 0.8 0.3 0.4 0.0 0.6 

F Physical Sciences 0.1 0.8 0.3 0.6 1.6 0.0 -2.0 0.4 1.0 0.1 -0.3 

G Mathematical & Comp. Science -0.9 -0.3 1.6 2.3 -0.8 -1.9 -8.0 0.2 1.1 0.2 0.6 

H Engineering 0.1 0.8 2.7 2.2 2.2 6.6 5.2 0.9 1.1 0.1 -0.3 

J Technologies 0.2 0.7 8.7 6.9 10.4 13.4 4.1 0.5 1.1 0.1 0.6 

K Architecture, Build. & Planning 0.1 -0.2 3.4 5.7 9.0 9.3 1.3 -0.3 1.3 0.1 -0.3 

L Social Studies -1.8 -2.1 -14.5 -2.6 -9.7 -6.1 1.0 -2.2 -1.3 -0.9 -4.2 

M Law 0.1 -0.3 -0.9 1.7 1.6 -5.2 0.0 -0.1 0.8 -0.9 0.7 

N Business & Admin. Studies 0.1 -1.3 -1.1 -5.8 -29.0 -17.8 -13.6 1.0 -8.5 0.2 -1.3 

P Mass Comms. and Documentation 0.2 0.8 3.8 -0.3 4.8 0.5 5.2 0.0 2.7 0.1 -0.4 

Q Linguistics, Classics & Related 0.2 0.0 -0.7 -5.3 -1.8 -1.4 -1.3 -2.4 -0.2 0.1 0.7 

R European Lang., Lit & Related 0.2 0.2 10.9 3.8 3.4 6.1 2.8 0.3 0.1 0.1 0.9 

T Non-European Lang. and Related 0.2 0.9 9.9 6.7 2.6 10.6 1.5 0.5 1.4 0.1 0.9 

V Hist. & Philosophical Studies 0.2 0.0 -5.3 -3.5 -1.8 2.7 -5.4 0.4 0.1 0.1 0.8 

W Creative Arts & Design 0.2 -2.2 -15.0 -14.8 -30.8 -30.1 -15.2 -3.2 -8.9 0.1 -0.4 

X Education 0.1 0.6 3.0 1.4 4.2 4.7 3.8 -0.3 -0.6 0.1 0.4 

 

 

6. Concluding comments 

 

The differentiation according to subject and HE institution type in our Camden case study suggests that 

there is clear value in using bespoke geodemographic indicators to predict course choice. A priori one 

would not expect these differences to be identified in such sharp relief by discriminators based upon 

census variables alone, or upon data derived from the consumption of goods and services. However, we 



suggest that this is only the starting point for the development of geodemographic discriminators that 

are tuned to the requirements of public service providers. This case study suggests that there are also 

externalities which are either not adequately modelled by this classification, or that arise because of 

local variations which are missed by using index scores based on a national datasets. The most obvious 

of these local variations identified in this limited test is the systematic under prediction of “N: Business 

and Administration studies” and almost all of “W: Creative Arts and Design” subjects across all 

Educational OAC Types present in Camden. Local externalities which may have induced these errors 

could include, for example, a local school/ college with specialisms in these subjects, or the existence 

of prestigious local institutions with strong outreach links or sponsorship arrangements. In either a 

revised classification or through the creation of locally weighted index scores, this technique should 

prove very useful to a range of end users to model potential markets to target. An example could be an 

HE institution wishing to target recruitment for a particular course in a selection of schools with a 

known demographic.  

 

Nevertheless, this paper has demonstrated a method by which bespoke classifications for a particular 

sector or application can be created using pertinent public sector data sources. The motivation for this 

analysis lies in the observation that typologies created by commercial classification providers supply no 

evidence to justify why the inclusion of data relating to private consumption of goods is appropriate for 

predicting public consumption. Furthermore, the exact nature of the weighting schemes and data used 

to derive such commercial classification systems is closed to the public, which should be of concern to 

public services that may apportion real life chances, rather than simply provide consumer products and 

services. While other interesting research has sought to make commercial geodemographic 

classifications relevant to public service provision (Batey and Brown, 2007; Ashby and Longley, 

2005), we believe that the addition of higher education sector data is seen as a positive step beyond use 

of generic and re-labelled classification for purposes which they were not originally designed. As such, 

this research presents a challenge to the implied assumption that the nature of individual use of public 

services such as education should directly correspond with the ways in which consumers use private 

goods and services. This work also responds to concerns that the data inputs used to create generic 

commercial geodemographic classifications come from disparate private sector and closed sources, that 

their provenance is often unknown, and that the assumptions used to create such classifications cannot 



be scrutinised or tested by end users. The negative potential social implications of using such 

classifications in areas of public service provision should not be under-estimated, since they potentially 

significantly impact upon the life chances of stakeholders in public services. 

 

The methodology has shown how a classification built using the 2001 Census can be refined for a 

specific purpose through the augmentation of sector specific data. Through an illustrative example of 

using the classification to predict course participation rates within a diverse Ward in London, it has 

demonstrated problems in using national index scores alongside geodemographic groups to predict 

phenomena on a local scale. Future work is required to examine the causes of such local variation and 

assess how they might be incorporated into the data model. Furthermore, should any model be 

disseminated amongst the wide range of potential end users (e.g. schools, universities, colleges, local 

education authorities), a method of creating both nationally and regionally variable descriptive material 

to accompany the clusters should be devised to allow for more accurate profiling relevant to local 

geographical area. The broader challenge to regional science is to assimilate these rich descriptive 

indicators of revealed preferences for courses and higher education institutions with systematic analysis 

of student flows to the different HE institutions within the national (and indeed increasingly 

international) system (Wilson, 2000). 
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Endnotes 

 

                                                
1
 http://www.p2peopleandplaces.co.uk/ 

2
 Full details on the implementation of the k means algorithm in SAS can be found at: 

http://v8doc.sas.com/sashtml/stat/chap27/  
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