A systems immunology approach to GVHD defines skin-autonomous control of donor T cells. Pedro Santos E Sousa¹, Sophie Ward¹, Cara Lomas¹, Thomas¹ Conlan, Hannah Shorrock², Terry K. Means³, Vincent Plagnol², Ronjon Chakraverty^{1*} & Clare L Bennett^{1*} ¹UCL Cancer Institute and Institute of Immunity & Transplantation, London, UK; ²UCL Institute of Neurology; ³Center for Immunology and Inflammatory Diseases, Harvard Medical School, USA ## *Joint senior authors The use of allogeneic hematopoietic stem cell transplantation to treat blood cancers is severely restricted by the development of acute graft-versus-host disease (aGVHD). aGVHD is characterized by the entry of activated donor T cells into target organs such as the skin where they attack and destroy healthy tissues. We have adopted a systems immunology approach to address the hypothesis that cellular interactions within tissues drive the differentiation of GVHD effector T cells (T_{eff}). We exploited transplantation models in which CD8+ T cells are transferred to minor H antigen-mismatched recipients. T_{eff} were purified from lymphoid organs and peripheral tissues and their gene expression compared by microarray. Computational analyses of these data demonstrate that T_{eff} from lymphoid organs are transcriptionally distinct from those in peripheral tissues. In the skin, transition of T cells from the dermis to the epidermis is associated with up-regulation of a unique gene signature. To investigate the cellular mechanisms that determine sub-compartmental differences between T_{eff} , we focused on Langerhans cells (LC), which uniquely reside in the epidermis. In the absence of LC the transition to expression of a full T_{eff} profile no longer occurs, and mice depleted of LC do not develop cutaneous GVHD. Our data demonstrate that direct interactions between T_{eff} and LC leads to the establishment of a pool of resident memory T cells which are activated to cause tissue pathology. We further show that LC provide both Notch-dependent signals to enhance cytokine production by epidermal T cells, and Notch-independent signals leading to enhanced T cell survival. Together, these interactions result in the accumulation of pathological T cells in the epidermis. Funded by Bloodwise grant 12006