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In the current issue of Cell Systems, Styles et al. develop an optimized method that 
combines genome-wide yeast genetics, high content microscopy and automated phenotypic 
analysis to identify genes in DNA damage repair. This method has the potential to be 
adapted to a multitude of phenotypes and cellular processes by comparing chemically or 
genetically perturbed cells to wild type cells with automated computational analysis. 
 
The creation of genome-wide mutant collections in yeast and the development of 
automated techniques to combine and screen mutants have made yeast a pioneering 
organism for functional genomics – methodology that enables molecular function to be 
determined from genomic and proteomic data. In the current issue of Cell Systems, Styles et 
al. add automated, high-content, image-based screening to the functional genomics 
toolbox. 
 
To establish the functions of a particular gene and investigate its relationship with other 
genes, it is important to link its role to a specific cellular process (phenotypic analysis). To 
date, genome-wide phenotypic analysis in yeast has been largely based on cell fitness (using 
colony size or growth as a readout). This has proven to be an invaluable tool to predict 
genetic interactions (Baryshnikova et al., 2010), and has been instrumental in guiding 
detailed follow up analysis to establish gene function. However, since not all phenotypic 
defects cause a significant defect in growth, this approach has its limitations. In addition, 
essential cellular processes, where mutants cause inviability are less amenable to this type 
of analysis. 
 
Imaging fluorescently-tagged proteins seems to provide an answer to both of these issues. It 
allows a particular cellular process to be studied by tracking a fluorescent signal, without 
relying on cell fitness or mutations that compromise this process. For example, function can 
be derived from 1) how protein abundance or localization is affected under specific 
conditions or 2) how abundance or localization of a marker is affected by loss of any 
particular gene. Since the creation of the GFP collection (Huh et al., 2003), a number of 
studies have looked at the abundance and localisation of proteins under specific conditions 
genome-wide (Torres et al., 2016). In addition, some studies have combined endogenously 
or plasmid-based tags in genes of interest with arrays of mutants by taking advantage of 
‘synthetic genetic array’ (SGA) or an systematic hybrid LOH method (e.g. Alvaro et al., 2007; 
Tkach et al., 2012). Finally, quantitative methods have been described to identify foci and 
quantify fluorescence (e.g. Joglekar et al., 2006; Gonzalez et al., 2012; Herbert et al., 2014). 
 
Initially, the major bottleneck to these studies was the difficulty to capture thousands of 
images, however, this has largely been solved with new automated imaging platforms. Now 
the challenge is image analysis, converting a picture into rigorous quantitative data, which 
was previously undertaken laboriously by eye – as so called ‘eye-throughput’ approach 



(Torres et al., 2016). As well as being time consuming, this type of analysis remains 
subjective since an investigator’s ability to score a phenotype may change over the weeks 
required to assess a genome-wide screen. However, most automated analysis methods are 
designed to find predicted phenotypes such as changes in distribution or fluorescence 
intensity of a tagged protein of interest. Automated computational analysis able to detect 
any difference in fluorescence levels or localization from a wild type cell would be of great 
value for large-scale screens.  
 
It was only recently that a large-scale study successfully combined SGA and image-based 
high-content screening with automated analysis (Chong et al., 2015). This study assessed 
general localisation and abundance of GFP-tagged proteins and how this changes in time 
and under specific perturbations in the cell. This study adapted the CellProfiler software 
(Carpenter et al., 2006) to broadly identify changes in fluorescence in different conditions. 
In the current issue of Cell Systems, Styles et al. take this approach one step further by 
optimizing a pipeline that combines genome-wide genetic and chemical perturbations with 
image-based high-content screening (Figure 1A). They apply this approach to a specific 
process with a readout that represents a direct outcome instead of a change in abundance 
or localisation of a specific protein. 
 
Styles et al. use pattern classification through machine learning to identify mutants that 
affect a specific cellular process, DNA damage repair, by monitoring fluorescently tagged 
Rad52. In budding yeast Rad52 – a key protein in the repair of DNA double strand breaks, is 
distributed throughout the nucleus but forms foci at sites of active DNA damage repair 
(Lisby et al., 2001). They first use SGA technology to create arrays of single and double 
mutants containing fluorescent nuclear and cytoplasmic markers for spatial and cell cycle 
references and fluorescently-tagged Rad52. Then, they devised a Support Vector Machine 
(SVM) training algorithm to classify cells according to the presence or absence of Rad52-GFP 
foci as a readout of DNA damage.  
 
By carrying out their imaging screen in specific mutant strains they are able to screen 
specifically for one of two DNA repair mechanisms, Non-Homologous End-Joining (NHEJ) or 
Homology-directed repair (HR). Specific mutations disrupt one of these pathways, which 
allow screening for genes involved in the intact repair pathway. In addition, they look at 
single mutants with and without treatment with a chemical that breaks DNA, phleomycin. 
Their combination of mutations and chemical perturbations allows for identification of 
genes and pathways that act under specific conditions and would be undetected under a 
single mutation or perturbation background.  
 
DNA damage repair (DDR) has been extensively studied, which has provided a wealth of 
data on the proteins involved in this process. In this respect, DDR represents a good proof-
of-principle for the current study since many of the genes involved in DDR have already 
been identified and so the veracity of the new technique can be compared with previous 
studies. The authors identify 345 mutants out of the ~5000 mutants screened - including 
genetic and chemical perturbations - with elevated levels of DNA damage. The overall list of 
genes is highly enriched for genes annotated to be involved in ‘DNA repair’, ‘DNA 
replication’, ‘homologous recombination’ and ‘cohesion’ and in addition, some are only 
found in backgrounds that are compromised for the NHEJ (enriched for abnormal telomere 



size) or HR pathways (enriched for DNA metabolism), which might have been missed due to 
genetic redundancy. In aggregate, this study represents a major development in functional 
genomics by providing automated discriminating analysis to large image datasets.  
 
Rad52 has been the subject of previous functional genomics studies.  Comparing the 
observations of Styles et al. to this previous work reveals the importance of screening 
conditions. Surprisingly, the overlap with a previous functional genomics study, identifying 
mutants that had increased numbers of Rad52 foci, was limited (Alvaro et al., 2007). At this 
point the reason for this is unclear, but it could be due to a multitude of technical issues and 
to different methodology (for example, the previous screen was performed with hybrid 
diploids). However, Styles et al. correlate increased Rad51 foci with a decrease in fitness in 
single mutants, which has been the readout for many previous screens (colony size), lending 
support to their conclusions about biological relevance of their image-based phenotypes.  
 
Future application of Styles et al.’s approach to cellular processes, which when deregulated 
do not necessarily cause a decrease in cell fitness, is expected to be a major driving force for 
new discoveries (Figure 1B). Overall, the ability to discover phenotypes via automated 
computational analysis is significant since it allows detection of alterations in fluorescence 
levels or localization in an otherwise wild type cell. This essentially provides a discriminating 
analysis akin to a human operator to large image datasets. The SVM training algorithm 
developed by the authors is focused on detecting the presence of at least one or more DNA 
damage foci within a cell and showcases the power of this approach. Adapting this classifier 
to detect, count and quantify different fluorescence features throughout the cell it will open 
up a whole new world of discovery. 
 
Figure 1. Automated computational image analysis of fluorescently-tagged proteins in 
budding yeast allows query of any particular cellular process by tracking a fluorescent signal. 
A) By monitoring fluorescently tagged Rad52, Styles et al. screen for proteins involved in 
DNA damage repair. Rad52 can be found distributed throughout the nucleus but forms foci 
at sites of active DNA damage repair. An increase in Rad52 foci therefore indicates DNA 
repair deficiency. B) Any specific cellular processes can be queried by imaging a 
fluorescently tagged protein that marks the particular process. HC: High Content, SGA: 
Synthetic Genetic Array. 
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