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Abstract

The induction of DNA double-strand breaks (DSBs) by ionising radiation and sub-

sequent rejoining were studied in normal human fibroblasts in vitro, using radiation of

different qualities. Radiation of increasing linear energy transfer (LET) can induce local

hot spots of energy deposition that may result in DNA damage that is difficult to repair,

and can potentially be mis-repaired. Due to the spatial association of the energy depo-

sition events after the passage of ionising radiation, double-strand breaks (DSBs) and

other types of DNA damage may be induced at genomic distances that reflect chromatin

structure and radiation quality, introducing higher orders of damage complexity. The

pulsed field gel-electrophoresis (PFGE) technique was used to resolve the fragmenta-

tion patterns after induction and rejoining of DSBs, separating double–stranded DNA

fragments between 30 kbp and 5·7 Mbp. Several analytical and numerical methods of

quantification of DNA damage were used and critically analysed. A novel method of

DSB quantification based on random breakage was developed, which was applied to an

extensive data–set along with several other methods. Results of this comparative anal-

ysis suggest that conventional methods of DSB quantification may be misleading, due

to the way they handle the unwanted background damage that is produced during ma-

nipulation of the samples. Significant deviations from the random breakage predictions

were observed for 238Pu α-particle irradiation, using a numerical method based on DSB

clustering to analyse experimental data. In order to have an indication of the relative

biological relevance of DSBs induced by radiation of different LETs, DSB rejoining kinet-

ics were measured in living cells, and a detailed fragmentation analysis was carried out.

A simple rejoining kinetics numerical model was designed and developed, based on a

semi-empirical approach. The kinetic model was applied to the analysis of many exper-

iments from this study. The results of the computer simulations are in good agreement

with the experimental data. Even if the initial fragmentation patterns were significantly

different for X-rays vs α-particles, DSBs induced by both radiations seem to rejoin ac-

cording to a first order kinetics with two decay components, that do not depend on the

size of the fragments being rejoined. For the molecular–weight size distribution that was

observed in this project, the results indicate that the complexity of individual DSBs, rather

than proximity effects between distinct DSBs, determine the rejoining kinetics.
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Preface

This doctoral study aims at giving a contribution to the field of radiation research, with

an emphasis on radiation protection and radiotherapy research. Radiation protection

aims at evaluating the risks of exposure of humans to radiation, establishing the accept-

able limits for occupational, medical and certain environmental exposures. In radiother-

apy, the property of ionising radiation of killing living cells is explicitly used for curing ma-

lignant cells in tumours. At first sight, radiation protection and radiotherapy research may

seem rather different, but they are in fact very deeply connected, since advance in both

sciences relies heavily on understanding the basic mechanisms of radiation-induced cell

injury.

That radiation can kill living cells has been known since the beginning of the 20th

century, when radiologists began to employ ionising radiation to kill tumours (1903). Little

was known about the mechanisms through which radiations cause cell damage, and

further investigations were required in physics, chemistry and biology, before it became

clear that the main cellular target had to be in the nucleus (Lea, 1946; Munro, 1970;

Schrödinger, 1944), then identified in the DNA double helix (NCRP, 1979; Painter, 1979;

Ragni and Szybalski, 1962; Sparrow, 1965). Radiation research can help to improve

both radiotherapy and radiation protection by answering the following questions:

• which type of damage is most severe,

• what is the mechanism of its production,

• how it is processed by the cells when trying to repair it,

• what are its biological consequences

In principle, progress in this field will provide methods that could help modify the cellular

radiation response in radiotherapy, in healthy and malignant cells selectively, in order to

improve radiotherapy protocols.

At present, it is widely accepted that DNA is the most sensitive target to radiation for

cells of high-eukaryotes systems, and that only some relatively infrequent types of DNA

damage are most relevant. This project aims to contribute in the characterisation of the
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most lethal forms of radiation-induced DNA damage, currently thought to be a form of

DNA double-strand break (DSB).

The work in this project has been based on experimental, mathematical and computer-

modelling approaches. The results obtained in this thesis have only been possible due

to the close interplay between the model development and experimental data sets ob-

tained.

To facilitate reading and finding specific arguments that may be of interest to the

reader, the electronic portable document format (PDF) version of this Thesis, which can

be found in the CD-rom attached to the third page of the hard-cover, contains a hyper-

linked Index. The table of contents, the list of figures and tables, and every reference

to tables, figures or equations in the text body is hyperlinked, with the sole exception of

hyperlinks inside rotated tables. There are also hyperlinked ‘back-references’ to bibliog-

raphy citations throughout the text. For example, if you find that your work relates to an

article that is listed in the bibliography, you can quickly go to the pages where this article

was cited using the hyperlinks provided. For example:

AGER, D. D. and DEWEY, W. C., 1990, Calibration of pulsed field gel elec-

trophoresis for measurement of DNA double-strand breaks. International

Journal of Radiation Biology , 58, 249–259. 52.

If you are reading the electronic version of this Thesis, you can go to page 52 by clicking

on the hyperlink above, otherwise just turn the pages manually.
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Chapter 1

General Introduction

1.1 The interaction of ionising radiation with matter

Ionising radiation interacts with matter via excitation and ionization of the atoms

and/or molecules of the surrounding environment. Whenever electromagnetic radia-

tion, charged particles or neutrons hit matter, electrons are ejected due to Coulomb

interaction (with charged particles) as a consequence of the primary hit, or due to elec-

tromagnetic interaction (with photons) or nuclear reactions.

Both excitations and ionisations of the target material upon interaction with a charged

particle may cause a given target molecule to enter a very reactive state, which lasts for

a short time, in the order of 10−9–10−6 seconds. Radiation may hit the target molecule

directly, causing either an excitation to an unstable state, which upon de-excitation

may lead to a lesion of the target molecule, or causing a direct ionization to the tar-

get molecule. Since the chemical bond in a molecule depends on the spatial distribution

of its electrons, the loss of even one electron, due to a radiation-induced ionization,

may trigger a re-arrangement of the molecule’s electronic distribution. The major con-

sequence is that this re-arrangement may lead to the formation of a break in a chemical

bond (Tainer, 2000). A radiation-induced indirect damage to a biomolecule is mediated

by another molecule which, if able to diffuse, reaches the biomolecule and transfers the

damage to it. Indirect damage to a biomolecule may be limited by means of scavengers,

as described in § 1.2. The distinction between direct and indirect effects made here

may be over-simplified, as it is believed that there is a type of indirect damage that is

non-scavengeable, which takes place in close vicinity to the target molecule (called the

hydration layer if in water; Becker and Sevilla 1993; Ward 1994) referred to as quasi-

direct damage. Ionising radiation is capable of inducing direct, indirect and quasi-direct

damage to a target molecule, in relative proportions that depend on the properties of

the environment, such as the presence of scavengers and their concentration, as well
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as on properties of radiation itself. It is common to distinguish radiation depending on its

quality, as described in § 1.1.1. In an aqueous environment, most of the indirect damage

to a target molecule originates from the radiolysis of water, resulting in the production

of •H and •OH radicals and the hydrated electron e−aq• , the •OH radical being the most

reactive species with DNA.

1.1.1 Dose, radiation quality and RBE

As radiation traverses matter it loses energy which is absorbed via excitations and

ionisations (see § 1.1). A macroscopic quantity called dose is defined as the energy

absorbed per unit mass of irradiated material. In the International System, its unit is the

Gray (Gy), defined as an energy of 1 Joule absorbed in 1 kg of target material.

1 Gy =
1 Joule

1 Kg
(1.1)

1 Gy delivered to a cell causes damage that may be lethal depending on the radiosensi-

tivity of the cell line examined. For an estimate of the damage that is made to a cell after

a dose of 1 Gy, see table 1.1.

The number of molecules that are hit in a Kg of target material is proportionally

small, even after a very copious exposure to ionising radiation. In fact if 13·5 eV is

the binding energy of the electron occupying the outer molecular orbital of water, then

1 Joule, equivalent to 1/1.69×10−19 eV would be expected to produce roughly 4×1017

ionised water molecules, while a kg of water contains ≈ 55.5× 6× 1023 = 3.3× 1025

water molecules. Only one in 108 water molecules is then ionised. Dose, however,

is an average quantity that does not provide information about the energy that is ab-

sorbed everywhere in the target material, that is, in any given volume of observation.

The difficulties of the concept of dose illustrated above are considered by the use of

Microdosimetry, which

“studies the physical properties of ionising radiations, their interactions, and

their patterns of energy deposition, with particular emphasis on the hetero-

geneities and stochastic nature of the interactions” – D. T. Goodhead

Microdosimetry allows extrapolations to be made to the macroscopic environment. Dose

is a quantity that measures the energy absorbed by the medium after the passage of ra-

diation through the medium itself. However, it does not give information on the spatial dis-

tribution of the energy deposition events in the microscopic environment of the medium.

One parameter commonly used to define different radiations is the ‘unrestricted’ linear

15



energy transfer which is defined as the quotient of the differential energy dE imparted

to the medium per unit length dx of medium traversed (see also ICRP, 1980, for the

‘unrestricted’ property).

LET =
dE

dx
(1.2)

The LET of a given radiation is normally expressed in keV of energy imparted per µm of

medium traversed. The unrestricted LET depends on parameters of both radiation and

target, as reported in eq. 1.3, simplified from the original Bethe-Bloch formula:

−dE

dx
∝

ZtZ
∗2
p

mpv2
pAt

(1.3)

where Zt and At are the atomic and mass number of the target material, Z∗
p , mp and vp

are the effective charge (smaller than the chemical charge because of shield-like effects

of the electron cloud of the target material, given by the Barkas’ formula), the rest mass

and the speed of the primary charged particle.

In the definition of unrestricted LET it is assumed that radiation transfers energy

to the medium linearly in space along its direction of travel. When a certain amount

of energy is absorbed locally in a medium after the passage of a charged particle, for

example, it is very likely that one or several electrons are freed. These electrons, often

referred to as secondary electrons or ‘δ-rays’, leave the site of primary ionization with

a kinetic energy that is proportional to the energy initially imparted, so that they may

potentially transfer energy to the medium themselves, may be far away from the site of

primary ionization, leading to diffusion in space of the energy deposited, and potentially

damaging biomolecules or even cells nearby. The three-dimensional energy deposition

pattern can thus be very complex. This can only be described accurately by means of

sophisticated charged-particle transport computer codes, which are written to simulate

numerically the ionisation events that follow the passage of a given radiation. It was

found in a series of experiments that radiation of different types, specifically light ions like

protons or α-particles of the same LET had significantly different values for the radiation

biological effectiveness (defined ahead in eq. 1.5) for DSB induction (see § 1.3), mutation

or cell killing (Belli et al., 1993, 1991, 1989, 1986, 1987, 1992; Folkard et al., 1989, 1996;

Jenner et al., 1992; Prise et al., 1990) This was an indication that the unrestricted LET

concept may be an incomplete descriptor of the energy deposition pattern of radiation

in a medium, and that microscopic features in track structure play an important role in

determining the biological effect of ionising radiation.

For a given LET, depending on the mass of the primary particle, the speed of the
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particle varies as written in eq. 1.3. Since the speed of the primary particle has a direct

effect on the energy of the secondary electrons (Chatterjee et al., 1973) , the δ-rays freed

have different energy deposition patterns for charged particles of same LET but different

mass. As protons travel slower than α-particles at the same LET, their δ electrons have

less energy, hence they have a shorter range and have a higher LET themselves than

δ-rays from α-particles. As such, unrestricted LET may not be the ideal parameter for

estimating the biological impact of radiation (see the RBE-LET relationship in figure 1.1),

a datum that is required in the estimation of radiation risk. To allow for part of the energy

transported away by the δ-rays, other quantities have been proposed to replace unre-

stricted LET. One quantity is the restricted LET (Harder, 1987) where dE in eq.1.2 refers

to energy that is transferred locally around the primary charged-particle track. Restricted

LET is quantified by considering in the calculation only the energy that is transferred to

the medium by the primary and secondary tracks up to 100 eV. An example may clarify

the subtle difference between restricted and unrestricted LETs. If a secondary electron

is freed with 500 eV of kinetic energy, only the first 100 eV deposited nearby are included

in the calculation of the restricted LET. The 100 eV limit is the most used in the restricted

LET but by no means a standard, so the limiting value is always reported in eV. For

example:

LET100 ≡
dE

dx

∣∣∣∣
100

(1.4)

Despite the limitations illustrated above, unrestricted LET remains often more practical

than restricted LET, and for this reason the former has been widely used as the physical

parameter related to the radiation effectiveness (see Goodhead, 1987, for a review).

In this Thesis, every reference to LET will be referred to the unrestricted LET. Since

the two types of radiation used in this study are very different from each other (one

sparsely and one medium-densely-ionizing) the unrestricted LET is reasonably adequate

to characterise them.

In radiobiology studies, to quantify the efficacy of a given radiation quality in relation

to that of a reference radiation, a dimensionless quantity named radiation biological ef-

fectiveness (RBE) is defined. This is expressed as the quotient between the dose of the

reference radiation and that of the test radiation that is required to attain the same level

of biological effect :

RBE =
Dreference

Dtest

∣∣∣∣
iso-effect

(1.5)

If the dose of test radiation needed to cause a specific effect is smaller than that re-

quired with the reference radiation, the radiation biological effectiveness (RBE) of the

test radiation is larger than one, the test radiation is more effective.
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As high-LET radiations are characteristic for their high ionisation density, which

can potentially cause severe damage to DNA, it could be thought that the effective-

ness of radiation monotonically increases with LET. Nevertheless, for virtually all the

biological end-points in repair-proficient eukaryotic systems, there is a characteristic

non-monotonic RBE–LET relationship, which was first described in detail by Barens-

den (1968) and shown in figure 1.1. For a given end-point, the RBE first increases with

LET up to a maximum which is located in the order of a few hundreds of keV/µm, then

falls rapidly with LET. A commonly accepted explanation for this behaviour is based on

the assumption that radiation is most effective in causing DNA damage when a certain

critical level of ionisation is deposited in or near the DNA, sufficient to cause a potentially

irreparable damage (see § 1.3 for a characterisation of biological relevance of classes of

DNA damage). Ionising energy deposition events below this value are generally causing

easily repairable damage, whereas ionisation densities above the critical value will cause

additional but ineffective damage. Any extra hit is considered an ‘overkill’ event. For vir-

1

log LET (keV/micron)

R
B

E

10 100

Figure 1.1: The RBE-LET relationship

tually any end-point, the RBE–LET curve is not unique but shows dependence on the

particle charge, as described earlier. Although RBE is a useful descriptor, great care has

to be taken in its use for quantification of effects. This is because it is a function of the

particular system, its repair capacity, the level of effect and the chemical (e.g. oxygen,

repair inhibitors) and physical (e.g. dose rate, temperature) conditions of exposure.
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1.2 DNA, Chromatin structure and function

According to the classical paradigm of radiation biology, radiation causes cell injury

via DNA damage that is produced either via direct or indirect effect in the cell nucleus.

In order to understand the nature of radiation-induced cell injury, it is important to know

which are the targets of radiation inside the nucleus, as well as their structure and their

function. Scavenging (Johansen, 1965) effects are specific to the gaseous and liquid

phase, where molecules can diffuse easily and the result of a ionization may be seen at

a relatively long distance away from the site of its creation. Scavengers are molecules

that ‘neutralise’ water radicals, or radicals of other chemical species present in water, by

interacting with them, before these reach the biomolecules. Alternatively, one can have

restitution of a damaged biomolecule, for example by means of a H-atom donor. Glu-

tathione (GSH) is endogenous to cells and operates by restoring damaged biomolecules

(Roots and Okada, 1972) so as to minimise the damage induced by radiation. GSH is

the most abundant thiol in cells, although not the only one. The higher the concentration

of scavenging molecules, the less likely is the production of radiation-induced indirect

damage (Lea, 1946).

Human cells, like all the eukaryotic cells, have a structurally separate nucleus, de-

fined by the nuclear membrane in which the genomic DNA is contained and organised

with the aid of the histone proteins, closely associated to the double helix, and those

that form the nuclear matrix (reviewed by Berezney, 1991). About 1% of the total DNA

within a cell is mitochondrial DNA present outside the cell nucleus, in a circularised form

16,500 bp long. During cell division at metaphase, chromatin is highly condensed such

that is visible in the form of chromosomes by microscopy. For non-cycling cells or cells

not in metaphase (inter-phase) the DNA is still highly organised in repeated structures,

visible by electron microscopy. These repeated structures are held in a stable config-

uration by attachment to a non-chromatin structure present in the nucleus, called the

nuclear matrix, a complex three-dimensional ‘scaffold’ in the nuclear interior. Apart from

being a structure that can be isolated from the nuclei of cells, the nuclear matrix seems

to have a vast number of functions: its DNA attachment sites, called scaffold-attached

regions (SARs) by Mirkovitch et al. (1987), may be three-dimensionally organised in

the nuclear volume to keep the chromosomes in separate territories, as well as being

involved in DNA replication, gene transcription and RNA splicing.

DNA is highly compacted in the nucleus by means of several orders of chromatin

folding, so that approximately 2 metres of DNA double helix may be accommodated in a

nucleus of about 10µm diameter (see figure 1.2). Beginning from the naked DNA double

helix itself, one can distinguish the following organised structures (see Filipski et al.,
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Figure 1.2: DNA high-order organisation in the mammalian cell nucleus. The double
helix is known to wrap around nucleosomes, which in turn coil into the 30 nm chromatin
fibre. In interphase, the fibre is believed to form looped structures attached to the nu-
clear envelope. For chromosome condensation, it has been proposed that coiled loops
are formed, which in groups of six form rosettes, the elementary part of a condensed
chromosome (Filipski et al., 1990).
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1990; Widom, 1998, for a review):

• The nucleosome octamer core plus the linker DNA.

The DNA double helix is wrapped around an octamer protein complex made of

4 distinct histone proteins: H2A, H2B, H3 and H4. Together they form the nu-

cleosome core, around which a DNA double helix of well defined length of about

146 base pairs (bp) is wrapped (Widom, 1992). Nucleosome cores are linked to-

gether by a short sequence of ‘linker DNA’, bound to the H1 linker histone. The

nucleosome core and the DNA linker together form the nucleosome, a structure

that may be inscribed in a cubic volume of size 10 nm.

• The 30 nm chromatin fibre.

Nucleosomes are further folded into a 30 nm fibre that has been long thought of

resembling a solenoid structure (Finch and Klug, 1976), each turn consisting of

six nucleosomes and approximately 1 kilo-base pairs (kbp) of DNA double helix.

The linker histone H1 is responsible for keeping the 30 nm chromatin fibre in a

condensed form. In this conformation, the nucleosomes are not only defining a

precise structure, but appear to be functionally involved in sensing DNA DSBs

for enzymatic repair, as demonstrated by Rogakou et al. (1998) and by Paull et al.

(2000). Due to the compacted shape of the 30 nm chromatin fibre, part of the DNA

may be more accessible from the exterior, whereas other parts may be less ac-

cessible. This is by no means a permanent organisation: during gene transcription

and DNA synthesis, part or the entire DNA sequence needs to be accessed and

this requires transient relaxation of the compacted form. Some sequences may

be even permanently unbound to nucleosomes, to facilitate access to the DNA

transcription machinery, such as the promoters of housekeeping genes (Wallrath

et al., 1994).

Recent computer-modelling studies, supported by experimental evidence, have

thrown doubt on the solenoid model for the 30 nm chromatin fibre and have pro-

posed an alternative three-dimensional zig-zag arrangement of the nucleosomes

(Rydberg et al., 1998).

• The chromatin fibre loop domains.

The 30 nm chromatin fibre in vivo is further folded into higher-order structures.

The first distinct structure are super-coiled DNA loops whose size is estimated at

50-100 kbp and seem to vary with cell type. These chromatin loops are held in

place by means of the scaffold-attached regions. Each of these 50-100 kbp loops

may be a separate DNA replication unit (Berezney, 1991).
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• The next level of chromatin organisation is still controversial and at least two mod-

els have been proposed, mostly based on in situ experimental observations and

computer-modelling. These two models may also have overlaps in the structure,

as the chromatin changes organisation from interphase to cell division and vice-

versa:

– Rosettes. The super-coiled 50 kbp loops of chromatin fibres may be or-

ganised in groups of 6 to form a circular rosette (containing 300 kbp, as in

figure 1.2). These rosettes may be linked to each other on a random walk

three-dimensional path during interphase, but they may form a coil, or a

wave or again a double helix that would become visible as the unit length

of metaphase chromatid during cell division (Filipski et al., 1990).

– ‘Giant’ loops. Scaffold-attached regions that maintain loop domains may be

transient, occurring during replication and possibly during transcription, but it

has been proposed that more permanent SARs are located near sites where

DNA replication is initiated. In some experiments where the weaker SARs

bonds are digested, ‘giant’ loops of size 2.9 Mega-base pairs (Mbp) are iden-

tified (Johnston et al., 1998a,b). These may not be present as individual

loops in vivo, since smaller loops are identified as illustrated above. Sup-

port for Mbp-sized, well-defined chromatin structures of size above 50 kbp

has also come recently from co-ordinated experimental and modelling ap-

proaches (Manuelidis, 1990; Sachs et al., 1995; Yokota et al., 1995).

• Chromosome territories. Experimental in situ evidence has lead to the emerging

view that each inter-phase chromosome is organised in a discrete chromosome

territory (CT) inside the cell nucleus. Surrounding CTs, an inter-chromatin com-

partment (IC) would contain macromolecular complexes that are required for tran-

scription, replication, splicing and also DNA repair (Cremer and Cremer, 2001).

Chromosome territories and the inter-chromatin compartment could occupy non-

mutually exclusive volumes inside the nucleus, with IC protruding into the CT

space and vice-versa. The CT-IC model proposed by Cremer and Cremer also

predicts a specific topology of transcriptionally active genes. In fact, since the

transcription machinery would reside only in the inter-chromatin compartment, a

gene must be in close proximity to the surface that defines the border between

a chromosome territory and the inter-chromatin compartment in order to be ac-

cessible to transcription. According to this model, gene silencing would be ac-

complished by moving DNA farther away from the inter-chromatin compartment,

whereas up-regulation would be achieved by bringing it closer. The highly dy-
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namic DNA compartmentalisation predicted by the CT-IC model is compatible with

a three dimensional nuclear matrix, although the existence of the latter may not be

necessary.

The chromatin structures mentioned above and schematically drawn in figure 1.2 have a

significant influence in determining both the type and extent of DNA damage induced by

a given radiation quality and its subsequent repair. These two aspects will be dealt with

in the following sections of this and subsequent chapters.

1.3 DNA damage

In 1944, Schrödinger elegantly described the mutations that X-rays can induce in hu-

mans, remarking that these mutations appear to be the same as those that arise sponta-

neously. Nothing was known at that time about the molecular nature of the damage that

leads to mutations, and it was speculated that these lesions were caused by ionisation

events in genes, caused by radiation, called ‘explosions’ by Schrödinger. Timofèeff-

Ressovsky et al., studying X-ray-induced mutations, suggested that the dimensions of

the target that was hosting genes, which was thought to be made of proteins rather than

DNA at that time, had to be roughly those of a cube with sides between one and 10 µm

(Timofèeff-Ressovsky et al., 1935). Today it is known that biological effects of ionising

radiation, including gene mutations, are consequences of DNA damage (see for example

Cole et al., 1980; Elkind, 1985).

It was written in § 1.1 that exposure of a material to ionising radiation can induce

breaks in chemical bonds. For biological systems, the main interest over the last 50

years has been the DNA double helix, long considered the main target of radiation.

The spectrum of lesions that may be induced by radiation via chemical modification

involving breakage of bonds is very large, but only a subset of these lesions has the

ability to participate in causing significant biological effects, like reproductive cell death,

mutation or transformation, division delay (see Ward, 1998, for a review). Although a

range of lesions of differing yields are produced, enzymatic repair processes allow many

of these to be removed, therefore the response of a cell to a radiation exposure is a

consequence of both damage induction and repair. It should be noted that some of these

radiation-induced lesions are structurally identical to endogenous lesions, which despite

being very frequently induced in cells (see table 1.1) are repaired very efficiently. The

simplest classes of radiation-induced DNA damage include simple, ‘clear cut’ isolated

single-strand breaks (SSBs) and excised bases, which are produced in abundance in

healthy cells, but repaired efficiently. What makes ionising radiation so lethal to cells is
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its ability to produce DNA damage in clusters: even if the total number of lesions to DNA

induced by a dose of 1 Gy is significantly lower than the number of lesions caused by

endogenous processes per day, they are considerably more effective in causing severe

biological consequences, as reviewed by Burkart et al. (1999).

DNA damage induced by radiation includes base damage, strand breaks, DNA-DNA

cross-links and DNA-protein cross-links (Cole et al., 1980). These should be regarded

as classes of lesions, since there are, for example, several types of damaged bases and

many different types of strand breaks (Eastman and Barry, 1992; Von Sonntag et al.,

1981). Some of these lesions have little biological relevance, like isolated SSBs and

some damaged bases, as they can be easily repaired. An indication of the relative abun-

dance of some of the lesions caused by 1 Gy of low-LET radiation is given in table 1.1.

The value indicated for the DSB yield in 1.1 is given with approximation, since one of the

Event Yield (Gy−1)
Ionisations and excitations (nucleus) 100 000
Ionisations and excitations (DNA) 4 000
Damaged bases 1 000
DNA single-strand breaks 1 000
DNA-protein cross links 150
DNA double-strand breaks ≈ 40
Mean number of lethal events 0·5
Total endogenous lesions (per day) 10 000

Table 1.1: Extent of DNA damage caused by ionising radiation in the cell nucleus after
1 Gy of low-LET radiation. For comparison, the total number of lesions caused by en-
dogenous processes is also shown in the last row of the table (produced with data from
Burkart et al., 1999; Goodhead, 1994).

main aims of this work was to critically review the methods of quantification of DSBs and

to develop more reliable methods. As will be discussed in chapters 3 and 4, quantifi-

cation of DSB yields depends to a significant extent on the data analysis methods used

(see also Prise et al., 2001).

If the DNA double helix were just a long polymer, stretching along one dimension

in space, when hit by radiation it would experience a relatively limited class of damage:

base damage or strand breakage, or a combination of these two, often referred to as

locally multiple damaged site (LMDS). These are locally damaged sites, at the level of

a few base pairs from each other (Ward, 1981). The complexity of LMDSs is function

of radiation quality (Prise, 1994) and the higher the level of complexity, the more bio-

logically relevant is the lesion. LMDSs are not the only type of clustered damage that

ionising radiation induces in DNA. For simplicity, it may be assumed that every time a

charged-particle track intersects DNA it causes damage, although this may not happen
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for sparsely ionising radiation. Since the DNA is three-dimensionally organised in nucle-

osomes, 30 nm chromatin fibre, and supercoiled loops/rosettes/coils and chromosome

territories (§ 1.2), the damaged spots that are correlated in Euclidean space along the

direction of the charged particle (an electron, or a more massive particle) will also be

correlated along the genomic distance of the double helix. These can range from a few

tens to several 106 bp. For each order of chromatin structure that is being hit, there

is a corresponding level of regionally multiply damaged site (RMDS), as originally de-

fined by Rydberg (1996) to refer to the damage clustered at the nucleosomes and 30 nm

fibre level. Due to the folding of DNA at the nucleosome level, a relative abundance

of radiation-induced DNA damage, correlated to genomic distances that reflect these

structures, is expected (Holley and Chatterjee, 1996; Rydberg, 1996). For each of the

super-structures mentioned before, there is a corresponding order of RMDS.

In principle, it should be possible to detect experimentally this ‘fine structure’ of DNA

damage. The experimental technique that was employed in the work for this Thesis,

described in § 2.6, allows detection of DNA damage than can be associated within

the 30 kbp-5.7 Mbp size region. Due to the genomic DNA content of a nucleosome

(<200 bp) and 30 nm chromatin fibre (1kbp), correlated DNA damage at the level of

these structures may be at ‘resonant’ genomic distances up to approximately 2 kbp,

which falls below the sensitivity limit of the techniques employed in this study. Con-

versely, radiation-induced clustered DNA damage at chromatin structures of higher or-

der may be at genomic distances that could be probed. The detection of this damage

and its interpretation by the cellular repair machinery will be extensively discussed in the

following chapters.

1.3.1 DNA double-strand breaks

The discovery that ionising radiation causes some type of breakage in the chromatin

dates back to 1948 with the work by Taylor et al., where a change in the viscosity of

DNA was detected after exposure to radiation. A few years later, with the double helix

model for the DNA, it was understood that the changes in the sedimentation of DNA

molecules were due to radiation-induced double-strand breakage of long stretches of the

double helix. It became possible to measure the breakage yields with the aid of some

mathematical modelling of fragmentation of long polymers (Charlesby, 1953; Montroll

and Simha, 1940).

There is a large body of experimental evidence in support of a major biological role of

DSBs over the other types of lesions induced by ionising radiation (Burkart et al., 1999;

Goodhead, 1994; Iliakis, 1991; Olive, 1998; Ward, 1994, 1995; Whitaker et al., 1995).
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This evidence is based on the following arguments.

A DSB causes a physical interruption in the DNA sequence. Attempts of the cell

repair machinery to eliminate a DSB may not necessarily be effective, with potential loss

of (coding) sequences that could result in mutations or chromosomal damage leading to

loss of genetic information. DSB repair-deficient mutants have been shown to be signif-

icantly more radio-sensitive than normal cells, while the same cell lines showed normal

SSB repair (Jeggo and Kemp, 1983; Kemp et al., 1984), also recently reviewed by Fox

and Prise (1993) and Jeggo (1998b). These findings are in support of a biological role of

DSBs relative to SSBs. Also, in mutant cell lines that show reduced DSB repair activity,

the number of un-repaired DSBs correlates well with yields of chromosome aberrations

data (Darroudi and Natarajan, 1991), which in turn correlate with biological end-points

such as reproductive death (Cornforth and Bedford, 1987; Durante et al., 1994).This ev-

idence is in support of a biological role for DSBs that were not enzymatically repaired,

although the picture is known to be more complex (see § 1.4).

Initially it was believed that DSBs were a biologically relevant lesion because their

yield was found to increase with LET, like the RBE for several cell responses (Christensen

et al., 1972). Shortly after it was found that it is not the initial, total number of DSBs

that correlates with radiation sensitivity, since there is not a causal relationship between

the formation of a DSB and biological consequences (Foray et al., 1997a). In fact, a

considerable proportion of the initially induced DSBs is efficiently repaired by the cells

(see § 1.4). That the initial DSB yield does not correlate with biological response has also

been confirmed more recently with the aid of more accurate experimental techniques and

methods to analyse data (Belli et al., 1994; Iliakis et al., 1988; Prise et al., 1987, 1990),

reviewed by Prise et al. (1998). It is appropriate then to ask the following question:

If DSBs are a critical lesion, why does the total DSB yield not correlate with

changing biological effectiveness due to different LETs?

A possible explanation is that what is measured experimentally with the current tech-

niques as DSB does not reflect the way the cells interpret that lesion, and that DSBs of

different orders of local complexity are all detected as mere DSBs (Olive, 1998). An ad-

ditional and related problem may be that the number of DSBs is not correctly estimated

(Prise et al., 1998), and/or that only some DSBs are quantified and these may be those

that are less relevant (Prise et al., 2001). Even in the ideal case of perfectly unbiased

experimental techniques, it could be argued that not every DSB is equally lethal to a cell.

The problem underlying the lack of correlation between DSB induction and biological

effects, as found in several experiments, may be in what is defined as a double-strand

break.
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The term DSB clearly gives a general picture of this class of lesion in that the DNA

sequence is interrupted by a break in the double helix. Nevertheless, such a name

gives a very poor description of the several sub-classes of DNA double-strand break

where the two opposite strands are broken in close vicinity, namely within a few base

pairs. The nucleotides at the two ‘ends’ formed may be intact, with an hydroxyl group
•OH on one end and a phosphate group on the other end of each of the two interrupted

strands (see for example Eastman and Barry, 1992, for a description of the quality of

strand break ends). This simplest case only requires an annealing process to restitute

the original sequence. The phosphate/sugar backbone at the breakage site itself may

be also damaged, requiring the action of excision enzymes before the sequence can be

re-established by re-annealing of the strands. At a higher level of DSB complexity, the

damaged ends may be accompanied by other damaged sites nearby: abasic sites (a

base has been lost), bases showing a wide range of damages or additional SSBs with

or without damaged sugar backbone at their ends (locally multiple damaged site). The

DSB spectrum is hence very large, and it would be tempting to postulate that not all of

these forms of DSB may be repaired with the same efficiency by the cells, with the repair

enzymes failing to recognise and/or to process the damaged sites.

Using radiation of different LET to modulate LMDS complexity (Prise, 1994; Prise

et al., 1994; Ward, 1994), it is shown that the lethality of a single DSB correlates with

LET (Fox and Prise, 1993). Specifically, it was suggested that while a DSB from a

100 keV/µm α-particle has approximately 5% chance of killing a cell, a DSB induced by

250 KeV X-rays has about a 1% probability.

If local DSB complexity greatly influences the severity of a single, isolated DSB,

RMDSs (see § 1.3) add another level of complexity to the problem of characterising

the relevant type of DNA double-strand break. In fact, two regionally associated simple

DSBs may be even more difficult to repair than a sparse, single locally complex DSB

(see § 1.4). Since DSBs that are correlated at the level of RMDS are significantly more

frequent after high-LET radiation, as described in chapter 3 and confirmed by analysis

of experimental data in chapter 4, the regional association and the local complexity of

DSBs may need to be considered in order to characterise relevant lesions. To answer all

of these questions, DSBs repair studies may provide very useful information.

1.4 DNA double-strand break repair

Elkind and Sutton first showed in a bacterial system that ionising radiation-induced

DNA damage can be repaired (Elkind and Sutton, 1959), setting the scene for the vast

field of DNA repair. The work for this Thesis has focused on double-strand breaks (DSBs)
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and consideration of DNA repair will be limited to that of this type of damage. In order to

find the relevant DNA lesion, experimental observations have moved from quantification

of initial DSBs (§ 1.3.1) to evaluating the fraction of DSBs that remain un-repaired after

several hours of cell incubation, or the rejoining DSB kinetics, or, more recently, to repair

fidelity, in order to distinguish between correct vs incorrect DSB repair (Löbrich et al.,

1995). As there are DSBs that are not repaired by cells correctly, it is important both to

characterise the lesions, as described ealrier, and the mechanisms of enzymatic repair

of DSBs. Mammalian cells have more than one pathway for repair of DSBs available

(Haber, 2000; Jeggo, 1998a,b; Pastink et al., 2001). These pathways involve several

proteins which have been partly identified using mutants that were defective in DSB

repair. Three major pathways are distinguished:

• homologous recombination (HR)

is the principal DSB repair mechanism in Yeast, requiring extensive regions of

DNA sequence homology to operate. Every time that a DSB is to be repaired, the

intact sequence on the homologous chromosome to the one that has experienced

the DSB has to become available for the HR enzymes to operate. Conversely,

HR is very seldom used in higher eukaryotes, namely in cells undergoing meiosis

and in the cells of the immune system (Kuzminov, 1996). During interphase, chro-

mosomes of higher eukaryotes are thought of occupying well defined domains in

the cell nucleus, as detailed in recent high-resolution cytometry studies (see Boyle

et al., 2001, and the CT-IC model in § 1.2). Chromosomes belonging to neighbour-

ing domains are the only ones likely to interact, so that for the major part of the cell

cycle, when sister chromatids are absent and the homologous sequences may be

too far away to interact with each other in HR, other DSB repair processes may be

used. The majority of DSBs in high eukaryotes are in fact repaired by the NHEJ

repair pathway, although HR may play an important role in the S and G2-phase

when sister chromatids are present.

• non-homologous end-joining (NHEJ)

Extensive regions of sequence homology are not necessary for the non-homologous

end-joining DSB repair process, which seems to be the main repair process in

mammalian cells, including human cells. The NHEJ repair pathway shares several

enzymes with a process called Variable (Diversity) Joining (V(D)J) recombination.

The V(D)J process is used during the development of the immune system (Jeggo,

1998b) and is used to generate sequence diversity, by introducing multiple DSBs

in vicinity and re-arranging the DNA sequence of some genes. This is a key feature

for the development of the immune system, but it is certainly not desirable for the
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re-constitution of the correct sequence at the site of any DSB, such as those intro-

duced by ionising radiation. Chromatin organisation in higher eukaryotes (§ 1.2)

may help this DSB repair pathway to operate correctly. Specifically, when a DSB is

introduced in a DNA helix, this is interrupted and its two ends may separate away

from each other by diffusion. In yeast, which lacks high-order chromatin struc-

tures, the two ends are virtually free to diffuse, so that if many DSBs are present

in the genome at the same time, it is very likely that the NHEJ process would

join the incorrect ends of different DSBs. In this case, one has a mis-repaired

DSB. In mammalian cells, high order chromatin structures secure the two ends of

a DSB so that they do not diffuse freely, since there would be a stretch of DNA

nearby that is attached to the nuclear matrix via means of a covalent bond to a

SAR (§ 1.2). For this reason, when using NHEJ, it is believed that mammalian

cells are not exposed to the same risk to which yeast is exposed when using the

same pathway. Nevertheless, if chromatin loops maintain the ends of one DSB

in vicinity before the recruitment of the competent repair enzymes, multiple DSBs

within a chromatin loop domain would inevitably free double-stranded stretches of

DNA, considerably enhancing the risk of sequence deletion and/or mis-rejoining

(Johnston et al., 1998a,b).

NHEJ may have become the prevailing DSB repair pathway in high eukaryotes

also because the fraction of their genome that is coding for proteins is at most

30%, so even if NHEJ fails to re-constitute the correct DNA sequence, this may

not necessarily cause biological consequences. The mis-rejoining event would

then be tolerated, since it may not lead to a non-functional protein. In yeast, as

well as in E. Coli, where the fraction of coding genome is 95% or more, a simple

but error-prone repair mechanism like NHEJ is not an affordable choice, and HR

is probably a better solution to the DSB threat.

• single-strand annealing (SSA)

This process is known to occur in areas of the genome where repeated sequences

are present (Kuzminov, 1996). It proceeds via annealing of two complementary

strands, after the other two opposite strands have been digested. The mechanism

is explicitly causing sequence deletions in those regions of the genome where

repeated sequences are found, like at the telomere sites. The involvement of the

single-strand annealing process in repair of radiation-induced DSBs in mammalian

cells has been proposed recently, since cells that were defective in the NHEJ repair

pathway were found to show an enhanced rate of chromosome re-arrangements

after exposure to ionising radiation (P. Jeggo, personal communication).
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Disagreement has often been found in the results of experiments where residual

DSBs were measured after the cells had been allowed long times to carry out DSB

rejoining. Some data report good correlation between residual, un-repaired DSBs and

cellular radiosensitivity (Blocher, 1988), other show lack of correlation (Badie et al., 1995;

Foray et al., 1997b; Olive et al., 1994), see also Jeggo (1998b), Olive (1998) and Foray

et al. (1997a) for reviews.

The extent of DSBs that appear to have been repaired may not be representative of

the toxicity of the DSBs. Despite the fact that an un-rejoined DSB is a potential threat to

a cell, attempts to remove it may not necessarily imply restitution of the intact sequence,

hence correct repair, since mis-rejoining of DSB ends may cause DNA sequence re-

arrangements and deletions. There are in fact several cell lines that show normal DSB

rejoining activity but are nevertheless highly radiosensitive (Fox, 1990), which may sug-

gest that a considerable proportion of the initial DSBs are repaired incorrectly. It is in

such kind of cell lines that extent of DSB rejoining does not correlate with radiosensitiv-

ity.

If DSBs are biologically relevant lesions, but neither total initial DSB yields nor fraction

of un-rejoined DSBs correlate with high-order biological effects, it is likely that the sub-

class of DSB that is biologically relevant is the one that carries a higher potential of

being involved in a mis-rejoining event. Another feature that has been explored in DSB

repair is the rejoining kinetics, an argument that will be discussed more extensively later

in the Thesis (chapter 5). With DSB rejoining kinetics one observes the rate of DSB

rejoining during cell incubation after exposure to ionising radiation (or incubation of an

in vitro system with cellular or bacterial extracts of repair enzymes). An overall slow

rejoining rate may suggest more complexity of the substrate for the repair machinery,

for example because more breaks have to be introduced during repair of some lesions

(the involvement of the base-excision repair (BER) mechanism in the repair of a LMDS

may introduce de novo DSBs) which is a competing process to DSB repair, appearing

as an overall slow-down of the entire rejoining process. Early experimental work showed

that DSBs induced by radiation of increasing LET repair more slowly (Coquerelle et al.,

1987; Fox and McNally, 1988). Along with the considerations made before about the

local complexity of individual DSBs and radiation quality (§ 1.3.1), it would be reasonable

to believe that since high-LET-induced DSBs are more complex, the operations that the

enzymes need to carry out to repair them may take several steps, which may potentially

be not synchronous and could take longer, as opposed to a simple DSB with ‘blunt’ ends

that may be processed in a more straightforward manner. Nevertheless, not even total

DSB rejoining kinetics have provided a good correlation with the RBE for high biological

effects, as discussed by Olive (1998).
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Recent experiments have begun to provide answers to another question, specifically

if the vicinity of a DSB to another damaged site nearby, which may not necessarily con-

tain a DSB itself, affects the repairability, or possibly the repair fidelity, of the first DSB.

In other words, it may not only be the local complexity of a DSB that influences its cor-

rect repairability, but also proximity to other damaged sites, referred to as RMDS earlier

(Prise et al., 2001). Some experiments have pointed out that RMDSs at the chromatin

fibre loop domain sites (§ 1.2) involving DSBs were responsible for the fraction of DSBs

that repair with slower kinetics with the NHEJ mechanism, whereas single, sparse DSBs

(Johnston et al., 1998a,b) appear to be removed more easily. Other recent evidence sup-

ports the hypothesis that the NHEJ process is faithful when sparse DSBs are distributed

in the cells, but if these are to be found ‘close in space (Euclidean space) and at the

same time’, for example after the passage of a densely-ionising particle or in conditions

of high dose-rate exposure to sparsely ionising radiation like X-rays, NHEJ processes

are likely to fail to reconstitute the original sequence (Rothkamm et al., 2001).

Since high-LET radiation is more effective than sparsely-ionising radiation in caus-

ing clustered damage, hence LMDS but also RMDS at the DNA level, it is tempting to

hypothesise that proximity of DSB has an important role in determining high-order bio-

logical responses. The effect of local complexity vs regional association of DNA DSBs

has been critically investigated in the present Thesis, as discussed experimentally in

chapter 5 and theoretically in chapter 3.

1.5 DNA fragmentation studies

For several years, studies aiming at the quantification of DNA DSBs only employed

techniques that measure total yields of DSBs. It was generally found that the total DSB

yields show little variation with radiation quality (Belli et al., 1994). When they showed

variations, these could not explain the significant differences in the RBE values mea-

sured for other biological end-points (Löbrich et al., 1993; Prise et al., 1998). With the

recent introduction of PFGE techniques, which allow measurements of total DSB yields

and their spatial distribution, it was found that DSBs are often induced non-uniformly

along the genome, and in excess of the predictions based on a purely uniform, random

DNA breakage mechanism (Löbrich et al., 1996; Newman et al., 1997). These findings

paved the way for a number of other studies where the hypothesis that regionally cor-

related DNA damage (RMDS) could explain the high RBEs for high-LET radiation could

be tested, independently of local damage complexity (LMDS, see § 1.3). ‘Fragmenta-

tion analysis’ has provided a powerful method to test random breakage models of DSB

induction (Belli et al., 2001, 2002; Höglund et al., 2000; Höglund and Stenerlöw, 2001;
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Newman et al., 1997; Pinto et al., 2002) and to investigate DSB repair in greater de-

tail than allowed with previous techniques and methods (Höglund and Stenerlöw, 2001;

Pinto et al., in prep.; Stenerlöw et al., 1996; Stenerlow and Hoglund, 2002; Stenerlöw

et al., 1999, 2000). The achievements of this project were mostly based on the choice of

fragmentation analysis as a tool to assess DNA DSBs induction and rejoining kinetics.

1.6 Modelling induction and rejoining of DSBs

Mathematical models provide ways to make hypotheses and quantitative predictions

that can be tested against experimental data. In DNA damage studies, early analyti-

cal models described the fragmentation of long-chain polymers after induction of breaks

(Charlesby, 1953; Contopoulou et al., 1987; Cook and Mortimer, 1991; Litwin, 1969;

Montroll and Simha, 1940). All these models were based on the simple assumption

that breaks are introduced randomly and according to a uniform distribution, that is, they

can occur anywhere in the polymer with equal probability. These ‘random breakage’

models have provided analytical functions that can be employed for regression analysis

of experimental data of DNA fragmentation, in order to estimate the breakage frequen-

cies. The recent experimental findings, which tend to conflict with the random, uniform

breakage paradigm (see §1.5), have set the scene for a new class of DNA damage mod-

els, which aim at a more reliable characterisation of the mechanism of radiation-induced

DNA breakage. The complexity introduced by abstracting DNA structures and radiation

quality-dependent energy deposition patterns have forced the models to change from

an analytical approach and move to computational techniques. The stochastic nature of

radiation-induced DNA breakage can be well described by means of a Monte Carlo ap-

proach, where breakage is simulated in one cell at a time, for example, and several quan-

tities may be evaluated, which can also be measured experimentally, for comparison. In

these models, different hypotheses for chromatin structure and high-order structures are

made (§ 1.2), which can be tested by experimental measurements based on fragmen-

tation analysis (Friedland et al., 1999, 1998; Holley and Chatterjee, 1996; Ponomarev

et al., 2000; Rydberg et al., 1998; Sachs et al., 1998, 1999a).

In this project, some of the most common analytical approaches that are freely avail-

able for the quantification of initial DNA breakage have been tested by applying them to

the data obtained during the project itself. Deficiencies that were observed in some of

these approaches (described in § 3.2.1 and § 3.2.4) lead to the design of new methods,

whose simplicity lies in their semi-empirical nature. Quantitative methods were designed

and implemented in order to describe experimental data that are obtained from PFGE ex-

periments. Using the most up-to-date programming techniques available, the computer
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programs developed allowed both qualitative and quantitative description of experimental

DSB induction and rejoining data, together with low-dose predictions that can be tested

with other experimental techniques (§ 4.5 and 5.4).

1.7 Scientific objectives of this project

The main aims of this project were:

1. To measure DSBs induced by X-rays and 238Pu α-particles, with emphasis on the

fragmentation patterns that result from the interaction between charged particle

track-structure and chromatin geometry.

2. To measure rejoining kinetics of DSBs induced by radiation of different qualities,

employing fragmentation analysis to assess the relative importance of LMDS vs

RMDS to the repairability of the DSB.

3. To develop novel analytical and/or numerical methods of quantification of radiation-

induced DSB yield and distribution that are not biased by the influence of back-

ground damage.

4. To develop novel analytical and/or numerical methods of quantification of DSB

rejoining kinetics, which could also account for background damage, in order to

investigate the relative relevance of radiation-induced RMDSs and LMDSs.

A noticeable aspect of this doctoral work is the feedback between mathematical mod-

elling and experiment. Experimental and modelling work have been carried out in syn-

chrony, with experimental results setting the grounds for the hypotheses of the math-

ematical/computer models, which were developed following both semi-empirical and

mechanistic approaches.
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Chapter 2

Experimental Methods

2.1 Introduction

The experimental methods used in this project are summarised in the following chap-

ter. Briefly, normal human fibroblasts are exposed to varying doses of radiation of differ-

ent linear energy transfers (LETs) to induce double-strand breaks (DSBs), under condi-

tions where initial damage yields and distributions are measured, or repair is allowed to

occur for pre-determined periods of time. DNA is purified from intact cells and separated

according to size by pulsed field gel-electrophoresis (PFGE), currently the best method

for analysing DNA fragmentation. Quantification of DNA damage is made possible by

pre-labelling DNA with a radiolabelled precursor, and the results are analysed with a

variety of analytical and numerical methods. This chapter describes the general experi-

mental material and methods which were routinely used during the course of this project.

These include cell culture conditions, irradiation sources and conditions, double-strand

break rejoining, protocols for isolation of DNA, PFGE run and ‘early’ analysis of PFGE

data. Analytical and numerical methods of analysis of DNA fragmentation are described

separately in chapter 3.

2.2 Cell culture

All studies have been performed with primary human foreskin fibroblast, AG01522B,

obtained from the National Institute of Ageing, Bethesda, Maryland, (USA). Normal hu-

man fibroblasts are very useful and commonly employed for studies similar to the present

one, since fibroblasts are well renowned for their excellent resistance to high radiation

doses if held in G0 phase at confluence, as reviewed by Foray et al. (1997a) and also

demonstrated recently by Rief and Löbrich (2002). One can then be assured that the
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experimental observations that are carried out at high doses, due to the sensitivity con-

straints that the experimental techniques are setting, are not biased by disfunction of the

cellular metabolism due to cell death, at least up to a few hours after the initial injury.

AG01522B cells were stored in liquid nitrogen at passage 9 in 70% (w/v),1 20% (w/v)

fœtal calf serum (FCS) and 10% (w/v) dimethyl sulphoxide (DMSO) in sterile filtered α-

minimum essential medium (MEM) (all supplied by Sigma-Aldrich), before the beginning

of the project.

For recovery of cell stocks from liquid nitrogen, cryogenic vials containing 1 ml of

cell suspension are rapidly pre-warmed to 37◦C in water-bath. The cell suspension is

diluted to 1:4 in the cryogenic vial, then transferred to a sterile vial and further diluted to

1:2. Finally the suspension is seeded into four 25 cm2 tissue culture flasks (T25) and

incubated in humidified atmosphere (95% air and 5% CO2) at 37◦C . After four hours

of incubation to allow for attachment of cells to the flasks, which is assessed using a

phase-contrast microscope, the media is replaced by fresh α-MEM to minimise exposure

to DMSO which is toxic at 37◦C .

Fibroblasts are routinely grown in 25 cm2 or 75 cm2 tissue culture flasks (TCS or

Corning) between passage 10 and 15 in α-MEM in humidified atmosphere of 95%

air and 5% CO2 at 37◦C . The medium is supplemented with 20% (w/v) FCS, 100 µg

ml−1 benzyl-penicillin and 100 µg ml−1 streptomycin (Gibco, Hemel Hempstead, UK),

200 mM L-glutamine (Gibco), 1×non-essential aminoacids (Sigma) and a mixture of

deoxynucleotides (2-deoxyadenosine, 2-deoxycitidine, thymidine, adenosine, cytidine,

guanosine, uridine, all from Sigma). After passage 15, an extensive proportion of cells

enters a senescence status and is not used further.

For cell detachment, a 0.25% (w/v) trypsin solution prepared in ethylene diamine

tetra acid (EDTA) buffer is used. Cells are incubated with 2 ml (T25 flasks) or 6 ml

(T75 flasks) of trypsin at room temperature for a maximum of 2 minutes to limit trypsin-

induced damage to cell membranes, before the flasks are gently shaken to encourage

cell detachment. A volume of fresh α-MEM equal to twice the volume that is used for

trypsin is finally added to the flask for neutralisation. The cell suspension is then pelleted

by centrifugation at 700g, 4◦C for five minutes and then re-suspended at the desired

concentration for re-seeding.

For experiments, cells are seeded in 60 mm diameter disposable sterile tissue culture

plastic Petri dishes (Corning, TCS) for X-irradiation, or in custom-made 27 mm diameter

glass-walled dishes consisting of a base of 3µm thick mylar film. The latter are sterilised

for several days before each experiment by γ-irradiation using a 60Co-γ source.

1Abbreviations used when expressing percentages in chemical recipes are v/v: volume/volume, w/v:
weight/volume
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2.2.1 DNA radioisotope labelling

Radiolabel is incorporated into DNA of growing cells by supplementing the culture

medium with 0.05 µCi mmol−1 [2-14C ] thymidine (specific activity 52 mCi mmol−1, Amer-

sham International, Amersham, UK). Quantification of DNA DSBs and subsequent repair

is based on counting β-decays of 14C as described in § 2.7, using scintillation counting.

To avoid competition between radiolabelled and non-radiolabelled thymidine that is nor-

mally supplemented in the culture medium (it is estimated for the labelling conditions

specified above that for every 2 [2-14C ]thymidine molecules there are 5 ‘cold’, non-

labelled thymidines) a culture medium is prepared specifically for cells that are grown

for experiments, which is identical to the medium employed for routine AG01522B cul-

ture (see § 2.2), with the exception that ‘cold’ thymidine is not added to the nucleotide

mixture. It has been proved in this study that this correction in the protocol sensibly im-

proves the relabelling efficiency, measured, on average, as 0.02 dpm per cell. Cells are

grown in 14C -labelled medium for seven to ten days to reach confluence, with 90-95%

of the population synchronised in G0-phase (flow-cytometry measurements kindly per-

formed by Dr. Andrea Malcolmson), then the medium is replaced with fresh α-MEM for

one day incubation before irradiation.

2.3 Irradiation

Before irradiation, α-MEM is replaced with fresh 20 mM HEPES-buffered α-MEM.

Following irradiation, for experiments measuring initial DSBs induction, monolayers at-

tached in Petri dishes are washed repeatedly with fresh phosphate-buffered saline so-

lution (PBS) that has been kept on ice. The dishes are then kept on ice before further

treatment on the same day, normally within a few hours (see § 2.5). For DSB rejoining

experiments (see § 2.4) dishes are maintained on ice for a few minutes, before being

prepared for post-irradiation incubation. Two radiation qualities have been employed in

this project: 240 kVp X-rays as a low LET source and 238Pu-α particles as high LET

source.

2.3.1 240 kVp X-rays

240 kVp X-rays have been produced on using a commercial Pantak IV system that

is fitted with a 0·25 mm Cu and a 0·5 mm Al filters. The system is equipped with several

interchangeable jigs where tissue culture flasks or Petri dishes can be accommodated.

The jig that has been employed regularly can accommodate up to three 60 mm diame-

ter plastic Petri dishes. Photons reach the cells from above the dishes, after they have
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traversed a volume of air and a volume of culture medium in which the cells are main-

tained during irradiation. Traversing water before reaching the cells is in fact required to

allow electrons to build-up in number at the cell surface, or the dose distribution could be

inhomogeneous.

X-rays are produced by the slowing down (Bremsstrahlung) of electrons that are

first accelerated in an electric field. X-rays dosimetry had been performed before the

beginning of this project using a Baldwin-Farmer instrument coupled to an ionisation

chamber. Dose to be delivered to the samples is set on the Pantak IV control unit in form

of ‘irradiation divisions’. The correspondence between irradiation divisions and dose in

Gy is given by the dosimetry in the form shown in eq. 2.1.

divisions

1 Gy
= σ × P

T
(2.1)

P and T in eq. 2.1 are the atmospheric pressure in mmHg and the temperature of the

room in degrees Kelvin. σ is a dosimetric constant, having dimensions [K][mmHg]−1[Gy]−1.

The value of σ that was provided at the beginning of the project was 228.7. For exam-

ple, if the atmospheric pressure is measured as 758 mmHg and the room temperature

is 298 K, then 581.7 irradiation divisions are required to deliver a dose of 1 Gy. These

dosimetry settings have been employed for the entire project. Nevertheless, toward the

end of the project, dosimetry measurements and calculations have been repeated by

the laboratory staff and it has been estimated that the correct value for the dosimetric

constant σ is 199. The ratio of the early to the newer, correct estimate for the dosi-

metric constant σ is 1.15, which means that every time a dose of 10 Gy was set, for

example, 11.5 Gy were effectively delivered, for every experiment using X-irradiation in

this project. This systematic dose-shift does not introduce any practical problem, except

for the fact that comparisons between α-particles and X-ray data should be made on

measurements normalised to the dose, wherever possible. The dose rate for X-rays is

0.027 Gy s−1 equivalent to 1.62 Gy min−1, so that 10 Gy are delivered in little more than

6 minutes, while 100 Gy are delivered in approximately one hour, during which cells are

held on Petri dishes, covered by 4 ml of pre-cold HEPES-buffered MEM, cooled by laying

the irradiator’s jig on ice.

2.3.2 238Pu α-particles

238
94 Pu is an unstable nucleus that decays to 234

92 U by ejecting an α-particle of predom-

inant energy 5.59 MeV, accompanied by minor emission of γ photons. The half life of
238Pu is 87 years. The α particle irradiator, built in the Gray Cancer Institute on a design
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based on that of an irradiator described by Thacker et al. (1982), consists of a 1090 MBq
238Pu source which is housed in an aluminium cylinder (figure 2.1). The irradiator itself

is filled with helium gas and is equipped with a mylar exit window, from which α-particles

can leave the irradiator to reach the samples to be exposed, which are normally held

in an aluminium jig that sits externally, on top of the irradiator. In this configuration, the

dishes containing attached cells, covered by 5 ml of HEPES-buffered MEM, are held

horizontally and the α-particles reach the cells from underneath the dishes, after they

have traversed a volume of helium gas, mylar, air, mylar.
238Pu is brushed on a thin metal disk and the energy of the α-particles reaching the

cells can be varied by changing the distance between the Pu source and the irradiator’s

mylar window, by means of a graduated thumb-wheel. α-particles in fact deposit part of

their initial energy to the molecules of the gas that fills the cylinder, which become ionised

(see § 1.1). The larger the distance of the source from the mylar window, the higher the

energy lost by the α-particles. The range of α-particles in air is very limited, due to the

relatively high stopping power of air (see eq. 1.3). Helium is preferred because of its

small atomic number which minimises the α-particles energy loss, circulated through

the irradiator at a rate of a few cc min−1 to avoid accumulation of ionised He atoms in the

cylinder, which could change the energy deposition characteristics of α-particles. Before

reaching the cells, α-particles must also pass through the thin irradiator’s mylar window,

a few millimetres of air, and the mylar film that constitutes the base of the custom-made

glass-walled dishes. The source in the irradiator is always set to the same position for

all the α-particle irradiations in this project, so that the energy of the α-particles when

reaching the cells is 3·5 MeV and the volume-averaged LET is calculated at 110 keV

µm−1 (Folkard et al., 1989). The dose rate is 0.88 Gy s−1, equivalent to 52.8 Gy min−1,

so that 10 Gy are delivered in approximately 11 seconds, while 100 Gy are delivered

in slightly less than 2 minutes. Unlike the X-ray irradiation conditions, the glass-walled

dishes are not cooled on ice during exposure to radiation. In order to prevent DSB re-

joining activity due to temperature increases during irradiation, the dishes are pre-cooled

on ice for 30 minutes before irradiation, and the volume of HEPES-buffered MEM in the

dishes is increased from 1.5 ml, which is normally used for culturing cells in these glass-

walled dishes, to about 5 ml. Once irradiation is completed, the dishes are immediately

transferred to ice. For measurements of initial DSBs induction by radiation, cells that

have been irradiated are treated as described in § 2.5. For rejoining experiments, cells

are transferred to an incubator for different times as described in the following section.
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Figure 2.1: The 238Pu α-particle irradiator.
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2.4 DSB rejoining

Cells monolayers are allowed to repair radiation-induced DSBs in Petri dishes, by

incubating them at 37◦C in humidified atmosphere of 95% air and 5% CO2. For post-

irradiation incubation, HEPES-buffered medium that has been used during irradiation is

replaced by fresh α-MEM that has been pre-warmed to 37◦C in a water-bath.

Early experiments in this project have been carried out with cells attempting to repair

DSBs while embedded in agarose (see § 2.5) immediately after irradiation. It has been

found from measurements on unirradiated control cells that incubation of cells embed-

ded in agarose promotes extensive DNA fragmentation which can be appreciated after

approximately 24 hours of incubation, which is believed to be due to the stress condi-

tion to which the cells are exposed. The same result was also found by another group

(Stenerlöw, personal communication) and was the subject of several studies by Kysela

(1994), together with a targeted experiment by Whitaker and McMillan (1992b). Using

a relatively low-sensitive method based on quantification of the fraction of activity re-

leased (FAR) below a certain DNA fragment length, described in § 2.7, Kysela observed

that the uncontrolled DNA fragmentation measured in unirradiated cells incubated when

embedded in agarose was cell line-dependent (see also Cedervall and McMillan, 2002),

and limited to a maximum of 10% FAR, which was only observed after overnight incu-

bation. During this project, other quantities have been adopted along with the FAR to

measure DSB-induced DNA fragmentation. Using relatively more sensitive methods, it

has been estimated that the damage induced in cells incubated embedded in agarose

can be surprisingly extensive, as can be observed from the fragmentation patterns in

figure 4.5.

All the results reported in this Thesis refer to experiments in which cells have been

allowed to repair as monolayers attached in Petri dishes. Cells have been embedded in

agarose only after both irradiation and rejoining are completed. For each experiment,

DSB rejoining is allowed for several times in incubator, ranging from 10 minutes to 24

or 48 hours. After the longest period in incubation of 48 hours to repair the damage

initially induced by radiation, measurements indicate that DNA fragmentation takes place

in competition with DSB rejoining, which is believed to be related to a form of cell death,

probably not apoptosis since fibroblasts seldom trigger this form of organised cell death.

The experimental measurements performed on the cells that have been incubated for

48 hours post-irradiation have normally not been included in regression analysis, unless

specified.

At the end of the required time of incubation for each sample, the dishes are taken

out of the incubator at fixed times and α-MEM is replaced by fresh PBS that has been
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kept on ice, to minimise the activity of repair enzymes. After several washes in fresh

PBS, the samples are incubated on ice before further treatment within the same day, as

mentioned before.

2.5 DNA extraction and preparation of PFGE samples

In order to perform any measurement of DSB yields and distribution in the nuclear

DNA, this first needs to be isolated from the rest of the cell content. The general protocol

for DNA isolation has been adapted from Schwartz and Cantor (1984) and Newman

et al. (1997) with some minor modifications. Firstly, cells are detached by treatment for

10 minutes with 0.25% (w/v) trypsin/EDTA on ice to minimise unwanted repair enzymes

activity. Dishes are then gently shaken to allow cell detachment, then fresh α-MEM that

has been kept on ice is added to neutralise trypsin. Cell suspensions are pelleted by

centrifugation at 4◦C , 700 g-force for five minutes and re-suspended in ice-cold PBS, at

concentrations in the order of 106-107 cells ml−1. The cells suspensions are then kept

on ice.

For practical purposes and to preserve the integrity of DNA, which could be damaged

by shear forces during the manipulation of the samples, cells are embedded in agarose

plugs before DNA is purified and loaded in agarose gels for electrophoresis. The con-

centrated cell suspensions, obtained as described above, are mixed with low melting

point agarose (Sigma, gelling point approximately 18◦C ), in either tris acetic acid (TAE)

or tris borate acid (TBE) buffers (see specification for each PFGE protocol in tables 2.1,

2.2) kept at 37◦C in a water-bath. Eppendorf tubes containing the concentrated cell sus-

pensions are removed from ice and heated to 37◦C in the water-bath for approximately

10 seconds, then a volume in the order of a few µl is sampled and transferred to an

equal volume of the low melting point agarose solution prepared earlier and maintained

at 37◦C , using a Gilson type pipette. The suspension is mixed using the pipette for a

maximum of 20 seconds at 37◦C in water-bath. The suspension is then immediately

pipetted into purpose-made plastic casting moulds (BioRad), pre-cooled in a refridger-

ator at 4◦C , which allow the agarose to set in a box-shape, commonly referred to as

plug, having the same size of the agarose gel wells in which the plugs will be loaded

for electrophoresis. Each casting mold has 10 separate compartments which are clearly

marked to distinguish the samples, to be immediately stored at 4◦C in a refrigerator to let

the agarose set. About 90 seconds elapse from the time when the Eppendorf tubes are

removed from ice and exposed to 37◦C , to the moment when the casting moulds con-

taining the cell/agarose suspesion are refridgerated. During this time, repair enzymes

are potentially activated and unwanted DNA repair could occur. This sets a theoreti-
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cal lower limit of 90 seconds for the minimum repair time that can be controlled during

an experiment, although in practise the minimum repair time allowed was 10 minutes.

For experiments aiming at quantification of initial DSB yields and distribution, initial frag-

mentation is intended inclusive of a maximum of 90 seconds DSB repair throughout this

Thesis. The plastic tips used with the Gilson pipettes are always pre-cut to avoid shear

forces that could introduce unwanted additional DSBs.

The number of cells to be embedded in each plug is chosen on the basis of frag-

ment size detection limits requirements. In order to characterise the mechanisms of

DSB induction and rejoining, as well as to test different models for DNA organisa-

tion in the nucleus, it is desirable to carry out measurements of DNA fragmentation

over the widest possible molecular weight range, ideally covering the size of the en-

tire Genome. PFGE has significantly improved the sensitivity of conventional constant

field gel-electrophoresis (CFGE) approaches, by broadening the molecular weight region

where DNA fragments can be detected. Nevertheless, the sensitivity of PFGE assays is

limited by several factors:

1. specific DNA labelling efficiency,

2. radiation dose,

3. methods of analysis of PFGE data.

The first two factors deal with the design of the experiment, whereas the third factor

is more related to the way data are analysed after the laboratory procedures. As for the

labelling efficiency, in this project a 14C -based approach has been adopted (§ 2.2.1).

[2-14C ]-thymidine, which is incorporated uniformly in the strands of DNA of dividing

cells, undergoes β decay with a half life of 5700 years. The ejected electron is detected

by means of scintillation counting. Larger DNA fragments contain more thymidine and

hence more disintegrating 14C atoms, per unit time, hence their signal is larger. Detection

of smaller and smaller fragments is most difficult and it would require, in principle:

• the largest possible DNA labelling efficiency that can be achieved, without affect-

ing cell viability. More radioactive nuclei could be employed, which may even be

incorporated in more than one nucleotide. In practise, one cannot increase the

DNA uptake of radioactive material indefinitely, since at some point the endoge-

nous radioactivity would be too high and the radiation dose would be toxic to the

cells. A different approach consists of labelling DNA after the electrophoresis run.

Labelling could be achieved by ‘tagging’ the ends of DNA fragments using a very

radioactive nucleus, like 32P. This procedure has proved unsuccessful since the

ends of DSBs that are produced by radiation are chemically highly variable and
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often not recognised by the enzymes that are employed in the experiment to tag

the fragments with 32P (Newman et al, unpublished observations, and Tobi and

McMillan 1997). Also, DNA can be labelled after the electrophoresis run using a

fluorophore such as Ethidium Bromide, Propidium Iodide or SYBR Green, which

binds specifically to DNA and that can fluoresce by excitation with UV or even vis-

ible light. These techniques are gradually becoming more popular than 14C DNA

labelling, supported by recent advances in computer imaging techniques (Suther-

land et al., 1996).

• a larger number of cells, so that the total number of fragments available in the gel of

any size is increased, thus bringing the signal from smaller and smaller fragments

into the detectable range. An example may help to clarify this concept and pro-

vide an idea of the sensitivity of the technique used in this project. The measured

average activity incorporated into each cell is approximately 0.02 disintegrations

per minute (dpm). With a total diploid genome content of 6.4 Gbp, this means that

every bp in a single cell provides as little as ≈ 3× 10−12 dpm. In theory, it would

then take at least 3× 1012 cells to be able to detect the only one dpm that small

DNA stretches 1 bp long would produce. Nevertheless, for an amount of DNA

mass to be detected by scintillation counting, this must be above the noise level,

so that one needs to count at least 20-30 dpm, not just one. Single cell studies

are not possible using this technique since, in order to reach a level of 30 dpm

one needs the total DNA content of at least 1500 cells. In practise, if one needs to

spread this signal over a wide molecular weight region resolved by PFGE, if one

wants to carry out fragmentation analysis, it takes many more than 1500 cells. As

described in § 2.7, scintillation counting is carried out in several gel segments, in

order to quantify the mass of DNA in many molecular weight size ranges. There-

fore enough signal must be present in each molecular weight range of interest.

But fragmentation of DNA cannot be controlled in a way to compress all the DNA

of a cell in a molecular weight window: fragments of virtually every size are gener-

ated by the DSBs. Many more cells are hence needed, and several breaks have

to be introduced in each cell in order to produce an extensive fragmentation, so

that small DNA fragments become also detectable. A combination of high dose

and large number of cells is needed. That a high dose is required to extend the

experimental observations to smaller and smaller DNA fragments appears clear

from the results in chapters 4 and 5, which are obtained only when doses as high

as 50–100 Gy are employed.

Methods used for data analysis may also have an impact on the overall sensitivity
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of the assay. It has been demonstrated in a number of studies that the use of some

quantities that are related to the number of DSBs may lead to inaccurate estimates of

DSB yields, distribution, rejoining kinetics parameters, and ultimately RBE values (see

for example Prise et al., 2001; Stenerlow and Hoglund, 2002; Stenerlöw et al., 2000).

For all the experiments in this project, 105 − 106 cells were embedded in each plug,

which corresponded to 103 − 5× 104 dpm per plug. As reported in chapters 4 and

5, this approximately translates to a sensitive molecular weight region in the fragment

size range [30 kbp-10 Mbp], although this is only achieved at the cost of exposing the

samples to a dose that is often much higher than what normally used in other radio-

biological investigations. After agarose plugs containing intact cells have solidified in

the casting moulds, plugs are processed for DNA purification, using a lysis solution that

contains proteinases and detergents. These eliminate virtually everything but nuclear

DNA, which is left free of all histones (DNA organisation is described in § 1.2) in the form

of a ‘naked’ double helix. The lysis solution is prepared using 1% N-laurylsarcosyne

(Sigma), 0.5 mg ml−1 proteinase K (Invitrogen) in 0.5 M EDTA. For DNA extraction, the

agarose plugs are held in 1.5 ml plastic Eppendorf centrifugation tubes with a lysis so-

lution volume of 1 ml. These are first stored on ice for one hour, during which the lysis

solution permeates through the outer cell membrane and the nuclear membrane, called

equilibration, but during which it is almost completely enzymatically ineffective, due to

the low temperature. Then the Eppendorf tubes are transferred to a water-bath that

has been pre-heated to 50◦C , where they remain for 24 hours. Only when the tem-

perature is raised, the lysis solution is activated and enzymes begin DNA purification.

If cells were immediately immersed in the lysis solution at 50◦C , this would begin de-

grading the outer cell membrane, and cell sensors located inside the cell’s membrane

would trigger a suicide-like response, which includes endogenous DNAase activity, so

that the DNA would become extensively fragmented, increasing the background damage

already present. After 24 hours of incubation at 50◦C , plugs containing purified DNA are

transferred to 24 wells plates (Corning), where they are washed repeatedly with 1×tris-

EDTA (TE), to remove traces of lysis solution. To help the lysis solution diffuse out of the

plugs, the 24 wells plate is kept on a shaker and the TE buffer is replaced at least four

or five times. The complete washing procedure takes about three hours and ends when

there are no visible traces of contaminating lysis buffer in the wells.

Although de-proteinated DNA in plugs has been previously shown to be stable (Ky-

sela, 1994; Schwartz and Cantor, 1984), in this project DNA has always been pre-

labelled before lysis of the membranes and DNA purification with [2-14C ]thymidine, at

a high cell density per plug, equivalent to a maximum of 30,000-50,000 dpm per plug.

At the level of radionuclide incorporation used here, it is important to minimise the total
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experimental time so that the β decays produced do not lead to significant strand break-

age. Therefore, plugs are stored in a refrigerator at 4◦C for the minimum time necessary

before the gel electrophoresis run, which either starts immediately after the plugs are

washed or within 24 hours from the completion of the washing procedure.

2.6 Pulsed-field gel electrophoresis

Electrophoresis technique allows separation of electrically-charged molecules of

varying size in a semi-solid viscous support by application of an electric field. For DNA,

the support is normally polyacrylamide, for detection of oligonucleotides, or agarose,

for larger fragments, as in this project. DNA is normally negatively charged due to the

presence of phosphate groups (PO−
4 ) in the helix backbone. The total charge of a DNA

molecule is linearly proportional to the size of the molecule itself, often expressed in

base pairs (bp), kbp or Mbp, where size and molecular weight are used as synonyms.

From the dynamics of a body subject to a constant force (for this case that exerted by

the electric field ~E on the charged DNA fragment) and the constant breaking force of

a viscous medium, it can be determined that the speed v of the DNA fragments in the

gels is proportional to the charge Q (in case of the DNA proportional to the size) of

the fragments but inversely proportional to a factor β which is function of the fragments

three-dimensional geometry and the medium viscosity.

v =
QE

β
(2.2)

For a given electrophoresis time, the smaller fragments which have a smaller Q/β ratio

migrate further in the gels since, despite their minor electric charge, they are subject

to minor resistance in the viscous agarose matrix, compared to larger DNA fragments.

Nevertheless, DNA filaments undergo reptation under the action of the electric field. In

practise, the Q/β ratio remains approximately constant for DNA fragments larger than

50 kbp, so that the fragments cannot be separated according to size.

PFGE allows separation of fragments larger than 50 kbp (currently the limit is about

10 Mbp) by explicitly avoiding reptation of long DNA molecules. By pulsing the electric

field in two directions, the fragments maintain a coiled form except for short times when

the fragments undergo partial reptation and penetrate through the pores of the agarose

matrix (Chu et al., 1986; Deutsch, 1988; Schwartz and Koval, 1989) to maintain a forward

vector. This is schematically shown in figure 2.2. Several factors influence the mobility

of DNA fragments and the overall PFGE performance:
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Figure 2.2: The principle underlying PFGE: by pulsing an electric field in two directions,
reptation of DNA fragments is avoided. First, the electric field is stretching the DNA
fragments in one direction. After one pulse switch period, τ , the direction is changed.
The effective direction of migration is shown to the right of the diagram.

1. electric field strength
∣∣∣ ~E∣∣∣,

2. electric field pulsing angle ϕ,

3. electric field pulsing frequency ν, or pulse switch period τ=1/ν

4. ionic strength of the buffer,

5. electrophoresis buffer temperature,

6. gel agarose concentration,

7. total electrophoresis time

DNA molecules are stretched along the instantaneous field direction, until the direction

of the electric field is changed according to the pulse angle, after one pulse period. The

re-orientation time of fragments is related to their size, with larger fragments taking a

longer time to re-orientate than smaller ones. Fragments whose size is such that the

time they take to orientate to the new electric field direction is close to or larger than

the pulse switch period τ will spend most of the time re-orientating to the continuously

changing electric field direction, rather than proceeding further in the gel (Schwartz and

Cantor, 1984). Therefore, only fragments whose size is such that their re-orientation time

is smaller than τ shall proceed in the gel. In practise, the value of τ is ramped between
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a minimum and a maximum value that can be set on the PFGE run controller, so that

ultimately a very wide size range of DNA fragments is separated in the gel according to

their size. The ionic strength of the running buffer and the buffer temperature, which is

maintained stable via circulation through a chiller unit, influence the effective charge of

the DNA molecules. The agarose gel concentration also affects the mobility of the DNA

fragments, as the higher the agarose concentration the larger the viscosity (high β in

eq. 2.2).

Three PFGE protocols have been employed in this project. For electrophoresis, gels

are prepared using 250 ml solutions of 0.8% (w/v) or 1.0% (w/v) concentration of rapid

agarose (Sigma) and TAE or TBE buffer (see tables 2.1, and 2.2 for PFGE protocols

specifications). Gels are cast in purpose-built moulds, equipped with combs for the for-

mation of 30 wells for agarose plugs insertion. Agarose plugs are gently pushed into the

gel wells and sealed with low melting point agarose, prepared as previously described.

Along with the samples that have been irradiated, and in some cases incubated for re-

pair, samples of control unirradiated cells are also loaded onto the gels. Control samples

are processed exactly the same as irradiated samples to evaluate and quantitate the

background damage that is present in the cells or as part of the technique. Treatment of

unirradiated controls in PFGE played a major role in this project as discussed in detail

in the following chapters. Molecular weight markers are also run alongside the unir-

PFGE PROTOCOL I
block 1, 44 hours

electric field strength
∣∣∣ ~E∣∣∣ 2 V cm−1

electric field pulsing angle ϕ 106◦

pulse switch period τ 20–40 min
block 2, 4 hours∣∣∣ ~E∣∣∣ 6 V cm−1

ϕ 120◦

τ 7–114 s
ionic strength of the buffer 1×TAE
running buffer temperature 13.5◦C

gel rapid agarose 0.8% (w/v) in 1×TAE
total electrophoresis time 48 hours
Markers separation region 5.7 Mbp–12 kbp

Table 2.1: PFGE protocol I. Adapted from the protocol of Elia and Nichols (1993).

radiated controls and the irradiated samples for calibration of the gels (see for example

figure 4.1). The molecular weight markers are purified DNA fragments of known molec-

ular weight, either embedded in agarose plugs that are cut to the size of the gel wells, or

in suspension, in which case they are embedded in agarose plugs before being loaded.
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PFGE PROTOCOL II PFGE PROTOCOL III

electric field strength
∣∣∣ ~E∣∣∣ 6 V cm−1

electric field pulsing angle ϕ 120◦

pulse switch period τ 0.1–17.3 s 50–60 s
ionic strength of the buffer 1×TBE 1×TAE
running buffer temperature 13.5◦C

gel rapid agarose 1.0% (w/v) in 1×TBE 1.0% (w/v) in 1×TAE
total electrophoresis time 7.5 hours 18 hours
Markers separation region 285–12 kbp 825–12 kbp

Table 2.2: PFGE protocol II (Newman et al., 1997) and III (Löbrich et al., 1996).

It is assumed that the mobility of each molecular weight marker in the gel is identical

to the mobility of DNA fragments in the samples having the same size of the markers.

It should be noted, however, that the technique cannot fully differentiate between DNA

fragments having different conformations which may influence migration, for example lin-

ear fragments which have been circularised. In general, several markers are adopted, in

combinations that vary according to the molecular weight region that is being explored

with one of the three PFGE protocols used in this Thesis (see table 2.3).

DNA Molecular weight markers
S. Pombe 3·5, 4·6, 5·7 Mbp

S. Cerevisiae 225, 285, . . . 450 . . . 825 kbp . . . 1·02, 1·6, 2·2 Mbp
λ ladder 48·5, 97, 147·5, 198·kbp, ....

8–48 kbp standard 8, 9, 10, 11, 12. . . 48 kbp
1 kbp standard 512, 1024, 2048 bp,. . . 8, 9, 10, 11, 12 kbp

Table 2.3: Size of the linear DNA double stranded fragments that are employed as
molecular-weight markers in PFGE gels.

2.7 Analysis of PFGE gels

After electrophoresis, gels are stained with 0.5 µg ml−1 ethidium bromide prepared

in a fresh buffer for approximately one hour, and then de-stained in fresh buffer on a

shaking platform. A photograph is taken (see figure 4.1) for record keeping with a digital

camera (Cohu) on a UV trans-illuminator, and the image acquired is stored as a 16 bit

TIFF file.

Gels are then cut into sections according to sample type (unirradiated controls, 10 Gy,

50 Gy, repair for one hour, etc) vertically, along the direction of migration, and across the

lanes, according to the position of the molecular weight markers, thus defining molecu-

lar weight regions in which measurements of DNA content are to be carried out. Each
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individual gel section is put in a plastic vial for scintillation counting (Beckman). Before

scintillation fluid is added to each vial, the gel sections are melted so to decrease the

degree of sample quenching, 200 µl of 1 M HCl are added to each vial, and the agarose

sections are melted for two hours in an oven at 95◦C . Once cooled, the agarose remains

in liquid form since the presence of HCl inhibits re-polymerisation. 10 ml of scintillation

fluid (Beckman Ready Safe) are added to the vials and scintillation counting is performed

using a Beckman LS 6500 instrument. Some agarose gel sections from lanes that have

not been loaded with 14C -labelled DNA are counted to monitor background activities.

These sections have similar sizes to the other sections and are treated as mentioned

above. The activities expressed in counts per minute (cpm) averaged over several non-

radioactive samples, per experiment, are then used as the cpm background, to be auto-

matically subtracted by the scintillation counter from the cpm of the radioactive samples.

For quantification of DSBs with all the methods of analysis employed in this project

(chapter 3), the dpm signal measured in each gel segment is first transformed into frac-

tion of total activity detected, Fi. This is obtained by dividing the number of dpm counted

in a given section by the total number of dpm in the gel lane to which the section belongs,

as in eq. 2.3

Fi =
dpm(sectioni)∑
j dpm(sectionj)

(2.3)

Assuming that [2-14C ]-thymidine is uniformly incorporated throughout the DNA, Fi also

measures of the fraction of DNA mass present in section i, characterised by an aver-

age molecular weight Mi = M and a molecular weight range ∆Mi. It can be easily

demonstrated that Fi has the following approximate relationship with M and ∆Mi:

Fi '
n

(
M i

)
×M i ×∆Mi

H
(2.4)

where H in eq. 2.4 is the size of the diploid human genome (in this project this is

known to be 6.4 Gbp, International Human Genome Sequencing Consortium, 2001) and

n(Mi) is the frequency of DNA fragments, normalised to the width of the interval ∆Mi.

The goodness of the approximation in eq. 2.4 depends on the validity of the inequality

∆Mi/M i � 1 (calculations not shown) which translates to the need to cut as many thin

gel sections as possible. On the other hand, thin gel sections contain less amounts of

DNA, which limits detection as described above, so a compromise is required.

The experimental frequency n of fragments is a very useful quantity that can be used

to make comparisons with continuous frequency distributions. This can be related to Fi

using eq. 2.4, as shown in eq. 2.5a.

The number of DNA fragments N that are contained in the section i is a more in-

49



tuitive quantity which can also be estimated using eq. 2.4, as shown in eq. 2.5b, where

N
(
M i

)
= n

(
M i

)
×∆Mi.

ni ≡ n
(
M i

)
' H Fi

M i ∆Mi

(2.5a)

Ni ≡ N
(
M i

)
' H Fi

M i

(2.5b)

The advantage of Ni over ni is that by summing all the Ni values available one has

a direct quantification of DSBs in the experimental region available (see for example

Höglund et al., 2000; Höglund and Stenerlöw, 2001; Pinto et al., 2002). This very simple

method of DSB quantification is described in § 3.2.2.1. The disadvantage of Ni is that

its value strongly depends on the width of the gel section, since the larger the section

the greater the number of fragments. To make data more consistent one should try

to combine gel sections together, so to have comparable numbers of DSBs in different

sections (as shown in Stenerlow and Hoglund, 2002).

Other useful quantities may be defined for analysis of PFGE data. Q values are

obtained from integration of the fragment size mass distribution over varying windows,

delimited by an upper and a lower limit. (Cedervall and Kallman, 1994). Similarly, the

FAR is defined as the fraction of total DNA mass below a certain threshold size k, which

may either be the exclusion size of the gel, defined as the molecular weight size above

which fragments remained trapped in the wells, or the size of one of the markers that are

run with the other samples. If Mmax(j) is the largest fragment in section j, the FARk may

be written as the sum of all the Fj that contain fragments not larger than k, as specified

in eq. 2.6.

FARk =
∑

j:Mmax(j)<k

Fj (2.6)
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Chapter 3

DNA Fragmentation and DSB rejoining

kinetics models

3.1 Introduction

Mathematical models have provided invaluable tools in this project for qualitative and

quantitative analysis of the experimental data that have been obtained as part of the

project. In this chapter, some of the existing models of DNA fragmentation and DSB re-

joining kinetics are briefly presented. It is shown how new models have been developed

in this project from a knowledge of the limitations of previously utilised models available

in the literature. The design of the new models will be described in detail along with their

development with the aid of diagrams, while their application to experimental data can

be found in chapters 4 and 5.

3.2 Analytical models

Analytical models are very useful since they provide ready-to-use mathematical func-

tions that are analytical at least in the experimental data range where regression needs

to be carried out. These functions may be used for regression analysis by virtually any-

one who has access to a statistics computer package supporting least squares fitting

routines. In this project, several analytical functions have been employed for non-linear

regression analysis using χ2 minimisation with the Levemberg-Marquardt algorithm, part

of the Origin data analysis software package (Microcal, Northampton, MA, USA). In

non-linear regressions, the functions employed are non-linear in the parameters to be

estimated. For example, if a is the parameter to be estimated and x is the indepen-

dent variable, in both y = xa and y = a2x, y is non-linearly related to a. Conversely,
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y = ax + bx2 is linear in both a and b. Models of induction of DSBs are described

separately from DSB rejoining kinetics models in this chapter.

3.2.1 Induction of DSBs

When breaks are introduced in a long segment of DNA, fragments of the segment

each of smaller size result, leading to a fragmentation pattern. Such a pattern reflects

the way the breaks were introduced in the original long segment, and how many were

introduced. The greater the number of the breaks, the smaller the average size of the

fragments that are generated. If the breaks are spatially associated, by being preferen-

tially localised close to each other, then one would expect to find many short fragments,

accompanied by fewer larger ones, as shown in figure 3.1. If breaks are introduced

randomly and independently of each other, then one would expect to find a different

fragmentation pattern. In summary, the number of fragments can directly tell us the

number of breaks introduced, while the size distribution of the fragments can give an

indication of how the same number of breaks were distributed. If one could detect all

the fragments generated by the induced breaks, without any limitation on the size of

these fragments, then understanding the breakage mechanism and counting the num-

ber of breaks would be simple. However, human chromosomes are very large (50-250

Mbp) and the experimental techniques that are currently available do not allow detec-

tion of intact chromosomes or some of the smaller fragments that are generated when

breaks are introduced. One may either measure intact chromosomes and some large

fragments, down to several Mbp, as in cytogenetics, or focus on smaller fragments but

neglecting the intact chromosomes. We shall now focus on the second case, since the

region of detection of PFGE is from a few kbp up to a maximum of 10 Mbp (§ 2.6), which

is only a small fraction of the size of the intact human chromosomes. Therefore experi-

mental observations are made in a restricted size region and used to extrapolate to other

size regions, in order to make an estimate of the complete fragmentation pattern.

Early experiments employing PFGE to measure DNA fragmentation also faced prob-

lems with quantifying the number of DSBs that caused the fragmentation of chromosomal

DNA. DSB yields were initially expressed indirectly as fraction of DNA released from the

gel wells, versus dose (Ager and Dewey, 1990; Iliakis, 1991; Stamato and Denko, 1990).

Since this quantity is not linearly related to the number of DSB (Blöcher, 1990) a mathe-

matical model is needed to estimate breakage yields from experimental measurements

of DNA fragmentation.

Models of DNA breakage that assume random location of breaks are the most com-

mon by far. Random may be generally considered as a synonym of stochastic. Never-
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Figure 3.1: Random vs spatially clustered breakage mechanisms. In both panels, four
breaks were introduced in the original intact segment shown above, leading to the forma-
tion of five smaller fragments. In the left panel , the breaks are distributed randomly on
the intact segment, independently of each other, producing fragments of various sizes
which are grouped in a frequency histogram. Right panel : if the same four breaks
are located in spatial association, not independently of each other, smaller fragments
are produced compared to the picture shown on the left, and no intermediate sizes are
detected before a much larger fragment is found.
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theless, in DNA fragmentation, randomness has commonly, although improperly, been

referred to a phenomenon that is more than just stochastic. In fact, random breakage of

DNA is often thought of a breakage mechanism such that individual breaks are located in

a chromosome, or in the entire genome, according to a uniform probability distribution,

randomly. This is equivalent to saying that breaks have the same probability of being

located anywhere in the DNA, independently of each other. A random but different pro-

cess may be one that locates breaks according to a normal distribution centred around

a breakage hot-spot, which may be regarded as an example of a process where breaks

are clustered. This is discussed separately in § 3.3.1.1. From the random breakage

model, a number of analytical functions have been independently derived that can de-

scribe very general experimental data of DNA sedimentation, a leading technique before

filter elution and electrophoresis were introduced (Charlesby, 1953; Litwin, 1969; Mon-

troll and Simha, 1940). When electrophoresis techniques became available, the random

breakage model was invoked again to derive analytical functions that could be used to

describe typical electrophoresis data. These recent applications of the random break-

age model are briefly presented in the following sections. It is worth stressing that the

methods of analysis that follow may differ in the way they are applied to analysis of data,

but the breakage mechanism that is assumed is always the same, namely breaks are

induced randomly and independently.

3.2.1.1 Integral approaches: the Q function and FAR analysis

In electrophoresis experiments, the irradiated DNA is distributed along several gel

lanes along the direction in which the electric field was applied (or the effective direction

in pulsed field gel-electrophoresis, § 2.6). With the aid of molecular-weight markers,

one can define regions of the gels in which the mass of DNA within each section can

be quantified. Both the Q function method and the FAR method provide an estimate of

the number of DSBs that should have been randomly and uniformly distributed in the

genome to cause a DNA fragmentation that resembles that observed experimentally.

From the observation of the DNA fragmentation pattern in a limited molecular weight

region, these methods attempt to extrapolate to the total DSB yield, assuming random

breakage occurred.

The Q-function method was proposed by Cedervall and Kallman (1994) and subse-

quently revised (Cedervall and Lange, 1998; Cedervall and Radivoyevitch, 1996; Ced-

ervall et al., 1995). Quoting from Cedervall and Kallman (1994), the Q-function method

is mathematically equivalent to an integration of the DNA fragment size distribution as

described by Contopoulou et al. (1987), which is presented in § 3.2.2.2 and provides

the same results, although via an independent derivation, of the FAR method by Blöcher
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(1990).

PFGE techniques are intrinsically more sensitive to the presence of large fragments

rather than to small ones. This is simply because the signal measured with PFGE is

proportional to the mass of DNA, and one very large DNA fragment weighs more than

many much smaller fragments. The Q-function and the FAR method are examples of

integral methods, because they require that the experimental DNA mass distribution is

integrated over a relatively wide molecular weight range, compared to other methods

that are described in the following sections. Since the signal from fragments of different

sizes is accumulated in the Q-value or in the FAR-value, the major disadvantage of this

fragment size-dependent approach is that one cannot easily detect any fine structure

in the fragmentation patterns. For example, fragmentation patterns caused by radiation

of different LETs due to single charged-particle tracks traversal of chromatin structures,

would not be easily detected when integral approaches are employed (Prise et al., 2001).

In its most recent version, the Q-function method is employed to analyse DNA frag-

mentation data in a large molecular weight window which is selected at the tail of the

DNA mass distribution, consisting of smaller fragments, rather than focusing on the frag-

ments of larger molecular weight (Cedervall and Lange, 1998) which make the analysis

insensitive. An interesting feature of the Q-function method is that is does not require

a correction of experimental data for the DNA damage that is estimated from measure-

ments on the unirradiated control samples. In his PhD thesis, Cedervall mentions the

presence of unwanted background damage in PFGE and describes potential ways to

correct data for it. Due to the experimental procedures, additional DSBs are introduced

independently of radiation (see chapter 2). These additional DSBs cause a variation in

the fragment size distribution that is produced by radiation, thus biasing the experimental

datasets. Corrections made directly on the experimental data for the effect of the back-

ground damage are error prone and do not seem to eliminate the problem (§ 3.2.2.3).

Rather than correcting the data for the background damage, the Q-function method as-

sumes that the effect of the background damage to DNA is like a dose-shift, which is

based on the hypothesis that radiation and background damage distribute DSBs ac-

cording to the same mechanism. The Q-value is related to the radiation-induced yield

of breaks per Mbp r, the size of the marker below which the mass is accumulated k,

the average chromosome size S and the number of breaks per Mbp due to background

damage, rb as detailed in eq. 3.1.

Q =
1

A

{
1− exp[−k(r − rb)]

[
1 + k(r − rb)

(
1− k

S

)]}
(3.1)

The influence of the experimental background damage on all the measurements car-

55



ried out on the irradiated samples has had a central role in the present project. As

discussed in § 3.2.2.3 and in § 6.1, treatment of the PFGE experimental background

damage is a complex problem which is not satisfactorily solved neither by subtraction,

or by considering the mechanism of its induction equivalent to that of radiation. For this

reason, the Q-function method has not been adopted during this project. For integral

DSB quantification methods, the more widely diffused FAR-method has been preferred

to the Q-function method.

The FAR analysis method was proposed by Blöcher (1990) and has been widely

adopted for the analysis of PFGE data, particularly in DSB rejoining measurements (as

in Kysela, 1994; Kysela et al., 1993b) and as a popular predictive assay for radiotherapy

outcome (see for example Kiltie et al., 1997, 1999). The popularity of the FAR assay lies

in its simplicity and in the assumption that it can be used as a marker for DSB yields

and provide biologically relevant answers from analysis of data that are relevant for both

radiotherapy and several end-points in radiation biology. The FAR is the amount of DNA

mass smaller than a fixed threshold size as a fraction of the total DNA content per cell,

defined in eq. 2.6. The threshold is normally the gel exclusion size, i.e. that of the largest

fragment leaving the loading wells, determined by the electrophoresis protocol used, but

it may also be the size of any molecular weight marker loaded in the gel wells. The

analytical function that describes the relationship between FAR, number of breaks and

molecular weight is, as defined in Blöcher (1990):

F<k = 1− exp

(
−rk

n

)
·
[
1 +

rk

n

(
1− k

n

)]
(3.2)

Based on random breakage, eq. 3.2 predicts the fraction of DNA mass F<k of DNA

below a threshold size k (the FAR with k threshold) due to fragmentation of a polymer,

in this case a chromosome, of initial size n after the induction of r uniformly distributed

breaks. Eq. 3.2 describes the dependency of FAR on the number of radiation-induced

breaks only. Since experimental background damage is also present, the data need

to be corrected for the background damage before FAR analysis with eq. 3.2, in order

to eliminate the influence of the DSBs that are not introduced by radiation. The type of

correction that has been carried out on FAR data during this project, and similarly in many

other published works, is simple subtraction of FAR values measured in unirradiated

controls from the corresponding FAR values measured in the irradiated (and rejoined

if prescribed) samples. Other groups have employed a correction for the background

damage with the FAR method similar to that of the Q-function method described earlier

(Belli et al., 2001, 2002). A correction based on a subtraction of FAR values assumes

additivity, but the FAR is non-linearly related to the number of breaks (Blöcher, 1990), so
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that subtraction of FAR values does not imply subtraction of number of breaks (see also

Pinto et al., 2000). As for the Q-function method, the FAR value at a given dose, hence

a given r value in eq. 3.2, is weighted by the presence of the largest DNA fragments,

which can be excluded by lowering the exclusion size k, to consider only the production

of smaller fragments.

In early PFGE experiments, FAR was the method of choice for quantification of ini-

tially induced DSBs and subsequent repair. Experiments showed that one could mea-

sure radiation-induced fragmentation of DNA of mammalian cells due to DSBs with as

little as 2.5 Gy (Stamato and Denko, 1990). When expressed as FAR, the experimental

background damage caused extraction of a few % of the total DNA mass at maximum

(Kysela, 1994). More recently, the apparent low levels of background damage, measured

by FAR methods, have been found to conceal a very high level of DSBs (Belli et al.,

2002; Höglund et al., 2000; Pinto et al., 2000, 2002) when fragmentation analysis is per-

formed (see § 3.2.2 and following). There has been increasing experimental evidence

questioning the validity of FAR approaches. Above all, there was a lack of correlation

between RBE values measured for the initial yields of DSBs and biological effects such

as reproductive cell death or mutation for different radiation qualities (Heilmann et al.,

1995; Prise et al., 1998, 2001). To overcome this problem, studies employing PFGE

techniques have moved toward a new type of analysis: detailed observation of the frag-

mentation distributions after induction and repair of DNA DSBs (Höglund et al., 2000;

Höglund and Stenerlöw, 2001; Löbrich et al., 1996; Newman et al., 1997, 2000; Pinto

et al., 2002; Stenerlow and Hoglund, 2002; Stenerlöw et al., 1999) to include DSBs that

FAR with Mbp-sized thresholds fails to detect. The following paragraphs deal with the

analysis of DNA fragmentation, using the fragmentation analysis procedure.

3.2.2 Fragmentation analysis

Due to the sensitivity restrictions of current PFGE techniques, one cannot mea-

sure the number of fragments of any size with an infinite resolution. Whether video-

fluorometry or radioactive labelling techniques are employed for detection of DNA frag-

ments, the best that can be done is to accumulate the mass signal of fragments in a

molecular weight range; the higher the sensitivity, the narrower the molecular weight

window that can be observed. For integral approaches, this window represents the ma-

jor part of the molecular weight range that is resolved in the gels after electrophoresis.

For FAR, the total mass below a specified threshold is integrated. Alternatively, one can

measure the fraction of DNA in several, narrow windows, which added together cover

the same range as for the FAR method, but providing multiple determinations of DNA

57



mass fractions in several contiguous molecular weight regions.

With the aid of the set of equations 2.5, one can relate the fraction Fi of DNA mass,

measured in each of the gel section i, identified by the positions of the calibration mark-

ers (see § 2.7), to the frequency ni or number Ni of DNA fragments. While the number

of DNA fragments strongly depends on the width of gel sections, the frequency is nor-

malised to the width of the molecular weight range, showing less dependency on how

the gel was cut. In fact, both quantities depend on several properties of the gel regions,

namely how much DNA mass is present, the average size and the molecular weight

range (eq. 2.5). If the same gel was analysed with many different sectioning arrange-

ments, as can be done by virtual sectioning using quantitative imaging techniques (as

in Sutherland et al., 1996), the frequency and number of breaks values would vary, al-

though the ultimate result of the fragmentation analysis should remain approximately the

same. Nevertheless, if the assay allowed detection of DNA fragments reflecting break-

age of fine chromatin structure, this would be best observed for specific gel sectioning

schemes that isolate fragments whose size is close to the expected size (figure 3.10).

The measured frequency distribution n(M) can be analysed with theoretical frequency

distributions derived from random breakage assumptions, as described in § 3.2.2.2 and

§ 3.2.2.3, or with numerical models, which can extend from random breakage to DSB

clustering concepts (§ 3.2.2.3). Alternatively, the number of fragments in each section

may be used for a more straightforward type of analysis, called direct quantification.

3.2.2.1 Direct quantification

Eq. 2.5b allows conversion of the measured fraction of DNA mass Fi to the num-

bers of fragments in a given gel section, Ni. It should be remembered that, starting

from one long fragment, the total number of smaller fragments created after breakage is

equal to the number of breaks plus one (compare to figure 3.1). This simple relationship

nevertheless does not apply to total number of breaks induced per cell and number of

fragments whose size is contained in a specified molecular weight interval. The corre-

spondence in this case can be understood if the DNA fragmentation pattern is observed

globally, rather than locally (see also § 3.2.2.3. Cumulative addition of the Ni values for

all the sections available in the gel allows the total number of fragments present in the

region covered by the markers in the PFGE run to be quantified. Since fragmentation

of the human chromosomes may lead to DNA fragments of size larger than the largest

molecular weight markers resolved in the gel, the fragmentation pattern that is observed

experimentally is incomplete, hence, direct conversion per se under-estimates the total

number of DSBs per cell.

To extrapolate to the total DSB yields, some assumptions are needed. For example,
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it is convenient to assume that the number of breaks present above the largest DNA

marker, for example the PFGE protocol-specific exclusion size ε, is negligible compared

to that measured in the gel lanes. In experiments measuring the initial induction of DSBs,

this is referred to as ‘high-dose approximation’ (Höglund et al., 2000; Stenerlöw et al.,

2000) because at high doses very few large fragments, large enough to remain trapped

in the wells, are left. For DSB repair experiments, after long incubation times, double

stranded fragments will have been joined to each other to the extent that a significant

proportion of them may be above the largest marker, and the high-dose approximation

could be inappropriate.

For extrapolation from the (under-)estimates of the direct quantification to the total

number of breaks per cell, an alternative approach is proposed in this project. This

approach makes the assumption that random (and uniform) breakage holds, using the

broken stick method, eq. 3.4. A functional relationship is provided between the number

of fragments measured in any molecular weight region [M1, M2] and the total number

of breaks µ that should be present in the entire genome if random breakage holds. This

is obtained from integration of eq. 3.4 in [M1, M2], which results in the approximate

relationship shown in eq. 3.3 (see also Pinto et al., 2002).

NDSB (µ, H, M1, M2) =
∑

[M1,M2]

Ni ' (µ+1)·
[
exp

(
−µM1

H

)
− exp

(
−µM2

H

)]
(3.3)

In eq. 3.3, H is the size of the human diploid genome. Given the measurement for NDSB

in the interval [M1, M2], the solution for µ may be obtained via numerical inversion of

eq. 3.3. It is also convenient to plot the correspondence DSB(µ), as in figure 3.2 to solve

graphically for µ.

3.2.2.2 Broken stick, Distribution shape

An important step toward a more correct quantification of radiation-induced DSBs

was taken by Contopoulou et al. (1987), later adapted for data analysis from assays

employing gene-probes (Cook and Mortimer, 1991). The broken stick method describes

the frequency n of fragments of size x when µ breaks are introduced randomly and

uniformly in a polymer of initial size H , which in this context may represent the average

size of a human chromosome (139 Mbp), or the size of the complete diploid human

genome, (6.4 Gbp International Human Genome Sequencing Consortium, 2001).

n (x, µ, H) =
µ

H

[
2 + µ

(
1− x

H

)]
exp

(
−µx

H

)
(3.4)
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Figure 3.2: When DSBs are measured using the ‘direct quantification’ method, in a lim-
ited molecular-weight region, the broken stick method can be used to extrapolate to total
DSB yield per cell. Using the solid curve relative to [10 kbp-5.7 Mbp], if 2000 DSBs
are measured, 2300 are predicted to be distributed in the entire genome. The under-
estimation ∆µ is then approximately 15%. When 2000 DSBs are measured in a more
restricted window [1 kbp-1 Mbp] (dotted curve), the error made because of under-
estimation becomes over 100%.
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For data analysis with the broken stick method in this project, experimental values of

frequency of DNA fragments have been plotted vs molecular weight at a fixed dose, and

eq. 3.4 has been used for non-linear regression analysis for estimation of µ. Alterna-

tively, experimental data can be plotted vs dose, for a fixed molecular weight region. In

this second case, eq. 3.4 may be used again for non-linear regression analysis, but µ

is replaced by r × D, where D is the dose and r is the estimated breakage yield per

unit dose. This second type of analysis with the broken stick method is illustrated in

the work by Newman et al. (1997). Correction of experimental data for the effect of the

additional unwanted DSBs introduced during the experimental procedures has been car-

ried out by simply subtracting the frequency values measured in the unirradiated control

samples from the corresponding values measured in the irradiated samples, for each

molecular weight region available in the gels. As for FAR approaches, this correction is

an oversimplification (Pinto et al., 2000, 2002). A high-dose approximation of the broken

stick method was derived several years earlier by Lehmann and Ormerod (1970). This

non-integral approach was found to be particularly sensitive to the shape of the DNA

fragmentation pattern by Cedervall et al. (1995), who called it the ‘distribution shape’

method. Lehmann and Ormerod applied random breakage concepts to describe the

same relationship n(x), reported in eq. 3.5.

n(x) ' µ2

H
exp

(
−µx

H

)
(3.5)

It can be easily seen that eq. 3.5 is a good approximation of eq. 3.4 when µ becomes

large and x � H . The first condition is satisfied when large numbers of breaks are

present, for example at high doses for initial DNA fragmentation, which at approximately

30 DSB per Gy per cell means a few Gy, but not after long times of DSB rejoining,

when most the initial breaks have been removed. The condition x � H is normally met

in PFGE experiments when human DNA is separated, since the experimental region

analysed contains fragments that are much smaller than the size of the intact chromo-

somes/genome. This would not be met in smaller genomes such as Yeast systems,

where the intact chromosomes are completely separated in the gels.

The analogy between the broken stick and the distribution shape methods may be

also extended to other methods described earlier. Since the broken stick, the distribution

shape, the Q-function and the FAR methods are all based on the random breakage

model, the functions that they provide should be easily convertible into each other, as

schematically shown in figure 3.3.

For analysis of experimental data with the distribution shape method, data are plotted

as frequency of DNA fragments, obtained from mass fraction determinations as shown
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Figure 3.3: The relation between the many implementations of the random breakage
model. The broken stick method was put in the centre of the diagram for illustration,
since any other method could have been used instead.

in eq. 2.5a, on a logarithmic scale versus the corresponding molecular weight on a linear

scale. A linear regression using formula 3.5 allows estimation of the DSB yield per cell

from the slope of the best linear fit. For this reason the distribution shape method has

often been called the distribution shape–slope analysis. The method was applied by

Newman et al. (1997) and by Cedervall et al. (1995), who made a critique to the slope

analysis method and its sensitivity).

3.2.2.3 Background-dependent random breakage method and analysis of control

DSBs in PFGE experiments

With the exception of the Q-function method, all the random breakage implemen-

tations described so far refer to radiation-induced DSBs only, and require some sort

of correction of the experimental data for the unwanted DSBs that are induced during

the experimental procedures. For the Q-function method this statement does not apply,

since this method treats the background breaks as if they were caused by an additional

radiation dose, see also § 3.2.1.1 and Pinto et al. (2000). The background correction

normally consists of subtraction, either of FAR values or of mass fraction values, for

each gel section. The latter, corrected mass fractions are then transformed into number
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of fragments Ni in a given gel segment with eq. 2.5b or frequencies of DNA fragments

ni normalised to the width of the gel section, with eq. 2.5a. Subtracting experimental de-

terminations of mass fractions, to correct for the additional DSBs that are induced during

the experimental procedures, assumes a linear dependence of the DNA mass fraction in

a molecular weight window on the total number of breaks. This is clearly not the case for

FAR (Blöcher, 1990), nor is the case for any method of fragmentation analysis (as also

illustrated in Pinto et al., 2000, and discussed ahead). The problem underlying correc-

tive procedures based on subtractions of mass values is that the de-polymerisation of a

molecule, like the DNA of a chromosome, cannot be described in full by observing the

fragmentation patterns locally, that is, in a restricted molecular weight region delimited

by any two markers in the gel. As more breaks are introduced in a chromosome, larger

DNA fragments are reduced in size, so that the measured mass shifts the length distri-

bution of the fragments toward smaller molecular weight values. Figure 3.4 shows the

fragmentation pattern that results from the super-imposition of the two sets of breaks that

generated the fragmentation patterns shown in figure 3.1. The two distributions of breaks

from figure 3.1 have been re-drawn in figure 3.4 for clarity and the symbols changed. The

one on the top left is caused by random breakage, the other one is caused by a clus-

tered breakage process, although for what follows the two mechanisms could be the

same. Let us assume that the 4 clustered breaks are introduced first: these produce the

fragmentation pattern that was drawn in figure 3.1 (bottom right) where a fragment much

larger than all the others was found. Following, 4 breaks are randomly distributed by ra-

diation, on top of the breaks already distributed, altogether producing the fragmentation

pattern sketched in the bottom cartoon of figure 3.4. It can be seen that while the total

number of breaks is additive, and likewise the total number of fragments, subtracting the

fragmentation pattern obtained after 4 clustered breaks from the pattern obtained from

all breaks superimposed does not lead to the pattern due to the 4 randomly distributed

breaks. In fact, after such subtraction, one even has a negative value for the frequency

histograms at large fragment sizes, since one count in the very large fragments region

is subtracted from zero counts. The mass of the longest fragment that was shown in the

frequency histogram in figure 3.1, right panel, has been distributed among smaller frag-

ments when 4 extra breaks were induced. There is now way one can get that mass back

by means of a section-by-section subtraction of frequency histograms, which results

in under-estimation of large fragments. This can also be seen using the broken stick

method. Figure 3.5 is an additional example that allows to visualise the distortion that is

caused to the fragmentation patterns when size-dependent subtractions are carried out.

The corrected profile obtained from subtraction of the control from the irradiated profiles

is distorted in a way that small fragments are overestimated and larger fragments are un-
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the breaks shown in figure 3.1.
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derestimated, compared to a correct fragmentation profile (see right panel in figure 3.5).

This fragment size-dependent distortion leads to a chain reaction of erroneous observa-

tions. It shall be seen in § 5.3.1 how the experimental inference can be biased by the

subtractive procedures. In the Q-function method (§ 3.2.1.1), experimental data are not

corrected for the presence of the background breaks before non-linear regression analy-

sis. Nevertheless, the Q-function method is an integral approach which suffers from low

sensitivity for smaller DNA fragments, and more importantly makes the assumption that

radiation and background DSBs are introduced according to the same mechanism. One

aim of this project has been the development of a new analytical approach, based on

fragmentation analysis and not requiring any correction to be applied to the experimen-

tal determinations for the background damage observed. This background-dependent

random breakage (BDRB) approach has also paved the way for the development of nu-

merical approaches in this project and that are described in § 3.3 and following. This

following section deals with the derivation of the background-dependent random break-

age (BDRB) analytical approach.

The rationale behind the BDRB approach is the evidence that unwanted DSBs in-

troduced during the PFGE experimental procedures are non-uniformly distributed in the

genome, and should be treated separately from radiation-induced DSBs. In fact, the

shape of the fragmentation profiles observed in the unirradiated control samples in PFGE

experiments suggests that these breaks are spatially associated (like in figure 3.1, right

panel) rather than being distributed independently (Belli et al., 2001, 2002; Erixon and

Cedervall, 1995; Höglund et al., 2000; Pinto et al., 2000, 2002).1 The DNA fragmenta-

tion patterns observed in the unirradiated control samples in PFGE experiments show a

lack of Mbp-sized fragments with correlated excess of smaller fragments of a few hun-

dreds of kbp and below, compared to the fragmentation profiles that are theoretically

predicted from pure random breakage. The mechanism that leads to the production of

these fragments is unknown. The fragmentation patterns in the controls may be empiri-

cally described with a power-law where the exponent is a real number (Pinto et al., 2000,

2002). Power-laws normally indicate phenomena with strong correlations. A power-law

does not normally add much information as to the fundamental underlying mechanisms,

and has appeared in radiation biology several times, for example in the context of late

effects of radiation on normal tissues (reviewed in Alper, 1990). In the specific case of

background DSBs observed in the unirradiated controls, it seems that these are prefer-

1Deviations from random breakage in the unirradiated control patterns were in fact not described by
Erixon and Cedervall on the basis of their experimental determinations of DNA mass fractions. Data from
Erixon and Cedervall (1995) were converted to frequency ni of DSB using eq.2.5a and information on the
molecular weight markers found in the original paper, in order to estimate deviations from uniform random
breakage in the unirradiated controls (not shown here).
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Figure 3.5: The distortion produced in a DNA fragment-size distribution that is obtained
from subtraction of two other distributions. Left panel : DSB frequency distributions from
eq. 3.4 are plotted for several numbers of total DSBs per cell. In the example shown,
a first fragment size distribution relates to 5000 DSBs induced randomly ‘irr+control’,
but it is assumed that only 4000 are due to radiation (random breakage) the remaining
1000 being induced during the manipulation of the samples, also based on a random
distribution . When only these 1000 DSB are allocated one has the pattern referred
to as ‘control’. Subtraction of the background signal from the total signal produces a
corrected profile (net) which is significantly different from the true fragmentation pattern
caused by 4000 DSBs only (target). Right panel : The difference between the corrected
and the target profiles (net-target) are displayed in the same molecular weight region,
but on a linear y axis to show the positive and negative distortions that arise from the
subtraction procedure. Absence of distortion would give the straight line for y = 0 shown
on the plot. It is clearly shown how the subtraction leads to a fragmentation pattern with
excess (> 0) of fragments smaller than approximately 1 Mbp, accompanied by a defect
(<0) of larger Mbp-sized fragments. What is shown here is a simplification, since one
cannot describe the background profile as due to DSBs induced randomly (see text).
The background breaks are in fact preferentially induced in close spatial association,
leading to fragmentation patterns that are very different from those produced via random
breakage (figure 3.7).
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entially accompanied, rather than uniformly along chromosomes. It is unlikely that the

number of DSBs measured in the unirradiated controls is representative of a DNA frag-

mentation in vivo. Nevertheless, studies employing γ-H2AX hybridization (Paull et al.,

2000) which is believed to occur at the sites of DSB specifically, show a background level

of endogenous DSBs in unirradiated cells (Kai Rothkamm, personal communication).

Before developing a relatively complex mathematical approach for the description of

radiation-induced DSBs on top of background DSBs, it is worth considering whether the

fragmentation patterns observed in the unirradiated controls are a consequence of a

pre-existing background damage, or systematic errors are biasing the experimental ob-

servations. Stenerlöw et al. (2000) suggested that background breaks may represent the

effect of amplification of a signal in a molecular weight region where the measurements

are dominated by noise. This possibility is considered in the discussion chapter (§ 6.1).

Mathematical details of the derivation of the BDRB model are reported in Pinto et al.

(2000) and in Pinto et al. (2002) with some improvements. The principles behind the

BDRB analytical approach are mentioned here. The fragmentation of a long chain poly-

mer described by the broken stick method by means of eq. 3.4 is the starting point for

the derivation of the BDRB method. In the broken stick approach, it is assumed that the

only DSBs present are those induced by radiation, and that without radiation one has a

mono-dispersed fragment size distribution that is centred, for example, on the average

size of an intact chromosome.

Rather then having a mono-dispersed fragment-size distribution before irradiation, in

the BDRB approach it is assumed that radiation adds DSBs on top of a poly-dispersed

distribution, which is the one that is measured in the unirradiated controls of each exper-

iment. Being based on the broken stick method, the BDRB method is implicitly based on

the assumption that radiation induced DSBs are distributed randomly and uniformly. It

is also assumed that DSBs are introduced during the sample manipulation procedures

independently of radiation-induced DSBs, hence it is not relevant which mechanism acts

first. It is likely that the background breaks are introduced after radiation in the experi-

ments, since samples are further manipulated for electrophoresis (see the experimental

procedures for DNA extraction in § 2.5). It is nevertheless mathematically convenient to

model a situation where the radiation-induced breaks are induced on top of a distribution

of DNA fragments that has already been fragmented due to the sample manipulation pro-

cedures. The background-dependent random breakage approach may then be viewed

as a broken stick approach applied to a continuous distribution of intact fragments of

varying size. In this context, intact is meant only from the perspective of radiation action,

since the fragments have otherwise already been broken down from intact chromosomes

during the induction of background damage. The size of a DNA fragment can only take
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discrete values, although for very large fragments as in this study it is convenient to treat

the size as a continuous variable. Nevertheless, the number of monomers contained in

the DNA fragments detected in PFGE is so large that discreteness can conveniently be

replaced by continuity.

The continuous distribution which is going to be fragmented further by radiation is

that measured in the unirradiated controls. Firstly, one needs a good analytical descrip-

tion of the fragment-size distribution caused by the background-induced DSBs. Since the

mechanism by which the DSBs are introduced is not known, a semi-empirical approach

is used. As mentioned before, experimental data suggest a power-law behaviour, at

least in the region where measurements are available. On double logarithmic scales,

the power-law is shown as a straight line, whose slope is the exponent. A linear regres-

sion on the background frequency of DNA fragments data provides an estimate of the

parameters A and B of the linear model y = A + Bx. In the first derivation of the BDRB

model (Pinto et al., 2000) it has been assumed that a power law can also describe the

fragmentation of DNA in regions of molecular weight above the resolution limit, for frag-

ments that remain in the wells of the agarose gels. Nevertheless, after application of the

model to several experimental data-sets it has often been found that the extrapolation of

the power-law implies an anomalous genomic DNA content, either above or below the

currently estimated size (6.4 Gbp International Human Genome Sequencing Consor-

tium, 2001). The approach has then been updated (Pinto et al., 2002) to preserve the

diploid genome content, which is set fixed by a constraint. For fragments larger than the

exclusion size of the gel ε, or larger than the size of a specific marker, it is assumed that

46 (for human cells) ‘virtual’ chromosomes are present, having for mathematical conve-

nience all the same size C ′, smaller than the original intact average size (H/46), as seen

in eq. 3.6 and 3.7. According to Charlesby (1953), exact details on the size distribution

of intact molecules before radiation introduces breaks does not influence the distribution

that is observed after radiation, provided that each of the original intact molecules is hit

at least four or five times. For this reason, when large numbers of breaks are involved,

it is convenient to assume that the chromosome have all the same size, the average hu-

man chromosome size. For low doses and/or long repair times, the size of the individual

chromosomes should be considered, as for example in the low dose-oriented rejoining-

misrejoining numerical approach by Hill and Johnston (unpublished). The size-reducing

factor FARexp in eq. 3.7 is chosen to depend on the extent of the manipulation-induced

fragmentation, as measured from the unirradiated control samples using the values of

A and B estimated in the former linear regression. This discontinuity in the background

frequency distribution function y(S) in ε does not affect the analytical behaviour of the
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BDRB fitting function in the experimental data region, which always lies below ε.

y(S) =

{
ASB for S∈ [1, ε]

46 δ(S − C ′) for S > ε
(3.6)

where

C ′ =
H

46
· (1− FARexp) (3.7)

and

FARexp =
A

H
· εB+2 − 1

B + 2
(3.8)

The function that describes the radiation-induced DNA fragmentation, derived with the

BDRB approach is written in eq. 3.9, in which µ is the number of radiation-induced

DSBs, to be estimated in the non linear regression, A and B are the parameters of the

background frequency distribution y(S), H is the diploid genome content, ε is the point

of singularity of y(S), and C ′ is as in eq. 3.7.

n(x, µ, H, A,B, ε) = A · µ

H

[
µ

H

ε2+B − x2+B

2 + B
+

ε1+B − x1+B

1 + B

(
2− µx

H

)]
exp

(
−µx

H

)
+ 46 · µ

H

[
2 +

( µ

H

)
· (C ′ − x)

]
exp

(
−µx

H

)
+ AxB exp

(
−µx

H

)
(3.9)

In eq. (3.9), A replaces baseA, with ‘base’ being that of the logarithm used for the lin-

earisation of the power law for estimation of the parameters in eq. 3.6. Formula (3.9) has

been employed for regression analysis of several data-sets, presented in § 4.3.4 and

also in Pinto et al. (2002).

3.2.2.4 Analytical models supporting clustering of radiation-induced DSBs

For medium and high LET radiation, there is experimental evidence for significant

deviations from uniform mechanisms or DSB induction, as evident from results of α-

particle irradiation in § 4 and from several other studies (Belli et al., 2001, 2002; Höglund

et al., 2000; Löbrich et al., 1996; Newman et al., 1997, 2000). In fact, attempts to fit

DNA fragmentation data from experiments employing densely-ionising radiations to ran-

dom breakage models have failed (Kraxenberg et al., 1998). Cluster breakage analysis,

an extension of the random breakage model, has been developed (Sachs et al., 1998),

successfully used to analyse DNA fragmentation data (corrected for the background

damage) after exposure to radiation of about 100 keV µm−1. Other models have been

developed that incorporate mathematical equations in Monte Carlo routines. The ran-
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domly located cluster (RLC) formalism was also successfully applied to subtracted ex-

perimental data from high LET irradiation (Ponomarev et al., 2000; Sachs et al., 1999b).

More flexible models of DSB induction that support clustered breakage are discussed in

§ 3.3.1 in the context of numerical methods.

3.2.3 Conclusions on analytical models of DSB induction

As summarised in figure 3.3, all the analytical models introduced so far are inter-

related, since they are essentially based on the same assumption: the induction of DSBs

by radiation is random, with breaks distributed in the genome uniformly, independently

of each other. Starting from the function derived with the broken stick method, which de-

scribes the DNA fragment size distribution after breaks have been distributed randomly

and uniformly in an originally intact molecule (formula 3.4), one can obtain almost all

the functions that can be derived with the other approaches. The direct quantification

method is slightly different. Although this method is not derived from random breakage

concepts, it may also be supported by random breakage when extrapolating to total DSB

yields per cell. Most of the methods described above may be used to analyse fragmen-

tation patterns that reflect radiation-induced breakage, and the effect of other breaks,

such as those that may be present in the background, is taken into account by sim-

ple subtraction. The subtractions that are normally carried out to correct FAR or mass

fraction values, for each segment, for the effect of the additional DSBs introduced dur-

ing the sample manipulation procedures have been shown to distort the distributions.

Ultimately, this has consequences on the results of the DSB induction and rejoining

analysis, as shown in chapters 4 and 5. A step forward has been made in DNA fragmen-

tation analysis, which takes into account the effect of the background damage on the

fragmentation profiles that are measured in the irradiated samples. Rather than being

subtracted, information regarding the background damage is incorporated in a modified

random breakage model, which is used for regression analysis on experimental data

measured in the irradiated samples. An approach that is conceptually very similar to

BDRB has been derived independently by Belli et al. (2001), and also applied to the

analysis of DNA fragmentation after low LET radiation.

The principle underlying the BDRB analytical approach is used to underpin a nu-

merical version of the method, which extends random breakage concepts to incorporate

DSB clustering, in order to describe fragmentation data also from high LET radiation

(§ 3.3.1.1).
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3.2.4 DSB rejoining kinetics models

In repair experiments of DNA damage, the overall rejoining kinetics and the extent of

repair after long hours of post-irradiation incubation are taken as markers of the sever-

ity of the damage inflicted to DNA. More recently, experimental assays that measure

repair fidelity have become available, provided yields of mis-rejoined fragments located

in different parts of the genome (see Kühne et al., 2000; Löbrich et al., 2000, 1995;

Rothkamm et al., 2001). Repair kinetics plots show the disappearance in time of the

damaged species, in the present case DNA double-strand breaks. Typically these are

represented with bi- or multi-exponential decay in many experiments assessing repair

of several radiation-induced DNA damage species (for clinical and experimental data

of DNA repair kinetics see Fowler (1999) and references therein, for DSBs see Höglund

and Stenerlöw (2001); Kysela et al. (1993a,c); Stenerlow and Hoglund (2002); Stenerlöw

et al. (1999, 2000)). In fact, data on repair of DNA damage can seldom be described

with a single exponential decay. Underlying single or multi-exponential decays is the as-

sumption that repair is a ‘first order process’, in which the repairable unit is the DSB. First

order kinetics means that the repair rate is related to the number of repairable species,

as in equation (3.10). Second order may also occur, with the DSB ends being the re-

pairable entities (reviewed by Sachs et al., 1997b). In second order kinetics, the repair

rate is proportional to the square of the number of repairable species. Zero order ki-

netics is such that the repair rate does not depend on the number of repairable species

present. In this section, the existing models of DNA DSB rejoining kinetics are briefly

described to introduce the kinetic approach that has been adopted in this project and the

new numerical approach that has been developed.

1. First-order kinetics: single or multiple exponential components.

A typical repair formula assuming that DSBs are the repairable entities is

dN

dt
= −λN (3.10)

which mathematically states that repair occurs in proportion to the yield of the

damaged species. The solution to eq. 3.10 is the simple exponential decay N =

A exp(−λt), where λ (or τ = 1/λ) is a repair constant which measures the velocity

of the process. A more general solution of equation (3.10) is provided to allow for

the occurrence of distinct repair kinetics phases:

N(t) = A exp

(
− t

τ1

)
+ B exp

(
− t

τ2

)
+ . . . + K (3.11)

The common interpretation of experimental data that are well described by eq. 3.11
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is that a proportion of DSBs repairs with fast kinetics, while other breaks may repair

slowly. In turn, this is interpreted as due to the fact that the slowly rejoining DSBs

are more difficult to repair and/or they are involved in illegitimate recombination

processes.

2. Second order kinetics.

If the repairable entities are the ends of a double-strand break, then each repair

event involves two ends and the process is said to be of second order. Mathemat-

ically this can be written as:
dN

dt
= −λN2 (3.12)

The case of a purely second order process has been recently described by Fowler

(1999). A physical picture of the role of first and second order kinetics was given

by Tobias (1985): second order may be related to mis-rejoining events, since

each illegitimate reunion process requires two ends, belonging to different DSBs,

whereas first-order may be related to correct repair, since one can see a break

disappearing. From this perspective, the repairable entities are the DSB ends, but

when the two correct ends are joined to each other, this may also be seen as one

DSB being correctly removed, hence the appearance of first order kinetics.

3. variable repair half time (VRHT).

The multiple-component first-order kinetic model has many adjustable parameters,

therefore Foray et al. proposed a simplified model in which a continuous spectrum

of repair probability, reflecting a continuous spectrum of lesion complexity, rather

than two or more types of DSBs (as in eq. 3.11) is postulated and mathematically

represented by a variable repair half time (Foray et al., 1996). According to the

VRHT model, as the process of DSB rejoining continues, only the more complex

breaks are left unrepaired, so that the repair rate is decreased.

4. Kinetics based on DSB-repair enzyme complexes.

From the interaction of repair enzymes with DNA, Cucinotta et al. showed the

natural appearance of slow and fast kinetics components, due to the time delay

that was caused by the action time of the enzymes. If enzymes are not provided

in sufficient proportion to the number of lesions, the pool of available enzymes

becomes depleted and repair cannot proceed according to pure first order kinetics.

Cucinotta et al.’s numerical-analytical model could also describe the kinetics of

the formation of simple chromosome exchanges on the basis of competitive DSB

repair pathways.

5. Mis-rejoining kinetics and size distribution of mis-rejoined fragments.
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Radivoyevitch et al. demonstrated that PFGE and premature chromosome con-

densation (PCC) data support the hypothesis that two types of DSBs exist. One

type of DSBs would be refractive to mis-rejoining, though available for correct resti-

tution of intact sequences. It was suggested that these breaks may be either easily

repairable DSBs, or SSBs on opposite strands, a few base pairs from each other,

which would not be interpreted as DSBs by the cells but could be converted into

DSBs during the experimental procedures, such as during lysis at 50◦C or during

the PFGE run itself (Radivoyevitch et al., 1998c). The other type of DSBs may

be active for mis-rejoining, although they would not be prevented from rejoining

correctly (Radivoyevitch et al., 1998a,b,c).

6. TLK model .

The two-lesion kinetic (TLK) model by Stewart (2001) attempts to link biochemical

processing of the DSB to cell killing. According to the TLK model, there are two

types of DSBs: those that are complex and those that are simple, with different

repair characteristics. The repairable entities are the break ends from both types of

DSBs, for a first and second order rejoining kinetics process, as explained above.

The break ends may form irreversible lethal damages, that is a mis-repair event is

not reversible, or non lethal damages. The model is designed having in mind the

ability to predict cell survival, as well as DSB induction and rejoining rates. Fit to

FAR data from PFGE can also be carried out.

7. Zero order kinetics .

The repair machinery does not answer proportionally to the injury. The rejoining

kinetics rate is constant. An example of zero order repair kinetic model was de-

scribed by Přidal and Lokajiček (1984).

3.2.5 Conclusions on analytical DSB rejoining kinetics models

The picture given above in support of the existence of at least two types of DSBs

may have to be re-considered from the perspective that multiple DSBs repair pathways

exist, and that requirement for a radiation-induced DSB to be repaired with a specific

repair pathway or another are not fully understood (see section 1.4). At least two orders

of complexity may influence DSB repairability:

1. the local complexity of each individual DSB

2. the spatial association of multiple DSBs in specific chromatin domains. The rela-

tive importance of these two orders of complexity is faced in § 5.3 when data from

this project are analysed, and discussed in § 6.3.
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A recent study demonstrated that complex DSB, which should be more frequent af-

ter exposure to high-LET radiation, are often not recognised by the non-homologous

end-joining repair-pathway enzymes, hence are left unrepaired, at least by this pathway

(Winters et al., 2001). DSB repair requiring specific repair-pathways may not proceed

stochastically. In fact, homologous recombination, the predominant pathway in yeast,

requires homologous sequences to become spatially associated, so that DSBs are re-

paired one at a time via a step-by-step process (zero order) rather then proceeding at a

rate that is proportional to the number of lesions present.

In this project, DSB rejoining kinetics data have been preferentially analysed using

the first-order kinetics model, with two decay phases, reported in eq. 3.11. Advances

in the analysis of DSB rejoining kinetics data have been made in understanding the

influence that the additional DSBs induced during the experimental procedures have on

the estimation of kinetics parameters, when any kinetic model is applied.

3.3 Numerical Models

Numerical approaches provide the flexibility that is often needed to solve problems

which are not satisfactorily described with an analytical model, or are too complex for

analytical treatment. For the implementation of numerical models, the C++ program-

ming language has been adopted in this project, since it supports the popular object-

oriented (OO) programming approach also found in Monte Carlo codes. The advantage

of the object-oriented approach is that the programmer can think in terms of objects that

interact with each other according to rules that he/she specifies (see for example the

introduction of the books by Cohoon and Davidson, 1997; Flowers, 2000). Once de-

signed, the objects can be easily re-used throughout the code and extra features may be

added later, if needed, without affecting the meaning of code written earlier and the way

it was used. For the design of the DNA breakage and rejoining models in this project,

the objects DNAfragment and DSB2 have been most useful. Their descriptions are

reported in listings A.1 and A.2 in the Appendix. In the computer-program code, a DSB

object is characterised by the quality of its ends and by its position in one of the 46

human chromosomes. The quality of the break determines the way it is handled dur-

ing the actual computer simulation, particularly for repair. Background breaks are of

type ‘0’ and are not processed by the repair machinery, since it is assumed that these

are not present in viable cells, but are the result of the experimental handling proce-

dures. Repairable radiation induced DSBs are of type ‘1’, whereas chromosome ends

are given a different flag since these may be considered natural, endogenous virtual

2names written in typewriter font refer to C++ program objects or program entities
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break ends (type ‘2’). By selectively tagging several types of double-strand breaks in the

computer-simulations, one can also follow the length distribution of DNA fragments that

are delimited by a given type of break. For example, one may ignore the presence of the

control DSBs. This can be very useful if one wants to have a clearer picture of the phys-

ical process of radiation-induced breakage alone (see also figure 3.12). Also, ignoring

the ‘control’ DSBs is useful if the results obtained from analysis of PFGE data are to be

generalised to other techniques like the premature chromosome condensation (PCC),

where the background damage is negligible compared to the background damage in

PFGE. Other types of DSB quality are conceivable for the purposes of development of

computer simulations. For example, a DSB that is not repairable may be of type ‘3’, and

a mis-rejoining event may also be recorded specifically. Mis-rejoining could not be de-

tected with the PFGE technique employed in this study, hence mis-rejoining events have

not been computer-simulated to fit experimental data from this project.

An object of type DNAfragment is characterised by the size of the DNA fragment

that it represents, the quality of its two ends and its location in one of the 46 chromo-

somes. For correct repair, removal of a DSB is equivalent to saying that two contiguous

fragments have joined to each other to form one larger fragment. Nevertheless, for some

aspects it is more convenient to think in terms of DNA fragments, for example when look-

ing at length distributions. In case mis-rejoining is to be simulated, than one should allow

illegitimate ends to combine, and thinking in terms of fragments and their ends could be

more convenient than using DSBs. The objects DNAfragment and DSBhave been

designed in a way that the pool of double-strand breaks can be transformed into the

corresponding pool of DNA fragments and vice-versa whenever needed, so that one can

think of the set of DNAfragments and that of DSBs on the chromosomes similarly

to dual coordinates that describe DNA fragmentation. Some examples of functions that

operate to make these conversions possible are given in Appendix A.

The standard template library (STL) tools and algorithms have been used extensively

in the program codes. Vectors provided by the library have been used to store all the

DNAfragment and DSBobjects. Sorting and finding routines have been used for the

development of several algorithms incorporated in the computer simulations. A selected

number of examples is also reported in Appendix A.

The numerical models that have been designed and developed in this project are

presented in this section, along with models that have been developed by other inves-

tigators, for comparison. Models of initial DNA fragmentation are described in § 3.3.1,

whereas DSB rejoining models are discussed in § 3.3.3.
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3.3.1 Initial DNA fragmentation

In this project, numerical approaches have allowed us to extend random breakage

mechanisms to DSB clustering, in order to provide a better description of fragmentation

induced by medium-high LET radiation. Sophisticated computer models exist which give

a mechanistic description of the action of ionising radiation on DNA, based on Monte

Carlo charged-particle transport codes, like the PARTRAC approach (see Ballarini et al.,

2000, and references therein) which has been also applied to fragmentation analysis

studies (Friedland et al., 1999, 1998, 1997). Independently developed approaches have

focused on the formation of very small DNA fragments originating from multiple breaks to

the 30 nm chromatin fibre (Holley and Chatterjee, 1996; Rydberg, 1996; Rydberg et al.,

1998). Other recent studies have focused on DNA fragmentation at low doses, including

DSB clustering at the Mbp scale (Ponomarev et al., 2000, 2001a,b).

No attempts have been made in this project to reproduce in any part the models

of induction of DSB by radiation developed by other investigators. Rather, the problem

of the influence of background DSBs (introduced in § 3.2.2.3) on the analysis of every

DSB induction and rejoining PFGE experiment has been addressed. DSB induction

and rejoining models have been designed specifically for the interpretation of the ex-

perimental data that were measured in this project, but the programming approach is

generic. Although the existing models of DNA fragmentation mentioned earlier are often

very sophisticated, they do not take into account the presence of background DSBs and

their effect, probably because the experimental data that the models have tried to re-

produce were already corrected for the background damage. Recently, a Russian group

has attempted to give a mechanistic interpretation to the background damage in PFGE

(Khvostunov and Andreev, 2001).

3.3.1.1 Clustering extensions to the BDRB method

In the analytical version of the background-dependent random breakage method

(§ 3.2.2.3), the size distribution of DNA fragments measured in the unirradiated con-

trol samples of PFGE experiments is described by means of a power-function, as written

in eq. 3.6. This appears as a straight line on a double logarithmic scale, at least in the

molecular weight region that is resolved in the agarose gels. Departures from straight

lines are occasionally observed in the region analysed in experiments, especially for frag-

ments of size 4-6 Mbp (see figure 4.5) and nothing can be assumed about the relevance

of the power-law for larger fragments, outside the experimental region. Nevertheless, it

may be assumed that the power-law still holds, with the constraints given by the con-

servation of the total genome content (an approach also adopted by Belli et al., 2001),
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or that the power-law does not hold, but some large intact fragments are present. More

flexibility may be given to the description of the control fragmentation patterns if a nu-

merical approach is used. Figure 3.6 shows schematically each step of the numerical

simulations of both DSB induction and rejoining developed here. The steps involved in
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Figure 3.6: Step-by-step procedures followed in the numerical simulations of both DSB
induction and rejoining.

the simulation of initial DSB induction are described below, whereas the additional re-

joining module is described in § 3.3.3.1. Briefly, unirradiated control patterns are used as

input data to the simulation to build, stochastically, a collection of background fragments

which meets the conditions set by the inputted histogram (1). Then these fragments

are localised on the 46 chromosomes of each cell, at a random position on each chro-

mosome (2). Radiation-induced breakage is simulated by adding new breaks either in

spatial association, according to a clustered breakage mechanism, or according to ran-

dom breakage (3). This operation is repeated for several cells, and finally an averaged

fragmentation pattern is outputted in the form of a frequency histogram, which is com-
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pared to the experimental determinations of initial DNA fragmentation via χ2 evaluation.

Alternatively, after step 3, if repair is prescribed, a specified fraction of radiation-induced

DSBs is rejoined, and frequencies of sizes of the fragments remaining after repair are

accumulated as above for a fit to the experimental data relative to a certain repair time.

Each of these steps is described in more detail below.

Conversion of frequency histograms to collections of DNA fragments in single-

cells.

In the first step of the computer simulations of DSB induction, and also for DSB rejoin-

ing, the frequency values ni measured in the control samples in one experiment are

read from an input data file and stored in standard template library’s vectors . Each

experimental data set is employed separately in the computer simulations. A collection of

DNA fragments is then generated, stochastically, that conforms to the starting frequency

histogram, as described in figure 3.7. Generating such a collection of DNA fragments is

conceptually the inverse operation of building a frequency histogram from a population

sample. When a frequency histogram is built, data from a population are grouped in sep-

arate bins and the frequencies are counted, so that for a specific arrangement of bins

one has a unique frequency histogram. If the bin arrangement changes, for example if

one has less but wider bins, then the frequency histogram also changes, but for each

bin arrangement there is still one and only one frequency histogram. The frequency his-

togram is used here as an input, and one has to extract from it each time, that is for each

simulated cell, one of many data-sets that conform to the input histogram. For example,

let us assume that in the bin 4.6–5.7 Mbp one measures a total DNA mass equivalent

to 90 Mbp (figure 3.7 can be used as a guide). A number of DNA fragments having size

included in the range specified is generated stochastically, until the total mass of 90 Mbp

is allocated, within a specified level of tolerance. To generate fragments in each bin

stochastically, a probability distribution is required, whose shape and amplitude should

reflect the expected relative abundance of fragments as a function of their size in that

bin. Such a probability distribution may be sampled from interpolation of the frequency

distribution observed experimentally, which was described by means of a power-law in

eq. 3.6 in the analytical version of the BDRB approach. For simplicity, a uniform proba-

bility distribution is used here in each bin, i.e. gel segment. The thinner the gel sections

the more accurate is this approximation. The Mersenne-Twister random number gener-

ator has been employed (Matsumoto and Nishimura, 1998) for the computer-generation

of random numbers according to all the probability distributions used in the simulations

in this project, in its C++ implementation by Richard Wagner. Since generating the col-

lection of DNA fragments that conforms to the input frequency histogram is a stochastic

operation, it is repeated several times, in order to improve statistics, a fundamental re-
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Figure 3.7: A collection of background fragments is stochastically generated using the
information provided by the input frequency histogram. Fragments are first generated
in each bin, stochastically, satisfying mass constraints, then they are shuffled and dis-
tributed on the chromosomes as shown in figure 3.8.
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quirement of any Monte Carlo simulation.

The more variable is the phenomenon simulated, the larger should be the number

of Monte Carlo cycle repeats, to make sure that the variability of the phenomenon itself

is also reproduced in the simulation. The precision of the simulations in this project has

been set to be slightly better than the experimental uncertainties. Interestingly, it takes

less ‘cells’ in the computer simulations, i.e. Monte Carlo cycle repeats, than the num-

ber of cells that are effectively loaded in the gels, to obtain similar uncertainties. The

computer-simulations focus on single cells and on single DNA fragments, with a sensi-

tivity that cannot be currently achieved with PFGE. In practice, the statistical variations

in the results of the simulations on 100 cells have been found to be already significantly

smaller than the experimental uncertainties, which by contrast are achieved on tens of

thousands cells.

A collection of control fragments, i.e. originating from the DSBs induced during the

experimental procedures, as estimated from the unirradiated controls, is again generated

for each cell, so that, in the computer simulation, each cell has a variable background

damage pattern, but always conform to the frequency histogram that is measured in the

experiment. This approach assumes that the background damage that is measured in

the lanes of the unirradiated controls of a PFGE gel is representative of the damage that

is caused to every single cell in the population, rather than to a sub-population. The

hypothesis that the background damage observed is the result of DNA fragmentation in

a cell-subpopulation could be made, as addressed in the discussion, § 6.1.

Distributing the control fragments on 46 chromosomes in each cell

Once the collection of control DNA fragments for a single cell has been generated, the

fragments are randomly distributed on each of the 46 chromosomes. No information

is currently available on the background damage regarding its distribution in the differ-

ent chromosomes, and where on a chromosome they are preferentially located. One

observation available from measurements on the unirradiated controls is the mass of

DNA extracted below a given size, expressed in eq. 2.6, the fraction of activity released

for example below the exclusion size of the gel ε. It is then assumed in the computer

simulations that the FAR value measured in the controls is representative of the pro-

portion of length of each chromosome that is occupied by control fragments (see also

figure 3.8). As for the BDRB analytical approach, 46 chromosomes of equal size, the

average human chromosome size, 139 Mbp, are considered per cell. Typically, control

FAR values are between 5% and 10%. Hence, each chromosome has a region ac-

counting for approximately 5% to 10% of its total length that is occupied by background

breaks resulting in fragments having size ≤10 Mbp. For each chromosome, the loca-

tion of the region populated by background breaks is chosen randomly according to a
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FAR = 7%

7%

chromosome 1

chromosome 2

Figure 3.8: The collection of control DNA fragments is equally distributed on each of
the 46 chromosomes, on a cell-by-cell basis. Background breaks are assumed to be
concentrated in one region, which is also accessible to radiation-induced DSBs. In the
example shown, each of these regions covers 7% of the chromosome size.
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uniform probability distribution (see figure 3.8). The fact that approximately 5% or 10%

of each chromosome is occupied by background DSBs does not imply that this region

is not accessible to radiation-induced DSBs. Background and radiation-induced DSBs

are in fact assumed to be independently allocated. After background breaks have been

distributed on the chromosomes of one cell, background DSBsare labelled to be distin-

guished from the chromosome ends and from the radiation-induced DSBs that are about

to be allocated with the next program module.

Modelling radiation-induced DSBs

With the analytical version of the BDRB approach, analysis of the initial DNA fragmenta-

tion is carried out to estimate the total number of DSBs induced in a cell, at a given radi-

ation dose, for each experiment. Regression analysis is carried out using eq. 3.9, based

on χ2 minimisation with the Levenberg-Marquardt algorithm, implemented in many com-

mercial packages for statistical analysis. Numerical approaches do not normally provide

analytical functions that may be used in the way just described. In some cases it is pos-

sible to follow the way the result of the computer-simulation varies with different values of

the input model parameters, and try to find an analytical function F that describes these

results. The function F would depend on some parameters which are in one-to-one

correspondence with the model parameters, as in equation 3.13. Supposing the model

has three formal parameters, p1, p2, p3, the outcome of the computer simulation may be

described by means of an analytical function of three parameters, t1, t2, t3:

model(p1, p2, p3) ⇔ F(t1, t2, t3) (3.13)

The function F may be used for regression analysis of the experimental data with the

Levenberg-Marquardt algorithm, and the best values for its parameters t1, t2, t3 would be

estimated. Finally, the best values for the original model parameters p1, p2, p3 would then

be estimated from t1, t2, t3 by means of the relationship in eq. 3.13. When such strategy

is adopted, the main goal is to find such relationship. This approach has nevertheless

been found to be too complex for the computer simulations in this project. Without an

analytical function, the model parameters that best reproduce the experimental observa-

tions may still be estimated, but χ2 minimisation should be carried out differently, without

using the Levenberg-Marquardt algorithm. In the present project this has been done on

the basis of a discrete sampling of χ2 values in the space of the computer model pa-

rameters. The numerical extension of the BDRB approach that includes DSB clustering

concepts has several input parameters:

• the number of independent clusters of DSB, Ncl

• the average multiplicity of each cluster, ν
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• the maximum cluster radius, %

• the number of cells in which DNA fragmentation is going to be simulated, N .

N has been normally kept constant to about 100, since this provides results that are

accurate enough, as mentioned earlier. All the other parameters are variable and best-

fit values are to be estimated. A complete computer simulation is run for a certain set

of initialisation values for the model parameters, and a χ2 value is estimated from the

comparison between the experimental data and the outcome of the simulation. For the

particular point in the parameter space, specified by the four coordinates (Ncl, ν, %,N),

one has a χ2 value. The computer-simulation is then repeated each time with different

initialisation values for the model parameters, in practice, several hundreds of different

combinations are tested, and a sorted table of χ2(Ncl, ν, %,N) values is written as the

program runs. Once all the simulations for each of the hundreds of different combinations

of initialisation values for the model parameters are completed, the values that lead to the

simulation with the minimum χ2 are considered the best values of the model parameters,

namely the best fit of the clustered breakage simulation of one particular data-set. On an

Intel Pentium 166 MMX laptop computer a best fit to one data-set was achieved after an

overnight simulation run. When uniform, random breakage, is simulated, DSBs are lo-

cated independently of each other, that is the cluster multiplicity is null, and any property

of the cluster becomes meaningless, like the radius of the cluster. Each chromosome

to be hit is selected randomly, and every chromosome has the same chance of being

hit, given also that in this implementation one has 46 chromosomes of equal size (see

also Sachs et al., 1997a, for the random process of targeting different chromosomes).

Within each chromosome, every stretch of DNA is assumed to be equally exposed to

radiation, hence a single DSB is located randomly, according to a uniform probability

distribution. The difference between the computer simulation of random breakage and

the analytical version of the BDRB method is that the numerical approach provides a

more realistic picture with 46 chromosomes, each carrying background DSBs, on which

additional DSBs are induced by radiation. In contrast, with the analytical version , each

of the fragments defined by the distribution of background DSBs, in practise many more

than 46 chromosomes, is a potential target to radiation; either the fragment ‘survives’

with no hits, remaining of the same size, or it is hit by one or more DSB and fragmented

further, with its fragmentation described by the broken stick approach (§ 3.2.2.2).

As extension of random breakage, n this project, the DSB clustering process has

been designed to simulate clustering of DSBs that is expected to originate from the in-

tersection of a single charged-particle track with chromatin structures, using the simplest

approach possible. Such a process has not been designed mechanistically, i.e. simulat-
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ing the physical passage of a charged-particle, with the accompanied energy deposition

events, in a three-dimensional space filled with folded chromatin, described atom by

atom and attached to nuclear matrix and membrane structures (see for example the

PARTRAC charged-particle transport codes, applied to DNA fragmentation by Friedland

et al., 1999). DSBs have been located on a simplistic abstraction of inter-phase chro-

mosomes, clustered according to rules that aim at summarising the entire physical and

physical-chemical events caused by the passage of a charged particle through the nu-

cleus of a mammalian cell, solely from the perspective of DSB formation. Other types

of DNA damage are in fact not accounted for. Although far less accurate and predictive

than mechanistic-atomistic approaches, the computer models have been designed to a

level of sophistication that allows a good quantitative description of PFGE data with the

experimental precision available. An atomistic model of DNA structure would probably

be superfluous, since the PFGE technique adapted in this project allows quantification

of DNA fragments of at least 10 kbp. Computer-simulation of DSBs of different orders

of complexity, mentioned in § 1.3.1, is also not strictly necessary since all DSBs are de-

tected in the same way with the PFGE assay used. Complexity of DSBs may be inferred

from results of computer-modelled rejoining kinetics, as described following.

For simulation of clustered DNA breakage, the origin of each cluster is one DSB that

is located randomly on one chromosome, as described earlier for pure random break-

age. The radius that defines the interval within which additional, clustered DSBs are to

be located around the origin, on the same chromosome, since inter-chromosome clus-

tering is not considered, is then drawn randomly, its value being limited by a maximum

cluster radius % that is specified as one of the input parameters to the simulation. Each

independent cluster spans over a region of variable size, with such size limited from

above by an inputted value (figure 3.11). It is assumed for simplicity that the radius

of each cluster varies according to a uniform distribution, that is all values between 0

and % are equally likely. This is surely an approximation that could not account for fine

structures in the expected length distributions, as schematically shown in figure 3.10.

Nevertheless, as result of this choice, production of small fragments due to clustering of

DSBs is favoured, as suggested from the experimental evidence. For a uniform distribu-

tion U(0,%), the average value is %/2, so one has an immediate relationship between the

value inputted and the average cluster radius in the simulation. The maximum cluster ra-

dius is a property of both radiation quality and chromatin structure (figure 3.9). For a very

short-ranged charged-particle, one would expect that correlated DNA damage would not

extend beyond a certain number of base pairs away from the primary damaged site. For

low-energy photons, for example, which lead to the production of photo-electrons that

can travel a few nm or tens of nm away from the site of their production, one expects
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Figure 3.9: The maximum cluster radius % used in the computer simulation relates to
radiation quality and chromatin structure. For Ultra Soft X-rays, for example, clustering
of DNA damage due to a single photon may extend only up to a few hundreds of base
pairs, due to the limited photo-electron range in water. For a slow electron, whose range
is sufficient to travel across the 30 nm chromatin fibre, clustering of DNA damage is
expected to extend further. For a high-LET particle, clustered damage may extent up
to several Mbp, and a single particle may cross a whole cell nucleus intersecting one or
more chromosome territories, depending on cell shape.
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correlated breakage at the level of the repeated units that define the 30 nm chromatin

structure, so the maximum cluster radius may be in the range of a few kbp. Ultra Soft

X-rays (USX) are in fact known for their ability to produce highly locally clustered DNA

damage, typical of high-LET radiation, but not regionally-clustered damage at level of

100 kbp or above. For charged-particles of longer range, the maximum cluster radius

may be in the order of a few tens or hundreds of kilo-base pairs, if a single track may

intersect more than one chromatin stretch within a single looped domain. For a particle

that is expected to traverse the whole nucleus, the maximum cluster radius may become

more a property of chromatin structure rather than radiation quality. For very heavy ions,

particle velocity and radial dose distribution may have to be modeled, but this level of

accuracy was not needed in this work (see also Kraxenberg et al., 1998).

Track structure is emulated also by means of another parameter. This additional pa-

rameter for the simulation of DSB clustering is classified as the expected multiplicity of

the cluster, ν. This is regarded as the number of expected additional breaks clustered

around the primary DSB, the origin of the cluster. The multiplicity of a single cluster is

considered a Poisson-distributed variable, so that the multiplicity of each cluster is drawn

randomly during the simulation for each cluster, according to the Poisson distribution with

the expected multiplicity ν that is given as input parameter. In summary, the combination

of a variable cluster radius and a variable cluster multiplicity per cluster aim at simulating

the effect of the intersection of a charged-particle track of varying LET with the many

orders of chromatin structures that can be probed for with the PFGE technique adopted

in this project (see also figures 3.11 and 3.10). These two parameters are not fixed a

priori, but are estimated by means of χ2 minimisation after a large number of fragmenta-

tion simulations are run for different values of these two parameters, along with the total

number of independent clusters Ncl, which is related to the number of independent hits.

The additional DSBs, whose number is set by the multiplicity for the current cluster, are

allocated in each cluster, within the temporary cluster radius from the DSBs that sets the

origin of the cluster, according to a uniform probability distribution, which acts as proxim-

ity function. This may be regarded as another simplification, since it could be expected

that depending on the chromatin structure that is hit, fragments should be produced of

size resonant to the size typical of the specific chromatin structure, as shown in Rydberg

et al. (1998). Nevertheless, despite the choice of a uniform distribution as a simplified

proximity function, the agreement with the experimental data is remarkable, suggesting

that a finely structured probability distribution for the localisation of the clustered breaks

is not necessary to fit data in this particular study. This may be due to the limited sensitiv-

ity of the PFGE technique, which makes detection of fine structures in the fragment-size

distribution difficult. In fact, for each order of chromatin organisation (§ 1.2) there should
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be a certain probability of generating DNA fragments of a particular size, as shown in

figure 3.10. Once the prescribed number of DSBs set by the current cluster multiplicity

has been located in the cluster within the temporary radius, a new cluster is started on

another randomly selected chromosome. In fact, with a probability of 1/46 this may be

the same chromosome where the last cluster was located.

Accumulation of DNA fragment size frequencies.

Each time the computer-simulation has finished processing a single cell, frequencies of

fragments of varying sizes are accumulated using the same bin arrangement as in the

experimental frequency histograms, for evaluation of χ2 for the goodness of the fit. At

the end of the simulation, a final frequency histogram is built, reflecting the fragmenta-

tion pattern averaged from all the cells simulated. Frequencies of DNA fragments are

accumulated from cell to cell during the simulation, since the simulation is attempting

to reproduce data of a PFGE experiment, where one measures a fragmentation pattern

that is averaged over several cells, rather than a single-cell. The design of the computer-

codes written for the simulations allows radiation-induced breaks and background DSBs

to be distinguished from each other. It is thus possible to measure the size-distribution of

fragments that are delimited by DSBs of any type, but in particular by radiation-induced

DSB only. The latter feature is unique to the numerical method, since PFGE measure-

ments refer to the fragmentation pattern due to the background and radiation damage

without distinction (see figure 3.12). Observation of the fragmentation pattern produced

by radiation only may be helpful for an idealised PFGE damage-independent fragmenta-

tion analysis, or for comparison to results from other simulations which normally do not

include the background damage. It may also be useful to focus on radiation action solely,

without the profile shape bias that is caused by radiation-induced breaks.

When DNA fragmentation has been simulated in the prescribed number of cells, that

is a number of Monte Carlo cycles (typpically 100), the final frequency histograms are

built, one to include the effect of the background damage on DNA fragmentation, the

other one excluding the background breaks, to account for the effect of radiation only, as

explained above. The first of the two fragment-size frequency histograms is compared

to the experimental fragmentation pattern, and the χ2 value for the goodness of the fit

is estimated and recorded in the previously mentioned sorted table of χ2 values, in the

appropriate row. Computer simulation of radiation-induced DNA-fragmentation is started

again for different values of number of independent clusters, maximum cluster radius and

expected cluster multiplicity, seeking minima in χ2(Ncl, ν, %,N).
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Figure 3.10: (a) As result of the intersection of a charged particle track with several
chromatin loops, the fragmentation pattern reported in (b) is produced. In (c) the particle
intersects the loops with a different angle producing the fragmentation pattern shown in
(d). If one considers every order of chromatin organisation, for a given radiation quality
there should be a theoretical expected fragmentation pattern, schematically shown in
panel (e) with a solid line, where the pattern that is expected from random breakage is
also shown for comparison with a dashed line. The peaks in the theoretical distribution
are put in correspondence to the many orders of chromatin organisation known (see also
§ 1.2).

88



area where 
background breaks are 

cluster 1

r = 6 Mbp
mult = 3

6 
M

bp

6 
M

bp

origin

origin

cluster 3

mult = 0

cluster 2

r = 3 Mbp
mult = 2

3 Mbp

3 Mbp
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Figure 3.12: DNA length-distributions may be measured for fragments that originate from
background breaks, as well as from fragments whose ends are radiation induced breaks,
in each case ignoring the presence of other types of breaks. Besides, frequencies of
fragments whose ends are of any type can be counted (not shown in figure).

3.3.2 Conclusions on numerical models of DSB induction

The numerical extension of the BDRB method illustrated in § 3.3.1.1 provides a rela-

tively simple method that allows the quantification of the yields and distributions of DSBs

that are induced by radiation of different LETs. The quantitative analysis does not suffer

from the distortions caused to experimental data by conventional methods to correct for

the background DNA damage in PFGE experiments.

Several features of the computer-simulations of clustered breakage developed in this

project have been designed with simplicity in mind, with the intent of providing an un-

biased method of quantification of DNA fragmentation that can be observed in PFGE

experiments, not a comprehensive description of radiation-induced DNA damage. From

this point of view, the method developed in this project is far less sophisticated than sev-

eral other computer-models of DNA fragmentation that have been mentioned in § 3.3.1.

For example, the only type of DNA damage modelled is the double-strand break, and

there is no reference to different types of DSBs and their relative yields. Nevertheless,

the method developed provides an adequate quantitative description of PFGE experi-

mental data, without the need to use highly sophisticated program codes, as shall be

seen in the following two chapters.

The method described has also provided useful data that have been used as input to

another computer-simulation, namely that of DSB rejoining (§ 3.3.3), which has been em-
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ployed for the analysis of repair data in this same project. It is suggested that treatment

of background damage to DNA used here may be incorporated in more sophisticated

computer-models of DNA fragmentation, for a more accurate prediction of yields and

distributions of DSB and possibly even other types of DNA damage.

3.3.3 DSBs rejoining kinetics

Analytical-numerical models of DSB repair exist that focus on chromosome aberra-

tions formation (see for example Sachs et al., 1999a) and mis-rejoining of DNA fragments

(Radivoyevitch et al., 1998b). A novel approach that assumes initial random breakage

and supports illegitimate end-joining, based on proximity of repairable DSB ends is being

developed by Hill and Johnston (unpublished). In their model, Hill and Johnston simulate

low doses of sparsely-ionising radiation and the formation of several types of simple and

complex aberrations, making quantitative predictions that can be tested experimentally

with fluorescence in situ hybridization (FISH) techniques. Unfortunately, these sophisti-

cated computer models of DSB rejoining are either too accurate for PFGE, which also

does not represent the best tool for low-dose investigations of chromosome aberration

formation caused by mis-repair, or are not correctly applicable to the conventional PFGE

data of total DSB rejoining, because of the distortions caused to fragmentation analysis

by the PFGE background damage.

As for the interpretation of experimental data of initial DNA fragmentation, in this

project there has been a need to describe in simple terms, both qualitatively and quan-

titatively, the results that have been collected during the experimental part of this same

project. Background damage in PFGE and how to treat it has played a central role, also

in fragmentation analysis of repairing DNA, hence a correct method of analysis of ex-

perimental data that have not been corrected for the background damage, rather than a

sophisticated rejoining kinetics model, was needed.

3.3.3.1 Modelling radiation induced DSB rejoining kinetics

Background DSBs are presumably not present as frank DSBs in viable cells, so re-

joining of radiation-induced DSBs only has been considered in the computer-simulations.

Part of the discussion focuses on this particular issue, § 6.1. PFGE experimental data

of initial DNA fragmentation do not allow us to distinguish between control and radiation-

induced DSBs. If experimental data of initial fragmentation of DNA are to be used as

input data to the rejoining-simulations, a method must be found to distinguish radiation-

induced breaks from background breaks. To distinguish background DSBs among the to-

tality of the breaks present, a ‘recognise and tag’ approach was developed and employed
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first. A computer-program has been written that first reads the control fragmentation pat-

tern and generates a collection of control fragments in single cells that conforms to the

experimental frequency histogram, using the routines described earlier in § 3.3.1.1. The

procedure then generates a second collection of DNA fragments that conforms to the

measured distribution of the totality of fragments, that is the fragments that are delimited

by DSBs of any type, reading from the experimental data measured on the irradiated

samples. This second collection is generated as described before, only the data relative

to fragmentation induced by both background and radiation damage are used as input.

After these two collections of DNAfragments are converted to the corresponding col-

lections of DSBs (the programming objects described in § 3.3.1.1 and in listing A.1), an-

other program procedure attempts to recognise, among the totality of the breaks present

in the second collection, those that are distributed approximately like the DSBs of type

‘0’ in the first collection. These breaks are then tagged as background breaks. This type

of approach has faced several practical difficulties. To make an association between

background breaks in the first collection and (where only type ‘0’ breaks are present)

and breaks in similar positions in the second collection was quite difficult. The number of

breaks ‘tagged’ was very low, so that most of the breaks present remained attributed by

exclusion to radiation, particularly those that were closely associated, and the approach

has been abandoned.

The solution to the problem of distinguishing background breaks from radiation-

induced breaks for the DSB rejoining kinetics simulations has been provided by the

successful computer-simulations of initial DNA fragmentation based on DSB clustering

(described in § 3.3.1.1 and applied to fit data in chapter 4). These simulations have

in fact provided a method to generate a complete initial DNA fragmentation pattern in

single cells, where DSBs of type ‘background’ and type ‘radiation’ are already well distin-

guished. In these simulations there is no need to ‘recognise and tag’ background breaks,

since the radiation-induced breaks have been located, in a controlled manner, and sepa-

rately, on top of background DSBs that have been distributed earlier. It has been thought

that the initial fragmentation pattern generated in single cells as described above could

be used as the substrate for the rejoining simulation, which effectively becomes an ad-

ditional program module that plugs into the existing program code for the simulation of

initial DSB induction, as shown in the diagram 3.6. In fact, the DSB rejoining simulation is

very similar to the DSB induction simulation, but for a few extra functionalities that allow

rejoining kinetics to be computer simulated for fragments of any size, so that one can

compare the simulated data to measurements of rejoining kinetics evaluated in separate

molecular weight regions, testing specific rejoining kinetics mechanisms. This is shown

in chapter 5 for many experiments.
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Every DSB rejoining kinetics experiment carried out in this project includes samples

that have been irradiated and not incubated for repair of the damage induced. These

irradiated but unrepaired samples are first analysed with the numerical extended BDRB

approach described earlier (§ 3.3.1.1) in order to estimate the relevant parameters that

describe the initial DNA fragmentation. The same parameter values (number of indepen-

dent clusters, maximum cluster radius and expected cluster multiplicity) are then used

in an independent DSB rejoining simulation to generate the initial DNA fragmentation

pattern in single cells, which becomes the substrate of the rejoining program module.

The DSB rejoining kinetics module.

The concept of repair time is not explicitly incorporated in the DSB rejoining kinetics sim-

ulation. The model does not postulate that either first or second order rejoining kinetics

apply, nor single or multi-component exponential repair kinetics (§ 3.2.4). DSBs are re-

paired one after another, according to a zero-order step-by-step process that is similar

to the one suggested by Přidal and Lokajiček (1984), at least from a practical point of

view. The analogy to the model by Přidal and Lokajiček is in fact not extended to the ac-

tual DSB repair mechanism, which they proposed to be based on the formation of pairs

of homologous chromosomes as in the homologous recombination process, a situation

that may seldom apply to repair of DSBs in human cells (see § 1.4).

For a specified fraction of radiation-induced DSBs to be repaired, breaks on differ-

ent chromosomes are individually selected, by randomly choosing the chromosome in

which a break is about to be repaired (if there are any left to be repaired on the selected

chromosome) and randomly selecting the individual break to be repaired on such chro-

mosome. Every DSB is equally likely to be repaired in unit time, and breaks produced

in the same cluster are not repaired in concert. The rejoining procedure may then not

be viewed as the inverse operation of the DSB clustering procedure. Repair is here in-

tended as restitution, or correct removal of double-strand break. Similarly, the process

may be pictured with two adjacent DNA fragments, separated by one radiation-induced

DSB, that join to each other to form a fragment whose length is the sum of the lengths

of the former two. The fact that the breaks are selected at random for removal, during

the simulation, is equivalent to saying that the probability of rejoining two fragments does

not depend on size, and this rejoining mechanism has been given the name of ‘fragment

size-independent rejoining kinetics’.

The rejoining simulation is repeated several times for the specified number of cells,

each time removing a different fraction of the initial DSBs, ranging from 1% to 100%, for

simulation of several different repair stages, up to complete repair, when all but the ir-

reparable background breaks have been removed. For each simulated fraction of breaks

repaired, the resulting fragmentation patterns are described quantitatively by construct-
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ing a frequency histogram as described earlier. Each frequency histogram is stored in

a separate data file and compared to the fragmentation patterns measured experimen-

tally at all the available times of post-irradiation incubation, for the particular experiment

analysed, in order to evaluate the χ2 for the goodness of the fit. For example, the exper-

imental DNA fragmentation pattern measured after one hour of incubation is compared

to each of the patterns obtained after simulated removal of several fractions breaks, and

for each theoretical distribution obtained a χ2 value for the goodness of the fit is calcu-

lated. The simulated pattern which gives the minimum χ2 value gives the best estimate

for the only rejoining parameter to be estimated: the fraction of DSBs repaired at that

repair time, Ft. This procedure is repeated for the experimental data measured at all

the repair times available for the particular experiment under analysis, so that one even-

tually has an estimate, for each repair time, of how many radiation-induced DSBs have

been repaired, assuming that DSBs are simply removed. Nevertheless, there is no gen-

eral functional relationship between any F value and repair time, since F values are

only known for the repair times available. An additional step is required to have a more

complete rejoining kinetics time picture.

The computer-simulation provides a method to quantify the number of DSBs repaired

as if correct repair took place. The estimates obtained for different experimental repair

times may be plotted vs incubation time, in order to evaluate the more traditional to-

tal DSB rejoining kinetics curve. These data can be fitted to a rejoining kinetic model,

assuming for example first order repair, using single or multiple exponential decay com-

ponents (§ 3.3.3). Regressions provide a functional relationship F(t), which can be

inverted to t(F). It is only at this stage that computer-simulated fragmentation patterns

for different fractions of DSBs rejoined may then be associated to time. The greatest

advantage by far is that this allows us now to follow the kinetics, vs time, of fragments

of any size, testing visually the hypothesis of fragment size-independent kinetics. This

type of analysis in shown in figures 5.6, 5.7, 5.10 and 5.11 in chapter 5.

3.3.3.2 Modelling DSB rejoining kinetics on experimental data corrected for the

background damage

Although the lack of accuracy of the subtraction procedure that corrects for the back-

ground damage has been pointed out several times in this chapter, some early rejoining

simulations have been run in this project to describe the rejoining kinetics of experimen-

tal data that were corrected for background damage by subtraction. This analysis is re-

ported in this Thesis for two experiments for illustration purposes, one for each radiation

quality (see figure 5.12) merely to show how significantly different can be the results if

compared to those obtained when data are not subtracted and radiation induced breaks
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only are selectively rejoined, leaving the background breaks untouched.

For rejoining simulations that aim to reproduce the experimental ‘net’ (i.e. corrected

for the background breaks by subtraction) frequency distributions, there is no need to

distinguish between radiation-induced breaks and control breaks, since it is assumed

that the experimental fragment size distributions are consequence of radiation-induced

breaks only. The rest of the simulation is essentially identical to what has been described

above, with breaks to be selected at random on chromosomes also selected randomly,

equivalent to a fragment size-independent rejoining kinetics mechanism.

3.3.4 Conclusions on DSB numerical rejoining models

The numerical method of analysis of DSB rejoining kinetics developed in this project

and described in § 3.3.3.1 is not as sophisticated as other existing repair models, in terms

of hypothesis made on kinetics. In fact, it assumes that breaks are removed one after

another, at a constant rate in an arbitrary time, independent of actual time measured

during DSB repair experiments. A reference to real time is made explicit only at the end

of the simulations, when results are analysed with a first order kinetics model, although

any other kinetics model may be in principle applied. In summary, the rejoining kinetics

model combines analytical and numerical methods. Nevertheless, a major advantage of

the rejoining kinetics model developed is that this allows us to estimate the number of

repaired DSBs without making manipulations to the experimental data that would distort

them and bias the results. This is particularly evident from the application of the same

type of simulation to the experimental data that are either corrected for the background

damage or not corrected, as shown in figure 5.12.

An interesting feature of the numerical method developed for the analysis of DSB

rejoining kinetics data is that it describes the fragmentation of the entire genome in sin-

gle cells, not only in the experimental region where PFGE data may be measured. The

disappearance and reappearance of very large fragments may be followed as rejoining

proceeds toward the restitution of intact chromosomes, well above the limits of resolution

of PFGE assays, but in the sensitive region of other techniques, like in premature chro-

mosome condensation (PCC)-assay. Predictions of fragmentation patterns in regions

unresolved with PFGE requires extrapolations, both to the low-dose region and to large

fragments size region (§ 4.5). For extensions of the DSB rejoining kinetics model to the

analysis of chromosome aberrations, mis-rejoining of incorrect ends should be modelled,

and more detailed simulations of inter-phase chromatin structure and inter-chromosome

clustering of single charged-particles track-correlated DSBs would be needed. This was

beyond the scope of this project.
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Chapter 4

Initial DNA fragmentation:

Experimental results

4.1 Introduction

Results of analysis of radiation-induced initial DNA fragmentation are presented in

the following chapter for both X-ray and α-particle radiation. Analysis using analytical

methods for the quantification of DSB yields and distributions is presented first. Then

the application of numerical methods of analysis of DNA fragmentation is considered,

providing a more detailed characterisation of the DSB clustering properties of the types

of radiation employed in this study. Finally, a computer-simulation of a PCC experiment

measuring initial yields of chromosome breaks is presented, based on extrapolations

from results obtained from PFGE data analysis.

4.2 Raw PFGE output data

Before showing the analysis of radiation-induced DNA fragmentation using PFGE

with a variety of analytical and computer-based methods, it is useful to illustrate the raw

PFGE data, as they are collected from early analysis of electrophoresed gels, in order to

appreciate how these are treated and modified for subsequent analysis. After the gels

are sectioned as described in § 2.7, and after scintillation counting, results are in the form

of a table of dpm per gel section. For a given a gel lane, dpms are then accumulated for

all the sections available, and the measured signal in each section is normalised to the

total number of counts per lane. One thus obtains the fraction of DNA mass present in

each gel section (see also § 2.7). An example of DNA mass-size distribution is shown

in panel A of figure 3.7, where the molecular weight regions to which the measurements
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Figure 4.1: A photography of a typical PFGE gel stained in EtBr and observed over a UV
trans-illuminator. The photography shown refers to the 18 hours electrophoretic protocol
(table 2.2). Molecular weight markers are loaded on each side of the gel. Unirradiated
control samples are located next to the markers on the left, followed on the right by
samples that have been irradiated at increasing radiation doses, ranging from 10 to
200 Gy.
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refer are specified (not to scale).

Mass fraction values are then converted to other quantities as described in eqns. 2.5

for further analysis. The most useful quantities are the number of breaks in a gel section

and the frequency of fragments normalised to the width of the molecular weight interval

defined by a gel section.

4.3 Analysis of initial radiation-induced DNA fragmen-

tation with analytical methods

Several different analytical methods of analysis of radiation-induced DNA fragmenta-

tion have been employed in this project for the quantification of yields and distributions of

DSBs. All the methods of analysis used are based on or supported by random breakage

concepts, according to which breaks in a polymer are introduced randomly, with equal

probability of being located anywhere in the molecule that is being hit, and indepen-

dently of each other (see figure 3.1 for a graphical description of the random breakage

mechanism). The following sections present the result of the analysis of initial DNA

fragmentation carried out with the ‘FAR’ method (which was described in § 3.2.1.1), the

‘direct quantification’ method (§ 3.2.2.1) and the ‘BDRB’ method (§ 3.2.2.3)

4.3.1 Application of the FAR method

The fraction of activity released (FAR) method has been used as representative of

analysis of DNA fragmentation with integral methods, i.e. that require integration of the

DNA mass signal over a relatively wide molecular weight interval (see § 3.2.1.1). Exper-

imental determinations of the fraction of DNA smaller than a specified molecular-weight

threshold k have been first corrected for the background damage caused to DNA by

the experimental procedures. The correction is carried out by subtracting the FAR value

measured in the unirradiated controls from the FAR value measured in the samples that

have been irradiated, for the same integration threshold k value. The FAR value obtained

in this way is considered ‘corrected’ for the effect of the background damage, hence un-

biased and representative of DNA fragmentation produced by radiation-induced breaks

only after a pre-determined dose. Alternatively, background damage may not be sub-

tracted from the FAR measured in the irradiated samples, but it could be treated like a

radiation dose scaling factor (see for example Belli et al., 2001). FAR values corrected

for the background damage by subtraction are then averaged from several independent

experiments, at the same dose. Mean FAR values, together with their standard devia-
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tions, are plotted vs dose, and least-squares regression analysis is carried out in order to

estimate breakage yields per unit dose, using the analytical relationship between FAR,

number of breaks introduced in a cell per Gy r, and integration threshold k, reported in

eq. 3.2. In the analysis of DNA fragmentation with the FAR method, the fraction of DNA

mass measured in a restricted molecular weight region is used to estimate what the to-

tal DSB yield per cell would be to reproduce the experimental findings in that molecular

weight region observed. A question is whether the result of the analysis with the FAR

method, namely the total DSB yield per cell and per Gy of radiation, depends on the

choice of the experimental region where the regression analysis is carried out. For a

breakage mechanism that is purely random (§ 3.2.1) one would expect that estimates

of total DSB yields are not influenced by the choice of the experimental region anal-

ysed. In fact, for random breakage and a given total number of breaks introduced per

cell (to be estimated) the number of DSBs measured in a limited part of the genome

should be linearly proportional to the size of the experimental region under observation.

When expressing DSB yields extrapolated per cell or per unit base pairs, these would be

constant. The picture would be rather different for a breakage mechanism that favours

spatial association of DSBs (see figure 3.1 for comparison to random breakage) lead-

ing to the formation of an excess of small fragments and a defect of larger fragments,

compared to random breakage, as also shown by Höglund and Stenerlöw (2001). By

focusing the experimental observation on smaller DNA fragments only, one would con-

clude that a large number of breaks must have been randomly and uniformly introduced

in each cell in order to observe such an extensive DNA fragmentation. Conversely, when

trying to estimate total DSB yields from quantification of larger DNA fragments, it would

be concluded that a relatively small number of breaks must have been randomly and

uniformly introduced in the chromosomes of each cell to observe such a limited DNA

fragmentation at the level of the fragments of large size. By varying k values in the FAR

analysis one would then expect to find different estimates for r, indicating deviations from

the random breakage mechanism (see Höglund and Stenerlöw, 2001).

For data analysis with the FAR approach, FAR values have been calculated below 12

different molecular weight thresholds k, 8 of which are shown in figure 4.2 in separate

panels (a-h). The DSB yields r estimated can be then compared as function of k, as

shown in figure 4.3, which shows that when large fragments are included in the FAR

integration, the total DSBs yields are higher for X-rays than for α-particles (panels 4.2a-

c). However, as the threshold size is reduced to below approximately 1 Mbp (panel e) the

extraplated yields of DSB induced by α-particles increase above those of X-rays and the

FAR-dose curve for α-particles shifts above that for X-rays. At the largest threshold size

studied, the FAR signal is weighted to the larger DNA fragments, and therefore for more
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Figure 4.2: Panels (a-h) depict FAR values (with controls subtracted, thus ”net”) for α-
particles (�) and X-rays (�) with each panel representing a different exclusion size (k in
eq. 3.2).
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sparsely-located breaks. Widely separated breaks are expected to be produced more

effectively after sparsely ionising radiation. By lowering the threshold size, sparse breaks

are no longer contributing to the integrated signal, and the FAR becomes more sensitive

to the closely associated breaks, which are expected to be produced more effectively by

densely ionising radiation.

Figure 4.3 summarises the estimates for the extrapolated total DSB yield and the

RBE, based on regression analysis, as was shown in figure 4.2, with varying threshold

size. By varying k from 5.7 Mbp to lower molecular weight values, down to 200 kbp,
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Figure 4.3: Results of quantification of DSB yields with the FAR method. Left: total DSB
yields evaluated as DSB per Gy per cell or per Gbp as function of the molecular weight
threshold k: (�) α-particles, (�) X rays. Right: RBE value for DSB induction shown as
function of molecular weight threshold k.

the data points are non-horizontal, indicating a deviation from random breakage as dis-

cussed earlier. With the exclusion of the data shown for k values 48·5 kbp, 97 kbp and

147·5 kbp, where the experimental uncertainties appear to be dominant, linear regres-

sions in the range 225 kbp–5·7 Mbp on apparent scales, i.e. on the semi-logarithmic

scales as shown in the left panel of figure 4.3 result in slopes different from zero at 95%

confidence level (slope B=-9±2 for X-rays and -22±4 for α-particles, with standard er-

ror). It should be stressed that this was observed not only for FAR analysis conducted

on α-particles data, but even for X-rays, suggesting that X-rays could induce DSBs that

are non-randomly distributed. This conclusion will be further analysed in chapter 6 when

results obtained from the application of a variety of methods of DSB quantification will all

be compared. Results obtained with the FAR analysis method, shown in figure 4.3, are
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also summarised in table 4.1.

4.3.2 Fragmentation analysis with the Broken Stick method or the

Distribution Shape method

The ‘broken stick’ method (§ 3.2.2.2) may be used to quantify radiation-induced DSBs

from analysis of DNA fragmentation patterns in which the only breaks present are those

introduced by radiation. The method cannot be used to quantify radiation-induced breaks

when the fragmentation patterns result from more than one breakage mechanism, for

example radiation and PFGE background damage together. In order to adapt PFGE

data for analysis with the broken stick method, experimental measurement of DNA mass

distributions are normally corrected for the background damage by simple subtractive

methods (see § 3.2.2.2). Nevertheless, this type of background damage correction is

flawed, since it is biased by distortions of the fragmentation patterns that are non-uniform

throughout the size-distribution of DNA fragments, as shown in figure 3.5. The biasing

effect of background correction procedures on the experimental inference is also evident

in the estimation of DSB rejoining kinetics in § 5.3.1. For this reason, analysis of both

initial DNA fragmentation and fragment-size distributions during DSB rejoining has not

been carried out with the broken stick method as extensively as with other methods of

quantification of DSBs yields and distributions and will not be shown here. Similarly,

analysis of DNA fragmentation patterns with the distribution shape method (slope anal-

ysis, § 4.3.2) is also biased by the subtraction procedures that are required to correct

the experimental determinations for the background damage. The distortions caused to

the fragmentation profiles by the data correcting procedures in particular lead to the find-

ing that low-LET radiation induces a singificant level of charged-particle track-correlated

DSBs.

4.3.3 Fragmentation analysis with the Direct Quantification method

Individual PFGE experiments have been carried out using one of the three PFGE

running conditions, in which different DNA molecular weight markers are employed, so

that three molecular weight intervals are identified from the smallest and the largest

molecular-weight markers available in each gel, [M1,M2]. Measurements of DNA mass-

intensity have been converted by means of eq. 2.5b to number of DNA fragments for

each gel section, and then added together for every gel section in the same gel lane.

From the number of breaks measured between M1 and M2, i.e. added together from

all the sections available and corrected by subtraction of the corresponding number of
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background breaks, the total DSB yield per cell has been extrapolated using the rela-

tionship reported in eq. 3.3 and plotted in figure 3.2, although a numerical solution is

also possible. Experimental data have been analysed exclusively at 115 Gy for X-rays

irradiation and 100 Gy for α-particle irradiation. Results of fragmentation analysis with

the ‘direct quantification’ method, extrapolated to total DSB yields per cell, are shown in

figure 4.4 for several independent experiments.

DSB yields extrapolated to whole cells have then been averaged for PFGE experi-

ments that are analysed in the same molecular weight interval. Averaged estimates are

reported in table 4.2 together with α-particles RBE values for DSB induction as assessed

by ‘direct quantification’ of DSBs.

Direct Quantification method - Yields of DSBs ·Gy−1·Gbp−1

Radiation Quality 48 kbp-5.7 Mbp 12 kbp-825 kbp 12 kbp-225 kbp
α-particles 5.6 ± 0.2 (•) 8.2 ± 0.4 (N) 10 ± 2 (�)

X-rays 4.7 ± 0.2 (◦) 5.5 ± 0.5 (M) 6 ± 2 (�)
α-particles RBE 1·19±0·07 1·5±0·1 1·6±0·5

Table 4.2: Results of the application of the ‘direct quantification’ method with the supple-
mentary use of a method based on random breakage to extrapolate to total DSB yield
per cell (the method is illustrated in figure 3.2). The analysis is restricted to the 115 Gy
data-set for X-ray experiments and the 100 Gy data-set for α-particle irradiation exper-
iments. The values reported are mean ± s.e.m from the results of the application of
the ‘direct quantification’ method on each separate experiment, shown in figure 4.4. The
mean values were calculated separately per three molecular weight regions. The sym-
bols shown in parentheses in this table indicate that the average values were obtained
from experiments that are marked with the same symbols in figure 4.4.

4.3.4 Application of the BDRB analytical method

The background-dependent random breakage (BDRB) method is described in § 3.2.2.3.

The first step that is required for the application of the BDRB method for fragmentation

analysis is the estimation of the unwanted damage caused to DNA by the experimen-

tal handling procedures. The extent of such damage is quantified by means of a linear

regression of frequencies of DNA fragments measured in the unirradiated control sam-

ples, plotted on double logarithmic scales (linear fit on apparent scales, see § 3.2.2.3).

Figure 4.5 shows the DNA fragmentation patterns measured in the unirradiated controls

of several independent PFGE experiments. A reproducible inverse relationship between

DNA fragments frequency and size of the fragments is evident, approximating to a lin-

ear relationship. Stenerlöw et al. have questioned the reliability of the apparent linear

relationship between the frequencies of DNA fragments measured in the unirradiated
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single dose 100 Gy. Error bars shown represent s.e. from a single experiment. Inter-
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controls and their sizes. In particular, Stenerlöw et al. showed that the linear relation-

ship observed could be the result of a biased operation that allows the conversion from

measured fractions of DNA mass to frequencies of DNA fragments, reported in eq. 2.5a,

and that a fixed line slope would result from a given gel sectioning scheme. The origin

of the such bias would lie in the amplification of measurements that are carried out in a

region that is affected by noise, due to the sensitivity limits of the PFGE technique, as

discussed in § 6.1. Several gel sectioning arrangements have been used in the experi-

ments of this project, as indicated in § 4.3.3, although for experiments with identical gel

sectioning arrangements, i.e. with symbols having the same abscissas in figure 4.5, data

suggest that the slope of the regression lines vary significantly from experiment to exper-

iment, which in turn suggests that the conversion to frequencies of DNA fragments using

eq. 2.5a is unbiased, though this may hold only in the experimental region studied. An
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Figure 4.5: DNA fragment size-distributions measured in the unirradiated control sam-
ples of several PFGE experiments. Each panel shows the experimental frequency of
DNA fragments in an independent experiment, normalised to the width of each gel sec-
tion (see eq. 2.5a). The axes scales are the same on all the panels displayed for better
comparison by eye of the slopes of the best-fit lines. The labels shown beginning with ‘A’
or ‘X’ refer to DNA fragmentation data in unirradiated control samples from experiments
employing α-particle or X-ray irradiation.

excess of larger fragments in the 4·6-5·7 Mbp region is frequently observed, as shown

in figure 4.5, compared to the linear prediction, which may indicate that extrapolations
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of the linear relationship to regions of large molecular weight fragments may be error-

prone and should be avoided. The fragmentation pattern above the size of the largest

DNA marker resolved in the gel has been described in the BDRB method framework

as consisting of 46 ‘virtual’ chromosomes whose mass is set by cell total DNA content

constraints (see § 3.2.2.3). The estimates for the slope and intercept of the best regres-

sion lines are then incorporated in the BDRB function (eq. 3.9) for non-linear regression

of frequencies of DNA fragments produced after irradiation. The limit of validity for the

power-law that describes the fragmentation in the unirradiated control samples is set as

constant parameter, while the extrapolated total number of DSBs at a given dose is the

parameter to be estimated by least-squares fitting. Figure 4.6 shows the best-fits to a

number of data-sets from several independent experiments. Some experiments have
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Figure 4.6: Application of the BDRB method to data from several independent experi-
ments where a 115 Gy dose of X-rays or 100 Gy dose of α-particles was used to induce
DSBs. For all panels, (�) represent single determinations for the frequency of DNA
fragments, per unit base pair per cell, measured in the irradiated samples and not cor-
rected for the background damage. (◦) are the corresponding values measured in the
unirradiated controls. Dotted lines correspond to linear regressions on the unirradiated
control profiles to estimate the parameters ‘A’ and ‘B’ of eq. 3.6, needed for the non-
linear regression with eq. 3.9. Solid lines are curves from the best BDRB fit restricted
to data-points above 100 kbp. The labels shown beginning with ‘A’ or ‘X’ refer to DNA
fragmentation data from α-particle or X-irradiation experiments, respectively.
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provided measurements of DNA fragmentation profiles at multiple dose values, in which

case the BDRB method has been applied to the analysis of data for each individual

dose. The results of the BDRB regressions in these experiments where measurements

are available at multiple doses, for the same experiment, have been plotted vs dose,

and a linear regression has been carried out (assuming linearity of DSBs induction with

dose, forcing the lines to pass through the origin of the axes on the plots, i.e. A=0) to cal-

culate the total DSB yield per cell and per Gy. This is shown in figure 4.7 for one typical

experiment in which samples have been irradiated with an X-ray dose ranging from 11·5
to 230 Gy. Five different dose values have been used for this multi-dose BDRB analy-
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Figure 4.7: An example of linear regression on BDRB results, evaluated on data at
a fixed dose, vs dose, for the same experiment. Each of the (�) symbols with error
bars shown (visible where larger than the symbols) is the estimate, with its standard
error, obtained applying the BDRB method on a data-set at a fixed dose, as shown in
figure 4.6. After data from the same experiment have been analysed at the various dose
points available, the BDRB estimates are plotted vs the corresponding dose value, and
a linear regression is carried out to estimate the breakage yield per unit dose. For the
experiment shown, where X-rays have been used to induce DSBs, the breakage yield
was estimated as (35·3 ± 1·2) DSB Gy−1 cell−1. This value, together with the results
from other experiments that have been analysed in the same way, is plotted in figure 4.8.

sis, per separate experiment (10, 50, 100, 150, 200 Gy for α-particles and 11·5, 57·5,

108



115, 173, 230 Gy for X-rays). Figure 4.8 shows the results of the BDRB regressions on

each of the experiments carried out in this study, expressed as total extrapolated DSB

yields per Gy and per cell (or per Gbp on the right y-axis). A different symbol is used

in figure 4.8 for each radiation quality and each of the three molecular weight regions in

which the method has been applied. Further, a different symbol is used to distinguish

between experiments that are analysed with the BDRB method at a single-dose vs those

analysed at multiple dose values, as shown for one experiment in figure 4.7, given the

same radiation quality and the same molecular weight region analysed.

Results of DSB yields obtained with the BDRB method, plotted in figure 4.8 have then

been averaged, grouping experimental data for X-rays and α-particles, in each molec-

ular weight region. For the averaging procedure, results from experiments analysed at

a single dose value have been grouped together with experiments that have been anal-

ysed at multiple dose points (for the same radiation quality and same molecular weight

region analysed) since no evidence has been found for significant difference between

the DSB yields estimates from one group of experiments over the other. These aver-

aged estimates for the total extrapolated DSB yields obtained with the BDRB method

are summarised in table 4.3, expressed as mean ± s.e.m. together with the calculated

RBE values for initial DSB induction.

BDRB analytical method - Yields of DSB ·Gy−1·Gbp−1

Radiation Quality 225 kbp-5.7 Mbp 225 kbp-825 kbp 225 kbp-285 kbp
α-particles 7·0 ± 0·3 (�,�) 7·6 ± 0·9 (N,H) 9±2 (•)

X-rays 5·5±0·4 (�,♦) 4·9± 0·2 (M) 6·2 ± 1·4 (◦)
α-particles RBE 1·3±0·1 1·6±0·2 1·5±0·5

Table 4.3: Results obtained with the BDRB method applied to several data from indepen-
dent experiments. Each experiment has provided data that have been analysed in one of
the three molecular weight regions shown in the table. Results of the BDRB analysis on
homologous experiments have been then averaged, and the mean ± s.e.m. are shown
in separate columns in the table. Results from individual experiments, in the same ex-
perimental regions reported in this table, are plotted in figure 4.8. Symbols shown in
parentheses here indicate that the average values are obtained from homologous exper-
iments that are marked with the same symbols in figure 4.8.

Table 4.4 summarises the DSB yields estimated with all the three analytical methods

of DSB quantification described.
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Figure 4.8: Results of the BDRB regression analysis performed on several independent
experiments. Symbols shown, with error bars, are best value ± s.e. from regression
analysis with eq. 3.9 carried out on 42 independent experiments. Full symbols show
extrapolated total yields of DSBs from 100 Gy α-particle irradiation data, open symbols
relate to 115 Gy, X-rays data. Experimental interval 225 kbp-5.7 Mbp : single BDRB
regression of X-ray data (�), or BDRB X-ray dose-response (�) as shown for one ex-
ample in figure 4.7, single regression of α-particles data (�) or α-particles BDRB dose-
response (�). Experimental interval 225 kbp-825 kbp : single BDRB regression of X-
ray data (M), α-particles BDRB single regression (N), α-particles BDRB dose-response
(H). Experimental interval 225 kbp-285kbp : X-ray BDRB dose-response (◦), α-particles
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are averaged in separate groups and summarised in table 4.3.
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4.4 DNA fragmentation analysed with numerical meth-

ods

Experimental measurements of initial DNA fragmentation after exposure to α-particles

and X-rays analysed in § 4.3 have also been compared to the computer simulations de-

scribed in § 3.3.1.1. Before the Monte Carlo simulations were run to fit experimental

data, some other simulations were run to test the quality of the random number genera-

tor, the ‘core’ of all the computer simulations in this study. The Mersenne Twister random

number generator that has been employed for all the numerical simulations presented in

this chapter and in chapter 5 has passed a long series of very stringent quality tests of

randomness which are not repeated in this study. Nevertheless, a few tests have been

carried out on the Mersenne Twister random number generator to show its fidelity in

producing Poisson deviates, which have been largely employed in the computer simula-

tion module dedicated to clustering of DSBs on DNA (see § 3.3.1.1). In fact, a random

number generator chosen earlier in this project had to be rejected, since its low accu-

racy resulted in errors in the number of DSBs that were set to be distributed in the DNA.

Figure 4.9 shows the frequencies fi that have been accumulated after 100,000 Poisson

deviates are generated with mean value µ ranging from 0.0 to 3.0, displayed in four dif-

ferent panels, compared to the theoretical Poisson probability distribution Pµ(x) for the

same mean value. Also shown in each panel is the average value x̄ =
∑

i fi · xi calcu-

lated from the simulated fi values, compared to the theoretical mean value µ enclosed

in square brackets. For all the panels in figure 4.9 it is evident that Poisson deviates are

generated with accuracy such that deviations are in the order of 0.1%.

For the computer simulations of DNa fragmentation to be compared to PFGE data

from independent experiments, measurements of DNA mass distributions in single lanes

of PFGE gels are used for the computer-generation of a background collection of DNA

fragments in single cells. Such a collection of DNA fragments is generated stochastically,

according to the method illustrated in figure 3.7, conforming to the experimental fre-

quency histogram measured in the unirradiated control samples and used as input data

to the computer-simulation. The fragment size frequency histogram reflecting the DNA

computer-simulated fragmentation in unirradiated controls is in excellent agreement with

the experimental data (compare for example the experimental control fragmentation pat-

tern and the computer-simulated pattern in figure 4.10). After a collection of background

double-stranded fragments is stochastically generated for one cell, the computer simu-

lates radiation injury by allocating DSBs according to the clustering mechanism that is

described in figure 3.11. The construction of the background fragmentation pattern and

the introduction of radiation-induced DSB is repeated for 100 cells (see § 3.3.1.1 for a
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Figure 4.9: Quality test of the Mersenne Twister random number generator for the pro-
duction of Poisson deviates. Each panel shows the frequency histogram collected after
simulation of Poisson deviates for different average values µ (X), compared to the corre-
sponding expected theoretical Poisson distributions (�). The numbers reported in each
panel are the mean values evaluated from the frequencies,

∑
i=1,100000 fi · i, compared

to the expected mean value shown in square brackets.
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Figure 4.10: Application of the numerical extension of the BDRB method for the quan-
tification of the DSB yield in one particular experiment, where samples have been X-
irradiated with 115 Gy. (◦) experimental fragment-size frequency histogram in unirradi-
ated controls. (•) fragmentation profile observed after 115 Gy. The dashed line rep-
resents the fragment size distribution built from the computer-simulation of background
damage in single cells. The solid line is the best fit of the DSB induction simulation to
the particular experimental data-set shown.
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discussion on the number of cells that have to be simulated in order to limit the uncertain-

ties to below or equal the experimental error) and a fragment-size frequency histogram is

finally built and compared to the experimental fragmentation pattern. This comparison is

made quantitative by evaluation of the χ2 for the goodness of the fit for several different

settings of the computer-model parameters. According to the least squares method, the

result of the computer-simulation of DNA fragmentation is the set of model parameter

values (Ncl, ν, %, N , see § 3.3.1.1) that minimises the χ2 for the goodness of the fit to the

experimental frequency histogram. Since both the experimental and computer-simulated

frequencies of DSBs span over several orders of magnitudes (see for example the y-axis

scales in figures 4.10 and 4.11) and departures of the model from the experimental data

at larger frequencies of DSB values would weigh more in the computation of the χ2, this

is evaluated on the logarithms of the frequencies, for a χ2 minimisation on ‘apparent’

scales:

χ2 =
∑

i

[
log

(
f i

exp

)
− log (f i

th)
]2∣∣log

(
f i

exp

)∣∣ (4.1)

where f i
th and f i

exp are the computer-simulated and the experimental frequency of DNA

fragments values for each gel section i. It should be noticed that the χ2 is evaluated

on the fragmentation patterns that are consequence of both radiation and background

breaks, as also shown for data analysis with the analytical version of the BDRB method

(§ 4.3.4). It is then ideal to have the best possible agreement between the experimental

and the computer-simulated background fragmentation patterns before proceeding with

simulation of radiation-induced breakage, or the χ2 evaluation for the goodness of the fit

would be biased by the inaccurate description of the background DNA fragmentation. It is

evident from the fidelity of the reconstruction of the background fragmentation patterns in

figure 4.10 and figure 4.11 that the numerical extension to the BDRB approach provides

greater fidelity than its analytical version which did not have the same flexibility in the

reproduction of the background pattern (see figure 4.5 for comparison).

The best fit of the computer-simulation of initial radiation-induced DNA fragmentation

to a particular experimental X-ray data-set is shown as a fragment size frequency his-

togram in figure 4.10. For the particular data set shown, the result of computer-simulated

radiation-induced DNA breakage suggests no clustering of double-strand breaks. The

best fit of the computer-simulation yields 3000 randomly and independently located

DSBs. Error bars are not displayed since the points shown in figure 4.10 are single deter-

minations in one particular experiment. Nevertheless, it is estimated that a relative error

in the order of 10% is associated with each data point (calculation not shown). Although

confidence intervals for the estimates of DSB yields (and all the other computer-model

parameters of DSB induction by radiation) are not provided by the simulation from the
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analysis of single experiments, these can be obtained by averaging the results for the

model parameters values estimated in several independent experiments.

An example of the application of the computer-simulation of clustered breakage on

an α-particle data-set is shown in figure 4.11. In this case, the best fit of the computer-

10-7

10-6

10-5

10-4

10-3

10-2

10-1

10 0

10 4 10 5 10 6 10 7

D
S

B
 fr

eq
ue

nc
y 

(b
p)

�

-2

Molecular weight (bp)

A-REP10, t0, 100Gy
600cl mu=3.0 1e7cr, 2400 DSBs

2400 random DSBs

Figure 4.11: Simulation of radiation-induced DNA breakage after α-particle irradiation
in one particular experiment. (◦) experimental fragment-size frequency histogram in
unirradiated controls. (•) fragmentation profile observed after 100 Gy. The dashed-
dotted line represents the fragment size distribution built from the computer-simulation
of background damage in single cells. The solid line is the best fit of the DSB induction
simulation to the particular experimental data-set shown (2400 DSBs, distributed in 600
clusters having average multiplicity 3). The dotted line shows the fragmentation pattern
due to 2400 randomly-distributed breaks.

simulation of clustered breakage predicts that 600 clusters (Ncl) have been randomly

and independently distributed in the genome, each having on average 3 additional DSBs

(ν) randomly and independently located within a radius that varies for each cluster, but

that is always below a maximum value (%) estimated at 10 Mbp. A fragmentation pat-

tern produced by random breakage for the same total number of DSBs predicted in the

DSB clustering simulation, in this case 2400 in total, is also shown for comparison in fig-

ure 4.11. It is evident that the same number of clustered DSBs results in less Mbp-sized

DNA fragments and relative excess of smaller DNA fragments compared to randomly-

located DSBs, overall resulting in better agreement with the experimental fragmentation

pattern. Computer-simulations of clustered DNA breakage after exposure to radiation of

varying LET have been run for several independent experiments. Figures 4.12 and 4.13
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show the best computer-simulation fits to a collection of X-rays experimental data-sets

of DNA fragmentation after 115 Gy and α-particle data-sets after 100 Gy, respectively.

The computer-simulations of DSB clustering have also been run to fit data of experi-
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Figure 4.12: Results of computer-simulations of clustered breakage applied to several
independent X-ray experimental data-sets of fragmentation after a dose of 115 Gy. In all
the panels shown, symbols are experimental determinations and the lines are computer-
simulations

ments where initial DSB induction has been assayed at several different dose values, as

was shown for the BDRB analytical method in figure 4.7. An example of this type of anal-

ysis is shown for X-ray-induced DNA fragmentation in figure 4.14. With the exception of

the fit to the 57·5 Gy data-set, where 1500 independent clusters are predicted with an

average multiplicity of 0·5 and a maximum cluster radius of 900 kbp, the fit to all the

data-sets shown in figure 4.14 suggests random breakage for the particular experiment

analysed.

Application of the DSB clustering Monte Carlo procedure to data-sets relative to dif-

ferent doses also serves as a test of the clustering model employed. When applying the

computer-simulations of DSB clustering to the analysis of initial radiation-induced DNA

fragmentation, it is interesting to investigate the dependence on dose of the computer

model parameters that result from the best fit to the experimental data. Although it would

be expected that the total number of DSBs induced is linearly related to radiation dose,

it remains to be seen whether the other model parameters specific to the DSB clustering

are also a function of dose. For example, it should be expected that the number of inde-
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Figure 4.13: Results of computer-simulations of DSB clustered breakage applied to sev-
eral independent α-particle data of DNA fragmentation after a dose of 100 Gy. For each
panel, the best-fit model parameter values Ncl, %, ν are also shown.
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Figure 4.14: Computer simulations of DNA fragmentation in one experiment at several
different radiation dose values. Samples have been irradiated at 11·5, 57·5, 115, 172
and 230 Gy with X-rays. The bottom-right panel displays the result for the total DSB yield
estimated from the data-sets at different dose values plotted in the other five panels.
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pendent clusters is dose-dependent, while the average cluster multiplicity should remain

constant, if all the breaks in one cluster are consequence of the damage induced by

the same charged-particle track. These conditions should hold as long as independent

clusters remain distant from each other, a condition that may not be satisfied at very high

doses, when clusters induced by different charged-particle tracks may overlap and not

be distinguished any more. In this case it could be expected that the cluster multiplicity

ν should rise, as well as the cluster radius, although the number of independent clusters

should fall since some would have merged together and be counted as a single cluster.

This is not observed for the X-ray data where the DSB induction mechanism appears

to be random. Results of the application of the DSB clustering analysis at several dose

values on a particular α-particle experiment are shown in figure 4.15 as fragment size

frequency histograms that best fit the experimental data. The dose-dependence of the
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Figure 4.15: Computer simulations of DSB clustering for one experiment at several dif-
ferent radiation dose values. Samples have been irradiated at 10, 50, 100, 150 and
200 Gy with α-particles. The bottom-right panel displays the result for the total DSB
yield estimated from the data-sets at different dose values plotted in the other five pan-
els. The dose-dependence of the best fit computer model value-parameters is displayed
in figure 4.16. Focusing on the 10 Gy data set, top left panel, ‘60cl, mu=4, 8Mbp, 300
DSBs’ means Ncl, ν=4, %=8 Mbp, for a total of 60× (4 + 1) = 3000 DSBs.

computer-model parameters relative to the best fits in figure 4.15 is shown for each pa-

rameter in a separate panel in figure 4.16. With the exception of the 200 Gy data-set,

where the result of the best fit appears to be anomalous, perhaps going in the opposite

direction of what predicted above for high doses, the total DSB yield and the number of
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Figure 4.16: Dose-dependence of the computer-model parameters evaluated from the
best fit shown in figure 4.15 for one particular α-particle experiment.
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independently located clusters increases linearly with dose. Conversely, neither the av-

erage cluster multiplicity nor the maximum cluster radius appear to be function of dose,

at least up to the maximum dose employed. Results of the computer-simulation of ini-

tial DSB induction by α particles and X-rays are summarised in table 4.5, averaged from

those shown in figure 4.12 and 4.13. Since the computer-simulations suggest that X-rays

induced double-strand breaks are not clustered, values for the computer model param-

eters that characterise DSB clustering have been omitted in table 4.5 for X-rays. RBE

values for α particles are consequently only shown for the total DSB yield per unit dose.

Summary of DSB clustering properties
Radiation DSBs·Gy−1 per cell Ncl·Gy−1 per cell ν % (Mbp)
α-particles 35±6 5·7±0·5 5±1 9·3±1·2

X-rays 32±5 – 0 –
RBE 1·1±0·2 – – –

Table 4.5: DSBs yields and clustering properties evaluated after the application of the
computer simulation of radiation-induced initial fragmentation to six independent exper-
iments per radiation quality as shown in figures 4.12 and 4.13. Ncl is the number of
independent clusters induced per unit Gy, ν is the expected number of extra correlated
breaks in one cluster (multiplicity) and % is the maximum radius of each cluster, varied
stochastically during the simulation (see also § 3.3.1.1 for a detailed description of the
model parameters). Values shown are means and standard errors (n=6).

4.5 Computer-simulation of a low-dose PCC experiment

In PCC experiments with cells in G1 phase of the cell cycle, chromatin condensation

is achieved after irradiation by fusing the cells that have been irradiated with a mitotic cell

population (Pantelias and Maillie, 1983). After cell fusion and chromosome condensation

are complete, which normally takes about one hour, one can count the number of excess

fragments to the number of intact chromosomes of the two cell types combined together.

During this time, repair of DNA damage cannot be completely prevented, although there

are methods available that seem to limit the extent of repair and reveal the presence of

a fast kinetics phase (see for example Durante et al., 1998b).

The number of excess PCC fragments, as measured with PCC, has often been used

as a measure of initial yield of DNA DSBs. This number is typically reported as 6 ex-

cess fragments per cell per Gy of low-LET radiation, with RBE values around 2 for α-

particles (Bedford and Goodhead, 1989), although a recent study employing ions up to

140 keV µm−1 show substantially constant yields of initial excess fragments (Durante
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et al., 1998a). Estimates for yields of initial PCC fragments are hence significantly lower

than those obtained with PFGE, which for this study only are summarised in table 4.5

(see table 6.1 for comparison to results from published works). The discrepancy is nor-

mally attributed to two factors:

1. PCC can only detect fragments above a threshold size, as smaller fragments are

invisible under a microscope. On the other hand, PFGE allows measurements

of DNA fragmentation down to fragments sizes that are much smaller than those

visible with PCC. A higher DSB yield should be observed from measurements in a

wide molecular weight range.

2. Unwanted repair during chromosome condensation in PCC eliminates a fraction

of the initial DSBs, whereas with PFGE the uncontrolled repair time is generally

less than a few minutes.

Results of the analysis of initial DNA fragmentation, obtained from the best fit of the

computer simulations of PFGE data in this study, provide estimates of DSB yields and

distribution properties for both X-rays and α-particles (table 4.5). These estimates have

been obtained at high doses, but if one assumes linear proportionality with dose, they

could be used to simulate the initial DNA fragmentation in cells exposed to low doses

of ionising radiation, extrapolating PFGE estimates to the PCC dose region. Since the

computer simulations have been tested in the molecular weight region that can be stud-

ied with PFGE, making predictions in the PCC fragment size region is an additional

extrapolation. For both radiation qualities, that is for different DNA fragmentation mech-

anisms, one could provide an estimate of how many fragments are missed in an ideal

PCC experiment, i.e. in the hypothesis that no unwanted repair takes place at all, so that

PCC fragments detected reflect the initial DNA fragmentation. However, the following

extrapolated results are only qualitative, since for low doses some of the approximations

made in the design of the computer-simulations may not hold. Firstly, chromosomes are

assumed here to have all the same average size. According to Charlesby (1953), the

initial distribution of intact fragments does not determine the final distribution i.e. after

radiation, provided that each of the original fragments is hit at least four or five times. For

low doses, and especially for clustered breakage, some chromosomes may remain intact

and would be found again in the final fragment-size distribution. Secondly, it cannot be

guaranteed that the proportionality between dose and number of independent clusters

can be extrapolated to low doses. Statistical fluctuations in the number of charged-

particle tracks/independent clusters may in fact dominate in the low-dose region.

In the attempt of linking PFGE to PCC results, a low dose PCC experiment in which

formation of excess fragments can be measured has been computer simulated, assum-
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ing 20 Mbp or 5 Mbp as the threshold size for a fragment to become visible under PCC

conditions. These choices represent two likely extremes based on personal communi-

cations by several investigators. According to Kodama et al. (1997), this threshold size

may be in fact ≥10 Mbp. Additional frequency histograms are outputted by the computer

simulations of initial DNA fragmentation, the same that were run in § 4.4, that counts

the number of fragments larger or smaller than 20 Mbp (5 Mbp). For a given simulated

radiation dose, the number of fragments larger than 20 Mbp (5 Mbp) is compared to the

total number of fragments, which relates directly to the total number of DSBs induced

per cell. Results of this simulation are shown in figure 4.17 for the dose range 1-7 Gy.

In these simulations it has been assumed that there is no background damage to DNA,

as opposed to simulations of PFGE. At 0 Gy, one has 46 chromosomes of average size

139 Mbp. It is shown in figure 4.17 that for both radiation qualities the number of breaks
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Figure 4.17: Simulation of a dose-response PCC experiment

detected via observation of PCC fragments is only a fraction of the number of breaks

introduced in the entire genome. For X-rays, left panel, the yields of PCC visible frag-

ments ≥20 Mbp is first increasing linearly, then it reaches a plateau. At this point, the

average number of breaks induced per chromosome is about five, so fragments whose

size falls below 20 Mbp may be present in significant proportion to the total fragments,

so that many fragments are mimssed. The yield of all the fragments is otherwise linear,

since it has been assumed that a linear relationship between number of breaks and dose

holds. For 110 keV/µm α-particles (right panel in figure 4.17) the total fragments yield
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also increases linearly, and is also steeper, since the RBE for total DSBs was estimated

to be greater than one in these simulations which employed PFGE-based estimates (see

table 4.5). The line shown for the yield of fragments of any size is slightly irregular since,

for each simulated dose, the number of independent clusters to be located has been

rounded to the nearest integer. For example, at 2 Gy one should have 5.7×2=11.4 in-

dependent clusters, but since this value in the simulation has got to be an integer it was

rounded to 11. Fewer α-particles induced PCC visible fragments are predicted than for

X-rays, for both the size thresholds used. Due to the DSB clustering properties of α

particles, at low doses there will be several chromosomes that have not been hit at all,

whereas other chromosomes may have one cluster with an average of six breaks span-

ning a region of size 2×9 Mbp at maximum. The average size of a fragment inside a

DSB cluster decreases to below 5 Mbp, so that most of the α-particle induced fragments

are not visible in PCC, according to this simulation.

The non-linear behaviour for the yield of PCC ‘visible’ fragments under X-irradiation

implies that the RBE value for DSB production is dose-dependent, but more importantly

it is predicted to be always smaller than one, in disagreement with other published re-

sults (Badie et al., 1995; Nasonova et al., 2001). Perhaps the very fast rejoining phase,

normally not detected in PCC as mentioned earlier, accounts for a major fraction of the

low-LET induced breaks than for high-LET, so that after the fast phase is complete a

major fraction of low-LET induced breaks has been removed, compared to the high-LET

induced breaks. The presence of a very fast rejoining phase would be also in support of

the hypothesis that DSB yields estimated from PFGE are significantly higher than PCC

yields, due different uncontrolled repair times in the two techniques. Fast rejoining kinet-

ics phase may also incorporate heat-labile sites (HLSs), which may be detected in PFGE

as DSBs, but undetected in PCC, since with the latter technique there is more time for

repairing them.

Perhaps also the conditions for extrapolating PFGE data to predict the outcome of

a PCC experiments are not satisfied. The computer simulations cannot be tested to

the experimental data available here for clustering of damage involving distances that

are larger than 10 Mbp, the maximum size of fragments that are succesfully extracted

in the gels. If a single particle track intersected a single chromosome territory twice,

with the sites of clustered damage separated by, for example, 50 Mbp, then this would

fit PFGE data at high doses just as well as if two clusters were in separate chromo-

some territories. Nevertheless, this would make a substantial difference in a PCC ex-

periment, since the formation of a 50 Mbp fragment would be detected, in principle, and

the yield of α-particle induced fragments would increase along with the RBE value for

DSB induction. If this was the case, the computer-modelled DSB clustering procedure
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may need refinement to account for single-track multiple clustering events on the same

chromosome, before carrying out an extrapolation to the PCC dose and fragment size

region. Figure 4.18 shows the computer-simulated yield of fragments that are smaller
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Figure 4.18: Simulation of a dose-response yield of fragments that are not detectable
with PCC, when the critical size is either 20 Mbp or 5 Mbp.

than 20 Mbp or 5 Mbp, i.e. those that are assumed to be invisible in PCC. It is shown in

the right panel that α-particles produce many more small fragments than X-rays, whose

‘excess’ visible fragments are shown in the left panel, and also that there is a linear dose-

component for α-particles, whereas for X-rays this seems to be more quadratic. Since

the cluster radius is about 9 Mbp for α-particles in these simulations, each cluster shall

contribute to the formation of an average of 5 fragments that are all smaller than 20 Mbp,

although some may be occasionally larger than 5 Mbp. Since it is assumed that the yield

of independent clusters is proportional to the dose, small fragments also are expected

to be formed linearly with dose. Conversely, X-rays produce randomly-distributed DSBs

and it takes two independently located breaks (∝ D2) to form fragments smaller than

20 Mbp or 5 Mbp. A linear component for the formation of a small fragment is also ex-

pected from location of a DSB near a chromosome end. For α-particles, the difference

between the yield of fragments ≤20 or ≤5 Mbp is very small, following the arguments

made above. This is because the clustering of DSB with α-particles at low doses, either

a very small, undetectable fragment is formed, or none at all.
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Chapter 5

Rejoining of double-strand breaks:

Experimental results

5.1 Introduction

Experimental measurements of double-strand break (DSB) rejoining kinetics are pre-

sented in the following chapter, together with predictions based on numerical methods of

analysis of DSB rejoining data, which are described separately in chapter 3. When cells

are incubated at 37◦C , DSBs induced by radiation are processed by the cellular repair

machinery, which attempts to restitute the intact DNA sequences. By sampling cells that

have been repairing DNA damage for different times after the initial acute exposure to ra-

diation, pulsed field gel-electrophoresis is employed to monitor the variations that occur

in the shapes of the DNA fragmentation profiles, as consequence of the on-going repair

process. By using a method that allows us to estimate the number of DSBs from the

fragmentation profiles, one can also give a quantitative description of the DSB rejoining

process. Methods of quantification of DNA DSBs based on random breakage are com-

monly employed for analysis of DNA fragmentation during DSB repair, despite the fact

that this operation is only approximate. In fact, when using a model of DNA fragmen-

tation, based on random breakage, to describe the molecular weight distributions that

result from DSB rejoining, it is implicitly assumed that the fragmentation profiles after

repair reflect randomly distributed breaks. This assumption is valid only if the following

conditions apply:

1. The initial fragmentation pattern should originate from randomly distributed breaks,

2. breaks distributed initially should be ‘removed’ by the cellular repair machinery

randomly, i.e. each break independently of any other break and independently of

its location in the genome.
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In summary, breaks are induced randomly and removed randomly, for a totally reversible

process, so that those breaks that at a given time are left unrepaired are still distributed

randomly. The validity of the first assumption of the two made above is challenged by the

results reported in chapter 4, as well by results of other works (see for example Gauter

et al., 2002). In this Thesis it is in fact shown that α-particle induced DSBs are spatially

associated. For the validity of the second assumption, particular attention is required,

since for the breaks to be removed randomly, the cellular repair machinery must process

every DSB:

1. independently of its vicinity to other DSBs, which may in principle hamper the

repairability of the first break (see § 1.4 for a description of DSB repair mechanisms

and the types of DSBs that they can repair successfully).

2. complete repair of all DSBs is allowed to occur, i.e. every break is ultimately re-

moved from the initial pool. This would apply even in case mis-rejoining events

take place, which theoretically should be leaving spurious, un-coupled ends that

cannot participate in the repair process any more since they are too far from an-

other DSB end to recombine with.

Experimental evidence for DSB mis-rejoining events and formation of chromosome aber-

rations, including micronuclei formation, after exposure to ionising radiation, indicates

that this second set of assumptions may not hold. For this reason, quantification of

DSBs during post-irradiation incubation has been accomplished via the application of

only one of the already existing analytical methods of analysis of DNA fragmentation

that have been used in chapter 4, namely ‘direct quantification’, since this appears to

be dependent to a lesser extent on the random breakage model (see § 3.2.2.1 for a

description of the method). Other recent studies have shown that the shape of the frag-

mentation patterns after post-irradiation incubation deviates from that predicted on the

basis of random breakage (Gauter et al., 2002).

A more extensive analysis of DNA fragmentation during DSB repair has been carried

out using numerical methods. The computer-simulations of DSB rejoining kinetics which

have been developed as part of this Thesis project (described in detail in § 3.3.3.1) help

to test the validity of the assumptions that are made when analytical methods of analysis

of DNA fragmentation based on random breakage are employed for the quantification

of DSBs during the rejoining process. In particular, the numerical approach developed

here provides a method to simulate, on a cell-by-cell basis, the fragmentation patterns

that are measured after exposure to both low and high LET radiation, without neces-

sarily requiring that the DSB are introduced in the chromosomes randomly. Indeed, the

influence of charged-particle track-structure on the shapes of the fragmentation profiles
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is described here by means of a simplified clustered breakage procedure (§ 3.3.1.1) so

that the initial fragmentation profiles accurately fit the experimental determinations (see

§ 4.4). The computer-simulated initially injured cells are thus used as an input for the

repair machinery during the computer-simulation of DSB rejoining kinetics.

Results obtained from the application of the ‘direct quantification’ method are pre-

sented first, while the application of the numerical method for the analysis of DSB re-

joining kinetics data is shown in § 5.3. Finally, a computer-simulation of a premature

chromosome condensation (PCC) experiment, in which DSB rejoining kinetics is mea-

sured after low doses of ionising radiation, is presented in § 5.4.

5.2 Application of the Direct Quantification method

The ‘direct-quantification’ method has been applied to quantify DSB yields during

post-irradiation incubation in the same fashion as described in § 4.3.3, when initial DSB

yields, i.e. without any repair incubation, were measured in several X-ray and α-particle

irradiation experiments. Briefly, using eq. 2.5b one can convert the fraction of DNA mass

measured in any molecular weight region, i, into number of double-stranded fragments

Ni. By summing the Ni values over all the molecular weight regions available, one has

an estimate of the number of double stranded fragmentsN (M1, M2) in a region between

two molecular weight markers M1 and M2, which normally spans the 6.4 Gbp human

diploid genome size for a few orders of magnitude (approximately 30 kbp–5.7 Mbp). The

value obtained for N is then corrected by subtraction for the corresponding determina-

tion on the unirradiated control samples of the same experiment. The total DSB yield per

cell is then extrapolated using the relationship reported in eq. 3.3 for calculation of yields

or can also be plotted using the same function as shown in figure 3.2. Six independent

X-ray-induced DSB rejoining kinetics experiments have been analysed with this method.

For each time point available in each experiment, the number of DSB per cell (extrap-

olated) is calculated and the kinetics are described by means of an exponential decay

with one or two components, predicting a first-order repair mechanism (see § 3.3.3). The

fitting functions are repeated here in the set of equations 5.1 for clarity:

1−F = Ffast exp (−t/τfast) + (1− Ffast) exp (−t/τslow) (5.1a)

1−F = (1− a) exp(−t/τ) + a (5.1b)

where F is the fraction of DSBs rejoined at time t, Ffast is the fraction of DSB that rejoin

with fast kinetics, τfast and τslow are the fast and slow repair time-constants (or τ the only
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constant in eq. (5.1b), and a is the fraction of DSBs that remain un-repaired. When using

two decaying exponential components (eq. 5.1a) it has been assumed that all breaks are

eventually re-joined, whereas for a single exponential decay it has been assumed that an

un-rejoined sub-population may exist, merely to provide better fits. The hypothesis that

eventually all the breaks are rejoined is supported by recent evidence from M. Löbrich et.

al., where it has been shown that virtually all the slowly repairing breaks are ultimately

mis-rejoined, although after many days from the initial injury (unpublished results). Re-

sults of the kinetics analysis carried out on ‘direct quantification’ data obtained from its

application to X-irradiation experiments are shown in figure 5.1. Grouped data from 6

experiments are shown in the lower, wider panel, as means ± s.e.m., and the individual

experiments plotted in the other panels above. For rejoining of X-ray-induced DSBs, it is

often observed that the measured signal falls below the background level measured in

the unirradiated control samples, just after a few hours of post-irradiation incubation (dis-

cussed in § 6.3). When performing the correction for the background by subtraction, this

gives negative values which are excluded from the kinetics plots. The first-order DSB

rejoining kinetics model has been applied to both averaged measured values and indi-

vidual experimental determinations in figure 5.1. This is mainly for comparison of best-fit

values obtained on ‘direct quantification’ data of DSB yields to the values obtained with

the numerical approach (see table 5.3 in § 5.3) as well as to show inter-experimental

variability in the rejoining kinetics. Best-fit values of curves shown in figure 5.1 are sum-

marised in table 5.1. It is evident that in virtually every experiment the number of DSB

remaining unrepaired falls to zero after a few hours of post-irradiation incubation, partly

due to the correction for the background damage that has been applied by subtraction

of the number of breaks per cell. When the first-order repair kinetics model is applied to

fit individual experimental data, the best fit is obtained using a single exponential decay,

except for experiment X-REP22 where a double component is used. Conversely, when

data are averaged together from the six experimental data-sets, a double exponential

component provides a better fit to the averaged results. This may be due to the fact that

only when data are averaged together from many experiments one has several determi-

nations spanning a wider time interval, where a single exponential may not have enough

degrees of freedom to fit the data. The same type of analysis has been carried out

on six independent α-particle irradiation experiments, with results shown in figure 5.2.

Compared to X-ray data, analysis of rejoining kinetics of DSBs induced by 238Pu α-

particles indicates two exponential decay components. Experiment A-REP09 showed

an increased number of double-stranded fragments in the first 30 minutes relative to the

initial value: this particular data-set was not analysed individually as the other five shown

in figure 5.2. The best fit to the averaged values from five experiments also suggests two
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Figure 5.1: DSB rejoining kinetics analysis of the results of the application of the ‘direct-
quantification’ method for the quantification of DSBs that were induced after a 115 Gy
X-ray dose in 6 independent experiments. Data in the lower, wide panel are averages ±
standard errors from data values that are plotted in the other six panels. Lines shown are
best fit with the first-order repair kinetics model, employing one (dashed line, eq. 5.1b)
or two exponential decay components (eq. 5.1a, solid lines). Best fit value parameters
of either function used are summarised in table 5.1.
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Figure 5.2: DSB rejoining kinetics analysis of the results of the application of the ‘direct-
quantification’ method for the quantification of DSBs that were induced after a 100 Gy
α-particles dose in 6 independent experiments. Data in the top panel are averages
from data values that are plotted in the other six panels. Solid lines shown are best fit
with the first-order repair kinetics model, employing two exponential decay components
(eq. 5.1a). Best fit value parameters of either function used are summarised in table 5.2.
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Total DSB rejoining kinetics - X-rays - ‘Direct Quantification’ method
Experiment Ffast τfast (h−1) τslow (h−1)
X-REP21 a=0 τ=6±4
X-REP22† 0.37 0.1 2.07
X-REP25 a=0 τ=0.74±0.06
X-REP26 a=0.09±0.15 τ=0.9±0.3
X-REP28 a=0.34±0.06 τ=0.24±0.07
X-REP29 a=0 τ=0.68±0.05

mean±s.e. (n=6) Ffast τfast (h−1) τslow (h−1)
0.45±0.05 0.20±0.04 4±1

Table 5.1: Total DSB rejoining kinetics of X-ray-induced breaks: best fit values with s.e.
using the first-order kinetics model (see eqns. 5.1) to the results of the application of
the ‘direct quantification’ method, as shown in figure 5.1. Experiments marked with a †
symbol have no degrees of freedom during the regression analysis and best fit values are
provided without error. In other cases, parameters whose values are reported without
error were kept constant during the regression.

repair kinetics components, both the repair time constants being slower than for X-ray in-

duced DSBs (see tables 5.1 and 5.2 for comparison). Interestingly, the fraction of DSBs

rejoining with fast kinetics is larger for α-particles, although the repair time constant for

the fast component is much slower. Finally, it should be also observed that rejoining

kinetics analysis of data relative to α-particles induced DSBs in individual experiments

(figure 5.2) was probably more accurate than for X-rays, due to the availability of more

data points per experiment. This may be due to the slower repair kinetics for high-LET

induced DSBs, so that it takes more time before the measured signal falls to the level of

the background level, thus avoiding rejection of data points in one experiment.

Total DSB rejoining kinetics - α-particles - ‘Direct Quantification’ method
Experiment Ffast τfast (h−1) τslow (h−1)
A-REP05 0.35±0.07 0.3±0.3 4.3±0.6
A-REP07 0.56±0.08 0.9±0.2 17±6
A-REP08 0.57±0.04 1.0±0.1 11±2
A-REP09 no rejoining kinetics analysis available
A-REP10 0.58±0.08 1.2±0.3 60±40
A-REP11 0.66±0.08 1.2±0.2 20±8

mean±s.e. (n=5) Ffast τfast (h−1) τslow (h−1)
0.61±0.05 1.2±0.2 19±5

Table 5.2: Total DSB rejoining kinetics of α-particles induced DSB: best fit values with
s.e. using the first-order kinetics model (see eq. 5.1a) to the results of the application of
the ‘direct quantification’ method, as shown infigure 5.2.
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5.3 Application of a Monte Carlo method for the descrip-

tion and quantification of DSBs rejoining kinetics

A detailed description of the computer-simulations of DSB rejoining kinetics in single

cells is given in detail in § 3.3.3. In this section, these DSB rejoining kinetics simulations

are employed to give a quantitative description of DSB rejoining kinetics as assayed via

PFGE in this project. The computer-simulations of DSB rejoining kinetics are contained

in an additional module in the initial DNA fragmentation program that was applied in

§ 4.4. The first step of the analysis of DSB rejoining data is hence the quantification of

initial DSB yield and distribution, by means of a DSB clustering approach. The initial frag-

mentation pattern is simulated in single cells and then used by the computer-simulated

repair machinery, which simply removes breaks from the pool of those initially available

and assumed to be repairable, by joining ends of contiguous double-stranded fragments.

Repairable breaks are assumed here to be all the radiation-induced breaks, but not the

background breaks, which are thought to be absent in cells at the time of post-irradiation

incubation.

Here, contiguous is to be intended to reflect fragments that originate from a larger

fragment after introduction of a DSB. After a given fraction of DSBF has been repaired in

the computer simulation, given as input value to the simulation, and for several cells, the

resulting DNA fragmentation profile is described by means of a fragment-size frequency

histogram that is compared to an experimental data-set at a certain post-irradiation in-

cubation time, for χ2 evaluation of the goodness of the fit. A χ2 minimisation approach is

adopted to estimate the best F value for a given time of post-irradiation incubation. Re-

sult of the application of this method are shown in figure 5.3 for an experiment where an

X-ray dose of 115 Gy was delivered (experiment X-REP26). The same value-parameters

estimated from the simulation of initial fragmentation have been used here, before apply-

ing the rejoining kinetics simulation module, namely, 4300 randomly distributed breaks

for this experiment (see figure 4.12). Every panel in figure 5.3 shows the experimental

fragmentation profiles observed in the unirradiated control samples, together with the

computer-simulated background fragmentation profile, shown with a dashed line. Also

shown is the fragmentation profile in cells that are irradiated and not yet incubated (the

‘time zero’ t0 profile) with the corresponding computer-simulated fragmentation profile

that produces the best fit, reproduced from figure 4.12. Each different panel shows ex-

perimental determinations of DNA fragmentation at a given repair time (10 minutes, 30

minutes, 1 hour, 3, 24 and 48 hours), along with the computer-simulated DNA fragmen-

tation pattern that best fits the particular data-set. For example, in figure 5.3, upper left

panel, after 10 minutes of post-irradiation incubation at 37◦C , the best fit of the computer
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Figure 5.3: Application of the Monte Carlo simulation of DSB rejoining kinetics to the
‘X-REP26’ experimental data-set. Symbols are experimental determinations: (◦) unir-
radiated controls, with best-fit (dashed line), (�) initial DNA fragmentation with best fit
(short dashed line), (•) fragmentation pattern after repair incubation for the specified
time, and best fit (solid line) with best F value specified.

simulation to the data-set shown indicates that 35% of the breaks have been removed

from the initial pool (for experiment X-REP26 only). Similarly, in the other panels, a best

fit to experimental data-sets reflecting the fragmentation profiles at the other repair times

available in this experiment is produced using the least squares method. The best fit

curves in every panel of figure 5.3 indicate good agreement, with the exception of the

longest repair times. After 48 hours of post-irradiation incubation (bottom right panel)

there is an indication of a de novo extensive fragmentation process that may be the re-

sult of a form of cell death, considering the lethal radiation dose employed. Compared

to the fragmentation profiles observed in the unirradiated controls, after incubation for

48 hours there seems to be in fact a depletion of large, Mbp-sized double stranded frag-

ments, accompanied by an excess of smaller fragments. This fragmentation process,

probably endogenous, is competing against the DSB rejoining process and is not taken

into account in the computer-simulation, which assumes a stable background. As con-

sequence, while the fragmentation pattern relative to simulated repair approaches the

experimental background pattern, the experimental pattern after long incubation times

may not. Another example of Monte Carlo simulation of DSB rejoining kinetics is shown

in figure 5.4 for experiment X-REP25. Very similar considerations apply here, where

an extensive fragmentation after long incubation times is also observed. The type of
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analysis performed on experiment X-REP26 and X-REP25 has been carried out on 6

independent DSB rejoining kinetics experiments after X-irradiation. The initial fragmen-

tation patterns for these six experiments were all shown in figure 4.12. For each DSB
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Figure 5.4: Application of the Monte Carlo simulation of DSB rejoining kinetics to the
‘X-REP25’ experimental data-set. Symbols are experimental determinations: (◦) unir-
radiated controls, with best-fit (dashed line), (�) initial DNA fragmentation with best fit
(short dashed line), (•) fragmentation pattern after repair incubation for the specified
time, and best fit (solid line) with best F value specified.

rejoining kinetics experiment, at the end of the type of analysis shown in figures 5.3

and 5.4, one has a set of best-fit F values (fraction of DSBs repaired) corresponding to

different experimental repair times. These values may be used to study the total DSB

rejoining kinetics, as reported in § 5.2, when total DSB kinetics data obtained with the

direct quantification method were fitted against a first-order rejoining kinetics model, with

either one or a double exponential function. Figure 5.5 summarises total DSB rejoining

kinetics for experiment X-REP25, X-REP26 and other four experiments, shown in the

same order as they appeared in figure 4.12. In figure 5.5, data-points shown in each

of the six upper panels are complement to one of best-values obtained from χ2 minimi-

sation, like the values explicitly reported in the separate panels of figures 5.3 and 5.4

for experiments X-REP26 and X-REP25, respectively. Error bars represent a maximum

error which is due to the finite step used when changing the value of the fraction of DSB

rejoined in the computer-simulation. This step was normally 0.05 (i.e. 5% of the total

breaks rejoined, although near the time rejoining began, ‘time zero’, and toward rejoin-

ing completion, a more fine-tuned step of 1% was used). The error bar shown is to be
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intended as the maximum error, hence without any information regarding the level of sta-

tistical significance. Total DSB rejoining kinetics analysis was carried out on individual
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Figure 5.5: Upper 6 panels: DSB rejoining kinetics analysis on the best-fit results of
the Monte Carlo simulations of 6 independent X-ray data-sets (including X-REP25 and
X-REP26 of figures 5.3 and 5.4). Error bars provide an estimate of standard deviation
of the best value, given as half the step used when varying the computer simulation
model’s F value in the simulations (see text). The lower, wider panel shows the best
fit to the means±s.e. (n=6) of the data sets shown in the other six panels. Solid lines
are best-fits using the first-order rejoining kinetics model; best-fit values are reported in
table 5.3. In-sets: expansions of the kinetics curves in the first hour of post-irradiation
incubation.

experiments, as in § 5.2 for the direct quantification method, to show inter-experimental

variability. Nevertheless, the best-fits shown for individual experiments (with best values

and errors reported in table 5.3) were carried out also for another reason that is de-

scribed below.

A central hypothesis of the computer simulations of DSB rejoining is that kinetics are

independent of fragment size. Alternatively, from the perspective of the DSBs, it is hy-
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Total DSB rejoining kinetics - X-rays - Monte Carlo analysis
Experiment Ffast τfast (h−1) τslow (h−1)
X-REP21 0.67±0.03 1.68±0.05 30±6
X-REP22 0.79±0.06 0.9±0.1 10±4
X-REP25 0.80±0.05 0.49±0.05 10±2
X-REP26 0.85 0.8±0.2 20±30
X-REP28 a=0.02±0.03 τ = 0.6±1
X-REP29† 0.77 0.41 10

mean±s.e. (n=6) Ffast τfast (h−1) τslow (h−1)
0.50±0.06 0.21±0.06 4±1

Table 5.3: Rejoining kinetics of X-ray-induced DSBs: best fits using the first-order kinet-
ics model of eqns. 5.1 to the data estimated with the Monte Carlo approach and displayed
in figure 5.5. Experiments marked with a † symbol have no degrees of freedom, hence
regression analysis does not provide statistical errors. For experiment X-REP26, Ffast

was kept constant during regression. Also shown are the best-value parameters and s.e.
of the best fit to the values averaged from the six independent experiments analysed.

pothesised that vicinity to another DSB does not influence individual repairability of each

break. To test this hypothesis, it is interesting to observe rejoining kinetics of double-

stranded fragments in separate molecular weight regions, probing for fragments of any

critical size that rejoin at a different rate. The numerical approach adopted for the de-

sign and the development of the rejoining kinetics simulation provides enough flexibility

to predict what the kinetic curves should look like for fragments of any size, even out-

side the experimental region resolved, in the hypothesis of fragment size-independent

rejoining kinetics. In fact, this feature is used to extrapolate PFGE data to simulate PCC

low-dose experiments of initial fragmentation (§ 4.5) and rejoining kinetics (§ 5.4). In

figures 5.3 and 5.4, if one could follow the value of the normalised frequency of DSB per

unit base pair, in a given molecular weight range, as it varies across the six time points

shown, one could draw a plot in which rejoining kinetics are studied in separate molecu-

lar weight regions. Concentrating on individual molecular weight regions also allows us

to display more conveniently the number of fragments (breaks) vs time, other than the

normalised frequency (see also eq. 2.5b for the link between these two quantities). In

fact, the normalised frequency is less intuitive and becomes useful only when the com-

plete fragmentation pattern is shown. This fragment size-independent rejoining kinetics

study has been done in figure 5.6 for experiment X-REP25, which shows experimental

data of rejoining kinetics and computer-simulated curves in 6 different molecular weight

regions. To explain how the step-lines were produced, it is worth remembering that the

rejoining kinetics computer-simulation module’s only free parameter is the fraction of

DSB rejoined, F . One could then plot computer-simulated rejoining kinetics curves for

fragments belonging to a given size interval as a function of F . Nevertheless, a rejoining
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Figure 5.6: DSB rejoining kinetics observed in separate molecular weight regions in
experiment X-REP25. (•): normalised frequency of DNA fragments per unit base pair or
number of DNA fragments, irradiated samples; (◦): same for unirradiated controls. Data
are shown without errors since they refer to single determinations in one experiment.
Lines are computer-simulations and the x-axis scale of the inset plots is in minutes,
expanded in the first three hours of post-irradiation incubation.
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kinetics curve is better understood if time is shown explicitly, as in figures 5.1 and 5.2,

so it would be better to transform the computer-simulation parameter F into real time.

The best-fit curves shown in figure 5.5 provide a functional relationship between time of

post-irradiation incubation and the fraction of DSBs rejoined F , free parameter of the

computer-simulations. This correspondence allows us to associate a time value to each

F value for which the computer-simulations are run, which varies from 0.01 to 1.0, with

an interval of 0.01 or 0.05, as mentioned earlier. Since the function written in eq. 5.1a

cannot be solved for time analytically, a table of (F , time) values is built, serving as

a ‘look-up’ table for a purpose-written interpolation computer-program, such that every

computer-simulated F value available is put in correspondence to a repair time by in-

terpolation in the ‘look-up’ table of (F , time) values. In this way, the computer-simulated

rejoining kinetics curves can be plotted vs time for each experiment, as shown in fig-

ure 5.6 for experiment X-REP25. The power of these plots is their ability to show what

the kinetics of fragments of many different sizes should be like in the hypothesis of frag-

ment size-independent rejoining kinetics. It is worth stressing that the rejoining kinetics

curves in any selected distinct molecular weight region (each panel in figure 5.6) cannot

be described by means of one or two exponential decay components, as usually done for

total DSB rejoining kinetics. The case shown here is made more complex because, fo-

cusing on one molecular weight region at a time, there are both fragments moving out of

the region and fragments migrating from regions populated by smaller double-stranded

fragments (see § 3.2.2.3). A mathematical solution in closed form to this problem does

not exist. For larger fragments, at short incubation times, it is evident that the measured

signal increases, which is not what one would expect when repair takes place, where

depletion of fragments should be observed. The number of fragments smaller than the

ones being observed at the Mbp-scale, which participate to the rejoining process, tend

to populate the Mbp region at a rate that is faster than that of those Mbp-sized fragments

which, due to rejoining, tend to leave the region. Curves departing from experimen-

tal data in particular molecular weight regions would suggest that kinetics are fragment

size-dependent. It can be observed that for experiment X-REP25 there is an indication

of an excess of small DNA fragments (48–225 kbp) at incubation times exceeding 24

hours. Coupled to this, the larger fragments’ signal falls below the level of the unirradi-

ated controls. This may be interpreted as due to breaks that are introduced de novo and

that counteract the rejoining process, as proposed earlier in this chapter. In experiment

X-REP26 (figure 5.7) the de novo DNA fragmentation at long incubation times seems

less pronounced than for X-REP25. In the Mbp region, the simulated rejoining curves

appear to lie above the experimental data, bound to the constraint that only radiation-

induced breaks can be rejoined and there is no additional fragmentation process during
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Figure 5.7: DSB rejoining kinetics observed in separate molecular weight regions in
experiment X-REP26. (•): normalised frequency of DNA fragments per unit base pair or
number of DNA fragments, irradiated samples; (◦): same for unirradiated controls. Data
are shown without errors since they refer to single determinations in one experiment.
Lines are computer-simulations and the x-axis scale of the inset plots is in minutes,
expanded in the first three hours of post-irradiation incubation.
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incubation. There is generally a good agreement.

The same type of analysis has been carried out on the same six independent ex-

periments that employed α-particles to produce the initial fragmentation and that were

analysed with the ‘direct quantification method’ in § 5.2. Figure 5.8 shows an example

of the application of the Monte Carlo DSB rejoining kinetics simulation to experiment

A-REP08, where 100 Gy were delivered to the fibroblasts. As shown for experiments X-

REP26 and X-REP25 in figures 5.3 and 5.4, respectively, every panel in figure 5.8 shows

the experimental fragmentation profiles observed in the unirradiated control samples,

together with the computer-simulated background fragmentation profile, shown with a

dashed line. Also shown is the profile for cells that are irradiated and not incubated (the

‘time zero’ t0 profile) with the corresponding computer-simulated fragmentation profile

that produces the best fit, reproduced from figure 4.13 using the same value parameters

estimated with the DSB clustering simulation. The computer-simulated step-lines give a
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Figure 5.8: Application of the Monte Carlo simulation of DSB rejoining kinetics to the
‘A-REP08’ experimental data-set. Symbols are experimental determinations: (◦) unir-
radiated controls, with best-fit (dashed line), (�) initial DNA fragmentation with best fit
(short dashed line), (•) fragmentation pattern after repair incubation for the specified
time, and best fit (solid line) with best F value specified.

good fit to the data, with exception of the region of smallest molecular weight fragments,

where the signal measured is weaker and noise could be influencing the result. The main

difference from the regression analysis of X-rays data shown earlier is that the kinetics

appear to be slower, as suggested by the F values shown in the panels. The type of

analysis performed on experiment A-REP08 has been carried out on other 5 α-particle
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independent experiments, as for the direct quantification method. As before, the best-

values for F in separate experiments have been averaged together and fitted against a

first-order kinetic model with two exponential decay components (eq. 5.1a). F values

from single experiments have been plotted vs time and fitted with one or two exponential

decay components function (as in 5.1b) as shown in figure 5.9.

DSB rejoining kinetics analysis has also been performed on F values from individual

experiments, in order to relate the F values to repair time and plot DSB rejoining kinetics

curves in separate molecular weight regions vs time.

The best-fit value parameters relative to curves shown in figure 5.9 are summarised

in table 5.4. Rejoining kinetics in separate molecular-weight regions are shown in fig-

Total DSB rejoining kinetics - α-particles - Monte Carlo analysis
Experiment Ffast τfast (h−1) τslow (h−1)
A-REP05 0.70±0.03 1.0±0.1 60±30
A-REP07 0.65±0.09 0.8±0.2 20±10
A-REP08 0.58±0.09 0.6±0.2 12±6
A-REP09 a=0.0 τ = 3.4±0.8
A-REP10 0.6±0.1 1.2±0.4 30±20
A-REP11 0.41±0.09 0.16±0.11 10±4

mean±s.e. (n=6) Ffast τfast (h−1) τslow (h−1)
0.6±0.1 0.8±0.3 20±10

Table 5.4: Total DSB rejoining kinetics of α-particles-induced DSB:best fits using the first-
order kinetics model of eqns. 5.1 to the data estimated with the Monte Carlo approach
and displayed in figure 5.9. Also shown are the best-value parameters and s.e. of the
best fit to the values averaged from the six independent experiments analysed.

ure 5.10 for experiment A-REP10 (100 Gy, repair times 10′, 30′, 60′, 6, 24 and 48 hours).

The computer-simulations are generally in good agreement, although in this case there

is also a hint of a de novo DNA fragmentation starting after 24 hours. This is clear

from the 48.5-225 kbp region, although de novo fragmentation in the Mbp region is not

as evident as in the X-ray experiments shown earlier. It is evident in the panel refer-

ring to fragments in the 1.6–3.5 Mbp region in figure 5.10 that if the agreement at time

zero is poor, the chances of having a good agreement during DSB repair are reduced.

Moreover, since DSB rejoining kinetics involves fragments of varying sizes in a com-

plex fashion, the chances of having good fits to the experimental data in any molecular

weight region during repair time depend on the quality of the best-fit to data of initial

DNA fragmentation in every ‘next neighbour’ region. For experiment A-REP10, a pos-

sible explanation for the poor fit at short times in the 3.5–4.6 Mbp fragment size region

may be related to the behaviour of smaller fragments. Since fewer fragments between

1.6 and 3.5 Mbp are predicted than experimentally measured, fewer are moving to larger
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Figure 5.9: Total DSB rejoining kinetics evaluated in 6 independent experiments where
α-particles were employed to produce an initial DNA fragmentation. The lower, wider
panel shows the best fit to the means±s.e. (n=6) of the data sets shown in the other six
panels. The six panels shown refer to experimental data (•) that were analysed for initial
DNA fragmentation and shown in the same order in figure 4.13, error bars providing an
estimate of the standard deviation of the best value, given as half the step that was used
when varying the computer-simulation model’s F value. Solid lines are best-fits using
the first-order rejoining kinetics model; best-fit values are reported in table 5.4. In-sets:
expansions of the kinetics curves in the first hour of post-irradiation incubation.
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Figure 5.10: DSB rejoining kinetics observed in separate molecular weight regions in
experiment A-REP10. (•): normalised frequency of DNA fragments per unit base pair or
number of DNA fragments, irradiated samples; (◦): same for unirradiated controls. Data
are shown without errors since they refer to single determinations in one experiment.
Lines are computer-simulations and the x-axis scale of the inset plots is in minutes,
expanded in the first hour of post-irradiation incubation.
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fragments as repair takes place, so that the simulated curve in 3.5–4.6 Mbp fails to rise.

Similar considerations would apply relatively to the 3.5–4.6 Mbp and the 4.6–5.7 Mbp

regions. Another example of DSB rejoining kinetics monitored in separate molecular

weight regions is shown in figure 5.11 for experiment A-REP07. The top left panel repre-

senting kinetics data in the region 48.5–225 kbp shows that after a few hours incubation

the signal detected in the irradiated samples fall below the level of the unirradiated con-

trols. This feature has been observed several times for independent experiments and it

may be an artifact. It should not be confused with the de novo fragmentation observed

earlier, appearing as depletion of large fragments. The measured signal falls below the

controls with a defined trend, so it is unlikely that noise may be responsible for this obser-

vation. On the other hand, the computer-simulated rejoining kinetics curves cannot fall

below the level of the controls, since it is postulated that only radiation-induced DSBs are

repairable, and that no new breakage process takes place during DSB repair (see also

§ 6.1). In fact, the computer-simulated curves always approach the background level

from above. Table 5.5 summarises the results of the DSB rejoining kinetics analysis car-
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Figure 5.11: DSB rejoining kinetics observed in separate molecular weight regions in
experiment A-REP07. (•): normalised frequency of DNA fragments per unit base pair or
number of DNA fragments, irradiated samples; (◦): same for unirradiated controls. Data
are shown without errors since they refer to single determinations in one experiment.
Lines are computer-simulations and the x-axis scale of the inset plots is in minutes,
expanded in the first hour of post-irradiation incubation.

ried out on data averaged from six independent experiments for both radiation qualities

and obtained with both methods of analysis illustrated in this paragraph and § 5.2. The
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values shown in table 5.5 indicate that the best-value parameters estimated from regres-

sion analysis of data obtained from either method of quantification are all consistent with

each other. The direct quantification approach, considering its simplicity, provides the

same kinetics results as the Monte Carlo simulations, although only the latter method

allowed us to show that the kinetics are fragment size-independent. Moreover, the direct

quantification method required a biased correction for the background damage, while the

Monte Carlo simulation does not.

5.3.1 Fit of rejoining kinetics simulations to data that are corrected

for the background damage

Previous DSB rejoining kinetics simulations were run during this project on exper-

imental data-sets that had been corrected for the background damage by means of a

‘region-to-region’ subtraction of DNA mass-size distributions (see § 3.2.2.3 for a discus-

sion on this corrective method). In these previous simulations, there was no need to

distinguish between background and radiation-induced DSBs, since the correction for

the background was performed on the experimental measurements to remove any trace

of the background damage influence. The conclusion drawn from these simulations

was that rejoining kinetics depend on fragment size, with smaller fragments rejoining

more slowly than larger fragments. This finding agrees with recent results from Gauter

et al. (2002) and in some respect with results by Johnston et al. (1998b). It was later

understood that subtractions of DNA mass-size distributions cause distortions to the

distributions themselves (see also figure 3.5) and that this could bias the experimental

inference. Later on in the Thesis project, more sophisticated program codes were writ-

ten to distinguish between background and radiation-induced breaks, so to be able to

run simulations where radiation-induced breaks only were repaired, that could fit exper-

imental data without any pre-correction. The central hypothesis made in the design of

these new program codes was still that fragments of any size rejoin at the same rate, i.e.

fragment size independent kinetics. Simulations using these newer programs have been

shown in § 5.3. With the exception of the very long repair time samples (usually 48 hours,

occasionally 24 hours), the agreement between model and experiment is satisfactory, in-

dicating fragment size-independent rejoining kinetics, exactly the opposite as the result

of the computer-simulations performed on subtracted data. Figure 5.12 puts in compar-

ison the results of the application of both types of computer simulations (performed on

subtracted data and on absolute data) on two data-sets: X-REP22 for X-rays (115 Gy)

and A-REP08 for α-particles (100 Gy). These experiments were chosen from those that

did not show de novo DNA fragmentation after incubation for 24 hours, to avoid bias.
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Figure 5.12: Results of DSB rejoining kinetics simulations on un-corrected (top two pan-
els) and corrected (lower two panels) X-REP22 and A-REP08 experimental data-sets.
Symbols (experimental determinations) in top panels: (�) initial DNA fragmentation, (◦)
background fragmentation and (•) DNA fragmentation after 24 hours repair-incubation.
Lower panels: (M) ‘net’, i.e. corrected, initial DNA fragmentation, (N) fragmentation after
24 hours repair-incubation. All step lines shown are best fits using computer-simulations
of initial DNA fragmentation (dashed lines) and fragmentation plus DSB rejoining (solid
lines) for various levels of F values as specified in each panel.
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Simulations of un-corrected data are shown in the two upper panels, whereas corrected

data are simulated in the lower two panels. The profiles obtained from the computer-

simulations in the top and bottom panels relate to similar F values, for each experiment.

Nevertheless, while the top panels indicate good agreement (supporting the hypothe-

sis of fragment size-independent kinetics), the best fits in the lower panels are poor,

suggesting deviations from the model, i.e. fragment size-dependent kinetics. The inter-

pretation given here is that correction of experimental data for the background damage

carried out as subtractions of DNA mass-size distributions are biased and should be

avoided, if possible.

5.4 Computer-simulations of a low-dose DSB rejoining

experiment with the PCC technique.

Low-dose simulations of a PCC rejoining kinetics experiment have been run using

a similar approach to that described in § 4.5. Briefly, estimates of the DSB clustering

properties of α-particles and X-rays made using PFGE at high doses, averaged over six

independent experiments (see table 4.5) were used to simulate the initial fragmentation

at doses below 10 Gy. DSB rejoining kinetics were simulated, and frequencies of double-

stranded fragments smaller or larger than 20 Mbp, assumed to be the threshold size for

a fragment to become visible under PCC conditions, were followed during the rejoining

simulation. Assuming, for simplicity, first-order kinetics with a single exponential decay

component (see § 3.2.4 and eq. 5.1b), the fraction of the initial DSBs that has been

repaired in the computer simulation, F , can be converted to elapsed repair time by

solving eq. 5.1b for time.

1−F = exp(−t/τ) =⇒ t = [− ln(1−F)] · τ (5.2)

For simplicity it is assumed here that all breaks are repaired, i.e. a=0. This speeds-up the

‘interpolation and solution’ procedure that was employed in § 5.3, where a look-up table

was employed. τ in eq. 5.2 has been set to 1 hour (Nasonova et al., 2001) for simplicity.

Using the DSB yields estimated from the computer-simulations of DSB induction applied

to PFGE data (§ 4.4) at high doses, computer-simulations of a typical PCC rejoining ki-

netics experiment have been carried out after initial radiation doses below 10 Gy (down

to 1 Gy) for both X-rays (figure 5.13) and α-particles (figure 5.14). The lines shown

in these two figures refer to computer-simulations of number of excess fragments, that

is counting all the fragments that are visible under a microscope, minus the number of

chromosomes in a normal, non-aberrant cell, which in the case of human cells is 46.
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Excess of PCC visible as well as total fragments, including those which PCC cannot de-

tect, are shown. The kinetic curves could differ significantly if all fragments smaller than
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Figure 5.13: Simulations of rejoining kinetics of PCC fragments after an X-ray dose
ranging from 1 to 10 Gy. Settings for the simulation of initial DNA fragmentation were
taken from table 4.5.

20 Mbp were visible in PCC experiments, as also observed for PFGE experiments when

including or excluding Mbp-sized fragments in the DSB rejoining experiments analysis

(Stenerlow and Hoglund, 2002).
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Figure 5.14: Simulations of rejoining kinetics of PCC fragments after an α-particle dose
ranging from 1 to 10 Gy. Settings for the simulation of initial DNA fragmentation were
taken from table 4.5.
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Chapter 6

General Discussion

The three major results of this Ph.D. Thesis project are:

• The development of analytical and numerical methods for the quantification of

double-strand break (DSB) yields and distributions, which do not require subtrac-

tion of the background damage that is measured in unirradiated control samples

of pulsed field gel-electrophoresis (PFGE) experiments;

• the quantitative description of DSB clustering due to exposure to high-LET radia-

tion, achieved by means of a Monte Carlo DSB clustering approach;

• the finding that DSB induced by both low and high-LET radiation appear to rejoin

with kinetics that are independent of vicinity to other DSBs, within the DNA size-

regions studied. This suggests that:

locally multiple damaged sites (LMDSs) are more important than re-

gionally multiply damaged sites (RMDSs) in determining DSB rejoining

kinetics.

These three results are now discussed in the context of previously reported data in the

literature and predictions are made for future study.

6.1 Result I: treatment of background damage to DNA

in PFGE

Quantification of DSB yields and distributions may lead to different results depending

on whether DNA fragmentation data are analysed after correction for the background
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damage or not. It was shown that DSB rejoining kinetics appear as fragment size-

independent if uncorrected data are analysed. Conversely, when the background dam-

age is subtracted, results indicate fragment size-dependent rejoining kinetics (see § 5.3

and 5.3.1). The interpretation given here is that a fragment size-dependent distortion is

applied to the fragmentation profiles, when mass-size distribution values are subtracted.

This problem can be described theoretically using the random breakage model, to show

the effect of the subtractive procedure (see figures 3.4 and 3.5). A simple subtraction of

the background DNA fragmentation pattern is erroneous, although alternative subtrac-

tive methods have been proposed in the past. A dose-dependent weighting factor that

takes into account the extent of total DNA fragmentation observed in the unirradiated

controls, as well as in the irradiated samples, may modulate the amount of background

damage to be subtracted from each gel section, for an appropriate correction, thus lim-

iting distortions in the fragment size distributions (Cedervall et al., 1995, and personal

communication). Nevertheless, a correction for the background damage carried out re-

gion by region cannot be accurate. The way the DNA mass signal ‘moves’ across the

fragment size distribution while breaks are added or removed, i.e. while fragments are

made smaller or larger, depends on the amount of DNA present in the next neighbour

size regions (figures 3.5 and 3.4) and to a smaller extent even to more distant molecular

weight regions. As breaks are added or removed, the amount of fragments of a certain

size depends on the overall flux of fragments between the different molecular weight

regions. A subtractive method to correct for the influence of the background damage

should not be carried out region by region, as confirmed by our own studies of exper-

imental data when these were analysed with methods of DNA DSB quantification that

require such a correction.

The new approaches illustrated throughout this Thesis do not require pre-correction

of experimental data. It was decided to adapt the functions employed for regression anal-

ysis, which are derived from the existing models, or to develop numerical methods that

could account for both the non-linear and non-local mass-migration effects mentioned

above, rather than manipulating the experimental data and potentially biasing the con-

clusions. The distortion caused by local subtraction procedures can lead to erroneous

interpretations also in the analysis of initial radiation-induced DNA fragmentation. A de-

parture of subtracted DNA fragmentation data from the random breakage model could

be interpreted as due to clustered breakage, even for sparsely ionising radiation, which

is thought to lead to the formation of randomly distributed damaged sites. This problem

has been considered from the theoretical perspective using the BDRB approach (see

also Pinto et al., 2000) and from its application to experimental data that were obtained

earlier, not as part of this project (Pinto, 1998).
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For integral methods of analysis of DNA fragmentation, like the FAR or the Q-function

methods, other ways of correction for the background damage exist, which do not require

manipulations of experimental data (§ 3.2.1.1). When using these methods it is neverthe-

less assumed that the background damage measured in PFGE is randomly distributed,

according to a mechanism that may not be distinguished from that of radiation. This

does not appear to be the case, as shown for example in figures 4.5 for a few experi-

ments carried out as part of this Thesis, or in studies by other workers (Belli et al., 2001,

2002; Erixon and Cedervall, 1995; Höglund and Stenerlöw, 2001).

A central question is whether the background damage measured in PFGE exper-

iments is representative of DNA damage to cells, or it is just an artifact of either the

experimental procedures or data analysis. The large number of background DSBs mea-

sured may not necessarily reflect the damage present in the cells at the time of irra-

diation, but it may be produced only during the preparation of the samples for PFGE

(Rydberg, 2000). Also, the large number of DSB that lead to the formation of 50 kbp

or smaller fragments may be merely the result of an amplification of noise in the signal

measured in this molecular weight region (Stenerlöw et al., 2000). As suggested by

Stenerlöw et al., the uncertainties in the conversions from mass fraction measurements

to number and frequency of DSBs using the set of equations 2.5 increase strongly as

∆M and M̄ decrease, since for smaller DNA fragments the measured Fi values are

affected by larger experimental uncertainties, and these uncertainties are amplified by

the presence of smaller and smaller ∆M and M̄ values of the denominator in eq. 2.5a.

Following the arguments of Stenerlöw et al., it may be argued that if Fi was set by the

resolution limit of the PFGE assay at the approximate constant value of 0.001, and if

both ∆M and M̄ were to decrease approximately linearly with gel section number (gel

sections further away from the wells contain smaller DNA fragments) one would expect

from eq. 2.5a that the functional relationship between the frequency of DNA fragments n

and the mass of the fragments M should follow a power-law with exponent '-2, which

on double logarithmic scales is a straight line of negative slope. The question is whether

the power-law that describes the shape of the fragmentation patterns observed in the

unirradiated controls indicates real correlated damage effects, or whether it is the result

of a biased procedure, such as the conversion of very small mass fraction measured

values to frequency of DNA fragments, with the aid of eq. 2.5. When the detection lim-

its of PFGE are approached, the arguments made above suggest that the shape of the

fragmentation profiles resembles a power-law purely due to the conversion made from

mass fractions to frequency values. In this case, the observed power-law is due to a

bias, and conversion to frequency of DNA fragments is not recommended. Neverthe-

less, for molecular weight regions where measurements of fractions of DNA mass are
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significantly above the PFGE limits of sensitivity, one can safely exclude the effect of this

systematic error. This project has employed a technique that allows measurements of

DNA fragmentation in the range 30 kbp-5.7 Mbp, where the background damage pat-

tern resembles that predicted by a power law. Comparison with results of other works

suggests that a power-law may also describe well the shape of the fragmentation pro-

files measured in the unirradiated controls for much smaller fragments. Such works

employed a more sensitive DNA labelling procedure than the present work, and the sig-

nal measured for kbp-size fragments was significantly above that of background, thus

eliminating the problem of noise amplification discussed earlier (see Pinto et al., 2000;

Rydberg, 1996).

The origin of background damage in PFGE is not clear. In the attempt of finding

potential mechanisms, the effect that lysis of cell membranes may have during prepa-

ration of the samples for PFGE is discussed here briefly. In one study employing the

FAR method, Rydberg showed that radiation-induced heat-labile sites (HLSs)may be

converted to DSBs during PFGE lysis, if this is carried out at 50◦C with detergents and

proteinase K, for an overnight exposure, as done in this PhD project (Rydberg, 2000).

Rydberg showed that when exposure to lysis solution at 50◦C is shorter, less DNA is ex-

tracted into the agarose gels. He suggested that a lysis treatment for 10 minutes may be

sufficient to reveal the fragmentation effect of DSBs only, and that subsequent treatment

may be responsible for converting radiation-induced only heat-labile sites (HLSs) into

DSBs. Conversion of HLSs to DSBs is in fact a slow process with half times around 15–

30 minutes, competing against repair of HLS, which takes place within 4 minutes from

their initial induction, as observed in studies using an in vitro plasmid system (O’Neill,

personal communication, and Jenner et al., 2001). Using the FAR approach, Rydberg

could not observe the same conversion effect in the unirradiated control samples, since

the DNA fragmentation observed in unirradiated controls was independent of lysis time.

Nevertheless, this putative time-dependent HLS to DSB conversion in unirradiated con-

trol cells was studied in Rydberg’s work in cells that had already undergone prior lysis for

22 hours at 50◦C . If conversion to DSB took place, it cannot be excluded that this hap-

pened in the first lysis. In summary, although Rydberg’s study shows evidence of DSB

conversion from radiation-induced HLSs, it remains unclear whether background DSBs

in PFGE are caused by transformation of endogenous HLSs in the same way and to the

same extent as shown for radiation-induced HLSs. PFGE lysis and electrophoresis runs

may also convert some types of multiple damaged sites into double-strand breaks. For

example, if an endogenous damaged base leads to a localised distortion of the sugar-

phosphate backbone and lies near a SSB in an unirradiated cell, then shear forces during

electrophoresis may cause strand breakage and produce a DSB which was not originally
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present in the cell.

Background DNA damage in PFGE is described in this Thesis only in terms of size-

distribution of the double stranded fragments that are a consequence of DNA break-

age. In the analytical BDRB approach (§ 3.2.2.3), the background size distribution is

assumed to follow a power-law (eq. 3.6), but no explanation is given regarding what

mechanism might cause such a distribution. In the numerical version of the BDRB ap-

proach (§ 3.3.1.1), more flexibility is given to the description of the DNA fragmentation

in unirradiated controls, but still no assumptions are made regarding the actual mecha-

nism. Khvostunov and Andreev have attempted to predict what type of breakage mecha-

nism would produce the fragmentation pattern that is observed in unirradiated controls of

PFGE experiments. By computer-simulating several hypothetical mechanisms of break-

age of three-dimensionally looped chromatin structures, they have been able to find a

few mechanisms which lead to DNA fragmentation in reasonable agreement with the ex-

perimental patterns that are observed by several different investigators (Khvostunov and

Andreev, 2001).

It could be argued that the unirradiated control fragmentation patterns of PFGE do

not reflect damage to all the cells in the population, but the patterns may be averaged

over a majority of normal, undamaged cells, and a sub-population of heavily damaged

cells. In this case, PFGE procedures may be the origin of such heterogeneous fragmen-

tation, but this may also be endogenous, at least in principle. Let us suppose that one

has 10% FAR in the unirradiated control samples, where electrophoretic conditions are

such that 10 Mbp is the exclusion size. Let us then consider the hypothesis that the FAR

value measured is representative of DNA damage solely in the damaged sub-population.

The entire genomic DNA content of these heavily damaged cells must be composed of

fragments that are all smaller than 10 Mbp (F<k=10Mbp=100%), so they can enter the gel

and be detected, and account for 10% FAR averaged over the two populations. In this

example, the remaining population is composed of cells that are not damaged, i.e. their

chromosomes are intact. With a 6.4Gbp genome and all breaks equally spaced from

each other, one would need at least 640 breaks per damaged cell. Nevertheless, in this

case one would only predict the presence of one sharp DNA band at 10 Mbp, while frag-

mentation patterns observed in the unirradiated control samples appear smeared (see

figure 4.1). Although there is evidence for background damage in PFGE to be induced by

a clustered breakage mechanism (see for example figure 4.5), one can use the random

breakage model just to predict, approximately, how many breaks should be induced to

have F<k=10Mbp=100% in a sub-population of heavily damaged cells. This can be done

with the FAR implementation of random breakage (using eq. 3.2). It turns out that ap-

proximately 1000 DSBs correspond to virtually 0% chance for the survival of a fragment
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larger than 10 Mbp. In practice, this is likely to be an underestimate, since the apparent

DSB clustering in unirradiated controls implies that for the same FAR value, 10% in our

example, there will be many more DSBs, as can be than estimated from integration of

the power-law in eq. 3.6 (see also Pinto et al., 2000). This calculation shows that for the

background damage that is observed using PFGE to be the result of fragmentation of

a sub-population of heavily damaged cells, these cells should contain several thousand

breaks each. If this phenomenon was independent of PFGE, it should also be observed

with other techniques. Experiments employing the ‘comet’ assay do not seem to reveal

such a highly fragmented unirradiated control cell-population. Moreover, normal human

fibroblasts are well known for their very low levels of spontaneous apoptosis, which could

in principle be thought to be responsible for the putative extensive DNA fragmentation.

A more complex scenario may be one where several cell populations exist, with varying

levels of background damage, such that the average damage observed could be de-

scribed with a power-law. Experiments that employ in situ labelling of γ-H2AX histone,

which is extensively phosphorylated at the site of DSBs, show that unirradiated cells

occasionally have very high numbers of foci (Kai Rothkamm et al, unpublished results).

Currently however, there is no convincing evidence to prove that a sub-population of

highly damaged cells is responsible for the background damage observed in PFGE.

Another possible interpretation is that PFGE does induce the background damage

observed, only in a fraction of the cells. This damage may be induced, for example,

when agarose plugs containing lysed cells, with DNA not protected by histone proteins,

are handled after lysis for equilibration in electrophoresis buffer, and/or during sample

loading in the wells of the agarose gels. Considering that the pores of the gellified

agarose matrix are of size comparable to that of the cells diameter or below, i.e. a few

µm, it is difficult to understand how shear forces during sample handling could produce

such extensive DNA fragmentation that includes fragments of several kbp or hundreds

of kbp.

That the DNA smeared mass distribution observed in the unirradiated controls is

due to mitochondrial DNA can also be excluded. Although DNA of all mitochondria in

mammalian cells accounts for about 1% of total cellular DNA mass, their genome is only

about 16,500 base pairs, less than 10−5 times the size of the nuclear genome (Alberts

et al., 1994). Such a small genome cannot be responsible for the fragmentation pattern

observed at the Mbp-scale and for several hundreds of kbp.

In summary, in this project, it has been hypothesised that background damage mea-

sured in PFGE is caused by electrophoresis procedures, hence independently of radia-

tion, and that it is not present in normal cells. Moreover, it is considered to be equally dis-

tributed among all the cells encapsulated in an agarose plug. Given these hypotheses, it
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may be worth stressing the difference between the picture observed of background dam-

age in the BDRB method (§ 3.2.2.3) and that made in its numerical extension, designed

to support radiation-induced clustered breakage (§ 3.3.1.1) in order to gain insights into

how the damage may be distributed in each cell. In the analytical BDRB method, back-

ground damage in PFGE is described as if 46 virtual chromosomes exist, whose size is

smaller than that of the original, intact chromosomes. Along with these virtual chromo-

somes, there is a widely dispersed fragmentation pattern, below 10 Mbp, whose origin

lies in the fragmentation of the intact chromosomes, but fragments in this region can no

longer be attributed to any chromosome. However, for the subsequent random breakage

process which simulates radiation action, any shuffling of the above mentioned distribu-

tion would produce the same final fragmentation profile. A major uncertainty is probably

the shape of the population of DNA fragments above 10 Mbp. With the numerical exten-

sion of this model, the hypothesis is that background fragments are equally distributed

among all the 46 chromosomes present, as it is unknown whether individual chromo-

somes are more sensitive to this type of damage relative to each other. In the numerical

model, background breaks occupy one contiguous region of each chromosome, cover-

ing a fraction of its length that is set by the experimental FAR value measured in the

unirradiated controls (see figure 3.8). Alternatively, one may distribute the background

fragments in several separated regions of each chromosome, still covering a fraction of

the chromosome size equal to the FAR value, such that the distance between two con-

tiguous regions occupied by background fragments defined a fragment that is larger than

10 Mbp. The total number of background breaks would be larger in this case, and the

average background fragment size would be consequently smaller, but the shape of the

fragmentation pattern below 10 Mbp could be identical. At high radiation doses, this al-

ternative background arrangement would not produce different results from the one that

was adopted in this study, which justifies the choice made. At low doses nevertheless,

some differences may be evident. For the more dispersed, alternative geometry, Mbp-

sized fragments would be produced as function of dose with a stronger linear component

for sparsely ionising radiation. For the clustered geometry adopted here instead, one ex-

pects that two independent breaks are required to produce Mbp-sized fragments. The

presence of a background break within a few Mbp from a randomly located radiation-

induced DSB is unlikely for a linear production of fragments.

A very similar approach to the BDRB analytical method is the generalised broken

stick (GBS) method developed independently by Belli et al. (2001). The rationale is

identical to that of the BDRB method: the fragmentation pattern measured in irradiated

samples must be the result of the super-imposition of background and radiation-induced

breaks, and subtractions of profiles will inevitably lead to erroneous results.
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6.2 Result II : quantification of initial yields of X-ray and

α-particle induced double-strand breaks

Initial yields and distributions of DNA double-strand breaks (DSBs) have been mea-

sured in this study using pulsed field gel-electrophoresis and several mathematical and

numerical methods of DSB quantification. Care has been taken to allow for the influence

that background breaks have on the experimental outcome. It has been assumed here

that all breaks that are not background breaks have been induced by radiation directly.

There is an emerging concern about the type of DSBs that are detected by PFGE, in

particular two hypotheses have been the subject of several studies by other investiga-

tors, conducted during this doctoral project, both stating that part of the DSBs measured

are not directly due to radiation. Some of the measured breaks could be:

• Radiation-induced heat-labile site (HLS) that are converted to DSBs during the

experimental procedures (Rydberg, 2000).

• Clustered lesions, which as consequence of attempted DNA repair are partly con-

verted into DNA DSBs (Box et al., 2001; Gulston et al., 2002; Jenner et al., 2001;

Sutherland et al., 2000). Such repair could in principle also take place in sam-

ples that are not deliberately subject to repair incubation, in the few minutes during

the manipulations procedures when the samples are exposed to 37◦C (see exper-

imental methods, § 2.5). Also, these non DSB clustered lesions may be converted

into breaks during electrophoresis procedures.

Production of HLSs appears to be mediated by OH radical species, as determined by

varying the OH scavenging conditions in plasmid models (O’Neill, personal communica-

tion). It is also predicted that the extent of DSBs that could derive from conversion of

HLS is LET dependent.

When using bacterial endonucleases such as Nth (endonuclease III) and Fpg (for-

mamidopyrimidine DNA glycosylase) to convert non DSB clustered lesions into DSBs

that could be detected with PFGE or conventional CFGE, it has been shown that a sig-

nificant proportion of radiation-induced clustered lesions are not DSBs, for high-LET par-

ticles (Sutherland et al., 2000), but even for γ radiation (Gulston et al., 2002). The ratio

of ‘non-prompt’ DSB to directly induced DSBs in human cells seem to be about 1, even

for γ rays. That non-DSB clustered DNA lesions exist and are as abundant as prompt

DSBs has a great importance for estimating risk of exposure to radiation, since some of

these lesions appear difficult to repair. Some types of clustered DNA lesions seem in fact

to stall the repair system (David-Cordonnier et al., 2002; Weinfeld et al., 2001). These
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recent experimental findings may be challenging the role of radiation-induced direct DNA

DSB as the important lethal lesion.

In summary, in this Thesis, it cannot be excluded that radiation-induced DSBs yields

and distributions may be influenced by the presence of both heat-labile sites and non

DSB clustered lesions, which would enhance the estimates of total DSB yields both in

experiments where initial fragmentation is assayed and in those which included repair

incubation. This factor, together with the necessity of using high radiation doses, at the

time of increasing interest in the effect of radiation at low doses, raises the question as

to whether conventional PFGE may still be the technique of choice for measuring DNA

damage in the future. Nevertheless, results from this work are in good agreement with

numerous published data, indicating that if such a problem exists, it may be encountered

often. SCGE, commonly referred to as the ‘comet’ assay, may represent a valid alterna-

tive to PFGE. The neutral version of single cell gel-electrophoresis may be used at doses

sensibly lower than that required by PFGE for fragmentation analysis, although conven-

tional FAR analysis with PFGE can also be carried out at low doses. Lysis in single cell

gel-electrophoresis (SCGE) is different from lysis in PFGE, and conversion of HLS to

DSB could be less extensive. Perhaps the major limitation to the sensitivity of SCGE at

low doses is due to the imaging techniques, rather than in the experimental technique

itself (Johnston, personal communication). The advantage of SCGE over PFGE is nev-

ertheless that the former allows the study of individual cells, so that in principle it may be

used in conjunction to microbeam irradiation. On the other hand, spatial distribution of

DNA damage cannot be studied as in PFGE, since molecular weight markers cannot be

run in parallel.

Another low-dose, single cell technique that can be used to study DNA damage, partic-

ularly DSBs, has also emerged recently. This employs antibodies that are specific to a

phosphorylated form of histone H2AX, (see § 1.2) when this becomes rapidly phospho-

rylated as a consequence of radiation induced injury (Paull et al., 2000; Rogakou et al.,

1998). The dose required to detect γ-H2AX ‘foci’ is on the order of 1 Gy and this makes

the technique perfectly adequate to study DNA damage in single cells subject to mi-

crobeam irradiation (Prise et. al., unpublished results), especially when other biological

end-points that necessitate low-doses are studied.

6.2.1 240 kVp X-rays induce randomly distributed breaks

Initial DNA fragmentation produced by 240 kVp X-rays has been measured experi-

mentally and at first analysed with the FAR method (§ 4.3.1), direct DSB quantification

(§ 4.3.3) and the background-dependent random breakage method (§ 4.3.4). Results of
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the analysis with the first two methods indicate that estimates of DSB yields are a func-

tion of the experimental region analysed. This seems to suggest that a deviation from

random breakage must occur (see table 4.4) and that application of methods based on

random breakage to estimate yields of DSB induced after low LET radiation is perhaps

inappropriate (see also Pinto et al., 2002). The observed deviation from randomness

is believed to be due in part to the subtractive procedure that is carried out to correct

for the background damage to DNA. This subtraction in fact leads to an over-estimation

of fragments in the hundreds of kbp region accompanied to under-estimation of larger

fragments (see § 6.1). When the BDRB method has been employed, such deviation

from randomness was significantly attenuated (table 4.4) strengthening the hypothesis

that the putative non randomness of X-ray induced breaks distributions is mainly due

to the conventional methods used to analyse experimental data. Other studies in the

literature have generally found the distribution of low-LET induced DSBs caused by ran-

dom breakage, with DSB yields either smaller of equal to those reported in the present

study. Some exceptions exist, as for example in de Lara et al. (2001), where deviations

from randomness were observed after 60Co-γ irradiation, with a defect of fragments of

about 100 kbp and an excess of Mbp-sized fragments. For comparison, see Prise et al.

(1998), where results from different techniques are employed, and Prise et al. (2001)

and table 6.1, where PFGE data only are shown together with those from this work,

reported in table 4.4 in more detail. Results of analysis of fragmentation data with the

numerical extension of the BDRB method (§ 4.4) also indicate that X-ray induced DSBs

appear to be randomly distributed in the genome. DSB clustering simulations of X-ray

induced fragmentation in fact produced a poorer fit to the data than the corresponding

one for random breakage. Overall, yields of X-rays induced DSB are very similar to those

published from other groups.

6.2.2 238Pu α-particles cause regionally clustered DNA breakage

Random breakage models do not fit experimental data of medium or high LET ra-

diation induced DNA fragmentation. When applying random breakage models to fit α

particles or light ions data, the DSB yields extrapolated to whole cells vary significantly

with the experimental region investigated (see for example Höglund et al., 2000; New-

man et al., 1997, as well as results from this work in § 4.3.1 obtained with a variable

size threshold FAR method). For high LET radiation, indications of deviation from ran-

domness are too significant to be solely due to erroneous corrections for the background

damage. More recently, direct quantification has been employed to evaluate RBE values

for DSB induction, although even in this case the estimates vary with the size of the
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fragments that are contributing to the DSB yield estimates, as also shown in this study in

§ 4.3.3. Mathematical models supporting clustered breakage, or computer-simulations

of DNA breakage using reconstructions of both chromatin and charged particle track

structure have provided a valid alternative to the random breakage model (Friedland

et al., 1999; Ponomarev et al., 2001a; Sachs et al., 1998). Experimental data on initial

DNA fragmentation induced by 238Pu α-particles have been analysed in this study us-

ing a simplified clustered breakage numerical approach, which has been fully developed

throughout this project (§ 3.3.1.1). Results from quantitative comparison of the computer

simulations to experimental data support the simple hypothesis that clusters of DSBs

are located randomly in cells, and that each cluster contains, on average, six breaks all

within ≈20 Mbp(summarised in table 4.5). This finding is compared following to results

of other published results of Monte Carlo simulations of PFGE fragmentation data, con-

sidering current knowledge of high order chromatin structures (see figure 1.2). Table 6.2

also shows a comparison of DSB yields after high-LET radiation between several stud-

ies that employed PFGE and methods of DSB quantification either based on random

breakage or on ‘direct quantification’. The randomly located cluster (RLC) formalism by

Sachs et al. also has two free parameters, and it has been employed to describe nitro-

gen ion-induced DNA fragmentation in human fibroblasts (Löbrich et al., 1996) as well

as 110 keV µm α-particles (Newman et al., 1997, obtained using the same Pu source

as in the present study). However, both data-sets used for analysis with RLC formalism

were provided already corrected for the background damage by means of a subtraction

of mass-length distributions (analysis in Sachs et al., 1998). The best Monte Carlo fits

with the RLC formalism to the α particle data set indicate an average cluster size of

about 7 Mbp, and an average multiplicity of about 8. These results are not too different

from those obtained from the simple approach developed in this work, since the cluster

radius varies stochastically according to a uniform distribution in the present simulations,

and to 10 Mbp maximum cluster radius there correspond a mean radius of 5 Mbp. The

region covered by a cluster ultimately becomes approximately 10 Mbp, which can be

compared to Sachs et al.’s result of 7 Mbp. The finding that clusters extend over several

Mbp appears reproducible, although the mean breakage multiplicity per cluster is differ-

ent. By quantification of the deviation from random breakage, without using computer

models of DSB clustering, it was predicted that for 110 keV µm α-particles there is a

44% probability that a DSB is accompanied by another DSB, within 300 kbp (Newman

et al., 1997, V79 cells data). Although clustering at these kbp scales is evident in many

studies, the cluster radius is under-estimated from the assumptions made by Newman

et al. if compared to the one estimated in the present work. Mathematical considera-

tions from others studies also predict that DSB clustering must extend up to several Mbp,
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when heavy ions with LET in the order of 103-104 keV µm are employed (Kraxenberg

et al., 1998).

If DSB clustering due to charged particle tracks extends to several Mbp, even as high

as 10 Mbp, this may be due to the overlap of a charged particle track with one or more

specific high orders of chromatin arrangement. Manuelidis described ordered chromatin

structures with sizes in the order of 7–10 Mbp (Manuelidis, 1990). Intersecting such

structures would cause DNA DSB clustering on the Mbp scale. High order organisation

of ≈ 3 Mbp flexible chromatin giant loops, whose base points lie on a three dimensional

random walk, are also suggested in the coordinated modelling and experimental work

of Sachs et al. (1995) and Yokota et al. (1995), which provides evidence for such type

of organisation to determine chromatin compaction from 0.15 to 190 Mbp. Interestingly,

support for existence of 2·9 Mbp ‘giant’ looped domains comes from the work by John-

ston et al. (1998a). It may be that several of these contiguous structures are hit after the

passage of one energetic charged particle, with a resulting regional clustering of DNA

damage extending up to several Mbp.

Sachs et al., in the application of the RLC formalism to fit PFGE data on fragmen-

tation induced by high LET particles, have assumed that to 1 Gy there correspond 10

radiation tracks, rather than leaving this as free parameter, which would have increased

the degrees of freedom of the simulation. Such an assumption is not made in the nu-

merical simulations of DSB clustering developed and applied in this work, since there

was no explicit attempt to simulate singe-track effects. Nevertheless, it is interesting to

attempt to find a connection between the results obtained here (table 4.5) and the effects

of single particle traversals.

AG01522B fibroblasts are relatively thin cells (2–3 µm), and a single 110 keV µm−1

α particle traversing the cell nucleus is expected to deliver approximately 0.1 Gy. 1 Gy

corresponds thus to an average of 10 α-particle traversals, although the number may

fluctuate according to Poisson statistics. Due to the limited thickness of the cells, it can

be hypothesised that each particle traversing the nucleus would intersect normally one

and generally no more than two chromosome territories. Figure 6.1 gives a schematic

representation of chromosome territories distributed in a human fibroblast. In practice,

the cytoplasm stretches much further than represented in figure 6.1, and chromosome

territories are believed to have overlapping regions, as described in the CT-IC model in

§ 1.2. For each particle track there will be up to two hits in distinct chromosome territo-

ries, hence 1 Gy may be related to a maximum of 20 chromosome territories hits. This

may be regarded as an upper limit, since there is a chance that a particle will not inter-

sect any chromatin at all, and some particles may hit only one chromosome territory. In

fact, 20 independent α particle hits is probably overestimated, since from this study one
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top

side

X

X X

Figure 6.1: Single charged-particle tracks intersecting one or two distinct chromosome
territories. Top panel: X symbols represent the point of traversal of one charged particle,
viewed from the side in the lower panel. Dashed lines represent chromosome territo-
ries that lie in a background layer compared to those represented with a solid line. It
is currently unknown whether the thickness of AG01522B cells is compatible with the
existence of chromosome territories lying one above the other.
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estimates a total of 35 DSBs, then the multiplicity of each cluster should be ≤2, that is,

for one charged particle track intersecting a chromosome territory, only two breaks are

induced. Based on results from Sachs et al. (1998) and simulations in this work, this

is probably unlikely, for two breaks per cluster per chromosome would not lead to the

fragmentation profile that is observed experimentally, which shows an excess of DNA

fragments in the 100 kbp range compared to random breakage. Computer simulations

for multiplicity set to two in fact provided poor fits to the data at all dose values available

in this study. In figure 6.1, three particle tracks relates to an approximate dose of 0.3 Gy.

According to the best fit of the DSB clustering simulations to the experimental data, ≈ 6

independent clusters are introduced in a cell per Gy, with an average multiplicity of 6,

making about 36 DSBs on average, per Gy. The estimate for the number of chromo-

some territories involved is somewhat lower than the calculation made above (6 vs 20).

If AG01522B were so thin that only one chromosome territory would be encountered per

charged-particle track, not as shown in figure 6.1, then there would only be about 10

chromosome territories hits per Gy, as an upper estimate, that is 10 DSB clusters, and

this may be better compared to the six independent clusters induced per Gy as predicted

by the simulations in this work. Finally, it cannot be excluded that one α particle cross-

ing the nucleus, or only one chromosome territory, may produce two track-correlated,

although distinct, DSB clusters in the same chromosome. Although the simulation is not

designed with one-track effects in mind, this event is unlikely but not impossible in the

simulation (p=1/46).

The higher the dose, the less single track effects may be evident, as every chromo-

some would have received a similar number of track traversals, and roughly the same

number of lesions. In this case, considering DSB clusters as independently and ran-

domly located as in the present simulations may be a good approximation.

6.3 Result III : the relative role of LMDSs and RMDSs in

determining DSB rejoining kinetics

Several experiments have been carried out as part of this project, in which cells

have been incubated for up to 48 hours at 37◦C , after an acute exposure to X-rays or

α-particles, in order to evaluate DSB rejoining kinetics. Quantification of DSB rejoining

kinetics has been accomplished either using the direct quantification method (§ 3.2.2.1)

or via computer simulations of DSB repair (§ 3.3.3.1). Rejoining kinetics estimates ob-

tained with either method were found to be consistent with each other, as summarised

in table 5.5. The numerical method, applied to PFGE data, has also allowed us to test
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whether DSBs are removed by the cellular repair machinery independently of their prox-

imity to other DSBs. Data analysis in the 30 kbp–5·7Mbp region suggests that repair

kinetics are consistent with the popular hypothesis that two types of DSB exist, with dif-

ferent reparabilities, and that α-particles induced breaks appear to rejoin more slowly.

Moreover, results suggest that rejoining kinetics are not influenced by the distance be-

tween two contiguous breaks. This suggests that LMDSs may determine DSB rejoining

kinetics, rather than damage that is regionally clustered between 30 kbp and 5·7 Mbp.

This result has also been interpreted as evidence for fragment size-independent kinet-

ics.Whether this may be extrapolated down to the kilo base pair or base pair region, that

is for accompanied breaks taking place on one or few turns of the 30 nm chromatin fibre,

or on lower order chromatin structures such as individual nucleosomes, is not clear. In

fact, recent studies in oligonucleotides using extracts of repair enzymes show that locally

clustered lesions impair repairability of DNA damage (David-Cordonnier et al., 2002). Lit-

tle is known about the repair kinetics of fragments whose size is ≤30 kbp. For fragments

belonging to the size range studied in this project, there is evidence from other studies

showing that the rejoining kinetics of some fragments are relatively slower, in contrast to

the results presented here. Using a modified version of neutral filter elution (NFE) which

employs a lysis procedure with Triton-X 100, which retain histone-depleted elements

of high-order chromatin structures, namely nuclear matrix-DNA interactions, Johnston

et al. demonstrated that breaks appearing as multiples within a 2·9 Mbp chromatin do-

main are processed by the V(D)J recombination-associated repair pathway, rejoining

with slower kinetics than isolated breaks in such loops. These 2·9 Mbp looped domains

were demonstrated to be independent of cell type (Johnston et al., 1998a). It is difficult

to compare the present data to those obtained from NFE-tx, since the latter ignores the

contribution of fragments in the Mbp region that arise from single breaks in two adjacent

2·9 Mbp looped domains, whereas the technique employed here does not.

Results from this study show clearly that whether rejoining kinetics appear as frag-

ment size-independent or as size-dependent depends on how experimental data are cor-

rected for the unwanted DNA fragmentation caused by the background damage (§ 5.3.1).

Since subtraction of background to irradiated and repaired fragmentation profiles results

in an excess of small fragments, accompanied by a lack of Mbp-sized fragments one

is tempted to conclude from the data that since small fragments are in excess, these

must repair more slowly than large fragments, which in parallel appear depleted. Com-

parison to other experimental studies that handle the background damage in a similar

fashion as shown here is necessary to test the conclusions from this work. It is proposed

that fragment size-dependent kinetics were observed in this study due to a bias in the

experimental procedures.
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For low LET radiation only, and in CHO cells, an earlier study demonstrated that re-

joining kinetics were fragment size-independent in the molecular weight range 1–10 Mbp

(Dahm-Daphi and Dikomey, 1996). By contrast, evidence for small DNA fragments to re-

pair with slow kinetics is provided in a recent study by Gauter et al. (2002). In that study,

the popular method of analysing fragmentation patterns measured after irradiation and

repair after incubation with the random breakage model is openly questioned. There

is in fact no justification for interpreting such fragmentation profiles as due to some

Gy-equivalent dose, since the removal of radiation-induced DSBs may in principle not

reverse the initial induction process (see also, for comparison, the discussion in Pinto

et al., 2002). The study by Gauter et al. employs video-fluorometry of ethidium bromide

stained gels, and an ingenious method to convert the mass-gel migration distance distri-

bution to mass-fragment length distributions. Experimental determinations are obtained

for several more fragment size values than in this study, which in contrast is based on

physical gel sectioning. To study the fragmentation pattern in the complete distribution is

potentially more accurate than physically sectioning the gels, since the latter method may

smooth-out any fine structure in the mass-size distribution. There is nevertheless the risk

that a weak signal may be below the sensitivity threshold of the imaging acquisition sys-

tem. As the background damage is limited to a few % of the total DNA mass it should

contribute to a faint signal if monitored on a continuous fragment size length scale. The

problem is similar to that faced when, in the attempt to increase the size-resolution of
14C or 3H-based method of PFGE data quantification, one tries to cut thinner and thinner

gel sections (§ 2.7). As a consequence, it may happen that the fragmentation pattern

in the unirradiated controls is not correctly estimated with video fluorometry, and then

not accounted for in the analysis of irradiated and repaired profiles. Another interesting

point in the study by Gauter et al. (2002) is the choice of allowing cells to repair while

embedded in agarose plugs, since with this method one has more control time allowed

for repair. Repair was measured only up to 4 hours post-irradiation. During this doc-

toral project, several DSB rejoining kinetics studies were carried out initially with cells

embedded in agarose plugs. The method was later abandoned since it was found that a

competing de novo DNA fragmentation process was promptly triggered, perhaps due to

the stress condition in which cells are exposed when embedded in a three dimensional

agarose matrix (see § 2.4). As mentioned above, a comparison between rejoining ki-

netics results and whether proximity of DSBs plays a role in rejoining kinetics is greatly

influenced by both experimental procedures and data analysis.

Excluding or including the signal contribution from small DNA fragments may affect

estimates of DSB rejoining kinetics also in a different way. A recent study by Stenerlow

and Hoglund (2002) shows how estimates of both slow and fast DSB rejoining kinetics
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components, in the framework of a first-order repair kinetics model (§ 3.2.4), are affected

by the presence of small DNA fragments in the experimental outcome. By varying the

threshold size below which the number of fragments were counted at several repair times

after both low and high LET radiation, Stenerlow and Hoglund show that estimates of

Ffast, τfast and τslow vary, a result that they also obtained when DSB rejoining kinetics are

studied in separate molecular weight intervals. One difficulty with the study by Stenerlow

and Hoglund is that the authors have attempted to fit DSB rejoining data in restricted

molecular weight regions with the equations provided by the first-order kinetics model.

As also shown in the present study, Stenerlow and Hoglund stated that:

“Analysis of rejoining in single size-intervals (but also in intervals that are

cumulated, below a specified size, personal note) is complex and involves

transfer of fragments from one size-interval to another; at the same time as

fragments are rejoined and become larger, additional fragments, originating

from rejoining of smaller pieces, will appear in that interval. . . ”.

This very clear explanation by Stenerlow and Hoglund was essentially the main rea-

son why rejoining kinetics in different size intervals were studied, in this work, with a

computer-simulation that could account for all these non-local effects. The kinetics plots

of figures 5.6, 5.7, 5.10 and 5.11 show that for some size intervals, specifically for larger

fragments, one has a trend that is significantly different from an exponential decay with

a double component. This is also evident in the work by Stenerlow and Hoglund them-

selves, in the 930-3500 kbp size region, where estimates of rejoining kinetics parameters

were affected by large uncertainties due to the shallow slope of the slow rejoining phase.

The shallow slope in this molecular weight region is due to the high rate of smaller frag-

ments that, during rejoining, are entering this size region. This feature is even more ev-

ident in the 3500-5700 kbp region (figure 1, panel (e) in Stenerlow and Hoglund, 2002),

where data cannot be fitted to a first order repair kinetics model at all, since the signal

increases first, starting its decay only after the first hour of post-irradiation incubation.

Since the experimental data in this project do not allow us to discriminate between

correct vs incorrect rejoining, the computer simulations have been designed to emulate

correct DSB rejoining. This represents a major limitation both from the experimental and

the theoretical point of view, for the results obtained in this project. In order to detect mis-

rejoining at the Mbp scale and below, the technique developed by Löbrich et al. may be

employed. According to recent data, mis-rejoining frequencies are in the order of 80%,

if one allows also the slowly rejoining breaks to complete repair, even waiting for many

days after radiation injury (M. Löbrich et. al., unpublished results) This is in contrast to

earlier data where it was believed that slowly rejoining breaks were ultimately reaching a
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plateau phase, commonly referred to the level of breaks that could not be repaired. The

recent observation by Löbrich et. al. provides evidence for all slowly rejoining fragments

to be ultimately mis-rejoined. The numerical approach designed supports the existence

of different type of breaks (see the object DSBin listing A.1), although in practice if mis-

rejoining is to be modelled, it would be necessary to revise the chromosome geometry

abstraction used in the codes, to allow for proximity of chromosome territories, as well

as proximity of DSB ends that may originate from separate breaks.

That all the breaks are ultimately rejoined, although mis-rejoined, has been the basis

of fitting DSB rejoining kinetics data in this study with a first-order kinetics model that

does not contain a residual, unrepaired component (see eq. 3.11). An effect of such

choice is that the slow repair half time τslow is much greater in this study compared to

several published results of DSB rejoining kinetics, as can be seen in table 6.3, where

results from PFGE experiments only are shown. The fast rejoining phase half-time also

appears longer than for other published works, perhaps also influenced by the choice

made for the fitting function.

6.4 Conclusion

The impact of background damage subtraction in PFGE data analysis has been de-

scribed, and new methods have been developed and tested for the analysis of numerous

DSB induction and rejoining experimental data obtained with the PFGE technique. When

PFGE data are corrected for the effect of background damage by subtraction of the ex-

perimental determinations in the unirradiated controls, unwanted distortions are applied

to the experimentally measured fragmentation patterns. Such distortions manifest them-

selves in an excess of double stranded fragments in the ≈ 100-500 kbp size region,

always accompanied by depletion of larger, Mbp-sized fragments. When experimental

data are treated as described, one may conclude that not only densely ionising radia-

tion, but even low LET radiation such as 240 kVp X-rays can induce DNA double-strand

breaks according to a clustered mechanism throughout the genome. Also, an excess of

small DNA fragments is interpreted in DSB rejoining kinetics experiments as an indica-

tion of fragment size dependent kinetics: small DNA fragments would repair at a slower

rate than Mbp-sized fragments.

Results obtained from the application of the method that have been developed in this

project indicate that:

• when experimental data are corrected for the background damage using the pro-

cedures developed as part of the project, X-ray induced breaks appear to be dis-
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tributed randomly and uniformly throughout the genome of human cells,

• the mechanism of DSB induction by α-particles is consistent with a breakage pro-

cess in which clusters of DNA DSBs are randomly and uniformly distributed, and

within each cluster there can be on average six associated breaks within≈18 Mbp,

• within the experimental size interval studied, spanning 30-5700 kbp, locally multi-

ple damaged sites appear to be stronger determinants for DSB rejoining kinetics

than regionally multiply damaged sites.

The two latter results combined together seem to suggest that the high radiation biolog-

ical effectiveness of α-particles may be due to the local complexity of damage to DNA,

that is to LMDS, hence to the nano-dosimetric property of this radiation, more than due

to the ability of α-particles to cause regionally associated damage, that is to microdosi-

metric properties.
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Appendix A

Examples of C++ computer program

codes

In this Appendix, a few examples of C++ codes are illustated. The full program codes

that were compiled to produce the executables for the DSB clustering simulations and

DSB rejoining kinetics are omitted, since these would occupy too much space. However,

excerpts from these codes are reported below to show the most relevant parts of the

simulations of both DSB clustering and rejoining.

A.1 DNAfragments and DSBclasses

Just like an integer, a float or a complex number type, a class is a user-defined type.

The programmer designs it in order to be able to use it, and let other people use it,

without remembering too many details of what’s really inside it. If properly designed, a

class can be used as any other object type. The user does not have access to all the

elements of a class, so for example if you are given a remote control you just want to

know what happens when you press its buttons, but you don’t want to know about all the

electronics that make the remote control work.

DSBand DNAfragment classes have been designed in a way that one could make

operations with double-strand breaks and DNA double stranded fragments easily, such

as building histograms, measuring sizes, repairing breaks, shuffling fragments, mak-

ing χ2 evaluations, without having to deal directly with numbers that would generate

confusion. Listing A.1 introduces the DSBand DNAfragment classes, declaring data

members and member functions, together with several functions that are ‘friend’ to the

class, i.e. that have access to selected features of the class they are made friend to. A

function declaration serves to give an idea of how is it used: which objects are passed to
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it for its functioning and what type of object does it return when it has completed its job.

The function definition instead is the detailed description of how the function is actually

implemented. The functions declared in listing A.1 are defined in listing A.2. The other

listings following show selected parts of the codes where DSB clustering and rejoining

are implemented, and DSBand DNAfragment objects are employed.

Listing A.1: Declarations of DNAfragments and DSBclasses plus facilitators

1 /∗ Fragments and Breaks.h

2 Declarations of the ‘ DSB’ class and the ‘ DNAfragment’ class

3 Designed and written beginning in May 2001 by Massimo Pinto

4 in Vitulazio ( CE) − Italy and GCI, Northwood, Middx UK ∗/

5 /∗∗∗∗ Description ∗∗∗∗∗∗/

6 // An Object of type ‘ DSB’ is characterised by a coordinate on the

7 // chromosome (unigned long) where it is located and by a quality factor .

8 // An object of type ‘ DNAfragment’ is characterised by its size and the

9 // quality of its two ends. The size is stored in an unsigned long

10 // integer , whereas the quality of the ends is stored as in an integer

11 // number, which can assume the following values :

12 // ‘0’ if the break is an artifact of the technique that does not

13 // represent a real break in the cells

14 // ‘1’ if the break is real and will be repaired correctly .

15 // ‘2’ is a Telomere : a virtual rather than real break.

16 // ‘3’ and following if the break has a chance of being

17 // mis−rejoined . The type of mis− rejoining will depend on the vicinity

18 // of other breaks that could be involved in mis− rejoining

19 // ‘4’ is a radiation −induced break that cannot be repaired any

20 // further . For example, this is a ring that originated from two ends

21 // of the same fragment binding to each other .

22 // May 2001.

23 // The first implementation only goes up to quality of ends of type

24 // ‘0’, ‘1’ and ‘2’ So, there is no support for mis− rejoining or for

25 // breaks that cannot be re−joined at all , yet .

26

27 /∗∗∗∗∗∗∗∗ Declaration of the class DNAfragment ∗∗∗∗∗∗∗∗/

28 #ifndef FRAGMENTS AND BREAKS
29 #define FRAGMENTS AND BREAKS
30 typedef unsigned long ulong;
31 typedef unsigned int uint ;
32 #include<vector>
33 class DSB; /∗ You need to prototype this herem, since this is used in the

34 DNAfragment class that is defined here below ∗/

35 class DNAfragment {
36 protected:
37 friend class vector<DNAfragment>; /∗ The vector<> class is made

38 friend because there are rejoining () member functions that will need

39 to scan several elements of type DNAfragment within the same

40 vector<>. These functions are defined in this header file . There is
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41 also a member function that creates a vector<DNAfragment> from a

42 vector<ulong>∗/

43 friend class vector<DSB>; /∗ The classes vector<DSB> is also made

44 friend for the implementation of the

45 functions that transform vector<DSB> to

46 vector<DNAfragment> and vice−versa. ∗/

47 // Data members

48 ulong size ; /∗ Holds the size of the double−stranded fragment ∗/

49 int first end ; /∗ The quality of the first end ∗/

50 int second end; /∗ The quality of the second end ∗/

51 public :
52 // Constructors

53 DNAfragment(); /∗ initialise to a fragment of 1 kbp length and simple

54 ends ∗/

55 DNAfragment(ulong a, int b = 1, int c = 1); // Initialise the

56 // fragment to size = a , both ends of quality ”1”.

57 DNAfragment(const DNAfragment&); // initialise to a fragment already given

58 // This is not a variable−sized object , as such , it should not need a destructor .

59 ˜DNAfragment() {;} /∗ destructor ∗/

60 // Query member functions , all in−lined due to their simplicity

61 ulong get size () const{return size;}
62 int get first end () const{return first end ;}
63 int get second end() const{return second end;}
64 // Modifiers , in−lined as they are quite simple

65 void set size (ulong a) {size = a;}
66 void set first end ( int a) { first end = a;}
67 void set second end(int a) {second end = a;}
68 // Comparison functions and operators . Put here things like the

69 // operators ==, <, >, <=, >= and more comparison operators in case

70 // you need to use more sophisticated comparison criteria , for

71 // example checking whether the ends are similar , not just the size .

72 // Friend functions to implement rejoining and mis− rejoining

73 // The end joining () function joins two contiguous ends if and only

74 // if these are perfectly reparable radiation −induced ends.

75 friend vector<DNAfragment> create from vec(vector<ulong> vec);
76 friend int end tag(vector<DNAfragment> & vec, int index, int quality);
77 friend vector<DNAfragment> DSB 2 DNAfragment(const vector<DSB>);
78 friend vector<DSB> DNAfragment 2 DSB(const vector<DNAfragment>);
79 // For DSB repair

80 friend int end joining(vector<DNAfragment> & vec, int index);
81 // For building fragment−type specific histograms

82 friend vector<ulong> DSB 2 fragment sizes with quality(const
83 vector<DSB>,
84 const int ,
85 const int );
86 };
87 /∗∗∗∗∗∗∗∗ Declaration of the class DSB ∗∗∗∗∗∗∗∗/

88 class DSB {
89 protected:
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90 // friend class vector<DNAfragment>; /∗ The vector<> class is made

91 // friend because there are rejoining () member functions that will need

92 // to scan several elements of type DNAfragment within the same

93 // vector<>. These functions are defined in this header file . ∗/

94 friend class vector<DSB>; /∗ Several features of DSB objects rely on

95 the vector<> functionality ∗/

96 // Data members

97 ulong position ; /∗ Holds the coordinate ∗/

98 int quality ; /∗ The quality of the dsb ∗/

99 public :
100 // Constructors

101 DSB(); /∗ initialise a simple double strand break : ‘ zero ’ coordinate

102 and type of break ‘1’ ∗/

103 DSB(ulong a, int b = 1); // Initialise the DSB to position = a , quality ”1”.

104 DSB(const DSB &); // initialise to a DSB already existing

105 ˜DSB() {;} /∗ destructor ∗/

106 // Query member functions , all in−lined due to their simplicity

107 ulong get position () const{return position ;}
108 int get quality () const{return quality ;}
109 // Modifiers , in−lined as they are quite simple

110 void set position (ulong a) {position = a;}
111 void set quality ( int a) { quality = a;}
112 friend void reset quality (vector <DSB> & vec, int); /∗ Resets all

113 the DSBs as simple radiation −induced, i .e . type 1. ∗/

114

115 // Comparison functions and operators .

116 // Friend functions to implement rejoining and mis− rejoining

117 // The end joining () function joins two contiguous ends if and only

118 // if these are perfectly repairable radiation −induced ends.

119 friend vector<DSB> create from vector(const vector<ulong> vec, const
120 int q);
121 friend void make DSB vec(vector <DSB> & vec1, const vector <ulong>
122 vec2, const int q);
123 friend int tag a break(vector<DSB> & vec, int index, int quality );
124 friend vector<DNAfragment> DSB 2 DNAfragment(const vector<DSB>);
125 friend vector<DSB> DNAfragment 2 DSB(const vector<DNAfragment>);
126 friend vector<ulong> DSB 2 ulong sizes(const vector<DSB>);
127

128 /∗ Facilitators to count the number of DSB of a given quality in a

129 vector and in a vector of vectors ∗/

130 friend int count DSB type(const vector<DSB> vec, const int quality);
131 friend int count DSB type many chromosomes(const vector < vector<DSB> > vec of vecs,
132 const int quality );
133

134 // For DSB repair

135 friend int remove DSB(vector <DSB> & vec, const int index, const int quality);
136 };
137

138 // Functors
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139

140 /∗ A class of objects that are designed to compare DNA fragments

141 according to size and DSBs according to their position ∗/

142

143 class less than
144 {
145 public :
146 bool operator () ( const DNAfragment& Arg1, const DNAfragment& Arg2
147 )
148 { return Arg1.get size() < Arg2.get size () ; }
149 bool operator () ( const DSB& Arg1, const DSB& Arg2
150 )
151 { return Arg1.get position() < Arg2.get position () ; }
152 };
153 #endif

Listing A.2 contains the explicit definitions of all the functions that have been declared in
listing A.1.

Listing A.2: Definitions of DNAfragments and DSBclasses plus their facilitators

1

2 #include " Fragments_and_Breaks . h"
3

4 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

5 /∗∗∗∗∗∗∗∗ Class DNAfragments function definitions ∗∗∗∗∗∗∗∗/

6 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

7

8 // Constructors

9

10 DNAfragment::DNAfragment() /∗ Default constructor : initialises a

11 fragment of 1 kbp lenght as default . The

12 ends are assumed to be ‘ good ’, i .e . they

13 are reparable radiation −induced breaks.∗/

14 {
15 size = 1000L;
16 first end = 1;
17 second end = 1;
18 }
19

20 DNAfragment::DNAfragment(ulong a, int b = 1, int c = 1)
21 {
22 size = a;
23 first end = b;
24 second end = c;
25 }
26

27 DNAfragment::DNAfragment(const DNAfragment &f) // Copy constructor

28 {
29 size = f .size;
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30 first end = f . first end ;
31 second end = f.second end;
32 }
33

34 // Friends

35

36 int end joining(vector<DNAfragment> & vec, int index) // Joins two

37 // contiguous ends as long as they are reparable

38 {
39 if ( ( index + 1) < ( int ) vec.size () )
40 { /∗ Proceed with these two fragments only if they both exist in

41 the vector , otherwise you have to return ∗/

42 if ( ( vec[index].get second end() == 1) &&
43 (vec[index+1]. get first end () == 1) ) /∗ If the ends to be

44 processed are of type

45 ‘1’ ∗/

46 { /∗ First copy the fragment ” sum” in the position ‘ index ’ ∗/

47 vec[index]. set size (vec[index]. get size () +
48 vec[index+1].get size () );
49 vec[index].set second end(vec[index+1].get second end());
50 vec.erase(&vec[index+1]); /∗ Deletes the element at index +

51 1 ∗/

52 return 0; /∗ The two fragments have been repaired ∗/

53 }
54 else
55 return 1; /∗ One of the ends was not reparable ∗/

56 }
57 else
58 return 2; /∗ You have caught the last fragment in the vector :

59 index+1 falls now out of the vector itself . ∗/

60 }
61

62 vector<DNAfragment> create from vec(vector<ulong> vec)
63 {
64 vector <DNAfragment> temp;
65 for ( uint i = 0; i < vec.size (); ++ i )
66 {
67 DNAfragment buff(vec[i],1,1);
68 temp.push back(buff);
69 }
70 return temp;
71 }
72

73 // end tag () changes the second end of vec[ index ] and the first end of

74 // vec[ index +1], thus changes the attributes of the break between

75 // them. The limit of its action may be vec. size () or any other

76 // limit . When tagging the ends of the fragments in a certain bin ,

77 // then your ” limit ” has got to be that of the upper limit of the bin ,

78 // or you risk to fall in the next bin . ” Quality ” is the quality of
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79 // the break that you want to set .

80

81 int end tag(vector<DNAfragment> & vec, int index, int limit , int quality )
82 {
83 if ( ( index + 1) < limit ) /∗ We are inside the region to process ∗/

84 {
85 vec[index].set second end(quality);
86 vec[index+1]. set first end ( quality );
87 return 0;
88 }
89 else return 2; /∗ You have gone out of the limits ∗/

90 }
91

92 // operators

93

94 bool operator< (const DNAfragment & a, const DNAfragment & b)
95 {
96 ulong size a=a.get size ();
97 ulong size b=b.get size ();
98 return ( size a < size b );
99 }

100

101 DNAfragment operator+ (const DNAfragment &a, const DNAfragment &b)
102 {
103 DNAfragment temp(a.get size()+b.get size(),a.get first end (), b.get second end());
104 return temp;
105 }
106

107 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

108 /∗∗∗∗∗∗∗∗ Class DSB function definitions ∗∗∗∗∗∗∗∗/

109 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

110

111 // Constructors

112

113 DSB::DSB() /∗ Default constructor : initialises a DSB at position

114 ‘0L ’. The quality factor is by default set to ‘1’,

115 i .e . it ’ s a genuine radiation −induced DSB. ∗/

116 {
117 position = 0L;
118 quality = 1;
119 }
120

121 DSB::DSB(ulong a, int b = 1) /∗ Explicit constructor : specifies the

122 DSB coordinate and the DSB quality . ∗/

123 {
124 position = a;
125 quality = b;
126 }
127
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128 DSB::DSB(const DSB &f) /∗ Copy constructor: creates an identical

129 DSB. ∗/

130 {
131 position = f . get position ();
132 quality = f . get quality ();
133 }
134

135 void reset quality (vector <DSB> & vec, int q)
136 {
137 for ( uint i = 0; i < vec.size (); ++ i )
138 vec[ i ]. set quality (q);
139 }
140

141 // Friends

142

143 void make DSB vec(vector <DSB> & vec1, const vector <ulong>
144 vec2, const int q)
145 {
146 for ( uint i = 0; i < vec2.size(); ++ i )
147 {
148 DSB buff(vec2[i ],q);
149 vec1.push back(buff);
150 }
151 return ;
152 }
153

154 vector<DSB> create from vector(const vector<ulong> vec, const int q) /∗ This

155 is useful if you have a vector of ulongs , representing coordinates ,

156 and want to create a vector of DSBs from it . All you need to do is to

157 add the information regarding the quality of the break , which by

158 default is set to ‘1’.∗/

159 {
160 vector <DSB> temp;
161 for ( uint i = 0; i < vec.size (); ++ i )
162 {
163 DSB buff(vec[i ], q);
164 temp.push back(buff);
165 }
166 return temp;
167 }
168

169 // operators

170

171 bool operator< (const DSB & a, const DSB & b)
172 { /∗ The ordering criterium is on the sole position , regardless of the

173 quality of the ends . ∗/

174 ulong pos a=a.get position();
175 ulong pos b=b.get position();
176 return ( pos a < pos b);
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177 }
178

179 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

180 /∗∗∗∗∗∗ Inter−class function definitions ∗∗∗∗∗∗∗∗/

181 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

182

183 // DSB 2 DNAfragment() transforms a vector of <DSB>s into a vector of

184 // <DNAfragment>

185

186 vector<DNAfragment> DSB 2 DNAfragment(const vector<DSB> the DSB vec)
187 { /∗ position second − position first requires the DSB vec to be

188 sorted ∗/

189 vector<DNAfragment> buff; /∗ Elements will be ‘push back’ed here ∗/

190 for ( uint j = 0; j < (the DSB vec.size() −1); )
191 {
192 int quality first = the DSB vec[j]. get quality ();
193 int quality second = the DSB vec[++j].get quality ();
194 ulong position first = the DSB vec[−−j].get position();
195 ulong position second = the DSB vec[++j].get position();
196 DNAfragment temp;
197 temp.set size(position second − position first );
198 temp.set first end ( quality first );
199 temp.set second end(quality second);
200 buff .push back(temp);
201 }
202 return buff ;
203 }
204

205 // DNAfragment 2 DSB() transforms a vector of <DNAfragment> into a

206 // vector of <DSB>s.

207

208 vector<DSB> DNAfragment 2 DSB(const vector<DNAfragment>
209 the DNAfrag vec)
210 {
211 vector<DSB> buff; /∗ Elements will be ‘ push back’ed here ∗/

212 ulong abscissa = 0L;
213 DSB temp;
214 for ( uint j = 0; j < the DNAfrag vec.size(); )
215 {
216 // int quality first = the DNAfrag vec[ j ]. get first end ();

217 int quality second = the DNAfrag vec[j].get second end();
218 ulong this frag size = the DNAfrag vec[j].get size ();
219 abscissa += this frag size ;
220 temp.set position(abscissa);
221 temp.set quality (quality second);
222 buff .push back(temp);
223 ++j;
224 }
225 temp.set position(0L);
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226 temp.set quality (0); /∗ a telomere is a DSB of type 2 ∗/

227 buff . insert (buff .begin(), temp);
228 // buff [ buff . size ()−1]. set quality (2);

229 return buff ;
230 }
231

232 // Friends of the DSB class

233

234 // DSB 2 fragment sizes with quality () extracts the size of the

235 // fragment that is delimited by two ends of the same given

236 // quality . Breaks of any other quality are considered absent , they do

237 // not chop down the sizes . This is very nice for extracting the fragment

238 // size distribution of the background or radiation −induced breaks

239 // only . You always need to specify the telomeres so two ‘ quality ’

240 // values are necessary.

241

242 vector<ulong> DSB 2 fragment sizes with quality(const vector<DSB>
243 the DSB vec, const int
244 quality1 , const int
245 quality2 )
246 { vector <DSB> copy with q1 q2 only;
247 for ( uint i = 0; i < the DSB vec.size(); ++i)
248 {
249 DSB temp = the DSB vec[i];
250 if ( ( temp.get quality () == quality1 ) || ( temp.get quality () == quality2 ))
251 copy with q1 q2 only.push back(temp);
252 }
253 vector <ulong> distances = DSB 2 ulong sizes(copy with q1 q2 only);
254 return distances;
255 }
256

257 // DSB 2 ulong sizes () transforms a vector of <DSB> into a vector of

258 // ulongs , where the distances between all the DSBs, without

259 // distinction , are written down. Simplified from DSB 2 DNAfragment()

260

261 vector<ulong> DSB 2 ulong sizes(const vector<DSB> the DSB vec)
262 { /∗ position second − position first requires the DSB vec to be

263 sorted ∗/

264 vector<ulong> buff; /∗ Elements will be ‘ push back’ed here ∗/

265 for ( uint j = 0; j < (the DSB vec.size() −1); )
266 {
267 ulong position first = the DSB vec[j].get position ();
268 ulong position second = the DSB vec[++j].get position();
269 ulong temp = position second − position first ;
270 buff .push back(temp);
271 }
272 return buff ;
273 }
274

183



275 int remove DSB(vector <DSB> & vec, const int index, const int quality)
276 {
277 if ( vec[index]. get quality () == quality )
278 { vec.erase(vec.begin()+index);
279 return 1; /∗ the break was successfully removed ∗/

280 }
281 else return 0; /∗ the break was not to be repaired ∗/

282 }
283

284 int count DSB type(const vector<DSB> vec, const int quality)
285 {
286 int sum=0;
287 for ( uint j = 0; j < vec.size (); ++ j )
288 {
289 if ( vec[ j ]. get quality () == quality )
290 sum++;
291 }
292 return sum;
293 }
294

295 int count DSB type many chromosomes(const vector < vector<DSB> > vec of vecs,
296 const int quality )
297 {
298 int total sum = 0;
299 for ( uint i = 0; i < vec of vecs.size (); ++ i )
300 {
301 total sum += count DSB type(vec of vecs[i], quality );
302 }
303 return total sum;
304 }

A.2 double-strand break clustering

Listing A.3 shows a part of the program code that was written to produce the exe-
cutable program for the DSB clustering simulations. Objects of type DSBare employed
here, whereas DNAfragments are used more extensively when looking at the size of
fragments created for accumulating fragment size frequencies (not shown).

Listing A.3: the DSB clustering routine

666 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

667 /∗ Clustering begins ∗/

668 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

669

670 int clustered = 0; /∗ The number of additional breaks

671 added in this cluster . It ’ s a

672 counter . ∗/
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673 double multiplicity = 0.0; /∗ The stochastic value for

674 each cluster

675 multiplicity . ∗/

676

677 /∗ The number of EXTRA breaks to be located in THIS cluster is drawn

678 from a Poisson distribution with parameter ExpectCorrBreaks that

679 was read from the initialisation file ∗/

680

681 multiplicity = PoissonDeviate(ExpectCorrBreaks,mtrand1);
682

683 if ( multiplicity >= 1.0) {
684 /∗ If at least one more break is to be added ∗/

685 clustered = 0; /∗ counter for the number of additionally clustered

686 breaks that we shall add now ∗/

687

688 /∗ I moved the lines of code that set the cluster radius before the

689 while () loop because the cluster radius should be set BEFORE the

690 extra breaks are added in the cluster . Otherwise there is no real

691 clustering going on , since for every extra break there is a new

692 dice throw to set the cluster radius . Rather , I have in mind that

693 the cluster radius is a property of the cluster as a whole,

694 rather than its individual DSBs ∗/

695

696 ulong temp Cluster Radius =
697 mtrand1.randInt(MaxClusterRadius);
698

699 while (clustered < ( ( int ) multiplicity ) )
700 {
701 ulong clustered break = 0L; /∗ The object where the

702 temporary position of the clustered break is stored ∗/

703

704 /∗ We now examine a few different cases for the

705 process of adding the breaks within the same

706 cluster . These cases depend on the vicinity of

707 the cluster centre to the telomeres and the value

708 of the current cluster radius that has been drawn

709 above . ∗/

710

711 if ( ( temp Cluster Origin > temp Cluster Radius)
712 && ( ( temp Cluster Origin +
713 temp Cluster Radius) < Chromosome size) )
714 { /∗ ‘ if ’ case one: the cluster sits well

715 somewhere inside the chromosome: generate a break

716 nearby according to a uniform probability where

717 temp Cluster Origin is the centre . ∗/

718 ulong LeftLimit = temp Cluster Origin −
719 temp Cluster Radius;
720 clustered break = mtrand1.randInt(2∗temp Cluster Radius);
721 clustered break += LeftLimit ;
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722 }
723 else if ( temp Cluster Origin <
724 temp Cluster Radius)
725 { /∗ ‘ if ’ case 2: the cluster radius spans

726 down to the left telomere of the current

727 chromosome. The uniform probability

728 distribution for the localisation of the extra

729 breaks in this cluster is not centred on

730 temp Cluster Origin : it starts right on the

731 left telomere and spans up to

732 temp Cluster Origin + temp Cluster Radius

733 which for convenience I call RightLimit . ∗/

734 ulong RightLimit = temp Cluster Origin +
735 temp Cluster Radius;
736 clustered break = mtrand1.randInt(RightLimit);
737 /∗ It is implicitly shifted to the right of

738 the left telomere since this is in the

739 null abscissa . ∗/

740 }
741 else if (( temp Cluster Origin +
742 temp Cluster Radius ) >
743 Chromosome size)
744 { /∗ ‘ if ’ case 3: the cluster contains the

745 right telomere . Again , liker for the

746 previuos case , the interval is smaller

747 than the one in case 1 ∗/

748 ulong LeftLimit = temp Cluster Origin −
749 temp Cluster Radius;
750 clustered break = mtrand1.randInt(Chromosome size − LeftLimit);
751 clustered break += LeftLimit ;
752 }
753

754 /∗ Transform the clustered break into a DSB and

755 add it to the current chromosome, since you

756 have not left the chromosome since the

757 coordinate of the origin of the cluster was

758 set before . ∗/

759

760 DSB clustered DSB(clustered break,1);
761 Diploid Genome[this chr].push back(clustered DSB);
762

763 /∗ Notice that in this way you come out with a

764 Diploid Genome[ this chr ] vector that is not

765 sorted . You will need to sort it later . ∗/

766

767 TotalBreaks++; /∗ Record that one more break has

768 been generated ∗/

769 clustered++; /∗ Record also that you have added

770 another break to ‘ this ’ cluster
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771 since you have a fixed

772 multiplicity as your upper

773 limit . ∗/

774

775 } /∗ Ends the while () loop that was locating as many

776 breaks as the temporarily extracted multiplicity

777 value ∗/

778 } /∗ Ends clustering if multiplicity was > 1 ∗/

779

780 /∗∗ −−−Clustered part ends −−∗∗/

781 .......

A.3 double-strand break rejoining routines

Listing A.4 shows the relevant part of the DSB rejoining routine. The function ‘re-
move DSB()’ and a few others appearing in this listing were defined in listing A.2. Only
the part of the program code that is most relevant to the DSB rejoining aspect is shown.

Listing A.4: the DSB rejoining routine

895 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

896 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

897 /∗ Rejoining part ∗/

898 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

899 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

900

901 /∗ How many breaks are to be repaired . The count has to be

902 made on the breaks that you consider to be reparable ,

903 i .e . those of type ‘1’ and may be a fraction of those of

904 type ‘0’, in a future potential implementation . ∗/

905

906 int to be repaired =
907 ( int )(count DSB type many chromosomes(Diploid Genome,1)∗repair);
908

909 for ( int count = 0; count < to be repaired ; ) {
910 /∗ Randomly selects the chromosome where the DSB to be

911 repaired shall be found ∗/

912 int this chr = mtrand1.randInt(45);
913 if ( reparable DSB per chromosome[this chr] > 0) {
914 /∗ Go ahead with rejoining if there are breaks to be

915 repaired in this chromosome ∗/

916 int this DSB =
917 mtrand1.randInt(Diploid Genome[this chr].size() −
918 1); /∗ A DSB is chosen randomly in

919 the selected chromosome ∗/

920 if ( remove DSB(Diploid Genome[this chr],this DSB,1)
921 == 1) { /∗ If the break selected for removal is a
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922 suitable break , remove it ... ∗/

923 reparable DSB per chromosome[this chr]−−;
924 count++; /∗ ... and take two notes of it . The

925 first is decrementing the number of DSB

926 that are still available for removal in

927 this chromosome. The second is the

928 counter for the number of breaks

929 repaired ∗/

930 }
931 }
932 }
933 .......
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RIEF, N. and LÖBRICH, M., 2002, Efficient rejoining of radiation-induced DNA double-
strand breaks in centromeric DNA of human cells. The Journal of Biological Chemistry ,
277, 20,572–20,582. 34

ROGAKOU, E. P., PILCH, D. R., ORR, A. H., IVANOVA, V. S. and BONNER, W. M.,
1998, DNA double-stranded breaks induce histone H2AX phosphorylation on serine
139. Journal of Cellular Biochemistry , 273, 5858–5868. 21, 160

ROOTS, R. and OKADA, S., 1972, Protection of DNA molecules of cultured mammalian
cells from radiation-induced single-strand scissions by various alcohols and SH com-
pounds. International Journal of Radiation Biology and Related Studies in Physics and
Chemistry , 21, 329–342. 19
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