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Abstract 

Oncolytic measles virus (MV) is being tested in several ongoing 

clinical trials with encouraging results. There is a demonstrable need to 

explore the role of the immune system in addition to the direct oncolytic effect 

of MV. My laboratory has previously shown that neutrophils are involved in 

MV-mediated tumour regressions, becoming activated, upon MV infection. 

This thesis further explores the role of neutrophils, one of the key players of 

the innate immune system in MV oncolysis. 

First, I showed that acute lymphoblastic leukaemia (ALL) shows 

marked sensitivity to MV oncolysis (Patel, Dey et al., 2011). I attempted to 

enhance neutrophil function at tumour sites by generating a novel strain of 

MV expressing the human granulocyte colony-stimulating factor (GCSF), a 

known neutrophil survival factor and enhancer of antibody dependent cellular 

cytotoxicity (ADCC). Evaluating the effects in two different models of B-cell 

malignancy, I showed that neutrophil depletion abrogated the MV therapeutic 

effect in an in-vivo Raji - but not Nalm-6 - tumour model. MVhGCSF 

enhanced the oncolytic capacity of MV in the Raji model in-vivo, whereas in 

the Nalm-6 model, the opposite was unexpectedly the case. MVhGCSF 

replicated within an MV-infectable CD46 transgenic mouse model with 

detectable serum levels of hGCSF but no toxicity. My data suggest that a 

"one-size-fits-all" model of immune response to viral oncolysis is not 

appropriate, and each tumour target will need full characterisation for the 

potential of MV to generate benefit (Dey et al., 2016). 
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Next, I showed that ADCC was NOT a mechanism by which 

neutrophils kill MV-infected cells. 

Finally, I showed that MV infection of target cells can stimulate 

neutrophils to develop a cytotoxic effector phenotype, all aspects of which 

are blocked by fusion inhibition. Hence, I suggest a new mechanism for MV-

mediated oncolysis; fusion between infected target cells and neutrophils. 
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 MDA5   Melanoma differentiation-associated protein 5 

 MFI    Mean fluorescent intensity 

 MHC    Major histo-compatibility 

 μl   Microliter 

 ml   Millilitre 
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 min    Minute 

 MMP    Matrix metalloproteinase 

 Mo-DC   Monocyte derived dendritic cell 

 MOI    Multiplicity of infection 

 mRNA   messenger RNA 

 MV    Measles Virus 

 NIS    Sodium iodide symporter 

 NK    Natural killer cell 

 ns    Not significant 

 OD    Optical density 

 OV    Oncolytic virus 

 PAMP   Pathogen associated molecular patterns 

 PB   Peripheral blood 

 PBMC   Peripheral blood mononuclear cells 

 PBS    Phosphate buffered saline 

 PCR    Polymerase chain reaction 

 PD   Programmed cell death protein 

 PD-L   Programmed cell death ligand 

 PE    Phycoerythrin 

 PEG    Polyethylene glycol 

 PFU    Plaque forming unit 

 PI    Propidium iodide 

 PRR    Pattern recognition receptors 

 PVRL4   Poliovirus receptor-related 4 

 RBC    Red blood cell 

 RdRp    RNA-dependent RNA polymerase 

 RIG-I    Retinoic acid-inducible gene 1 

 RLRs    RIG-I-like receptors 

 RNA    Ribonucleic acid 

 RNP    Ribonucleoprotein complex 

 ROS    Reactive oxygen species 

 RPM   Rotations per minute 

 RQ-PCR   Relative quantitative polymerase chain reaction 
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 SC   Subcutaneous/Subcutaneously 

 SCCHN   Squamous cell carcinoma of the head and neck 

 ScFV    Single chain fragment variable 

 SCID    Severe combined immunodeficiency 

 SCR    Short consensus repeat 

 SEM    Standard error of the mean 

 SLAM    Signalling lymphocyte activation molecule 

 SSPE    Subacute sclerosing pan-encephalitis 

 ssRNA   Single stranded RNA 

 STAT    Signal transduction & activator of transcription 

 STING   Stimulator of IFN genes 

 STP    Serine-threonine-proline-rich domain 

 Th1/Th2  Type 1 T helper cell/ Type 2 T helper cell 

 TNF    Tumour necrosis factor 

 TRAIL   TNF-related apoptosis inducing ligand 

 T-VEC   Talimogene Laherparepvec 

 TCID50   50% Tissue culture infectious dose 

 TLRs    Toll-like receptors 

 UV    Ultraviolet 

 VSV    Vesicular stomatitis virus 
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Chapter 1: Introduction 

1.1 CANCER THERAPY OVERVIEW: 

 Conventional cancer therapy: 1.1.1

Non-specific cytotoxic chemotherapeutic agents1, which kill rapidly 

dividing cells and radiation therapy2, that causes DNA damage in turn killing 

the cells, still remain the backbone of current cancer treatment and is used 

on its own or in combination. Though effective, the toxicity of these agents 

can outweigh the benefits, occasionally by a very large margin and chemo-

resistance remains a big hurdle1. 

 Small molecules in cancer therapy: 1.1.2

Understanding of the biology of different cancers and knowledge of 

the defective signalling pathways in cancer has led to an increase in targeted 

therapies. The first example is the use of small molecules for targeted 

molecular therapy3. Tyrosine kinase inhibitors, which inhibit kinase activity by 

competing for the ATP binding site4 of BCR-ABL {the fusion protein product 

of an aberrant chromosomal translocation (t9;22), which is involved in 

chronic myeloid leukaemia (CML) and acute lymphoblastic leukaemia (ALL) 

pathogenesis}, has revolutionised the treatment of CML and ALL5,6. 

Insight into the underlying genetic pathway that helps in maintenance 

of the tumour has helped uncover growth factor receptors that can be 

targeted by small molecule agents. For example, deregulated signalling by 
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the avian erythroblastosis oncogene B (ErbB) family of tyrosine kinase 

receptors is associated with several cancers7 making ErbB1/epidermal 

growth factor receptor (EGFR), ERbB2/human epidermal growth factor 

receptor 2 (HER2/neu), ErbB3/HER3 and ErbB4/HER47,8, excellent targets 

for small molecule therapy. 

 Antibody therapy: 1.1.3

Monoclonal antibodies (mAb) have been included as standard of care 

in cancer therapy. Rituximab, an anti-CD20 antibody, which binds to CD20 

on cell surface, has been used in combination with chemotherapies in Non-

Hodgkin’s lymphoma (NHL) aberrantly overexpressing CD20, with significant 

improvement in overall survival rates9. Another mAb Trastuzumab 

(Herceptin), that targets the ErbB2, has an excellent anti-tumour activity 

against breast cancer10 and prolonged disease free survival and overall 

survival in patients with HER2 positive breast cancer11. 

 Cellular Immunotherapy: 1.1.4

Allogeneic stem cell transplantation, where patients are infused with 

genetically similar haematological stem cells from HLA-matched sibling or 

unrelated donors has played a major role in the treatment of haematological 

malignancies12,13 and clearly demonstrated the ‘graft versus leukaemia effect’ 

mediated by allogeneic T-cells. More recently that concept has been 

developed further to include modification of patient’s T-cells by gene transfer 

technology, giving rise to engineered T-cells with chimeric antigen receptors 

(CARS) that can recognise diverse cell surface antigens and signal through 
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engineered intracellular domains. One of the most commonly targeted 

antigens to date is CD19, which is expressed on all B-cells14-16. CD19 CAR 

T-cells have proven effective at inducing remissions in patients with CD19 

expressing malignancies such as ALL17 albeit with some considerable 

adverse reactions such as cytokine storms. 

T-cells can also be engineered to express receptors (TCR) against 

tumour antigens and used as cancer therapy18. To generate tumour-specific 

TCRs different techniques have been used. Once a suitable target sequence 

is identified it can be isolated from rare tumour reactive T-cells directly from 

patients18; from mice expressing human HLA, immunised with human cancer 

antigen proteins19 or by using in-vitro technologies to alter the TCR to 

enhance their anti-tumour properties20. Early clinical trials have exhibited 

feasibility of genetically modified TCRs directed against MART1 antigen in 

melanoma21. Additional clinical trials have demonstrated prolonged tumour 

regressions in patients with melanoma and sarcoma22-24. 

 Approaches to ‘vaccinate’ patients against cancer are also being 

studied, for example, Sipuleucel-T for the treatment of prostate cancer is an 

autologous dendritic cell (DC) vaccine, that stimulates T-cell specific for 

prostatic acid phosphatase (PAP), a protein overexpressed by prostate 

carcinoma cells25. 
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 Immuomodulating agents in checkpoint blockade: 1.1.5

Other novel therapeutic agents termed immune checkpoint inhibitors 

have gained popularity in the last decade and are being tested in clinical 

trials. For example Ipilimumab, which is approved by US food and drug 

administration (FDA) as a first line therapy in patients with advanced 

melanoma is an antibody that can block the cytotoxic T lymphocytes 

associated antigen 4 (CTLA4) inhibiting an important signal in the T-cell 

response pathway, thereby initiating tumour cell destruction26. Another agent 

Pembrolizumab and Nivolumab, that block the interaction between 

programmed cell death (PD)-1 protein and its ligand PD-L1 has been 

approved by FDA in patients with Ipilimumab refractory melanoma27. PD-

1/PD-L1 interaction acts as a co-inhibitory signal to dampen T-cell response. 

PD-L1 is overexpressed in cancer cells which binds to the PD-1 on activated 

T-cells thereby deactivating them28. One of the limitations of these novel 

agents is that benefit can be limited by the immunosuppressive nature of the 

tumour microenvironment29. Studies in targeted immunotherapy have 

suggested that a combinatorial approach of using targeted agents in 

combination with immunotherapeutic agents is needed to attain a synergistic 

effect that can achieve more potent cytotoxicity28,30. Targeted combinatorial 

therapy can lead to direct tumour regression, breaking the 

immunosuppressive tumour microenvironment and sensitise the tumour cells 

to be targeted by immune therapy29. 
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 Oncolytic Virotherapy - an overview: 1.1.6

In the last decade, oncolytic viruses have also been increasingly 

widely been investigated for cancer therapy and numerous viruses are now 

being tested in early phase clinical trials31. 

Properties of an ideal oncolytic virus32 include: 

 Efficacy: replicates within cancer cells and kills effectively by direct 

lysis. 

 Specificity and selectivity: exclusively infects and preferentially lyses 

cancer cells. 

 Stimulate immune response: can activate an autologous anti-tumour 

immune response. 

 Stable and genetically modifiable: can be engineered to attain 

additional desirable properties and genetically stable to avoid any 

possible genetic recombination with other species in the environment. 

 Safety: must be safe to the recipient, contacts of the recipient and the 

environment. The virus should be associated with no or very mild 

human disease, with no threat to public health. No possibility of spread 

of the virus in individuals in close contact with the patient or any other 

living forms in the environment. Ideally availability of means and 

treatment to control any viral replication is highly desirable. 

Many viruses are naturally oncolytic with more than one of the above 

desirable characters and others can be genetically modified to make them 

suitable for cancer therapy. Early observations date back to the 19th 

century33 where spontaneous tumour regression was observed when 
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patients acquired natural viral infection33-36. In the 1950s and 1960s 

virotherapy for cancer had gained pace and viruses were tested in clinical 

trials37. However, most of these trials were neither successful nor provided 

meaningful data, as the types of tumours treated were diverse and lacked 

consistency with the different viruses used38. Moreover, there was clearance 

of the virus by the immune system and in some cases the uncontrolled viral 

replication proved fatal, while in other patients, sometimes 

immunosuppressed, the virus took hold and the tumours regressed31. In a 

particular study, tumour regression was reported in 37 of 90 patients treated 

with mumps virus, but this work was not continued39 and the field of cancer 

virotherapy stalled. The modern era of virus mediated specific and selective 

killing of cancer cells, with targeted and engineered viruses arguably began 

during the early 1990s40. With the development of molecular virology, viruses 

once again gained relevance as anti-cancer therapies. An illustrative list of 

viruses being tested as cancer therapeutics is shown in Table 1.1. 
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Table 1.1: Illustrative list of oncolytic viruses tested in murine models: 

Virus Structural 
characteristic 

Receptor Illustrative murine models 

Adenovirus ds DNA, 
Non-enveloped 

CAR Sarcoma 41, head and neck carcinoma42, bladder cancer43 

Reovirus dsRNA 
Non-enveloped 

Unknown Melanoma44, pancreatic45, NSCL46, ovarian47, colorectal48, head and neck 
cancers49 

Measles virus 
(MV) 

ss(-) RNA 
Enveloped 

CD46, SLAM, 
Nectin 4 

Ovarian cancer50, glioblastoma multiforme51, multiple myeloma52 

Vesicular 
stomatitis virus 

(VSV) 

ss(-) RNA 
Enveloped 

LDLR Melanoma53, colorectal carcinoma54, breast cancer55 

Newcastle 
disease virus 

(NDV) 

ss(-) RNA 
Enveloped 

Unknown Glioblastoma multiforme56, neuroblastoma57 

Herpes simplex 
virus (HSV) 

ds DNA 
Enveloped 

HVEM, nectin 1, 
nectin 2 

Glioma40, metastatic melanoma58, head and neck cancer59 

Coxsackie virus ss(+) RNA 
Non-enveloped 

CAR/ICAM-
1/DAF 

Multiple myeloma60, melanoma61 

Vaccinia virus dsDNA 
Enveloped 

(complex coats) 

Unknown Hepatocellular carcinoma62, pleural mesothelioma63, melanoma64, ovarian65, 
breast cancer66 

Poliovirus ss(+) RNA, 
Non-enveloped 

CD155 Neuroblastoma67, glioma68 
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 Oncolytic virotherapy and immunotherapy – synergistic roles: 1.1.7

Oncolytic virotherapy can act with both immunotherapy and 

virotherapy playing synergistic roles to eliminate cancer69. Oncolytic viruses 

can directly kill cancer cells, leading to tumour regression70. However, it has 

become increasingly clear that oncolytic virotherapy has a strong 

immunotherapeutic component and can activate several aspects of the 

immune system to attack the tumour. Both the biology of the virus and the 

cancer environment plays a significant role in the success of oncolytic 

virotherapy. 

Tumours need blood supply to grow and metastasise and 

angiogenesis plays an important role in tumour development71. Vaccinia virus 

can disrupt the tumour vasculature by attacking the tumour-related 

endothelial cells in patients with hepatocellular carcinoma, with no evident 

harmful effect on the normal tissues72. In a phase II/III clinical trial of 

melanoma, intra-tumoural (IT) injection of herpes simplex virus (HSV) 

expressing granulocyte macrophage colony stimulating factor (GMCSF) led 

to a potent anti-melanoma immune response73. Moreover, viral replication 

within tumour bed has been shown to attract immune cells, thereby alerting 

the immune system, leading to tumour associated antigen (TAA) 

presentation by cross-priming which leads to a more potent anti-tumour 

response. For example, vaccinia virus infected human melanoma cell line 

(MelanA TAA positive) were phagocytosed by DCs, which in turn were able 

to stimulate a MelanA antigen specific T-cell response74. Another melanoma 
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cell line Mel888 infected with reovirus was able to generate a melanoma 

antigen recognised by T-cells (MART) specific cytotoxic T-cell response75. 

In parallel to the biology of the virus per se, the biology of the cancer 

cells too has a very important role to play in viral selectivity leading to 

success of oncolytic virotherapy. Among other hallmarks of cancer the cells 

accumulate genetic defects to become malignant, which helps them in 

accelerated proliferation76. These specific defects that allow the cancer cells 

to evade detection by the immune system and helps in their proliferation and 

survival can also provide a thriving environment for the virus to replicate. For 

example, defective cell signalling pathways, such as the defects in the 

interferon (IFN) signalling pathways in cancer cells permit better virus 

replication than in the non-transformed cells, where these pathways are 

intact77. Another hallmark of cancer cells is induction of angiogenesis for 

survival of the tumour cells. Oncolytic viruses have been used to target this 

by direct infection of vascular endothelial cells78, or by arming them using 

anti-angiogenic transgenes79. 

With oncolytic virotherapy, one single agent can achieve the 

combinatorial effect of targeted therapy and immunotherapy to produce a 

robust anti-tumour effect. In the current scenario of cancer therapeutics, an 

agent that can specifically target and kill the tumour cells, without harming 

the normal cell, and at the same time generate a long-lasting anti-tumour 

immune response, looks promising, and an oncolytic virus is a good 

candidate to fit in that space69. 
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 Genetic modification of oncolytic virus and their mechanism of 1.1.8

action: 

While many viruses are able to specifically and selectively kill cancer 

cells naturally, genetic modification has been widely used to enhance their 

oncolytic properties. In-vitro passaged strains belong to the first generation of 

oncolytic virotherapeutics, the genetically engineered, selectivity enhanced 

viruses form the second generation, and the third generation of 

virotherapeutics are the ones that are genetically engineered, transgene 

expressing ‘armed’ oncolytic viruses80. 

Modifications focus on several main areas: 

1. Safety - by attenuation of potentially pathogenic properties and targeting of 

entry or replication: 

For example, adenovirus has been modified by deletions of E1B55 

and E3B genes, which facilitates replication of the virus only in p53 deleted 

cells, thereby attenuating it while simultaneously targeting cancer cells 

lacking p53 function81. Another tissue specific, targeted, adenovirus for 

prostate cancer (CG7060 and CG7870) is regulated by prostate-specific 

promoter elements (PSE1A and PSE1B), therefore has transcriptional control 

and replicates only in prostate cells82,83. The ICP34.5 neuro-virulence gene 

deleted herpes simplex virus (HSV) strains (G207, 1716, NV1020, 

OncoVEXGM-CSF)80 are capable of selective replication in tumour cells84. 

2. Enhancement of anti-tumour immune response: 
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The Ad5-CD/TKrep strain of adenovirus uses both oncolytic and 

suicide gene therapy in combination. In addition to the E1B55 gene deletion 

it expresses the dual pro-drug activating fusion protein cytosine deaminase/ 

thymidine kinase (CD/TK), which can convert the pro-drug 5-fluorocytosine 

(5-FC) to more potent 5-fluorouracil (5-FU), and only in cells with p53 

mutation (Freytag SO 1998). The HSV strain OncoVEXGM-CSF (Talimogene 

Laherparepvec/T-VEC) GMCSF, has enhanced immunogenic properties, and 

has deleted ICP34.5 and ICP47 for reduced pathogenicity and to restore 

MHC I presentation, respectively80. JX-594, a vaccinia virus strain has 

deletion of a thymidine kinase gene that enhances cancer selectivity and is 

armed with GMCSF to facilitate immune cells at the site of viral infection85. 

Engineered and non-engineered viruses are being extensively used in 

clinical trials and shown inTable 1.3. 

 Virotherapy clinical trials:  1.1.9

Oncolytic viruses that are being tested in different phases of clinical 

trials are listed in Table 1.3. Some trials have completed whereas others are 

still ongoing31. The first generation oncolytic viruses that were used in clinical 

trials are the strains passaged in tissue culture to make them attenuated but 

without any modifications. Examples of first generation non-engineered 

viruses that have been used in clinical trials are listed in Table 1.2. 
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Table 1.2: Non-engineered viruses in clinical trials: 

In recent times, the clinical trials using viruses have become more 

strict, controlled and rigorous. The second and third generation of oncolytic 

viruses have become more popular, as they are more targeted, replication-

selective and with reduced toxicity80. Clinical efficacy was shown in one of 

the first phase I/II clinical trial that used OncoVexGM-CSF (T-VEC) directly 

administered in patients with metastatic melanoma intra-tumourally (IT), 

which led to complete regression in both injected and non-injected tumours in 

8 out of 50 patients100. Escalated doses of vaccinia virus, modified to express 

GMCSF was given to cutaneous melanoma patients IT, and was shown to be 

safe, effective at expressing functional passenger gene GMCSF and induced 

significant tumour regression85. Additionally, JX594 strain of vaccinia virus 

was administered IT in patients with hepatocellular carcinoma and led to 

regression in 3 out of 10 patients101. Besides, ONYX-015 (Ad2/5 dl1520) - an 

oncolytic adenovirus strain used to treat head and neck cancer, where 

transient anti-tumoural effects were observed81, showed improved anti-

Virus Disease Publication 

Adenovirus Cervical cancer Huebner RJ 195686 

West Nile virus 
Lymphomas and 

carcinomas 
Southam CM 195187, 
Southam CM 195488 

Mumps 
Carcinomas, lymphomas 

and different solid 
tumours 

Asada T 1907-192839, 
Shimizu Y 198889, Okuno 

Y197890 

Parvovirus Osteosarcoma Toolan HW 196591 

Vaccinia virus Metastatic melanoma 
Hunter Craig 197092, 

Roenigk 197493, 
Mastrangelo 199594 

Newcastle disease 
virus 

Myelogenous leukaemia Wheelock EF 196495 

Cervical carcinoma Cassel WA 196596 

Solid tumours 
Csatary 199397, Csatary 
199998, Csatary 200499 
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tumour effect when used in combination with chemotherapy (cisplatin), 

compared to chemotherapy alone102. Recently a phase III randomised 

controlled study, using T-VEC in metastatic melanoma led to its approval by 

FDA. Total 436 patients were recruited in this trial with advanced stage (IIIB, 

IIIC, IVM1a) disease or patients with no prior treatment. T-VEC was well 

tolerated with significantly improved durable response rates and overall 

survival in the treated patients compared to the control groups103. 

Furthermore, non-engineered viruses too have revealed some encouraging 

results. Reolysin®, which is proprietary variant of Reovirus when used in 

combination with paclitaxel and carboplatin showed efficacy and 26.9% 

response rate in a dose escalation Phase III clinical trial of head and neck 

cancer104. In another dose escalation Phase I/II trial in recurrent glioblastoma 

multiforme, unmodified Newcastle disease virus (NDV) used intra-venously 

(IV), led to minimal toxicity and was well tolerated with some initial response 

to therapy105. All the viruses used so far in the different phases of clinical 

trials have shown efficacy and most of them were very well tolerated even 

with very high doses administered80. 
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Table 1.3: Oncolytic viruses from different generation in clinical trials: 

Virus in 
clinical trial 

Genetic 
modification 

Transgene 
expression 

Name Proposed cancer target Tumours Clinical 
trials 

Adenovirus E1B-55K(-) 
(gene bind to 

and inactivates 
p53 gene), 

E3B(-) 

Non-armed dl1520 (ONYX-
015) 

p53 pathway defects; late RNA 
transport defects 

Sarcoma, head and 
neck cancer, bladder 
cancer, lung mets, 

glioma, ovarian 
cancer, solid 

tumours, pancreatic 
cancer, CRC, 
hepatobiliary, 

prostate cancer 

Phase I, 
II and III 

E1B-55K(-), 
E3(-) 

Non-armed H101 
(Oncorine) 

p53 pathway defects; late RNA 
transport defects 

PSE1A, E3B(-) Non-armed CG7060 Prostate specific 

PSE1A, PSE1B Non-armed CG7870 Prostate specific 

E1B-55K(-), 
E3(-) 

CD/TK expression Ad5-CD/Tkrep p53 pathway defects; late RNA 
transport defects 

Coxsackie 
virus 

Non-engineered Non-armed CAVATAK Selective infection of ICAM-1 
expressing cells 

Melanoma, SCCHN, 
solid tumours 

Phase I 
and II 

Herpes 
simplex 

virus 

ICP34.5(-) Non-armed HSV 1716 Defects in tumour PKR/IFN 
pathways, attenuated 

neurotoxicity 

Solid tumours, 
metastatic 

melanoma, head 
and neck cancer, 
glioma, non-CNS 

solid tumours, 
mesothelioma, 

pancreatic cancer, 
breast cancer, 

Phase I, 
II and III 

ICP34.5(-), 
ICP6(-) 

Non-armed G207 Tumour cell complementation of 
ribonucleotide reductase (ICP6-

), defects in tumour PKR/IFN 
pathways, attenuated 

neurotoxicity 

ICP34.5(-), 
UL24(-), UL56(-
); replaced with 
a fragment of 

Non-armed NV1020 Unknown 
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HSV-2 US 
DNA(US2, US3, 

gJ and gG) 

ICP34.5(-), 
ICP47(-), Us11 

upregulation 

GMCSF 
(immunostimulation) 

Talimogene 
Laherparapvec 
(OncoVEXGM-

CSF) (T-VEC) 

Defects in tumour PKR/IFN 
pathways, attenuated 

neurotoxicity 

Measles 
virus 

Non-engineered 
(vaccine strain) 

CEA – helps in 
monitoring of virus 

MV-CEA Unknown Ovarian cancer, 
glioma, multiple 

myeloma, 
mesothelioma, 

SCCHN 

Phase I 
and II 

Non-engineered 
(vaccine strain) 

NIS (sodium iodide 
symporter) – 

facilitates virus 
tracking 

MV-NIS 

Mumps Non-engineered Non-armed -  Carcinoma, 
lymphoma, solid 

tumours 

 

Newcastle 
disease 

virus 

Non- 
engineered 

Non-armed - Unknown Myelogenous 
leukaemia, cervical 

carcinoma, solid 
tumours 

 

Non-engineered Non-armed NDV-HUJ Glioma, solid 
tumours 

Phase I 
and II Non-engineered Non-armed PV701 

Non-engineered Non-armed MTH-68/H 

Parvovirus Non-engineered Non-armed H-1PV Interfering with cell signalling, 
activation of host immune 

responses106 

Glioma Phase I 
and II 

Non-engineered Non-armed   Osteosarcoma  
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Reovirus Non-engineered Non-armed Reolysin Defects in tumour PKR/IFN 
pathways 

Glioma, peritoneal 
cancer, solid 

tumours, CRC, 
sarcoma, melanoma, 
ovarian, pancreatic 
cancer, SCCHN, 

lung cancer 

Phase I, 
II and III 

Retrovirus Cytosine 
deaminase (CD) 

Non-armed Toca 511 Defects in anti-viral response, 
expression of CD by cancer 
cells for later use of Toca FC 

Glioma Phase I 
and II 

Seneca 
Valley virus 

Non-engineered Non-armed NTX-010 Unknown (selectivity towards 
human neuro- endocrine cells) 

Small cell lung 
cancer 

Phase II 

Vaccinia 
virus 

 

Non-engineered Non-armed   Metastatic 
melanoma 

 

Thymidine 
kinase(-), VGF(-

), LacZ, CD 
somatostatin R 

Non-armed (vvDD-CDSR) Unknown (EGFR pathway 
driven) 

CRC, solid tumours, 
HCC, paediatric 
solid tumours, 

melanoma, 
peritoneal 

carcinomatosis, 
SCCHN 

Phase I 
and II 

Vesicular 
stomatitis 

virus 

Non-engineered IFNβ VSV-hIFNβ Defects in host anti-viral 
response 

HCC Phase I 

West Nile 
virus 

Non-engineered Non-armed   Lymphoma, 
carcinoma 

 

CD/TK – cytosine deaminase/thymidine kinase, CEA – carcinoembryonic antigen, CRC – colorectal cancer, EGFR – epidermal growth 
factor receptor, GMCSF – granulocyte macrophage colony stimulating factor, HCC – hepatocellular carcinoma, ICP - infected cell 

protein, ICAM1 – intercellular adhesion molecule 1, IFN – interferon, IRES - internal ribosomal entry site, MV – measles virus, NDV – 
Newcastle disease virus, PKR – double stranded RNA activated inhibitor of translation – known as PKR, PSE1A – prostate-specific 

promoter-driven E1A, PSE1B – prostate-specific promoter-driven E1B, SCCHN – squamous cell carcinoma of the head and neck, VSV 
– vesicular stomatitis virus 
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1.2 MEASLES VIRUS OVERVIEW: 

 Measles virus structure: 1.2.1

Measles virus (MV) is a negative stranded RNA virus of the 

Morbilivirus genus from the Paramyxoviridae family. The schematic 

representation of MV structure is shown in Fig 1-1a. The genome of the virus 

consists of 15,894 bases that encodes for 6 structural and 2 non-structural 

proteins. The terminator region of each gene is followed by a three 

nucleotide-long conserved region (GAA) called intergenic (IG) region. The 

Nucleocapsid (N) protein encapsidates the viral RNA and is closely 

associated with the viral Large protein (L) and Phosphoprotein (P). The N, P 

and L proteins together form the ribonucleoprotein (RNP) complex, which is 

the core virus structure. The L protein is the RNA dependent RNA 

polymerase (RdRp) and the P acts as a chaperone during nucleocapsid 

assembly107. The Matrix (M) protein is on the inside surface of the envelope, 

it helps in anchoring Fusion (F) and Haemaglutinin (H) proteins and aids viral 

assembly and budding108,109. Other than the 6 structural proteins, the P gene 

of the MV also encodes for 2 non-structural proteins C and V. The C protein 

is translated from the P gene by an alternative reading frame at the second 

start codon. The C protein has been implicated in mediating efficient viral 

replication in peripheral blood cells110, RNA synthesis111, virulence 

dependence112 and RdRp activity by blocking type I IFN response113. The V 

protein is produced from the P gene by a frame shift due to incorporation of a 

G residue at the conserved RNA editing site. It is known to bind both to the N 

and L proteins and therefore believed to regulate RNA synthesis114.
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Figure 1-1: MV Structure: (a) Schematic diagram of virion structure showing MV -veRNA genome and viral proteins H, F, M, P, L and N. (b) 
Organisation of MV genome and MV transcription gradient showing mRNA of the genes at the 3’ end are produced more abundantly compared 
to the 5’ end. 
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 MV replication: 1.2.2

MV infection and replication can be broadly seen as 7 steps115 as 

shown in Fig 1-2: 

Step 1 - Attachment: The H and the F are the membrane 

glycoproteins. The H binds to its receptor on the target cell, and this leads to 

conformational change in H and the adjacent F. The hydrophobic fusion 

peptide within the F protein becomes exposed and is inserted into membrane 

of the target cell. 

Step 2 - Cell entry:  Further conformational change leads to fusion of 

virus and target cell membranes and the genomic material enters the cell. 

Step 3 - Viral mRNA transcription: During MV replication, the 

polymerase (L) associates with the MV RNA inside the RNP core structure at 

the 3’ end and the mRNA of the first gene is made and polyadenylated. The 

polymerase dissociates or ‘falls off’ at the junction of the genes, known as the 

IG region and re-starts transcription at the beginning, ultimately producing 

polyadenylated mRNAs. 

Step 4 - Protein synthesis: The polyadenylated mRNAs act as a 

template for protein synthesis. The amount of each protein synthesised 

depends on the position of the gene on the genome, leading to a 

transcription gradient wherein proteins at the 3’ end are synthesised more 

abundantly than at the 5’ end. The viral genome and the transcription 
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gradient are shown in Fig 1-1b. Therefore, the N is the most abundant 

protein synthesised, followed by P, M, F, H and L proteins. 

Step 5 - Viral genome replication: Once sufficient N protein is 

produced, it blocks the IG regions on the MV genome, and prevents the 

polymerase from ‘falling off’. This enables the replication of the entire viral 

genome, which is transcribed to obtain the sense, genomic viral RNA. 

Step 6 - Viral assembly: Once the viral genome is synthesised, it 

initiates the virus assembly. The viral genome, the N, P and L, forms the 

RNP complex to form the core structure. 

Step 7 - Release: The core structure travels towards the cell 

membrane, and along with the M, F and H proteins gets released from the 

cells as virus particles. 
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Figure 1-2: The MV replication cycle: Schematic representation of MV replication cycle and the steps involved. Adapted from Griffin et 
al. 2007107. 
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 MV receptors: 1.2.3

There are three known MV receptors CD46, signalling lymphocyte 

activation molecule (SLAM) also called CD150, and Nectin-4 (also called 

polio-virus-receptor-like 4 or PVRL4). Fig 1-3 shows a cartoon of all the three 

receptors. 

1.2.3.1 CD46: 

CD46 is a type I transmembrane glycoprotein and is ubiquitously 

expressed on all nucleated human cells. CD46 helps to protect cells from 

complement mediated lysis and is often upregulated by tumour cells116. The 

extracellular region of the CD46 receptor comprises of four short consensus 

repeats (SCR1-SCR4)117. The four SCR domains are followed by one or two 

O-glycosylated serine/threonine/proline (STP) rich domain, a transmembrane 

region and have two alternative cytoplasmic tails that result from alternative 

splicing118. The SCR1 and SCR2, present at the N-terminal are known to 

interact with the MV-H glycoprotein117 (Fig 1-3). A system based on inhibition 

of cell fusion by MV glycoproteins was used to screen a library of 3000 

different monoclonal antibodies raised against the cell surface proteins in cell 

lines permissive to MV infection119. This system helped identify one single 

monoclonal antibody (MCI20.6), that blocked MV binding and infection and 

recognised a membrane glycoprotein (57 to 67 kDa) which was sequenced 

and identified to be the human membrane cofactor protein CD46119. 

CD46 is a cellular receptor for many other human pathogens. For 

example human herpes virus 6, pestivirus, different adenovirus serotypes 
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Ad3, Ad11, Ad35 and Ad37 and also two types of bacteria Streptococcus 

pyogenes and Neisseria, all use CD46 for cellular entry120. Different viruses 

interact with different domains of the CD46 to gain cellular entry, and the 

cellular mechanisms that facilitates CD46 dependent cell entry also varies 

between different pathogens and therefore, what makes CD46 a common 

receptor for different pathogens is still not very clear120. It is suggested that 

the two cytoplasmic domains of the CD46 receptor can “fine-tune” T-cell 

mediated response, as it can drive T-cell differentiation121 and T-cell induced 

inflammation118, thereby connecting the innate and adaptive immune 

response120. The pathogens targeting the CD46 receptor can possibly 

interfere with the cytoplasmic tail mediated intracellular signalling pathways 

thereby creating an immune response imbalance120. Engagement of the 

CD46 receptor affects the host immune response and might explain to 

certain extent why viruses use complement receptors for cellular entry116. 

CD46 has been shown to play an important role in MV pathogenesis. 

One proposed mechanism is down regulation of CD46 upon MV infection 

due to interaction between the MV-H and the CD46 receptor, rendering the 

cells more susceptible to complement mediated lysis122. Only laboratory 

adapted MV vaccine strains are able to use this receptor to enter cells. 

1.2.3.2 CD150: 

SLAM or CD150 is a cellular receptor for the wild-type (WT) strain of 

MV123. Nevertheless the vaccine strain can also use this receptor to enter 

cells124. SLAM is a member of the immunoglobulin superfamily of receptor 
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molecules, which is a subset of the CD2 family of receptors. The structure is 

shown in Fig 1-3. It consists of two immunoglobulin (Ig)-like domains, and 

MV binds to the N terminal domain125. The extracellular domain consists of a 

variable region (V) and a constant (C2) region and the cytoplasmic tail is 

made of three repeats of tyrosine-based motifs126. B95a is a marmoset 

lymphoblastoid cell line and was first used to identify SLAM as a receptor for 

WT MV. This cell line is commonly used to isolate WT MV strains and 

therefore was considered a good source of mRNA encoding for the WT MV 

receptor and consequently used to create a cDNA library with the eukaryotic 

expression vector pCAGGS127. 293T cells that are not infectable by WT MV 

strain was transfected with different clones of the cDNA expressing 

pCAGGS. At the same time, the 293T cells were infected with VSVΔG* 

complemented with H glycoprotein of KA WT strain of MV isolated on the 

B95a cells and F protein from Edmonston vaccine strain (VSVΔG*-KAHF)123. 

Extensive screening of more than 400 clones of cDNA, helped in isolating the 

cDNA clone that showed highest level of infection in the 293T cells. DNA 

sequencing revealed that the clone was 91% identical to the human SLAM 

gene in the coding region and hence SLAM was identified to be the cellular 

receptor for the WT strain of MV124. 

SLAM proteins function as co-receptors for lymphocyte activation 

and/or adhesion and mediate tyrosine phosphorylation signals128. SLAM 

receptor expression is mainly restricted to immune cells. It is upregulated on 

immature thymocyte and activated B-cells and T-cells129, mature DCs130,131 

and activated monocytes132, but down regulated on Th2 polarised cells. 
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SLAM ligation promotes the activation of Th0/Th1 cells, B-cells, eosinophils, 

mast cell, and macrophages133. 

1.2.3.3 Nectin-4: 

Nectin-4 is the most recently identified receptor for MV and is 

expressed at the epithelial adherens junction134,135. This is the putative 

epithelial receptor (EpR), which was long proposed136,137 to be the receptor 

used by MV during natural infection, as MV can infect epithelial, endothelial 

and neuronal cells, which are SLAM negative138,139. Nectin-4 shares 

homology with the poliovirus and is involved in the formation of adherens 

junction. MV interacts with the membrane distal domain of the Nectin-4 

protein (Fig 1-3). Two different groups identified this receptor 

independently134,135 using similar approach of comparing upregulated 

membrane-associated genes in WT MV susceptible and non-susceptible cell 

lines using genome wide microarray expression analysis. It has been 

identified as a receptor for other viruses and is involved in differentiation, 

polarisation, movement and other cellular activities. It is expressed on cancer 

cell lines140 and therefore might be relevant to MV oncolytic activity. 
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Figure 1-3: MV receptors: Schematic representation of CD46, SLAM and Nectin 4. STP domain - serine-threonine-proline rich domain; V: 
variable domain; C: constant domain; Ig: Immunoglobulin. Numbers 1-4 represent CD46 short consensus repeat (SCR). Adapted from Dhiman 
et al. 2004116. 
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 MV Strains: 1.2.4

WT MV is highly pathogenic and responsible for numerous deaths 

worldwide among unvaccinated children141. Enders and Peebles first isolated 

MV from a patient David Edmonston in the year 1954142. After serial passage 

in human kidney and human amnion tissue cultures, a strain was adapted to 

growth in the amniotic sac of developing chick embryos. The resultant 

vaccine strains underwent numerous passages in chick embryo-cell cultures, 

at 37°C and then at 32°C which was first used in clinical trials in USA, 

England and Nigeria143,144. The resultant Edmonston strain (Edm) had lost its 

pathogenicity but could still generate an immune response. Vaccination 

against MV infection was introduced in 1960s with both attenuated and killed 

vaccines145, although the killed vaccine strain was soon withdrawn due to 

complications. Safe and efficacious vaccine strains have been now 

developed mostly from the Edm strain as shown in Fig 1-4. AIK-C, Schwarz, 

Moraten, Rubeovax and Zagreb are vaccine strains derived from the Edm 

lineage. Other vaccine strains that were obtained from different WT MV 

strains independently are also available in different parts of the world, for 

example, CAM-70 (Japan), Changchun-47 (China), Leningrad-4 (Russia) and 

Shanghai-191 (China)146. In 1963, the first live attenuated vaccine was 

licensed in the USA under the trade name Rubeovax147. Later, the more 

attenuated Moraten strain replaced it148. The AIK-C strain is used in Japan149 

and the Zagreb, is produced by serum institute of India and is most 

commonly used in the Expanded Programme on immunisation of the World 

Health Organisation (WHO)150. The vaccine strains had good sero-
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conversion rates but still induced fever in 46% of vaccinees and therefore 

were replaced by more attenuated strains147. The Schwarz strain, generated 

in 1962 is more attenuated and is produced in Europe and Brazil151 while 

Moraten strain (Attenuvax, Merck and Co. in the Unites States), generated by 

further passage in chick embryo fibroblasts147 is used in the United Kingdom. 

MV vaccine is given either as a single agent or combined with other vaccine 

viruses such as mumps and rubella (MMR)152,153. In the developed countries 

MV vaccine is usually given in the form of MMR at 12-15 months of age, but 

in countries where MV is endemic, vaccines are typically administered at the 

age of 9 months153. 

Based on the MV-H and MV-N gene sequences, MV is assigned to 1 

of 23 genotypes and one provisional genotype154. All vaccine strains are 

grouped under genotype A155. However, there is only one serotype, and 

serum samples collected from vaccinated individuals can neutralise viruses 

from different genotypes with variable neutralising titres156,157. Reported sub-

optimal sero-conversion after vaccination is possibly due to lack of coverage, 

improper administration, age of the vaccine recipient and transport and 

storage of vaccine158-160. The vaccine strain of MV is not pathogenic in 

healthy individuals, and there is no evidence of the MV vaccine strain 

reverting to a pathogenic phenotype161. Humans are the only known hosts for 

MV, and no other animal or environmental reservoir is known to exist145. 

Some non-human primates are susceptible to MV infection162, but to be 

assigned as a natural reservoir of MV that can sustain and transmit MV 
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infection, the size of the worldwide wild population of primates required, is 

not sufficient145. 

The vaccine strain derived from the Edm strain has an excellent safety 

record of more than 50 years as it is being used in the vaccination 

programmes worldwide, and has been administered to millions of 

people107,163 with rare occurrence of adverse events, the most common one 

being fever and rash at 8-12 days post vaccination151. Rubeovax caused 

fever in 46% and rash in 16% of the recipients147. More attenuated strains 

Zagreb and Schwarz had reduced side effects such as fever in 2% and 21% 

recipients respectively146. Three percent of MV Moraten and 20% of AIK-C 

vaccine recipients presented with rash146. However, there are reports of 

severe adverse effects in vaccine recipients who are severely 

immunocompromised and are incapable of clearing the virus164-166. The 

vaccine is therefore not recommended for immunosuppressed patients, while 

people with HIV infection should have >200 cell/microL count of CD4+ T-cell 

for safe administration of the virus32. WT MV can spread transiently to the 

central nervous system (CNS) in up to 50% of infected patients167, and lead 

to CNS complications soon after infection as in acute encephalomyelitis 

(AME), or years after infection, as in subacute sclerosing panencephalitis 

(SSPE)168, which is a rare, fatal consequence of CNS infection169,170. The 

third MV-induced CNS disease, progressive infectious encephalitis or 

measles inclusion body encephalitis (MIBE), occurs in immunosuppressed 

patients several months post MV infection167. However, there is no evidence 

of the vaccine strain of the virus causing any of the CNS related 
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complications168,169, and immunisation by the vaccine strain has been 

suggested to prevent SSPE168. 

 MVs used as oncolytic virus and relation to vaccine strains: 1.2.5

The different genetically modified strains derived from the MV EdmB 

strains are shown in the red boxes in Fig 1-4. Most MV vaccine strains used 

today comprise of very closely inter-related laboratory strains, derived from 

the 1954 clinical isolate142,171,172. Initially, the commercially available strains, 

such as the Moraten50 and Edm-Zagreb173 were tested as oncolytic viruses 

due to their excellent safety profile and commercial availability174. MV 

Moraten had shown similar anti-tumour potency in an in-vivo model of 

ovarian cancer when compared to the MV-tag-Edm modified strain used at 

1x106 infectious units50. Although the MV Moraten was packaged and 

available commercially at 1x103 infectious doses, it was impractical to use it 

in clinical trials where an effective dose in excess of 1x108 was required. The 

phase I clinical trial using the Edm-Zagreb strain in cutaneous T-cell 

lymphoma had shown some promising results173 but awaits further studies. 

The MV-tag-Edm and its derivatives showed extensive anti-tumour properties 

in mouse models of different human malignancies51,52,175-179. The MVNSe 

was derived from the MV-tag-Edm and has unique NarI and SpeI cleavage 

sites180 to facilitate easier genetic manipulation. MVs has been genetically 

modified to express different gene of interest, for e.g. MV expressing green 

fluorescent protein (MV-GFP), carcinoembryonic antigen (MV-CEA), sodium 

iodide symporter (MV-NIS), all developed from the EdmB vaccine strain and 

are discussed in detail in section 1.3.1. The MVhGCSF strain was derived 
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from the MVNSeGFP strain. The vaccine strains used as a part of this thesis 

are shown in blue in Fig 1-4. 
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Figure 1-4: Edmonston vaccine lineage: MV strains in the red boxes are genetically modified strains derived from EdmB strain. 
Highlighted in blue are the MV strains used in this thesis. Adapted from Rota et al. 1994171. 
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 Rescue of MV by reverse genetics: 1.2.6

MV can be rescued from cloned cDNA by reverse genetics181. Fig 1-5 

shows the schema for this procedure. The full length MV cDNA plasmid is 

under the control of T7 promoter. Vero (African green monkey kidney 

epithelial cells) is first infected with the recombinant modified vaccinia virus 

(Ankara) (MVA). This virus allows expression of the T7 RNA polymerase 

{DNA dependent RNA polymerase (DdRp)} without vaccinia virus replication. 

Next, the cells are transfected with individual plasmids coding MV proteins N, 

P and L under the CMV promoter, and the full length MV, which is under the 

T7 promoter. T7 RNA polymerase help synthesise the anti-genomic RNA 

template from the full-length MV plasmid in the cytoplasm of the Vero cells, 

while the N, P and L proteins are synthesised in the nucleus of Vero cells, 

which encapsidates the RNA template formed from the cloned MV cDNA, to 

form the RNP core structure. Encapsidation initiates MV-N, P and L 

dependent replication of MV genomic RNA. When all the individual 

components of the virus are present in optimum quantities, they are 

assembled and released as viral particles, as during natural infection. In the 

laboratory, successful rescue is recognised by the occurrence of 

multinucleated syncytia, which can be ‘picked’ to further propagate the novel 

clone. 



 

   

5
8
 

 

 

 

Figure 1-5: Rescue of MV from cloned cDNA: Schematic representation of reverse genetics methodology using multiple plasmid transfection 
approach and recombinant Vaccinia Ankara virus to obtain MV particles. Adapted from Radecke F. et al. 1995181. 
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An alternative to the use of MVA is the rescue of MV using a cell line 

(293-3-46 – derived from a human embryonic kidney cell line 293, 

transformed by adenovirus type 5 DNA)182, stably expressing the MV-N, MV-

P and the T7 RNA polymerase181. This cell line is then transfected with the 

full-length MV plasmid and the MV-L plasmids, subsequently forming the MV 

particles as described above. 

 Models for studying MV pathogenesis and vaccination: 1.2.7

Naturally infected humans, naturally and experimentally infected 

macaques, experimentally infected cotton rats and murine models and 

numerous in-vitro systems have contributed to our understanding of MV 

infection and pathogenesis107. 

1.2.7.1 Primates: 

Old world primates were the first animal models used to study MV 

pathogenesis and for vaccine development, as they were highly susceptible 

to MV infection. They are among the non-human primates closely similar in 

their clinical, virological, immunological and pathological parameters 

associated with measles infection in humans115. Two different species, 

Rhesus macaque (Macaca mullata) and Cynomolgus macaques (Macaca 

fascicularis) has been widely used in MV pathogenesis studies and vaccine 

development139,183-187. The macaques develop a measles-like illness when 

challenged with WT MV but not with the attenuated vaccine strain 

(EdmB)183,185,188. However, a drawback of using the macaques as a model to 

study the MVEdmB strain of measles is the abundant expression of MV 
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receptor CD46 in their red blood cells (erythrocytes) as opposed to their 

absence in humans. Therefore, MVEdmB can agglutinate the macaque 

erythrocytes thereby slowing virus dissemination, which potentially abates 

the relevance of virulence study of the vaccine strain of virus in this model189. 

Although they still remain an important model of choice for studying WT 

strains. 

The new world monkeys are even more susceptible to MV infection 

when compared to the old world monkeys, but develop a different 

pathogenesis than in humans, associated with very high rates of 

mortality190,191. Squirrel monkey was chosen to be an ideal model to test 

attenuated MV-NIS in pre-clinical toxicology and bio-distribution study, as 

they express a truncated version of the CD46 that does not bind vaccine 

strain of MV192, and therefore upon infection (via SLAM interaction) can 

cause measles like illness comparable to humans. 

1.2.7.2 Rodent: 

Mice are popular models for scientific research because they are 

small, cost effective, and easy to house and have shorter gestation 

compared to non-human primates. Unfortunately mice are not susceptible to 

MV infection and therefore, several CD46 transgenic mice have been 

generated to study MV pathogenesis193. Among them CD46 transgenic mice, 

which are also lacking the IFN-α/β receptor (IfnrKO CD46 Ge) have been 

used for most toxicology studies. These mice express human CD46 with 

tissue distribution similar to CD46 expression in humans, including low to 
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absent expression on erythrocytes194. Upon intranasal route of infection the 

virus shows enhanced spread into the lungs and a potent inflammatory 

response due to lack of type I IFN signalling195,196. Though the lack of IFN 

response limits their application in immune response related studies, this 

remains a choice for most toxicology pre-clinical studies. 

Another model for studying WT clinical isolates of MV is transgenic 

mice expressing the CD150 or SLAM receptor as CD46 transgenic mice are 

not susceptible to WT strains. Several transgenic lines expressing CD150 

has been described197-202, which differs in the promoter used to drive CD150 

expression. These mice have proven very successful in studying WT MV, 

and some of them follow the natural routes of MV infection making them very 

desirable115. 

Cotton rats have shown to support MV replication and are more 

practical and less expensive models compared to the macaque. It has been 

evaluated as a pre-clinical model of MV vaccine strains203. Though the 

vaccine strain of MV doesn’t cause overt disease in these animals, they have 

been shown to replicate in the lung tissue, immunosuppress the animal and 

disseminate from the lungs204. Although clinical isolates fail to infect cotton 

rats limiting their utility in replacing non-human primates, they remain one of 

the closest models for studying MV203. 
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1.2.7.3 Ferret: 

Ferrets’ susceptibility to a range of respiratory viruses and their 

relatively small size makes them an attractive animal model to study viral 

pathogenesis. They are not susceptible to MV infection but develop sub-

acute encephalitis upon infection with sub-acute sclerosing panencephalitis 

(SSPE) isolates205. Additionally they are natural host for canine distemper 

virus (CDV), which is closely related to MV and causes measles like 

characteristic rashes in ferrets with all signs of disease seen in MV-infected 

humans206. This model has been used to study the C and V proteins of MV 

and how they contribute in immunosuppression and overall pathogenesis 

upon binding to SLAM115. 

1.2.7.4 Humans: 

Being the only natural host of MV infection, data from humans are 

unparalleled. The peak of viral replication in humans is generally reached 

before the onset of observable symptoms and viral clearance coincide with 

clinical symptoms, which makes it challenging to study MV pathogenesis in 

human cases207. Therefore, current understanding of measles comes from 

studies in macaques208 (see 1.2.7.1). 

 Natural MV infection: 1.2.8

Natural MV infection leads to a complicated cascade of innate, cellular 

and humoral immune response, which helps in clearing the infection. Use of 

the models described above (section 1.2.7) has helped elucidate the immune 
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response to MV. These models are vital in understanding both pathogenesis 

of natural measles infection and the immune response to the use of 

oncolytic, vaccine strains. 

MV infection is initiated at the respiratory tract, from where it spreads 

to local secondary lymphoid tissue most probably after uptake by lung DCs 

or alveolar macrophages209,210. MV replicates in lymphatic tissue efficiently 

and infected cells enter the blood circulation and can be detected by 7-9 

days post infection in peripheral blood mononuclear cells (PBMCs), including 

B-cells, T-cells and monocytes183,185. Infection spreads from the blood to the 

distal lymphoid tissues and to epithelial and endothelial cells in multiple 

organs including liver, brain and skin211,212. 

1.2.8.1 Host immune response to MV infection: 

1.2.8.1.1 Innate immune response: 

MV is transmitted by aerosols and thought to first infect the cells 

located in the respiratory epithelial tissues, including mucosal DCs115. 

Macrophages, DCs and NK cells have all been implicated in the innate 

immune response at the site of primary infection. The macrophages can 

engulf the entire virus and destroy them into pieces115. Furthermore, the viral 

components can be recognised by cellular sensors, which can induce an 

inflammatory response, via type I IFNs. The type I IFNs released by the 

infected cells can activate NK cells to produce type II IFN, IFNγ, which can 

directly kill the infected cells213. 
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1.2.8.1.2  Viral RNA recognition: 

Signature molecules from microorganisms - glycoproteins, 

lipopolysaccharides, proteoglycans, nucleic acids including ssRNA are the 

pathogen associated molecular patterns (PAMPs) that are detected by the 

host innate immune cell receptors - pattern recognition receptors or PRRs. 

PRRs implicated in MV detection are toll-like receptors (TLRs) and retinoic 

acid inducible gene I (RIG-I)-like receptor (RLR)214-216. Recognition of PAMPs 

by the PRRs leads to a type I inflammatory response and plays a central role 

in eradication of the viral infection217. Upon binding to these cellular sensors, 

the viral components induce the JAK/STAT signalling pathway leading to the 

formation of the IFN stimulated gene factor 3 (ISGF3) complex, comprising of 

the STAT1, STAT2 and IFN regulatory factor 9 (IRF9)218,219. The ISGF3 

complex then translocate to the nucleus, where it activates the IFN-

stimulated response element (ISRE) gene mediated transcription leading to 

IFN production and establishment of the anti-viral state220. 

1.2.8.1.3 TLR mediated viral recognition: 

TLR family members play a very important role in initiating an anti-viral 

response. Of the 10 human TLRs, TLR2, 3, 4 7 and 8 are known to be 

involved in RNA virus recognition216. WT MV-H glycoprotein interacts with 

TLR2 on macrophages and activates signalling via a pro-inflammatory 

pathway and stimulates induction of interleukin 6 (IL6) and increases surface 

expression of CD150. The vaccine strain is unable to do this, but a single 

mutation at the H protein at position 481, can turn the vaccine strain back as 
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a TLR2 agonist221. In the plasmacytoid DCs (pDCs), the TLR receptors TLR7 

and TLR8 are present at the endosomal compartment and detect ssRNA via 

internalisation and digestion of the virus222,223. MV infects cells by direct 

membrane fusion, and therefore are less likely to be detected by TLR7 and 

TLR8 in the endosome of pDCs216, and consequently the IFN response to 

paramyxoviruses have been shown to be independent of the TLR7 and 

endosome acidification224. Nevertheless, the MV Schwarz vaccine strain has 

been shown to interact with TLR7 and TLR9 on pDCs and inhibit IFNα and 

IFNβ production by pDCs, which may contribute towards the characteristic 

immune suppression, super infection and Th2 biased immunopathology of 

MV225. 

1.2.8.1.4 RLR mediated viral RNA recognition: 

The RLR family are a group of cytosolic PRRs that can detect PAMPs 

to distinguish between self host RNA from non-self genetic material from the 

RNA viruses thereby leading to activation of downstream effector molecules 

such as type I IFNs and other pro-inflammatory cytokines involved in an 

innate anti-viral and inflammatory gene expression226. The RLR family 

consists of the RIG-I, MDA5 (melanoma differentiation gene 5) and LGP2 

(laboratory of genetics and physiology-2). RIG-I and MDA5 possesses 

caspase activation and recruitment domains (CARDs) on their N-terminal 

that upon activation interacts with the MAVS (mitochondrial antiviral 

signalling) protein present on the mitochondria, and lead to the activation of 

the downstream IFN signalling pathway226. 
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Both RIG-I and MDA5 RNA helicases contribute to the induction of 

IFNα/β in MV-infected human cells227. MV can interact via the RIG-I/MDA5 

signalling pathway with MDA5 preferentially binding to (+) sense RNA of MV, 

while RIG-I binding to the (-) sense RNA within the trailer region and the 

adjacent L, which leads to downstream signalling228. WT MV has been 

reported to inhibit the JAK/STAT mediated type I IFN signalling pathway 

largely than the attenuated vaccine strain229. The MV-C protein of the WT MV 

has been shown to inhibit the production of type I IFNs230 while the P and V 

proteins block the phosphorylation of STAT1 and eventually translocation of 

STAT1/STAT2 complex into the nucleus231-233. Mutant MV deficient in V or C 

genes produce very high levels of IFNβ compared to their parental 

counterpart, and require protein kinase PKR and mitochondrial adapter 

MAVS for maximum IFNβ induction234. Both V and C proteins are important 

in controlling the inflammatory response to the virus and the innate 

immunity235. 

1.2.8.1.5 Adaptive immune response: 

Humoral and cellular immunity play a very important role in MV 

clearance and long-term protection from subsequent infection. MV infection 

leads to a very robust cellular response with activated CD4+ and CD8+ cells 

that can be isolated from the MV-infected epithelial cells. The activated T-

cells play a major role in clearance of the virus in macaques, where depletion 

of CD8+ T-cells leads to prolonged viremia236. This Th1 type response, which 

is associated with, increased level of IFNγ and IL2 is designed to promote 
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clearance of virus infected cells. This switch to a Th type 2 (Th2) response 

later, that leads to the production of type 2 cytokines - IL4, IL10, and IL13 

and helps in generation of anti-MV antibodies and immunological memories. 

The CD8+ cells are rapidly cleared upon clearance of the infection and no 

infectious virus is detected. However, MV RNA can be isolated from the 

patients for weeks after recovery, which is responsible for the presence of 

activated CD4+ T-cells and helps in maintaining long-term protection237. 

Post MV infection, anti-MV antibody is detected within 72 hours of the 

onset of rash, which is mostly IgM. The IgM response lasts for up to 28 days, 

after which an IgG response begins and provides lifelong immunity115,238. The 

antibody response is against the main structural proteins, with anti-N 

antibody at the highest, followed by H, F and very little to the M protein239. 

Anti-MV antibody can be both neutralising and non-neutralising and though 

anti-F neutralising antibody is present, the majority of the neutralising 

antibody is against MV-H240,241. World Health Organisation (WHO) has 

assigned presence of 200mIU/ml of neutralising antibody as a necessary 

level to confer protection to MV242,243. The MV-specific neutralising antibody 

plays a key role in preventing MV infection, and contributes to MV clearance 

with the help of the cellular immune response from the start of MV 

infection244-246. 

1.2.8.1.6 MV-mediated immune suppression: 

MV infection is associated with increase in susceptibility to other 

infections and this is due to the immunosuppressive effects of MV infection 
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and measles related deaths are often caused by secondary infections, most 

commonly diarrhoea or pneumonia247. Evidence of immune suppression is 

first detected with the onset of measles rash and generation of the immune 

response to MV, which eventually results in clearing of the virus and lifelong 

immunity237. A number of MV-induced mechanisms of direct and indirect 

immunosuppression have been proposed which includes lymphopenia, type 

2 skewing of cytokine responses and suppression of lymphocyte 

multiplication237. MV infection is associated with lymphopenia, which is 

caused by susceptibility of the lymphocytes to increased cell death212,248. 

Engagement of the CD150 receptor causes CD95 mediated apoptosis249,250, 

and MV infection per se can induce bystander lymphocyte apoptosis251,252, 

which possibly contributes to lymphopenia. MV infection in-vitro can cause 

inhibition in lymphocyte proliferation by halting lymphocyte cell cycle 

progression associated with G1 arrest253,254. 

1.3 MEASLES VIRUS AS AN ONCOLYTIC AGENT: 

One of the first observation of MV as a potential oncolytic agent was 

spontaneous regression of lymphomas in a 8-year-old boy, after contracting 

natural MV infection255. Almost three decades later, some of the initial work 

was done in B-cell malignancies with MV as an oncolytic virus. In 2001, 

Grote et al175 from my group showed that MVEdm vaccine strain is capable 

of causing regression of large established lymphoma tumours. In this model, 

the effect of the presence of anti-MV antibody was also tested and it did not 

abrogate the anti-tumour effect. In 2004, Dingli et al256 showed the oncolytic 
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effect of MV in myeloma xenografts. Both IV and IT routes of MV 

administration were successful in tumour regression in this model. The 

potential of MV as an oncolytic virus was extrapolated to solid tumours and it 

has been shown to be oncolytic in numerous other tumour models like 

medulloblastoma257 that used the MV expressing green fluorescence protein 

(GFP), in an intra-cerebral murine xenograft model and mesothelioma258 that 

used MV encoding for IFNβ and the sodium iodide symporter (NIS). Different 

routes of MV administration, IV, IT and IP were investigated in several 

studies and various modifications were introduced into MV genome to enable 

tracking of the virus in-vivo conveniently (MV-GFP, MV-CEA, MV-NIS) or 

increase its therapeutic effect (MV-IFNβ). A non-exhaustive list of different 

tumour models, routes of MV administration and several MV modifications 

are shown in Table 1.4. All these models described in Table 1.4, where MV 

was shown to be oncolytic were human xenografts established in 

immunocompromised mice. The limitations to these models are obvious, as 

immune responses cannot be studied. Some efforts have been made to 

address this within immunocompetent syngeneic mouse tumour models 

using MV, with entry re-targeted to murine cells. 
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Table 1.4: MV as an oncolytic agent in different mouse tumour models: 

In a murine colon adenocarcinoma model developed from MC38cea 

cell line (that express the CEA protein) in a C57BL/6 mice, a re-targeted MV 

expressing scFvCEA was used to treat the tumour. The MV-CEA was armed 

with a pro-drug convertase, purine nucleoside phosphorylase (PNP) to 

enhance the oncolytic activity of MV. When pro-drug MeP-dR (9-2-deoxy-

beta-D-ribofuranosyl-6-methylpurine) was used with the MV-CEA-PNP, very 

significant tumour regression was observed when compared to MV-CEA or 

the MeP-dR pro-drug alone. This correlated with pro-longed survival263. 

Another way in which MV has been studied in immunocompetent models has 

provided assistance with the toxicology and bio-distribution studies, which 

are crucial before clinical trials. There are by now several lines of mice 

transgenic for MV receptors including SLAM193,200,202,264-266. Most toxicology 

studies in MV to date267 have been done in CD46 transgenic mice, which are 

also lacking the IFNα/β receptor (IfnrKO CD46 Ge). These mice express 

Tumour model MV modification Routes of MV 
administration 

Publications 

Medulloblastoma MV-GFP  IT Studebaker et al., 
2012257  

Mesothelioma MV-IFNβ; MV-NIS  IT Li et al., 2010258  

Breast cancer MV-GFP  IV; TT 
(intrapleural) 

Iankov et al., 
2009259  

Prostate cancer MV-luc, MV-GFP, 
MV-CEA 

 IT Msaouel et al., 
2009260 

Glioma MV-GFP-H (AA)-
IL-13, MV-GFP,  

 IT Allen et al., 
2008261 

Ovarian cancer MV-CEA IP Galanis E et al., 
2008262  

Myeloma MVEdm IV, IT  Peng et al., 200152  

Lymphoma MVEdm, MV-LacZ  IV, IT Grote et al., 
2001175  
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human CD46 in a tissue distribution that mimics the pattern of CD46 

expression in humans, including low to absent expression on erythrocytes194. 

The different modification strategies of MV to enhance its oncolytic 

properties are discussed in detail in the next section (see 1.3.1). 

 Modifications to MV for more effective cancer therapy: 1.3.1

1.3.1.1 MV targeting: 

MV is one of the few viruses where full re-targeting by modification of 

the envelope glycoprotein has been achieved. Targeting strategies have 

relied upon display of growth factors or single chain fragment variable (scFv) 

antibodies. MV entry targeted via the epidermal growth factor receptor 

(EGFR) and insulin-like growth factor-1 (IGF-1) receptor were the first to be 

reported268. The genes coding for EGF and IGF-1 were cloned into MV-H in 

frame linked by a serine and glycine rich linker sequence and then cloned 

into the MV backbone sequence replacing the H. The new virus was able to 

enter and infect CD46-negative rodent cells - Chinese hamster ovary (CHO) 

stably expressing the hEGFR and mouse NIH-3T3 cells stably expressing 

the hIGF1 receptor. scFv-CD20269, scFv-anti-hCEA270 and scFv-anti-CD38271 

have all been displayed on the MV-H to facilitate targeted entry to CD20, 

CEA and CD38 expressing cancer cells, respectively. 

This targeting strategy, whilst permitting entry to non-permissive target 

cells still allowed MV to enter and infect permissive cells via CD46 and 

SLAM. Therefore, attempts at fully re-targeting MV were carried out by 
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introducing mutations in the receptor-binding domain of MV-H to render the 

H, CD46 and SLAM “blind”. Introducing mutations at amino acids which were 

carefully chosen as being putatively involved in receptor binding within the 

MV-H protein prevented the viral cell entry via CD46 or SLAM, making the 

virus effectively CD46 or SLAM “blind”272. Nakamura et al. employed a 

related set of mutations in the development of a method to rescue fully re-

targeted CD46 and SLAM blind MV. An anti-CD38 scFv was fused to the C 

terminus of the MV-H protein wherein residues involved in binding to CD46 

(451,481) and SLAM (529, 533) were mutated. Paired mutations were 

introduced at positions 451 and 529, or 481 and 533 on the MV-H to make 

the virus blind to both CD46 and SLAM273. These mutations supported fusion 

via the targeted CD38 receptor but not via CD46 or SLAM. The viruses were 

rescued on CHO-CD38 cells. Later, a system was developed to rescue this 

virus by introduction of a His-Tag, a peptide containing 6 histidine residues at 

the C terminus of the mutated H protein273. The virus could now be rescued 

and propagated on Vero cells expressing a receptor for α-His peptide. Other 

MVs, which are fully re-targeted have since been generated which can enter 

the target cells via EGF273, EGFvIII274, and IL-13-Rα2261 receptors. MV 

selectively activated by human tumour cells overexpressing matrix 

metalloproteinases has also shown to have enhanced specificity of 

replication within tumours275,276. 

1.3.1.2 Tracking: 

MV has also been modified to add genes to facilitate tracking of the 

virus in-vivo. Marker genes such as GFP, CEA, luciferase (luc), have been 
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used for tracking, monitoring and imaging purposes both in-vitro and in-vivo. 

CEA antigen is a non-immunogenic soluble glycoprotein, which is present in 

normal mucosal cells and can be over expressed by adenocarcinoma cells. It 

has the advantage of being quantitated by a standardised routine laboratory 

assay. MV expressing human CEA has been used in the ovarian cancer 

clinical trial for non-invasive monitoring of patients after therapy by 

monitoring the CEA level in the serum277. Due to characteristic elevation of 

CEA in certain tumour types, MV expressing NIS was developed as a clinical 

reporter gene. 

1.3.1.3 Therapeutic enhancements: 

NIS has the advantage of potentially facilitating the therapeutic effect 

of oncolytic MV. NIS is normally expressed in the thyroid tissue on thyroid 

follicular cells and facilitates the accumulation of iodine by thyroid follicular 

cells278. When MV-NIS infected cells express NIS, uptake of exogenously 

administered radioiodine can occur and this provides a basis for in-vivo 

radioiodine imaging studies that can reveal the profile of MV-NIS gene 

expression and the location of MV-NIS infected cells. Isotypes like 123I and 

124I were used in a medulloblastoma tumour model279. MV-NIS treatment, 

both on its own and in combination with 131I, enhanced tumour stabilisation 

and regression in treated mice and significantly extended their survival times. 

Radioiodine was concentrated at the tumour sites in mice given 131I. In 

addition, mice with localised tumours that were given 131I after MV-NIS 

treatment exhibited a significant survival advantage over mice given MV-NIS 

alone279. 
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In another approach of enhancing therapeutic activity of MV in our 

laboratory, in an in-vivo model of lymphoma, MV expressing murine GMCSF 

(mGMCSF) led to significant infiltration of neutrophils in the injected tumour 

resection when compared to the unmodified MV. This led to much superior 

tumour regression280. Furthermore, MV expressing neutrophil-activating 

protein (NAP) of helicobacter pylori - a powerful enhancer of inflammatory 

reaction showed Th1-polarised immune response that improved survival in 

breast cancer and aggressive lung metastatic breast cancer models. High 

level of NAP was secreted by the infected tumour cells, which led to high 

levels of TNFα, IL6 and IL12/23 cytokine concentrations in the pleural 

effusion281. 

Arming the MV with pro-drug convertase and cytokines is an 

alternative approach of adding a therapeutic layer to MV-mediated oncolysis. 

Pro-drug convertase are enzymes that can convert a non-toxic substrate to a 

toxic drug. For example, Escherichia coli purine nucleoside phosphorylase 

(PNP) can convert non-toxic fludarabine and purine analogue 6-methylpurine 

2'-deoxyriboside (MeP-dR) to toxic 2-fluoroadenine and 6-methylpurine 

respectively263,282. These are highly diffusible and can inhibit DNA, RNA and 

protein synthesis283. MV have been armed with PNP and has shown 

enhanced oncolytic activity in lymphoma282,284, pancreatic cancer285 and a 

murine colon carcinoma model263. However, fludarabine is considerably 

cytotoxic when administered systemically286. Another example is cytosine 

deaminase (CD), which converts pro-drug 5-fluorocytosine (5-FC) to 5-

fluorouracil (5-FU) and subsequently to 5-fluorouridine-monophosphate. MV 
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armed with CD was shown to improve oncolytic effect of MV in 

cholangiocarcinoma287 and head and neck squamous cell carcinoma288. 

 MV Clinical Trials: 1.3.2

MV is being evaluated in several phase I and II clinical trials (see 

Table 1.5 - modified from Russell 201231, Guillerme 2013289, clinicaltrials.gov 

- NCT02192775). Some trials are completed while others are still recruiting. 

Different routes of administration are being evaluated in these studies. The 

first phase I clinical trial was carried out in Cutaneous T-cell Lymphoma 

(CTCL) and used IFNα to prevent infection in IFNα sensitive healthy cells in 

combination with MVEdm-Zagreb therapy. In this trial, MV induced cytopathic 

effect locally, after IT injections even in the presence of anti-measles 

antibodies. Additionally, tumour regression was observed in three patients 

with notable regression of distant lesions that were not injected173. The data 

from the ovarian cancer trial, which used MV-CEA, showed no dose related 

toxicity in all 21 patients recruited with clinical response observed in 14 out of 

21 patients262,290,291. A recent preliminary report from a phase I clinical trial 

have shown very good response rate in 2 patients with multiple myeloma. 

Both the patients were treated with MV-NIS at 1x1011 dose IV, and one of the 

two patients showed a durable complete remission of 9 months292. There are 

currently 5 Phase I/II clinical trials that are open and recruiting and two that 

are active but not recruiting yet, and one more in the pipeline to start this 

year (clinicaltrials.gov). 
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Table 1.5: MV in Clinical Trials: 

1.4 MECHANISMS OF MEASLES VIRUS MEDIATED ONCOLYSIS: 

The mechanism by which MV selectively kills tumour cells is not 

completely understood. Different mechanisms, both direct and indirect, have 

been proposed and are summarised in Fig 1-6, and is discussed below. 

Virus 
Strain 

Phase Cancer Type Route Combinatio
n 

Status Centre 

MV-CEA I Glioblastoma 
multiforme 

CNS - Recruiting Mayo 
Clinic 

MVEdm
-Zagreb 

I CTCL IT IFNα Complete
d 

Zurich 
Universit

y 

MV-NIS 
and 

MV-CEA 

I Ovarian 
cancer or 
primary 

peritoneal 
cancer 

IP - Complete
d 

Mayo 
Clinic 

MV-NIS I Head and 
neck cancer 

IT - Recruiting Mayo 
Clinic 

MV-NIS I Pleural 
mesotheliom

a 

IP - Active Mayo 
Clinic 

MV-NIS I Peripheral 
nerve sheath 

tumour 

IT - Starting 
June 2016 

Mayo 
Clinic 

MV-NIS I/II Ovarian 
cancer 

IPMSc - Active Mayo 
Clinic 

MV-NIS II Multiple 
myeloma 

IV CTX Recruiting Universit
y of 

Arkansas 

MV-NIS II Ovarian, 
fallopian, 
peritoneal 

cancer 

IP - Recruiting Mayo 
Clinic 
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 MV receptor overexpression by tumour cells: 1.4.1

One of the proposed mechanisms of direct oncolysis is selective entry 

of MV into tumour cells. MV vaccine strains preferentially enter the cells via 

CD46 receptor, which mediates attachment of the virus, cell entry and cell-

cell fusion, and is known to present on all nucleated cells, and is often 

overexpressed on transformed cells119,293. The ability of the attenuated MV to 

enter a cell via CD46 have been shown to help the virus preferentially enter 

and infect transformed cells making it a potential mechanism of oncolysis by 

MV. Anderson et al. showed that cells engineered to express different 

densities of CD46 on their surface, led to progressively increased rate of cell 

infection and cell-cell fusion with higher densities of CD46294. Also, the 

recently identified receptor of MV, Nectin 4, which is considered a tumour 

marker for breast, lung and ovarian cancers, is overexpressed on these cells, 

suggesting the possible MV selectivity in these cells295-297. Other than the 

viral receptors, cancer cells overexpress specific proteases like matrix 

metalloproteinases and MV and other paramyxoviruses require protein 

cleavage of the fusion F protein to facilitate cell entry, suggesting a possible 

mechanism298-300. 

In addition to CD46, all MV strains including vaccine strains retain the 

ability to enter cells via SLAM301 and certain SLAM positive haematological 

malignancies have regressed following natural MV infection255,302. In an in-

vitro study, SLAM was shown to be a dominant oncolytic MV receptor in 

mantle cell lymphoma and blocking SLAM with antibodies reduced MV entry 

by 70%. MV modified to enter via SLAM alone elicited a tumour regression 
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equivalent to unmodified MV, whereas MV modified to enter via CD46 alone 

was comparable to vehicle control. This study showed that MV infection and 

spread in mantle cell lymphoma is entirely SLAM dependent301. 

 Enhancement of apoptosis: 1.4.2

MV infection can also induce direct cytotoxicity by enhancing the 

apoptotic signalling pathway in the infected cells. For instance, MV infection 

of glioblastoma multiforme cells in combination with radiation therapy led to 

higher apoptosis inducing cleavage of the poly ADP-ribose polymerase 

(PARP), mediated mainly by the extrinsic caspase pathway303. In another 

model of mesothelioma, MV infection led to apoptotic cell death of the 

infected mesothelioma cells, which were readily phagocytosed by DCs304. 
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Figure 1-6: Proposed mechanisms of MV-mediated oncolysis: Diagram showing the different mechanisms of MV-mediated oncolysis 
proposed in the literature. 
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 Cellular responses: 1.4.3

Oncolytic MV can elicit a systemic anti-viral/anti-tumour response, 

which can greatly contribute to viral oncolysis. The relatively low infection 

efficiency in-vivo suggests that for complete eradication of any tumour, the 

virus should be able to activate the immune system. In a SCID model of 

Burkitt’s lymphoma, the virus regressed tumours efficiently, but the MV 

distribution in the sections of resected tumours was found to be patchy, 

suggesting some role of the immune system175. Moreover, tumour regression 

was associated with a significant neutrophil infiltration that was enhanced by 

MV expressing murine GMCSF, and correlated with superior tumour 

regression. The role of one of the key players in the innate immune system – 

neutrophils, was very clear in this model280. Both innate and adaptive 

immune system may play a very important role in virus mediated oncolysis70 

but has been difficult to study in MV-mediated oncolysis for the lack of an 

ideal in-vivo model, as MV does not infect murine cells. Although others have 

shown in human in-vitro studies that MV could induce monocyte-derived DC 

(Mo-DC), another important player of the innate immunity, to mature in-

vitro304,305. The Mo-DCs were shown to cross prime CD8+ T-cells specific for 

a tissue-associated antigen (TAA) of mesothelioma tumour cells. This 

showed a possible connection between MV infection and the innate immune 

cells being able to cross talk to the adaptive immune cells to initiate a more 

tumour specific immune response initiated by an oncolytic virus304. In another 

in-vitro study with melanoma cell line, PBMCs treated with MV was shown to 

enhance innate anti-tumour immunity within the PBMC effectors. Besides, 
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Mo-DCs and NK cells were both activated by MV infected melanoma cells, 

and in a killing assay, CTL primed by DCs co-cultured with MV infected 

melanoma cells were shown to be more potent killer of tumour cells 

compared to DCs co-cultured with uninfected melanoma cells alone305. In a 

similar study, plasmacytoid DCs (pDCs), another class of DC, that play an 

important role in an anti-viral immune response, were shown to upregulate 

the pDC maturation marker CD83, and produced high levels of IFNα when 

exposed to MV-infected tumour cells. The pDCs exposed to the MV-infected 

melanoma were also able to cross present another TAA, NY-ESO-1 positive 

melanoma cells to CD8+ T-cells specific for the same TAA, and activated 

them to produce IFNγ. All this was not true for pDCs exposed to UV treated 

tumour cells and showed a potential role of MV-infected tumour cells in 

generating an immune response289. 

1.5 NEUTROPHILS - OVERVIEW: 

The focus of this thesis is the neutrophil response to MV-infected 

cancer cells. An overview of the biology of neutrophils in response to viral 

infection and cancer is given below. 

 Neutrophil biology: 1.5.1

Neutrophils comprise approximately 60% of the white blood cells in 

humans306. They provide first line of defence against infection and are potent 

effectors of inflammation. Neutrophils release soluble factors that act as 

chemo attractants and guide recruitment of both specific and non-specific 
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effector cells307. They are produced in the bone marrow from myeloid 

precursors, controlled in part by granulocyte colony stimulating factor 

(GCSF)308. 

Neutrophils are recruited to sites of tissue injury in a multistep 

process. Cytokines produced by macrophages result in upregulation of the 

transmembrane adhesion molecules, selectins on endothelial cells, which 

tether to the neutrophils’ p-selectin glycoprotein ligand-1 (PSGL-1) (step 1). 

Next, ‘rolling’ occurs, mediated by E selectin. An adhesion step mediated by 

adhesion molecule 1 and 2 (ICAM1 and ICAM2) on the endothelial cells 

binding to neutrophil lymphocyte function-associated antigen 1 (LFA1). 

Finally integrins, ICAM1, ICAM2, vascular cell adhesion protein 1 (VCAM1), 

other junctional adhesion molecules (JAMs), and platelet/endothelial cell 

adhesion molecule (PECAM1) facilitate transmigration of the neutrophil into 

the tissue by a process called diapedesis309. 

 Neutrophils’ mechanism of action to combat viral infection: 1.5.2

Neutrophils are crucial players in defence against bacterial, fungal and 

viral infections. They can respond to both non-self PAMPs and self, danger 

associated molecular patterns (DAMPs). Once triggered, neutrophils activate 

PRRs like, TLRs310, RLRs311 and nucleotide-binding oligomerisation domain 

(NOD)-like receptors (NLRs)312 and mediate downstream inflammatory 

signalling. 
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Activated neutrophils release reactive oxygen species (ROS), which 

are highly damaging to the invading microorganism. ROS production can 

induce degranulation with release of cytotoxic contents to kill 

microorganisms. Neutrophil extracellular traps (NETs) are another way 

neutrophils effectively contain infection. NETs are made of chromatin and 

protein and are released from granules. They have been shown to be quite 

effective in binding with both gram-positive and gram-negative bacteria, and 

against fungal infections. NETs have been mainly studied in relation to 

bacterial and fungal infection313. However, one report documents the role of 

NETs in HIV-1 infection, wherein engagement of HIV-1 with TLR7 and 8, 

induced ROS-triggered release of NETs314. Neutrophils are also part of a link 

with the adaptive immune system and has been shown to act as an antigen-

presenting cell in influenza A infected mouse lungs, where infected 

neutrophils expressing viral antigen, cross-presented to anti-viral CD8+ T 

effector cells315. Neutrophil granule proteins can also activate TLR-9 in DCs, 

which can trigger IFN release313.  The role of neutrophil degranulation and 

ROS generation in the anti-viral response is highly relevant to this thesis and 

merits a more detailed discussion. 

1.5.2.1 Neutrophil granules: 

The four neutrophil granules are:- 

1. Primary (Azurophilic granules): store the most potent hydrolytic 

enzymes, for example elastase, myeloperoxidase (MPO), cathepsins 

and defensins. 
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2. Secondary (Specific granules): enriched in metalloproteinases such as 

lactoferrin, and metalloproteinase 9. Contain some overlapping 

components to tertiary granules but can be separated by gradient 

centrifugation, due to their difference in distinct buoyant densities. 

3. Tertiary (gelatinase granules): contains matrix metalloproteinases and 

microbial lectin ficolin-1. 

4. Secretory vesicles: contain human serum albumin, indicating that they 

are formed via endocytosis. They contain pre-formed cytokines such 

as transforming growth factor alpha (TGFα), TNFα, IL6, IL12 and 

CXCL2316 formed during immune activation. They are able to form 

small golgi structure in mature neutrophils317. 

1.5.2.2 Neutrophil degranulation mechanism: 

The process of neutrophil degranulation is highly regulated, and is 

mediated by a receptor-coupled mechanism318. Firstly, the neutrophil 

granules are recruited onto the cell surface by translocation of the granules, 

which is triggered by signalling of cell surface receptors, in response to a 

potential infection. Once recruited the next step is tethering and docking of 

the granule onto the cell surface, which exposes the granule’s outer surface 

of the lipid bilayer to the neutrophil’s inner surface of lipid bilayer. This is 

followed by granule priming, which helps the granules to rapidly fuse by 

making them fusion-competent. A reverse pore structure is formed that helps 

in complete fusion of the granule membrane to the neutrophil membrane, to 

release its granular content318. Increase in the intercellular Ca2+, hydrolysis of 

ATP and GTP is essential for the translocation and exocytosis of the 

granules. The granules are released in an orderly manner - secretory 



 

 

85 

vesicles first followed by tertiary, secondary and finally the primary granules - 

dependent on the concentrations of Ca2+318. Upon degranulation, contents 

are released into the extracellular or phagolysosomal spaces and fusion of 

membranes319, which aids the killing of engulfed microorganisms320. 

Phagolysosome biogenesis, essential for killing the pathogens, occurs 

through fusion of newly formed phagosomes with other granules and/or 

endosomes321. 

1.5.2.3 Respiratory Burst: 

Respiratory burst by which neutrophils produce ROS is deleterious for 

invading microorganisms. Receptors like formyl peptide receptors (FPRs) 

and G protein coupled receptors (GPCRs) present on neutrophils can 

recognise peptides like N-formyl-Met-Leu-Phe (fMLP) and inflammatory 

proteins like C5a and IL-8, triggering a rapid downstream signalling 

response. This leads to assembly of a multi-protein oxidase complex called 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. The 

individual components of this NADPH oxidase complex are present 

separately in the non-activated cells. Upon activation they assemble on the 

membrane of the cell, which helps catalyse NADPH-dependent reduction of 

O2 to superoxide anions (O2
-) and ROS including hydrogen peroxide (H2O2), 

hydroxyl radical (OH.) and hypochlorous acid (HOCl)322. A fraction of the 

NADPH oxidase (approx. 5%) is located in the plasma membrane and 

phagosomal membrane, the secretory vesicle harbors approximately 10% of 

the NADPH oxidase complex, and the specific and gelatinase granules 

comprises of almost 85% of the NADPH oxidase. The MPO or 
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myeloperoxidase is located in the azurophilic granules, which is essential to 

generate HOCl, from O2
-, and plays an important role in killing phagocytosed 

microorganism. It has been proposed that to generate HOCl, the primary, 

secondary, tertiary granules and the secretory vesicle must fuse, along with 

the phagosome323,324, which is an important step of ROS generation or 

respiratory burst. 

1.5.2.4 Neutrophils and phagocytosis: 

Phagocytosis is another mechanism by which phagocytes (neutrophils 

and macrophages) can eliminate microorganisms, primarily bacteria325. In 

contrast, some microbes including viruses are not directly phagocytosed, 

instead they are eliminated when the infected cells are engulfed by 

phagocytes, and is referred to as indirect phagocytosis. It is initiated by 

recognition of viral components expressed on the host cells bound to 

antibodies. These antibodies are in turn recognised by the Fcγ receptors on 

the phagocytes326. Another example of indirect phagocytosis is when 

phagocytes engulf apoptotic cells, by inherent defence mechanism of cells to 

maintain homeostasis327. Apoptosis induced in virus-infected cells can also 

trigger phagocytosis in a similar way327,328. For instance, in C57BL/6 mice, 

infected with influenza virus, both neutrophils and macrophages were shown 

to phagocytose infected cells, which were apoptotic329. There are several 

reports of neutrophils phagocytosing viruses such as hepatitis C330, hepatitis 

B331,332, HIV-1333 and CMV334. Avian influenza virus H5N1 has been 

suggested to enter neutrophils by phagocytosis as H5N1 cellular receptor is 
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expressed on neutrophils and this might help in viral replication within the 

neutrophils335. 

 Neutrophils in cancer: 1.5.3

Neutrophils plays a crucial role in mediating anti-cancer activity and 

this has been documented both in-vitro and in-vivo336. Neutrophils may 

migrate towards the site of tumour by a regulated multistep interaction 

between neutrophils and endothelial cells in much the same way as occurs 

for pathogens337. They are able to produce the same sort of cytotoxic 

mediators as discussed earlier, like ROS, proteases, membrane perforating 

agents and soluble mediators of cell killing, such as TNFα, IL-1β and IFNs338-

340 which can kill the tumour cells. This is a delicate balance as the pro-

inflammatory activities of neutrophils can also facilitate tumour growth. 

1.5.3.1 Anti-tumour: 

In a murine bladder cancer model, where mycobacterium BCG 

(Bacillus Calmette-Guérin) was used as a treatment, neutrophils were shown 

to play a key role in therapeutic success. The activated neutrophils from BCG 

treated mice attracted monocytes, which in turn resulted in CD4+ T-cell 

migration. Depletion of neutrophils in the same model eliminated the anti-

tumour effect of the BCG treatment341. Neutrophils stimulated with both 

viable and heat killed BCG were shown to release TRAIL/Apo-2L, suggesting 

a direct anti-tumour effect342,343. In relation to virotherapy, in which a model of 

murine colon cancer was treated with vesicular stomatitis virus (VSV)344, shut 

down of blood flow to the tumours was observed, which was proposed to be 
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mediated by neutrophils as shown by the increase in the transcripts encoding 

the neutrophil chemo attractants CXCL1 and CXCL5. This suggested the 

possible role of neutrophils in the recruitment of inflammatory cells that led to 

the shutdown of IT blood flow. Moreover, the shutdown of the blood flow to 

the tumours led to apoptosis in even those tumour cells that were not 

infected by the VSV. Additionally, neutrophil depletion in this model failed to 

stop the blood flow to the uninfected tumour cells, thereby enhanced spread 

of the tumour 344. The same group345 showed that VSV attacks the tumour 

vasculature and induces clot formation in the tumour vasculature that 

correlates with decrease in tumour cell proliferation. This was tested in mice 

after neutrophil depletion and correlated with decrease in clot formation and 

hence proliferation in tumour cells, implying the role of neutrophils in intra-

tumoural coagulation345. 

1.5.3.2 Pro-tumour: 

In spite of the well-documented anti-cancer properties of neutrophils, 

there is a growing body of literature suggesting a dual role of neutrophils in 

cancer where it can be either pro-tumour or anti-tumour depending on the 

microenvironment and cytokine profile of the neutrophils. Several studies, 

primarily in murine models have shown that neutrophils can promote tumours 

by promoting angiogenesis346 and can augment tumour cell dissemination 

and metastatic seeding of tumour cells in distant organs347-349. In contrast, 

other studies have emphasised the role of neutrophils as anti-tumour. They 

have shown that neutrophils can limit progression of disease through direct 

cytotoxicity of tumour cells350,351, by enhancing anti-tumour mediators338, and 
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can limit metastatic seeding by acquiring a cytotoxic phenotype348,349. 

Although reports regarding the role of neutrophils in cancer are conflicting, it 

is getting increasingly clear from different studies that the pro and anti-

tumour characteristic of neutrophils can be attributed to their functional 

plasticity352 and the cancer microenvironment has been suggested to play an 

important role. For example, presence of TGFβ, often available in high 

concentrations in the tumour sites have been shown to switch neutrophils 

from a pro-inflammatory anti-tumour N1 phenotype to anti-inflammatory pro-

tumour N2 phenotype353. More recently Mishalian et al.354 have found that 

the distribution of neutrophils on discontinuous density gradient (Ficoll-

Hypaque) is different from what was believed earlier. Although the 

neutrophils are generally found in the high-density (HD) gradient, there is an 

additional population, which is present in the low-density (LD) gradient and 

co-separates with the PBMCs. They found that this LD fraction increases 

with tumour growth, and in mice when compared to the HD neutrophils that 

has anti-tumour properties, LD neutrophils show reduced chemotaxis toward 

tumour cells, reduced phagocytic ability, augmented oxidative burst and no 

cytotoxicity towards the tumour cells355. In humans, neutrophilia has been 

associated with poor prognosis76,356. Although distinct population of 

neutrophils have been shown to be present in mice and suggested to be 

present in human355, careful and detailed investigation is needed to support 

the notion that the existence of multiple sub-types of neutrophils, and its 

activity in the tumour microenvironment has any role to play in determining 

neutrophil function. 
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 Neutrophils in MV-mediated oncolysis: 1.5.4

Data from my laboratory has previously implicated neutrophils as 

potential effector cells of MV-mediated oncolysis. In an in-vivo Raji (Burkitt’s 

lymphoma) tumour model, MV infection augmented the host CD45+ 

leukocyte response, which was further elicited in the group where MV 

modified to express murine GMCSF (MVmGMCSF) was used. Further 

analysis showed massive neutrophil infiltration in sections of Raji (Burkitt’s 

Lymphoma) tumours treated with MVmGMCSF when compared to MV 

alone280. However, there was no difference observed in the number of NK 

cells and macrophages in these groups. Additionally, higher neutrophils also 

correlated with a superior anti-tumour response in MVmGMCSF treated 

tumours when compared to the MV alone group.  

In another study from my laboratory357, human neutrophils were 

shown to get infected by the vaccine strain of MV and could replicate within 

them over 24 hours. When compared to a WT strain of MV, the vaccine 

strain was able to activate the neutrophils within 4 hours of infection. 

Besides, the neutrophils infected with the vaccine strain of MV survived 

longer ex-vivo. Upon MV infection, pro-inflammatory cytokines like TNFα, 

which is known to destruct tumour vasculature; IL-8, a potent chemo 

attractant and activator of neutrophils; MCP-1, a monocyte and T lymphocyte 

attractant and IFNα gene expression and protein secretion were upregulated. 

Furthermore, TRAIL, which has a tumour specific cytotoxic activity, was 

secreted in response to MV infection from neutrophil granules because of 

neutrophil degranulation initiated by vaccine MV infection. MFI of three 
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different neutrophil degranulation markers CD35, CD63 and CD66b were 

significantly higher than the uninfected control or the WT MV357. All these 

data from our previous publication suggested that the effect of MV infection 

of neutrophils, specifically the oncolytic vaccine strain of MV might have a 

potential role in MV oncolysis. 

1.6 GRANULOCYTE COLONY STIMULATING FACTOR (GCSF): 

 GCSF: 1.6.1

GCSF was one of the first cytokines to enter clinical trials. The murine 

GCSF was first isolated in 1983 from lung tissue of endotoxin treated 

mice358, which was followed by the human form in 1985 from the bladder 

carcinoma cell line 5637359. In pre-clinical mouse models, GCSF was shown 

to mobilise haematopoietic cells from all lineages in large numbers360. In 

subsequent clinical trials, GCSF treatment was demonstrated to mobilise 

large number of haematopoietic cells into circulation in patients and normal 

donors from where it could be collected for autologous and allogeneic 

haematopoietic cell transplantation respectively361-363. 

Infectious complications due to prolonged chemotherapy treatment in 

leukaemia patients have been one of the main reasons of morbidity and 

mortality. Several trials have looked into the use of GCSF in treatment of ALL 

patients with or after intensive chemotherapy regimens and have shown 

significant improvement in the rates of morbidity and mortality in both 

children and adults364. In some studies, use of GCSF has been shown to 
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accelerate neutrophil recovery, which allows the use of higher chemotherapy 

doses, and may improve survival364. 

 GCSF and neutrophils: 1.6.2

GCSF has been used for more than two decades to manage 

neutropenia in patients after chemotherapy. The mechanism by which GCSF 

helps in neutrophil mobilisation is well studied and shows that GCSF can 

directly stimulate the production of neutrophils from myeloid cells and 

enhance production of mature neutrophils from metamyelocytes358. GCSF 

acts via the GCSF receptor (GCSFr), which is expressed on neutrophils, all 

precursors of neutrophils and on primitive haematopoietic stem cells365. 

GCSF has helped reduce neutropenia after chemotherapy by accelerating 

neutrophil recovery, and is now routinely used in patients with malignancies 

like breast cancer, lymphoma, and leukaemia. Along with neutrophils, GCSF 

treatment could lead to mobilisation of a large number of other progenitor 

and stem cells, and a number of multiple lineage progenitor cells (myeloid, 

erythroid, megakaryocytic) including platelets366. This was proved beneficial 

for patients undergoing chemotherapy, as they receive stem cells from 

normal human donors, and the increased number of the haematopoietic stem 

cell (HSC) in the blood after GCSF administration facilitated the collection of 

these cells from the blood of donors, and since has been routinely used in 

stem cell donors362. 

GCSF has been long thought to be effective in granulopoiesis, but 

studies suggest GCSF to have a much wider role as an immune regulator367. 
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Resting T-cells usually do not express GCSF receptor (GCSFr), though 

some activated T-cells have been shown to express GCSFr368. Exposure of 

GCSF tend to change T-cell function from an Th1 type (IFNγ and TNFα) to 

Th2 type (Secreting IL4 and IL10) thereby reducing their response to allo-

antigens369,370, and this has been shown to inhibit a T-cell mediated graft 

versus host disease (GVHD) in GCSF mobilised stem cell allogeneic 

transplant when compared to standard BM transplants. GCSF was also 

shown to induce production of regulatory DC371,372 and DC like myeloid cells, 

which in turn have an effect on T-cell development and function. With such a 

vast range of functions, GCSF is now recognised as a poly functional 

cytokine, and although it is a key regulator of neutrophil function, elucidating 

the complete signalling mechanism between GCSFr gene expression and 

responses will help in specifically tailoring GCSF treatment in clinical 

settting367. 

1.7 Current Project Hypotheses and Aims: 

In this thesis, I have focussed on the innate immune system, 

specifically looking at the role of neutrophils, and their involvement in MV-

mediated oncolysis of B-cell malignancies – acute lymphoblastic leukaemia 

(Nalm-6) and Burkitt’s lymphoma (Raji). The heterogeneity of the two 

different malignancies has led me to compare the two different B-cell 

malignancies and their susceptibility to neutrophil mediated MV oncolysis 

both in-vitro and in-vivo. 
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 Hypotheses and Aims: 1.7.1

The central hypothesis of the thesis is that neutrophils play an anti-

tumour role in MV-mediated oncolysis in B-cell malignancies. 

Stemming from this hypothesis, we would expect that it would be 

possible to improve the oncolytic effect of MV by enhancing the neutrophil-

mediated immune response towards the MV-infected target cells; first part of 

the thesis addresses that. Understanding the mechanisms of how neutrophils 

may contribute to MV oncolysis is clearly vital; this overall aim has been 

addressed in the second part. 

Chapter 3: The role of neutrophils in measles virus mediated oncolysis differs 

between B-cell malignancies in-vivo and is not always enhanced by GCSF 

Aims:  

1. To determine the therapeutic effect of MV in an in-vivo model of ALL. 

2. To establish the role of neutrophils and determine the therapeutic role 

of the novel MV expressing hGCSF (MVhGCSF) in two different in-

vivo models of B-cell malignancies - Raji (Burkitt’s lymphoma) and 

Nalm-6 (acute lymphoblastic leukaemia) in-vivo. 

Chapter 4: Mechanism of neutrophil mediated cytotoxicity in MV-infected 

target cell, differ between tumour types and the MV strain used 

Aims: 

1. To investigate if neutrophils from healthy human donors can mediate 

killing of MV-infected targets in-vitro. 
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2. To determine whether ADCC is a mechanism by which neutrophils 

may mediate MV oncolysis. 

Chapter 5: Fusion between neutrophils and target cells mediate cytotoxicity 

during measles virus oncolysis - a novel mechanism of oncolysis 

Aims: 

1. To determine the effect of fusion on degranulation and reactive 

oxygen species (ROS) generation in neutrophils when co-cultured with 

MV-infected targets. 

2. To determine the effect of fusion on type I IFN production and RLR 

signalling pathway in neutrophils when co-cultured with MV-infected 

targets. 

3. To visualise fusion between neutrophil and MV-infected targets. 
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Chapter 2: Materials and Methods 

2.1 GENERAL CELL AND TISSUE CULTURE: 

 Cell lines: 2.1.1

 Vero - African green monkey kidney cell line, adherent (CCL-81; 

ATCC). 

 293T - human embryonic kidney cell line, adherent (CRL-11268; 

ATCC). 

 Phoenix AMPHO - human embryonic kidney cell line, adherent (CRL-

3213; ATCC). 

 Raji - human Burkitt’s lymphoma cell line, suspension (CCL-86; 

ATCC). 

 Nalm-6 - human pre-B acute lymphoblastic leukaemia cell line, 

suspension (ACC128; DSMZ). 

 Jurkat - human T-cell acute lymphoblastic leukaemia cell line, 

suspension (TIB-152; ATCC). 

 DND41 – human T-cell acute lymphoblastic leukaemia cell line, 

suspension (ACC 525; DSMZ). 

Adherent cell lines were grown and maintained in Dulbecco’s Modified 

Eagle’s Medium (DMEM) high glucose (Gibco® by life TechnologiesTM) with 

5% heat inactivated Foetal Bovine Serum (FBS) (Gibco® by life 

TechnologiesTM), 100μg/ml streptomycin, 100 units/ml penicillin G (Penicillin-

Streptomycin 10,000U/ml) (Gibco® by life TechnologiesTM) and 2mM L-

glutamine (Gibco® by life TechnologiesTM). 293T and Phoenix AMPHO 

required 10% FBS. 
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Suspension cell lines were all grown and maintained in RPMI (Roswell 

Park Memorial Institute) 1641 medium with L-glutamine (Gibco® by life 

TechnologiesTM), with 10% FBS, 100μg/ml streptomycin, 100 units/ml 

penicillin G and 2mM L- glutamine (R10 complete media). 

Cell lines were grown in a humidified incubator (HERA cell, Thermo 

Scientific, Surrey, UK) at 37C with 5% CO2. The cell lines were passaged 

twice a week, upon reaching 80-90% confluency. 

All the cell lines were grown in tissue culture flasks (T-75, Corning, 

NY, US). The suspension cells were passaged twice a week, when 90% of 

the cells were removed and replaced with fresh medium. The adherent cell 

lines were passaged at 90% confluency. The old media was removed and 

the cells were washed with 5ml of 1X phosphate buffer saline (PBS) (Gibco® 

by life TechnologiesTM) and incubated with 2ml TrypLE™ Express Enzyme 

(Gibco®) for 2-4 minutes (mins) at 37C. Once the cells were detached, they 

were cultured at a dilution of 1:10 in a new T-75 tissue culture flask with new 

medium. 

 Cell culture reagents: 2.1.2

 Dimethyl Sulfoxide (DMSO) (Sigma Aldrich, Poole, UK). 

 Dulbecco’s Modified Eagle Medium (DMEM) – high glucose 4.5g/l 

(Invitrogen, Paisley, UK). 

 Foetal Bovine Serum (FBS), heat inactivated (Invitrogen, Paisley, UK). 

 L-glutamine 200mM, final concentration in media 2mM (Invitrogen, 

Paisley, UK). 
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 OptiMEM® medium (Invitrogen, Pailsey, UK). 

 Penicillin-Streptomycin containing 10,000units/ml penicillin and 

10,000μg/ml streptomycin, final concentration 100units/ml and 

100μg/ml respectively (Invitrogen, Paisley, UK). 

 Phosphate Buffered Saline (PBS) (Invitrogen, Paisley, UK). 

 RPMI-1640 medium (Invitrogen, Paisley, UK). 

 TrypLETM Express Enzyme (Invitrogen, Paisley, UK). 

 Active compounds used in cell culture: 2.1.3

 Z-D-Phe-Phe-Gly-OH – fusion inhibitory peptide (FIP), used at 

40μg/ml (Bachem, Switzerland). 

 IFNα 2b human (Sigma-Aldrich®, UK). 

 IFNβ 1a human (Sigma-Aldrich®, UK). 

 Recombinant human GCSF (Peprotech, UK). 

 Cryopreservation and cell recovery: 2.1.4

Cells were cryopreserved by resuspending in freezing mix consisting 

of 10% DMSO and 90% FBS. The cells were aliquoted at a concentration 

between 1x106/ml-5x106/ml in polypropylene cryovials (Nunc, 

ThermoScientific), and frozen in a freezing container (Nalgene, Rochester, 

US) filled with 100% isopropyl alcohol, at -80C overnight to achieve a -

1C/min freezing rate. The cryovials were transferred to a liquid nitrogen 

cylinder the following day for long-term storage. 

For recovery, cells were rapidly thawed in a 37C water bath and 10ml 

of FBS was added drop wise, with gentle mixing to remove the DMSO. The 

cells were then centrifuged at 1200 RPM for 5mins without brake. The cell 
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pellet obtained was washed again with the respective culture medium 

supplemented with 50% FBS to remove any traces of DMSO. The pellet was 

transferred into 10ml medium and cultured in a T-25 (Corning, NY, USA) 

tissue culture flask until 80-90% confluency. Cells were then transferred to a 

T-75 flask and maintained and passaged as described previously. 

 Cell counting and viability assay: 2.1.5

Cells were counted by trypan blue (Sigma Aldrich Poole, UK) 

exclusion method on a haemocytometer or a Cellometer Auto T4 Cell 

Viability Counter (Nexcelom Bioscience). 

2.2 MEASLES VIRUS: 

 Measles virus propagation: 2.2.1

MV was propagated on Vero cells, plated in 14cm diameter plates 

(Corning), and grown to 90-95% confluency. Cells were infected in 

OptiMEM® at a multiplicity of infection (MOI) of 0.01 and incubated at 37°C 

for 2 hours. At the end of the incubation, the virus was removed and DMEM 

media (supplemented with 5% FBS, 2mM L-glutamine and 100units/ml 

penicillin G + 100μg/ml streptomycin) was added to the plates. The plates 

were incubated until maximum cytopathic effect was observed and then 

scraped and collected into 1-2ml OptiMEM®. The cells were subjected to two 

rounds of freeze thaw cycle to release the virus. The cell debris was removed 

by centrifugation at 14000 RPM for 10mins and the supernatant containing 

the virus was aliquoted into small volumes. 
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 MV titration: 2.2.2

MV was titrated on Vero cells. 5x103 Vero cells were plated into each 

well of a 96-well plate. Fifty microliters of 10 fold dilutions was dispensed into 

each well. The plate was incubated at 37°C for 4 days and syncytia were 

counted. The 50% tissue culture infectious dose (TCID50) was calculated 

using the modified Kärber373 formula: 

Log10 TCID50 = -[Log10x – d (p-0.5)] + Log10 (1/v). 

x = highest dilution that gives 100% of wells positive for infection. 

d = Log10 of dilution interval (e.g. for 10-fold dilution, d=1). 

p = sum of values of the proportion of wells positive for infection at all  
dilutions. 

v = volume of viral inoculum for each well in milliliters. 

The plaque forming units (PFU/ml) was estimated by multiplying the 

TCID50 value with 0.7 (a factor derived from Poisson distribution). 

The viral stocks were stored at -80°C in small aliquots to avoid 

multiple freeze thaw. 

 Measles virus rescue: 2.2.3

Vero cells were infected with T7 RNA polymerase expressing Vaccinia 

Ankara Virus. After an hour of incubation the virus was taken off and the 

Vero cells were transfected with the full length cloned MV cDNA and the 

plasmids encoding the MV polymerase complex (pCG-N, pCG-P, pCG-L), 

using Lipofectamine® 2000 transfection reagent (ThermoFisher Scientific, 
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UK) in OptiMEM® reduced serum medium, GlutaMAXTM supplement (Gibco® 

by life TechnologiesTM). Twenty-four hours later, the lipofectamine plasmid 

mix was replaced with fresh media. Four to five days later syncytia were 

obtained which are hallmark of MV infection. Individual syncytium were 

picked and propagated for further experiments. 

 Measles virus infection: 2.2.4

Cells were washed with PBS. The viral stock was thawed and diluted 

in OptiMEM® at desired PFU/ml to obtain the required MOI. The required 

number of cells were then resuspended in the virus OptiMEM® mix and 

incubated at 37°C with 5% CO2 for 2 hours. For adherent cell infection, the 

media was removed from the cells, washed with 1xPBS and then the virus-

OptiMEM® mix was added onto it before incubation.  After the incubation, the 

virus-OptiMEM® mix was removed from the cells and they were 

resuspended in fresh media. 

 UV irradiation of MV: 2.2.5

Aliquots of MV were incubated in a UV-cross-linker (CL-1000 

Ultraviolet Crosslinker; UVP, UK) for 3-4 hours to inactivate the virus. 

2.3 PRODUCTION OF RETROVIRAL VECTOR EXPRESSING 

LUCIFERASE GENE: 

The Phoenix AMPHO packaging cell line (CRL-3213; ATCC) was 

used for preparation of retroviral particles by co-transfecting with the 
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retroviral vector plasmid containing the luciferase gene using a high-density 

transfection reagent Fugene® (Roche, Sussex, UK). On Day 1, Phoenix 

AMPHO cells were harvested by trypsinisation, washed and then 

resuspended in fresh medium (2x106 cells resuspended in 8mls of fresh 

media) and plated into 10cm diameter petri dishes. They were then 

incubated at 37°C and 5% CO2 overnight. On Day 2 the following 

transfection mix was prepared: 

Solution A: 10μl Fugene® and 150μl OptiMEM®. 

Solution B: 1.5μg pCL-ampho retrovirus packaging vector (Imgenex, CA, 
USA), 2.6μg vector construct (SFG.Fluc_opt_2A_eBFP2; gifted by Dr. Martin 
Pule, UCL, UK), volume up to 50μl with H2O. 

The Solution B was then added to the Fugene® solution A, and then 

gently mixed by pipetting. The mix was incubated at room temperature for 

15-20mins, after which it was directly added to the Phoenix AMPHO cells 

and returned to the incubator. On day 3, the media was removed from the 

cells and replaced with 5mls of fresh R10 media. The virus supernatant was 

harvested on day 4. 

2.4 RETROVIRAL VECTOR TRANSDUCTION OF NALM-6 AND RAJI 

LUCIFERASE EXPRESSING CELL LINES: 

Six well tissue culture plates were coated with 2.5ml/well of 

Retronectin (Clontech, France) at a concentration of 30ng/ml and incubated 

at room temperature for 2-3 hours. The Retronectin was then removed and 

the wells blocked with 2ml of filter sterilised 2% BSA (Sigma Aldrich; Poole; 
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UK) for 30mins and wells were washed with 3ml/well PBS twice. Pre-cultured 

Raji cells were taken at a concentration of 1x106 cells/ml and 2.5ml of cell 

suspension was added to each well of the Retronectin coated 6-well plate. 

The plate was then incubated at 37°C for 30mins to allow attachment of the 

Raji cells to the plates. Retroviral supernatant prepared in section 2.3 was 

then added to each well of Raji cells and incubated at 37°C overnight. The 

following day, the viral supernatant was removed and fresh R10 media 

added at 5mls/well. The cells were then incubated for 3 days at 37°C, 

harvested, washed and analysed by flow cytometry for eBFP transgene 

expression. The cells were sorted to >95% purity before use. 

2.5 NEUTROPHIL ISOLATION: 

Twenty to 50ml of peripheral blood (PB) was obtained from healthy 

donors in preservative free heparin (100μl per 10ml) {obtained from Royal 

Free Hospital (RFH) pharmacy} after informed consent. It was then incubated 

with 10-25ml (half the PB volume) of 3% dextran (Amersham Biosciences, 

UK) to sediment the red blood cells (RBCs) for 45-60mins. The supernatant 

was collected in a 50ml tube and centrifuged at 290g for 12mins to obtain a 

pellet. The pellet was subjected to hypotonic lysis in 12ml of ice-cold, sterile 

ddH2O and 4ml of 0.6M KCl to eliminate any contaminating RBCs and then 

made up to 50ml with PBS. It was then centrifuged at 393g for 5mins. After 

centrifugation the pellet was resuspended in 1xPBS and overlaid onto 

LymphoPrep™ (Axis-shield, Oslo, Norway). After centrifugation, the 

supernatant was discarded and the pellet containing the neutrophils was 
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washed in RPMI1640 without serum, twice. The neutrophils obtained were 

resuspended in desired volume of RPMI and used for further experiments. 

The purity of neutrophils was determined by light microscopy of Giemsa-

stained cytospin slides. 

2.6 CYTOTOXICITY ASSAY (51CR RELEASE): 

To assess the neutrophil mediated MV cytotoxicity, 51Cr Release 

Assay was used. Cell lines were infected with MV at an MOI of 1.0 or mock 

infected. At 24 hours or 48 hours post infection (hpi), the cells were labelled 

with Chromium-51 radionuclide (sodium chromate) (PerkinElmer) at a 

concentration of 1.85MBq/106 cells. After 1-2 hours incubation at 37°C they 

were washed thrice and resuspended in R10 media. 51Cr labelled cells 

(5x103 cells/well) were aliquoted in 96-well round bottom plates and 

incubated with neutrophils extracted from healthy donors (see section 2.5) at 

different Effector:Target (E:T) ratios (2:1; 8:1; 20:1; 40:1) in triplicates. The 

plates were then incubated at 37°C for another 24 hours. The following day, 

the 96-well plates were centrifuged and 50ul of the supernatant was 

transferred into clear 96-well round bottom (Flexible PET Microplate; 

PerkinElmer) plates containing 150ul of OptiPhase Supermix scintillation 

cocktail (PerkinElmer). The plates were then sealed with TopSeal-ATM 

(PerkinElmer) and placed on a plate shaker for 5mins to ensure complete 

mixing of the supernatant with the scintillation cocktail. The amount of 51Cr 

released was measured in 1450 Microbeta Liquid Scintillation Counter 
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(PerkinElmer). The percent specific lysis was calculated using the following 

formula: 

Percentage (%) of neutrophil-specific lysis = (experimental cpm – 
spontaneous cpm) / (maximal cpm – spontaneous cpm) x 100. 

The spontaneous cpm was the negative control with infected or 

uninfected cells in the absence of neutrophils, and the maximal cpm was the 

positive control where all the cells were lysed using an acid. The minimum 

threshold for % specific lysis was set at 5%. 

To assess the effect of presence of anti-MV antibody, pooled serum 

from individuals with high anti-MV Ab {(titrated using VIDAS® enzyme linked 

fluorescent immunoassay (FIA); Biomérieux, France} was obtained from the 

Virology department at the RFH. The serum was then heat inactivated in the 

lab at 56°C for 30mins to eliminate the complements. The serum was added 

at 1:100 dilution in the experiments. 

Where fusion inhibition was required, the chromium release assay 

was performed in the presence or absence of fusion inhibitory peptide (FIP) 

at 40μg/ml dissolved in 100ul of DMSO before adding to the media, or media 

containing only 100ul DMSO. 

2.7 IN-VITRO RECOMBINANT HUMAN GCSF (rhGCSF) ASSAY: 

Raji and Nalm-6 cells were plated at 2x104/ml in T25 tissue culture 

flasks in R10 media supplemented with 0, 5 and 10ng/ml rhGCSF 

(Peprotech, UK). The cells were incubated at 37°C. They were counted using 
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the trypan blue dye exclusion method to determine the number of viable 

cells/ml at 24 hourly intervals. 

2.8 MOLECULAR BIOLOGY TECHNIQUES: 

 Molecular biology reagents: 2.8.1

 Agar (Sigma-Aldrich®, UK). 

 Agarose (Sigma-Aldrich®). 

 Chloroform (VWE International, UK). 

 DNase/RNase free water (Invitrogen, UK). 

 Ethanol 100% (VWR International, UK). 

 Glycerol (VWR International, UK). 

 HiSpeed Plasmid Midi Kit (Qiagen, UK). 

 Isopropanol (VWR International, UK). 

 LB broth (Invitrogen, UK). 

 One Shot® TOP10 competent cells (Invitrogen, UK) (New England 

Biolabs, UK). 

 pCRII-TOPO TA cloning kit (Invitrogen, UK). 

 pORF9-hGCSFb (Invivogen, USA). 

 QiaexII gel purification kit (Qiagen, UK). 

 QIAprep Spin Miniprep Kit (Qiagen, UK). 

 QuikChange II XL Site-Directed Mutagenesis Kit (Agilent 

Technologies, UK). 

 Random hexamer (Promega, UK). 

 Restriction enzymes (New England Biolabs, UK). 

 RNasin® Plus RNase Inhibitor (Promega, UK). 
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 SuperScriptTM III reverse transcriptase (Invitrogen, UK). 

 SYBR® safe DNA gel stain (ThermoFisher Scientific, UK). 

 T4 DNA Ligase (New England Biolabs, UK). 

 TRIzol® (Invitrogen, UK). 

 0.1M DTT (Invitrogen, UK). 

 2xYT microbial growth medium (Sigma-Aldrich®, UK). 

 5x first strand buffer (Invitrogen, UK). 

 10mM dNTPs (Promega, UK). 

 Cloning: 2.8.2

Specific details for cloning MVhGCSF are given in chapter 3, section 

3.2.1. 

 Plasmid Preparation: 2.8.3

Bacteria were propagated on 2xYT agar plates overnight, and then 

propagated in 2xYT broth. Plasmid DNA was extracted from 5ml or 50ml 12-

16 hours bacterial culture using QIAprep Spin Miniprep Kit and HiSpeed 

Plasmid Midi Kit. DNA extracted was checked for its concentration and purity 

at 260nm (A260) and 280nm (A280) on a NanoDropTM1000 

spectrophotometer (Thermo Scientific, Essex, UK). DNA preparations with a 

ratio of 1.75-2.0 only were used further for the experiments. All plasmid DNA 

was stored at -20°C. 

Glycerol Stock: Glycerol stocks of the bacterial cultures were prepared 

using 200μl of bacterial culture and 800μl of 99% glycerol and stored at -

80°C. 
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 RNA extraction: 2.8.4

Total RNA was extracted from cells at appropriate time-points by 

using TRIzol®. Cell pellets were resuspended in 1ml of TRIzol® and mixed 

vigorously using a pastette. It was incubated at room temperature (RT) for 

5mins and the 200μl of chloroform was added to it and mixed well till it turned 

cloudy and then incubated at RT for a further 2mins. The tube was then 

centrifuged at 12,000 RPM for 10mins at 4°C. The aqueous layer was 

carefully transferred into a clean tube without disturbing the white middle 

layer. 500μl of isopropanol was added to it and left at -80°C overnight. The 

next day the vial was thawed and centrifuged at 13000 RPM for 10mins. The 

supernatant was removed and the RNA pellet was washed with 70% ethanol 

and centrifuged at 13000 RPM. The pellet was then air dried while still on ice 

for 20mins. Once dried, the pellet was resuspended in 30μl of DNase/RNase 

free water and quantified at 260nm (A260) and 280nm (A280) on a 

NanoDropTM1000 spectrophotometer (Thermo Scientific, Essex, UK). RNA 

with a ratio of 1.75-2.0 were considered good and used further for the 

experiments. All RNA stocks were stored at -80°C. 

 First strand cDNA synthesis: 2.8.5

Total RNA (0.4-1μg) per sample was used for cDNA synthesis. To 

each sample the following was added: Random hexamer - 2μl (334ng), 0.1M 

DTT - 1μl, 10mM dNTPs - 2μl. 

Samples were then incubated at 65°C for 5mins and then incubated 

on ice for a further 5-10mins. Next, to each sample the following was added: 
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5x first strand buffer - 1μl, RNasin® Plus RNase inhibitor - 1μl (40 units), 

SuperScriptTM III reverse transcriptase - 1μl (200 units). The samples were 

transferred onto a PCR machine DYAD (MJ Research; BioRad) and run on 

the following programme: 

25°C for 10 mins 

50°C for 50 mins  

70°C for 15 mins 

The cDNA was stored at -80°C till further use. 

 Relative quantification by RQPCR: 2.8.6

2.8.6.1 RIG-I/MAVS/MDA5 quantification: 

QuantiTect® Primer assay (Qiagen, UK) was used for relative 

quantification of RIG-I, MDA5 and MAVS mRNA. 0.3μM forward and reverse 

primers, 12.5μl of 2x QuantiTect® SYBR Green PCR Master Mix (Qiagen) 

was mixed with the cDNA in 25μl reactions. They were run on an ABI7500 

(Applied Biosystems) according to the following conditions: 

50°C for 2 mins 

95°C for 10 mins 

40 cycles of: 

94°C for 15 seconds; 55°C for 30 seconds; 72°C for 35 seconds 

The primer sequences are as below: 
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RIG-I s 5’-ACCAGAGCACTTGTGGACGCT-3’ 

RIG-I a 5’-TGCCGGGAGGGTCATTCCTGT-3’ 

MDA5 s  5’-GGCACCATGGGAAGTGATT -3’ 

MDA5 a 5’-ATTTGGTAAGGCCTGAGCTG -3’ 

MAVS s 5’-GAGACCAGGATCGACTGCGGGC- 3’ 

MAVS a 5’-AGAGGCCACTTCGTCCGCGA -3’ 

GAPDH was used as a housekeeping gene for all assays. The PCR 

was run in triplicates and non-template control was included for each primer 

sets. Relative expression was determined using the following Ct 

formula374: 

Ct = Ct (experiment) – Ct (GAPDH) 

Ct = Ct (sample) – Ct (calibrator) 

RQ = 2 ∧ (-Ct) 

2.9 FLOW CYTOMETRY: 

 General flow cytometry method: 2.9.1

Cells were pelleted and resuspended in 200μl of PBS and aliquoted 

into FACS tubes (BD Biosciences, UK). Two to three microliter of the desired 

antibody/antibodies conjugated to fluorescein isothiocyanate (FITC), 

phycoerithrin (PE), allophycocyanin (APC) was added to the tube and 

incubated at 4°C for 30-45mins in the dark. For non-conjugated primary 

antibody, goat anti-mouse secondary antibody conjugated to PE (BD 
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Pharmingen) was used. After incubation the tubes were centrifuged at 2000 

RPM for 2mins and then run on a BDTM LSR II or BD LSR Fortessa analyser 

(Beckton Dickinson, Oxford, UK) with 5000-10000 events being recorded. In 

some assays, 2μl of propidium iodide (PI) (BD PharmingenTM), which is a 

DNA binding dye, was used to select out the viable cells by gating on PI 

negative cells. The data was analysed using FLOWJO (Tree Star) single cell 

analysis software (version 7.4.1). Name of antibodies used are listed in Table 

2.1. 

Table 2.1: List of antibodies used for flow cytometry: 

Target Company Clone Conjugate 

  CD35 BD Pharmingen E11 FITC 

CD66b BD Pharmingen G10F5 FITC 

CD63 BD Pharmingen H5C6 FITC 

CD11b BD Pharmingen M1/70 APC 

CD10 BD Biosciences HI10a APC 

CD19 BD Biosciences 4G7 FITC 

CD20 BD Biosciences L27 APC 

Ly6G6C BD Pharmingen RB6-8C5 FITC 

MV-H Millipore CV1, CV4 None 

Pan NK/CD49b BD Pharmingen DX5 PE 

Mac 3 BD Pharmingen M3/84 PE 

 Fluorescent activated cell sorting: 2.9.2

Cell sorting was performed on either a MoFLo XDP (Beckman Coulter, 

Fullerton, CA, USA) or on BD FACS Aria (Beckton Dickinson, Oxford, UK). 

The enhanced blue fluorescent protein (eBFP) marker was excited by the 

350 UV laser (100mW) and the emission was collected by 653/40 filter. 
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2.10 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA): 

Cell culture supernatants were collected at appropriate time-points 

and ELISA performed according to the manufacturer’s guidelines. Optical 

density (OD) was measured at appropriate wavelength using Tecan Sunrise 

absorbance reader (Jencon-PLS, UK). The OD of the standards was plotted 

against their concentration to obtain a standard curve and the sample 

concentrations were extrapolated directly from the standard curves. 

 Human GCSF standard ABTS ELISA Development Kit (Peprotech, 

UK). 

 VerikineTM Human IFNα Multi-Subtype ELISA (PBL Assay Science, 

NJ). 

 VerikineTM Human IFNβ ELISA (PBL Assay Science, NJ). 

 TRAIL/ APO2L/ CD253 ELISA Kit (2BScientific, UK). 

 Measles virus IgG ELISA (IBL International, Hamburg, Germany). 

2.11 ANTI-MV ANTIBODY SERUM HEAT INACTIVATION: 

Anti-MV antibody containing serum, pooled from different donors was 

obtained from the Virology Department at RFH. The serum was then heat 

inactivated at 56°C for 30mins and then titrated by ELISA. The high titre 

antibody containing serum was then aliquoted into small volumes and stored 

at -80°C for future experiments. 
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2.12 ANIMAL METHODS: 

 Animal Strains: 2.12.1

 Six to eight week old CD17 severe combined immunodeficient (SCID) 

mice (Charles River Laboratories, UK). 

 IfnarKO  CD46 Ge mice (provided by Roberto Cattaneo, Mayo Clinic). 

All the mice were housed, bred and cared for in barrier facility in 

accordance with UK home office approved protocol. The establishment of the 

xenograft models and the bioluminescent imaging protocols are described in 

more details in the chapter method (see 3.2.2). 

2.13 STATISTICAL ANALYSIS: 

Prism 5.0 (GraphPad Software) and Microsoft Excel were used to plot 

all graphs. The data are presented as mean±SEM where appropriate. The 

statistical analysis was performed either by paired/unpaired student’s t test or 

Mann Whitney U test as appropriate. In the animal experiments, Kaplan-

Meier curves were used to analyse survival and the different groups were 

compared using the log-rank test. All the P-values quoted are one/two-tailed. 
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Chapter 3: The role of neutrophils in measles virus mediated 

oncolysis differs between B-cell malignancies in-vivo and 

is not always enhanced by GCSF 

3.1 BACKGROUND: 

 MV in B-cell malignancy: 3.1.1

The Edmonston-B derived vaccine strain of measles virus (MV) is 

oncolytic in various tumour models in-vivo and is currently being tested in 

several phase 1 clinical trials (chapter 1, section 1.3.2). MV is naturally 

lymphotropic and B-cell malignancies appear particularly sensitive. In-vivo 

models of B-cell malignancies like Burkitt’s lymphoma175 and multiple 

myeloma176 have been shown to be an excellent target for MV therapy. Our 

laboratory is particularly interested in acute lymphoblastic leukaemia (ALL), 

an immature B-cell malignancy that is largely curable in children but often 

has a poor outcome in adults375. The treatment is long and toxic, and novel, 

non-chemotherapy-based therapies have a clear role. Previous work from 

the Fielding lab376 suggested that ALL might be exquisitely sensitive to MV. 

 Oncolytic MV and neutrophils: 3.1.2

In addition to the direct oncolytic effect of MV, work from the Fielding 

lab has shown that neutrophils are involved in MV-mediated tumour 

regressions in a Burkitt’s lymphoma model. MV treatment led to significant 

neutrophil infiltration in the tumours injected with MV. When a modified MV 
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expressing mGMCSF, which is a known neutrophil survival factor was used 

there was significantly higher neutrophil infiltration, which correlated with 

superior tumour regression280. In further work, Fielding laboratory showed 

that neutrophils from healthy human donors became activated upon oncolytic 

(but not wild-type) MV infection and survived significantly longer in culture. 

Upon oncolytic MV infection, neutrophils produced various anti-tumour 

cytokines like MCP-1, TNFα, IL-8 and IFNα and upregulated neutrophil 

degranulation markers in response to MV infection, resulting in the release of 

TRAIL directly from pre-formed granules357. 

As discussed in chapter 1 section 1.5.3, neutrophils have also been 

implicated by other groups in additional, microorganism-mediated tumour 

regressions338,340. Briefly, in a bladder cancer model, where mycobacterium 

BCG (Bacillus Calmette-Guérin) was used as a treatment, neutrophils were 

shown to play a key role in therapy342. In relation to virotherapy in which a 

model of murine colon adenocarcinoma was treated with vesicular stomatitis 

virus (VSV), shut down of blood flow to the tumours was observed, which 

was proposed to be mediated by neutrophils344. The shut down of the blood 

flow to the tumours led to apoptosis in even those tumour cells that were not 

infected by the VSV. It was also shown that VSV attacks the tumour 

vasculature and induces clot formation, which correlates with decrease in 

tumour cell proliferation345. 
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 Granulocyte colony stimulating factor (GCSF): 3.1.3

Murine GCSF was first isolated in 1983 from lung tissue of endotoxin 

treated mice358. In 1985, the human form was first isolated from the bladder 

carcinoma cell line 5637359. In pre-clinical mouse models, GCSF was shown 

to mobilise haematopoietic cells from all lineages in large numbers360. In 

subsequent clinical trials, GCSF treatment was demonstrated to mobilise 

large number of haematopoietic cells into circulation in patients and normal 

donors from where it could be collected for autologous and allogeneic 

haematopoietic cell transplantation respectively361-363. 

Infectious complications due to prolonged chemotherapy treatment in 

leukaemia patients have been one of the main reasons of morbidity and 

mortality. Several trials have confirmed the role of GCSF in treatment of ALL, 

showing significant improvement in morbidity and mortality in both children 

and adults364. 

 Effect of GCSF on neutrophils and immune function: 3.1.4

GCSF can directly stimulate the production of neutrophils from 

immature myeloid cells and enhance production of mature neutrophils from 

metamyelocytes358, via its action on the GCSF receptor (GCSFr), which is 

expressed on neutrophils, their precursors, and on early haematopoietic 

stem cells365. GCSF binds to GCSFr, which is a single homodimer 

transmembrane protein that upon stimulation signals via multiple signalling 

pathways including Janus kinase/Stat377-379 (JAK/STAT), mitogen-activated 

protein kinases (MAPK) and extracellular signal-regulated kinase (Erk1/2, 
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Erk 5)380,381. GCSF also has a much wider role as an immune regulator367. 

Resting T-cells typically do not express GCSFr, although some activated T-

cells have been shown to express GCSFr368. Exposure of GCSF converts 

Th1 (IFNγ and TNFα secreting) T-cells to Th2 (IL4 and IL10 secreting) 

thereby reducing their response to alloantigens369,370. This can inhibit a T-cell 

mediated graft versus host disease in GCSF mobilised stem cell allogeneic 

transplant when compared to standard BM transplants. GCSF also induce 

production of regulatory DC371,372 and DC-like myeloid cells, which in turn can 

affect T-cell development and function. 

 Hypothesis: 3.1.5

Expressing the human GCSF as an additional transcription unit of MV 

can enhance the therapeutic efficacy of MV. 

3.1.5.1 Aims: 

1. To determine the therapeutic effect of MV in an in-vivo model of ALL. 

2. To establish the role of neutrophils and determine the therapeutic role 

of the novel MV expressing hGCSF (MVhGCSF) in two different in-

vivo models of B-cell malignancies - Raji (Burkitt’s lymphoma) and 

Nalm-6 (acute lymphoblastic leukaemia) in-vivo. 



 

 

118 

3.2 METHODS: 

 Cloning: 3.2.1

3.2.1.1  Plasmid Construction: 

Prior to PCR amplification, site directed mutagenesis was performed 

on the hGCSF gene using QuikChange II XL Site-Directed Mutagenesis Kit 

(Stratagene, Agilent Technologies, UK) to remove an AatII site that was 

present on the gene in order to enable the use of AatII restriction enzyme for 

cloning it into MV genome. The primer sequences used for site directed 

mutagenesis are shown below: 

Forward: 

5’-CACACTGCAGCTGGAtGTaGCCGACTTTGCC-3’ 

Reverse: 

5’GGCAAAGTCGGCtACaTCCAGCTGCAGTGTG-3’ 

hGCSF was PCR amplified using the following primers: 

Forward: FP_MluI+hGCSF (new):  

5’-agtattacACGCGTATGGCTGGACCTGCCACCCAGAGC-3’ 

Reverse: RP_AatII_hGCSF (correct): 

5’-TACAGTCGgacgtcATtcagggctgggcaaggtggcg-3’ 

Replicating MV was rescued from cloned cDNA, as described in chapter 2, 

section 2.2.3. 
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 In-vivo experiments: 3.2.2

All animal experiments were performed according to the UK Home 

Office approved protocols and institutional guidelines. 

3.2.2.1 Nalm-6 disseminated model: 

Disseminated ALL xenografts were established by tail vein injection of 

1x106 Nalm-6 cells. Three days after tumour cell transfer 1x106 PFU of MV 

was administered IV by tail vein injection and repeated at weekly intervals for 

total six doses. Control mice were injected with UV inactivated MV (MVUV). 

Mice were monitored daily and euthanised when pre-defined humane end-

point (hind limb paralysis) was reached. 

3.2.2.2 Raji and Nalm-6 subcutaneous (SC) models: 

Raji (Burkitt’s lymphoma) and/or Nalm-6 (ALL) SC xenografts were 

established in 6-8 weeks old CB17-PrkdcSCID (SCID) mice (Charles River, 

Margate, UK). To establish Nalm-6 xenografts, 5x106 or 10x106 viable Nalm-

6 cells (ATCC, LGC, UK) were mixed with 2μg pre-thawed Matrigel™ (BD 

Biosciences) in a total volume of 200μl and injected into the right flank of 

each mouse. For the Raji xenografts, 10x106 viable Raji cells (ATCC, LGC, 

UK) was injected in 200μl of RPMI 1640 medium. The tumours were 

administered with MV (MVNSe, MVUV, MVhGCSF) IT for 10 doses at an 

MOI of 1.0. 
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3.2.2.3 Neutrophil depletion in-vivo: 

The schematic design of the neutrophil depletion experiment is shown 

in Fig 3-4a and 3-4b. Neutrophils were depleted in-vivo using a rat anti-

mouse Gr-1 monoclonal antibody (anti-Ly6G6C, clone RB6-8C5; BD 

biosciences, UK) via IV, intra-peritoneal (IP) and/ or IT routes, with first 

injection via the IV route on Day 0. The control mice received equivalent 

amount of a rat immunoglobulin isotype antibody (IgG2b, BD Biosciences, 

UK) via the same routes. 35-50μg of antibody was used for IV or IT routes 

whereas 150μg of antibody was used for IP routes per dose. 

Neutrophil depletion was confirmed and monitored by flow cytometry 

regularly. Approximately 50μl of peripheral blood was collected by tail vein 

bleed and red blood cells were removed by hypotonic lysis. The white blood 

cells were then stained with rat anti-mouse CD11b-APC (clone M1/70; BD 

Bioscience, UK) and rat anti-mouse Ly6G6C-FITC (anti-GR1) (clone RB6-

8C5; BD Biosciences, UK). Flow cytometry analysis was performed on the 

stained cells. The neutrophil depletion was repeated every 3-5 days and 

maintained throughout the MV therapeutic window. 

Mice were injected with MV from Day 1 after neutrophil depletion at an 

MOI of 1.0 daily in a total volume of 100μl. A total of 8 and 10 MV injections 

were administered IT to Nalm-6 and Raji tumours respectively. Tumour 

volume was calculated using the formula: 

V=a2b/2 cm3, where a = the shortest diameter and b = the longest diameter. 
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Mice were euthanised by Schedule 1 procedure when they reached 

their pre-determined humane end-points (tumour volume ≥2.5cm3 or 

systemic spread of disease = onset of hind limb paralysis). 

The in-vivo work on the Nalm-6 neutrophil depletion model was partly 

carried out by my colleague Dr. Zhang, and I have received her permission to 

include data obtained from Nalm-6 experiment alongside my own data from 

Raji neutrophil depletion experiment. 

3.2.2.4 Raji and Nalm-6 luciferase disseminated models: 

Disseminated xenografts were established by tail vein injection of 

1x106 Nalm-6/Raji luciferase cells. Three days after tumour cell transfer 

1x106 PFU of MV (MVNSe, MVUV, MVhGCSF) or 120 μg/kg of Pegylated 

hGCSF (Peg hGCSF) (Neulasta - Amgen) was administered at weekly 

intervals for total six doses for Nalm-6 and 3 doses for Raji. The dosage of 

Peg hGCSF was based on the literature382-385. MV was administered via the 

IV route by tail-vein injection while Peg hGCSF was administered SC. Mice 

were monitored daily and euthanised when pre-defined humane end-points 

were reached (on set of hind limb paralysis). At the humane end-point, 

spleens from the mice were analysed for the number of total cells recovered 

and percentage of neutrophil, macrophage and NK cells by flow cytometry. 

Serum from all these mice was collected by exsanguination and hGCSF level 

determined by ELISA. 
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3.2.2.5 In-vivo imaging: 

Nalm-6/Raji luciferase-injected mice were imaged once a week by 

bioluminescent imaging. Mice were shaved and injected IP with 200μL of D-

luciferin (Caliper Life Sciences, Cheshire UK). They were then imaged under 

anaesthetic (Isofluorane) under IVIS® 100 Lumina (Caliper Life Sciences, 

Cheshire, UK). The results were analysed using Living Image® 3.2 software. 

3.2.2.6 Toxicity studies in IfnarKO
CD46 Ge mice: 

IfnarKO
CD46 Ge mice were kindly provided by Roberto Cattaneo 

(Mayo Clinic), and then bred and housed in caged barrier. They were 

injected with 1x106 PFU of MVNSe or MVhGCSF IV, via tail vein. The mice 

were then monitored twice a week for 35 days for any sign of ill health. On 

day 35, all the mice from both the cohorts were sacrificed and their spleen 

analysed for size and percentage of neutrophils, macrophages and NK cells 

by flow cytometry. Serum from all these mice was collected by 

exsanguination and hGCSF level determined by ELISA (Peprotech, UK). 

 Flow Cytometry: 3.2.3

3.2.3.1 Confirmation of neutrophil depletion: 

Neutrophil depletion was confirmed by flow cytometry. Approximately 

50μl of peripheral blood (PB) was collected by tail vein bleed and RBCs were 

removed by hypotonic lysis. The white blood cells were then stained with rat 

anti-mouse CD11b-APC (clone M1/70; BD Bioscience) and rat anti-mouse 

Ly6G6C-FITC (clone RB6-8C5; BD Biosciences) at 4°C for 30mins. The cells 
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were then washed and resuspended in PBS. The flow cytometry was 

performed on LSRII (BD Biosciences). The data was analysed using Flow Jo 

(version 7.6). 

3.2.3.2 Detection of tumour cells: 

Cells from the BM and spleen of the mice were isolated and stained 

with CD10-APC (BD) and CD19-PE (BD) for Nalm-6 cells and CD19-FITC 

(BD) and CD20-APC (BD) for Raji cells at 4°C for 30mins. The cells were 

then washed and resuspended in PBS. The flow cytometry was performed 

on LSRII and analysed using Flow Jo (version 7.6). 

3.2.3.3 Detection of Neutrophils, NK and Macrophages in mouse 

spleen: 

The spleen from mice was dissected and crushed and then treated 

with ACK lysis buffer (Lonza, UK). The cells were then isolated and stained 

with Pan NK (CD49b; clone DX5; BD biosciences) or rat anti-mouse CD11b-

APC (clone M1/70; BD Bioscience), rat anti-mouse Ly6G6C-FITC (clone 

RB6-8C5; BD Biosciences) and Mac3-PE (BD) or isotype controls. The 

stained cells were washed and resuspended in PBS and then run on LSRII 

and analysed with Flow Jo (version 7.6). 
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3.3 RESULTS: 

 MV is therapeutic in an acute lymphoblastic leukaemia (ALL) 3.3.1

model in-vivo: 

First the therapeutic effect of MV was established in an ALL model in-

vivo. To determine whether MVNSe is oncolytic in an in-vivo model of ALL, 

SC Nalm-6 tumours were established using 10x106 Nalm-6 cells in SCID 

mice. On detection of first palpable tumour, they were treated with 10 IT 

injections of 1x106 PFU of MVNSe or UV inactivated MV (MVUV) (Fig 3-1a). 

Median tumour volumes in both the groups were not significantly different at 

the start of the injections with MV group at 0.22cm3 and in MVUV group at 

0.27cm3. MV treatment had a significant anti-tumour effect as shown in Fig 3-

2a. Eleven of 12 established SC tumours regressed completely in MVNSe 

treated group by day 44 with the single remaining tumour fully disappearing 

by day 62. In contrast, all MVUV treated tumours progressed. The difference 

in tumour growth between the MVNSe treated and MVUV control groups was 

highly statistically significant (p < 0.0001). 

To assess the oncolytic activity of MV in a disseminated model of ALL, 

SCID xenograft was established to evaluate IV MV administration, using 

1x106 Nalm-6 cells IV via the tail vein on Day 0, with MV treatment starting 

from Day 3 post tumour inoculation for total 6 injections (Fig 3-1b). Five of 10 

mice receiving MVNSe survived beyond 100 days whereas all mice receiving 

the non-replicating MVUV succumbed by day 67. The BM of every mouse 

was analysed by flow cytometry for human CD19+/CD10+ cells, which 
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confirmed the presence of leukaemia in all mice (Fig 3-2b, bottom panel). A 

Kaplan-Meier analysis (Fig 3-2b) showed that the median survival was 54 

days in MVUV controls compared to 114 days in the MVNSe group 

(p<0.0001). At the termination of the experiment at 123 days, no evidence of 

leukaemia was observed in the 5 surviving mice, indicating a complete 

remission rate of 42%. 

.
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Figure 3-1: Experimental design of Nalm-6 SC and disseminated SCID xenografts: (a) SC Nalm-6 tumours were established with 10x106 
Nalm-6 cells mixed with MatrigelTM. The tumours were treated with 10 IT injections of MVNSe/MVUV after the first palpable tumour was 
observed. (b) The disseminated tumours were established by IV injections of 1x106 Nalm-6 cells. The mice received a total of 6 MV injections IV 
from day 3 after inoculation of the tumour. (Adapted from Patel, Dey et al. 2011)386. 
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Figure 3-2: Nalm-6 SCID treated with MVNSe: (a) Tumour volumes in cm3 after IT injection of MV (black closed squares) or MVUV (red 
closed circles) into Nalm-6 ALL xenografts, developed from 1x106 Nalm-6 cells. (b) Kaplan–Meier survival curves of mice bearing disseminated 
Nalm-6 xenografts treated IV with a total dose of 6x106 plaque forming unit (PFU) of MV (black line) or MVUV control (red line). Data represent 
the results from three independent experiments (N=3-6 per group). Representative FACS plot of CD10/CD19 positive cells from BM of mice 
confirming leukaemia is shown in the bottom panel. Arrows indicate the period of MV/MVUV administration. Log Rank test and Wilcoxon signed 
rank test was performed to obtain the P-values. (Adapted from Patel, Dey et al. 2011)386. 
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 Neutrophil depletion in-vivo abrogates MV therapeutic effect in 3.3.2

Raji but not Nalm-6: 

Based on the data from others and our own lab suggesting neutrophils 

as a potential effector in different microorganism mediated oncolysis, it was 

hypothesised that, if neutrophils are playing a role in MV oncolysis in-vivo, 

then depleting them should abrogate the MV-mediated oncolytic effect in-

vivo. To investigate this in the Nalm-6 and Raji models, SC tumours were 

established by injecting respective tumour cells on the right flank of the SCID 

mice. When the tumours reached a certain comparable volume (mean 

tumour volume 0.4cm3 in Nalm-6 and 0.8cm3 in Raji) (Fig 3-3a and 3-3b), 

they were divided into the depleted/experimental group and the non-

depleted/control group. A detailed schematic of the experimental design is 

shown in Fig 3-4a (Nalm-6) and Fig 3-4b (Raji). The experimental group 

received the anti-GR1 antibody (RB6-8C5 clone) and the control received the 

isotype antibody by IP, IV or IT routes, on the days shown by the blue, black 

and green arrows respectively. Depletion of neutrophils in the PB was 

monitored on the days shown in red arrows by flow cytometry (Fig 3-4a and 

b) in different representative mouse from each group on each day. As per the 

project license, a mouse can be bled only once a week, and therefore, 

different representative mouse was selected from each group for analysis of 

neutrophil depletion on each day. The flow cytometry plots showing 

neutrophil depletion in both Nalm-6 (Fig 3-5a-f) and Raji (Fig 3-6a-f) models 

on different days, compared to their non-depleted controls are shown in Fig 

3-5 and Fig 3-6. A gate was drawn around the GR1highCD11b+ cell population 
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(mostly neutrophils in this model), in the non-depleted group compared to 

which the %GR1highCD11b+ cells in the depleted group were calculated on 

each day. 

In the Nalm-6 xenografts (Fig 3-5), RB68C5/isotype control antibody 

was administered on Day 0 IV. On day 1 (Fig 3-5a), analysis of PB by flow 

cytometry showed only 0.779% of GR1highCD11b+ cells (red box) (also 

referred to as neutrophils) compared to the controls with 69.7% cells, 

showing effective depletion. Based on the literature387,388, the PB was again 

checked 72 hours after first antibody injection on day 4 (Fig 3-5 b), and the 

percentage neutrophils was 11.7% in the depleted group, which was 

significantly lower than the control group (65.2%), and showed that one IV 

injection (50μg) can maintain neutrophil depletion for 3 days in this model. 

On Day 5, second dose of RB68C5/isotype antibody was administered IV, 

and checked on Day 6 (Fig 3-5c) and Day 7 (Fig 3-5d). On Day 8 and Day 13 

another two doses of RB6/8C5 antibody was administered IT, to maintain 

local neutrophil depletion. The PB was further monitored on Day 8 (Fig3-5e) 

and Day 11 (Fig-3-5f). Throughout the period of antibody administration, the 

GR1highCD11b+ cells were intact in the control population. We noticed a 

GR1lowCD11b+ population in both the control and depleted group, which was 

much higher in the depleted group compared to the control group, but the 

GR1highCD11b+ (neutrophils) was appropriately depleted in the experimental 

group when compared to the control group. 
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Figure 3-3: Tumour volume comparison on Day 0: Graphs showing tumour volumes of Nalm-6 (a) and Raji (b) before start of MV treatment. 
In the Nalm-6 and the Raji models, the mean tumour volumes in the neutrophil depleted (red solid circles) and non-depleted (black solid 
squares) groups were 0.4cm3 and 0.8cm3 respectively. 
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Figure 3-4: Experimental design of neutrophil depletion: (a) Nalm-6 (b) Raji: At 0.4cm3(Nalm-6) and 0.8cm3(Raji) mean tumour volume, the 
mice received IP, IT or IV injections of RB6-8C5/isotype control antibody on days shown by blue, green or black arrows respectively. PB 
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samples were analysed by FACS on days shown by red arrows. Tumours in both the group received 8 (Nalm-6) and 10 (Raji) doses of MV 
injections IT at an MOI of 1.0, between days 1 and 14 after first day of neutrophil depletion. 
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Figure 3-5: 
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Figure 3-5: FACS plots confirming neutrophil depletion in Nalm-6 SCID xenografts: PB from different mice were analysed for neutrophil 
depletion on day 1 (a), day 4 (b), day 6 (c), day 7 (d), day 8 (e) and day 11 (f) by flow cytometry using anti-Ly6G6C (GR1) FITC (y-axis) and 
anti-CD11b APC (x-axis) antibodies. The percentage of cells in neutrophil gates of the control/non-depleted mice ranged between 59.2% - 
87.4% compared to the depleted mice which showed 0.779 – 25.7% cells in the neutrophil gates (red rectangles) on the specified days during 
the experiment. Anti-GR1/isotype antibody was administered on day 0 and day 5 IV and on day 8 and day 13 IT (shown in the black boxes). 
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In the Raji xenografts (Fig 3-6), the RB68C5/isotype was administered 

IV on Day 0. As we had observed in the Nalm-6 model that IV injection of 

antibody could maintain the depletion for 3 days, the PB was checked on 

Day 2 (Fig 3-6a). The depleted group still showed presence of 45.1% of the 

neutrophils in the PB and therefore, a second dose of RB68C5/isotype 

antibody was administered on Day 2, IV. On Day 4 (Fig 3-6b), the flow 

cytometry analysis of the PB revealed 38.3% of neutrophils remaining. 

Hence a higher dose of the RB68C5/isotype antibody was administered 

(150μg) on the same Day 4, IP389, and the PB was checked on Day 5 (Fig 3-

6c), which showed complete and more effective neutrophil depletion 

(0.317%). After IP administration of the antibody, the percentage neutrophil 

on Day 6 (Fig 3-6d) and Day 7 (Fig 3-6e) remained very low at 0.059% and 

0.788% respectively. The neutrophils remained depleted for 4 days after IP 

administration of the antibody and therefore were administered every 3-4 

days on Day 8, Day 11, Day 15, Day 18 and Day 22. On day 14 (Fig3-6f), the 

percentage neutrophil started rising back and in the depleted group 16.6% 

neutrophils were present, but this was still significantly lower than the control 

group (80.5%). Even in the Raji model, we constantly observed a 

GR1lowCD11b+ population, especially in the depleted group but the 

neutrophils remained depleted when compared to the control group. 
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Figure 3-6: 

figure continued on the following page 
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Figure 3-6: FACS plots confirming neutrophil depletion in Raji SCID xenografts: PB from different mice were analysed for neutrophil 
depletion on day 2 (a), day 4 (b), day 5 (c), day 6 (d), day 7 (e) and day 14 (f) by flow cytometry using anti-Ly6G6C (GR1) FITC (y-axis) and 
anti-CD11b APC (x-axis) antibodies. The percentage of cells in neutrophil gates of the control/non-depleted mice ranged between 80.5% - 
95.8% compared to the depleted mice which showed 0.059 – 45.1% cells in the neutrophil gates (red rectangles) on the specified days during 
the experiment. Anti-GR1/isotype antibody was administered on day 0 and day 2 IV and on day 4, day 8, day 11, day 15, day 18 and day 22 IP 
(shown in the black boxes). 
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The overall percentage of GR1highCD11b+ double positive cells, 

collated from all the different mice tested in Nalm-6 and Raji xenografts are 

shown in Fig 3-7a and Fig 3-7b respectively during the period of therapeutic 

MV administration. The representative flow cytometry histogram plots are 

shown in the top panels of Fig 3-7. Though variable, compared to the control 

mice receiving an irrelevant isotype control antibody the neutrophils were 

appropriately depleted in the experimental group (Fig 3-7a) Nalm-6 (43.92 

median in depleted and 75.25 median in non-depleted) and Raji (Fig 3-7b) 

(35.93 median in depleted and 93.05 median in non-depleted) models. The 

Raji and Nalm-6 tumours were treated with MV at an MOI of 1.0 by IT 

injection starting from Day 1 after neutrophil depletion was confirmed. The 

MV was administered between days 1 and 14 starting from the first day of 

neutrophil depletion. 

The Nalm-6 tumours regressed rapidly and completely after MVNSe 

injection in both depleted (N=9) and non-depleted group (N=8) and there was 

no difference in tumour size between non-depleted and neutrophil depleted 

(Fig 3-8a) cohorts. By contrast, in the Raji model the tumours responded less 

well in the neutrophil depleted group (N=8) than the non-depleted group 

(N=9) - all mice in the depleted group had reached the humane endpoint 

(tumour size 2.5cm3 and/or hind limb paralysis) by day 27, whereas only half 

in the non-depleted group (Fig 3-8b). There was a significant difference (p= 

0.0001) in the survival between the two groups in the Raji model (Fig 3-9a) 

but not in the Nalm-6 model (Fig 3-9b). Taken together, the depletion 

experiments suggested that the neutrophil-mediated enhancement of MV’s 
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oncolytic activity is likely to play a more prominent role where the direct anti-

tumour effect is less pronounced as observed in the Raji model. 

 

Figure 3-7: Cumulative neutrophil depletion data: Flow cytometry data for 
neutrophil depletion from all the different mice bearing (a) Nalm-6 and (b) Raji 
tumours tested are shown. For each tumour type, representative histograms plots 
are shown in the upper panels (light grey line = isotype control, dark grey line = 
depleted group, black line = non-depleted group) and in the lower panel box plots 
showing aggregate data of percentage CD11b+GR1+ double positive cells in Nalm-6 
(a) and Raji (b) models. Unpaired t test was performed to obtain the P-values 
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Figure 3-8: 

figure continued on the following page 
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Figure 3-8: Tumour volumes in Nalm-6 and Raji models: Graphs showing tumour volumes in individual mice (each coloured line represent a 
mouse) in Nalm-6 (a) {non-depleted (N=8); depleted (N=9)} and Raji (b) {non-depleted (N=9); depleted (N=8)} after MV treatment. The vertical 
dashed lines in (b) shows Day 27. 
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Figure 3-9: Kaplan Meier survival curve in Raji and Nalm-6: Kaplan Meier survival curves from start of MV injection in the Raji (a) and Nalm-
6 (b) neutrophil depletion models are shown with black line representing the non-depleted group and red line representing the depleted group. 
Log Rank test was performed to obtain the P-value. 
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 Generating novel MV expressing hGCSF: 3.3.3

To disentangle the intriguing and different roles of neutrophil in the two 

models and to enhance neutrophil survival and function at the tumour site, a 

novel strain of MV was generated expressing the cytokine gene human 

GCSF (hGCSF). Figure 3-10 shows the strategy for cloning hGCSF into the 

MVNSe backbone by replacing the GFP using MluI and AatII restriction 

enzymes downstream of the MV-P gene. As the hGCSF gene had an AatII 

site within the gene, site directed mutagenesis was performed first to replace 

the restriction enzyme site AatII - GACGTC with GATGTA, leaving no amino 

acid change (Fig 3-10b). The cloned MV plasmid was then rescued using 

reverse genetics technique described in materials and methods (chapter 2, 

section 2.2.3). Fig 3-11a shows syncytium formed by the MVhGCSF on Vero 

cells from which they were picked and then further propagated and 

characterised. 

 Characterisation of the novel virus: 3.3.4

3.3.4.1 Growth curves: 

One step growth curves were performed to assess the growth pattern 

of the new virus. Vero cells infected with the virus at an MOI of 1.0 were 

collected at different time-point post infection and the virus was titrated using 

TCID50 in a 96-well plate. The virus grew to similar titres (106-107 PFU) as the 

backbone MVNSe virus with the viral production peaking at a later time-point 

compared to the MVNSe (48 hour for MVNSe; 62 hour for MVhGCSF) (Fig 3-

11b). 
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3.3.4.2 Cytokine production: 

hGCSF production was quantified in all the cell lines over 5 days and 

neutrophils over 24 hours post infection (hpi) (Fig3-11c and d respectively). 

Supernatants from both infected and uninfected Raji and Nalm-6 cell lines 

and infected and uninfected neutrophils (from healthy human donors) were 

collected and quantified by ELISA for the cytokine production. The three cell 

lines produced hGCSF in the range of 200 – 700ng/ml at different time-points 

(Fig 3-11c). Neutrophils from 3 different donors showed hGCSF (Fig 3-11d) 

production in the range of 2-3ng/ml. No hGCSF was detected in the cell lines 

or neutrophils infected with the control virus MVNSe. 
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Figure 3-10: Construction of MV expressing hGCSF: (a) Schematic showing cloning of DNA encoding human cytokine, hGCSF into p (+) 
MVNSe, upstream of M, using AatII and MluI restriction enzymes. (b) Site directed mutagenesis strategy used to introduce mutations to change 
GAC to GAT and GTC to GTA in the hGCSF gene to remove AatII site within the gene, facilitating easy cloning into MV genome. 
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Figure 3-11: Characterisation of MV expressing hGCSF: (a) MVhGCSF syncytia on Vero cells. (b) One step growth curve of MVhGCSF 
performed on Vero cells {MVhGCSF (orange); MVNSe (blue)}. (c) hGCSF quantitation in supernatant of Nalm-6 (□) infected with MVhGCSF 
(orange) or MVNSe (blue) (N=3) and supernatant of Raji (○) infected with MVhGCSF (orange) or MVNSe (blue) (N=3). (d) hGCSF quantitation 
in supernatant of neutrophils from healthy donors infected with MVhGCSF (orange), MVNSe (blue) or mock infected (black) (N=3). 
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 MVhGCSF is therapeutic in Raji and Nalm-6 SC in-vivo 3.3.5

xenografts: 

After characterisation of the virus, the therapeutic effect of expressing 

hGCSF by MV was determined in-vivo. The therapeutic efficacy of MVNSe 

was compared with that of MVhGCSF in SC models of both Nalm-6 and Raji 

tumours. In these mice, the tumours were allowed to reach 0.2 to 0.4cm3 in 

size (Fig 3-12a and 3-12b), after which they were treated with 10 IT injections 

of MVNSe (N=5), MVhGCSF (N=6) or UV-irradiated non-replicating MV 

control (MVUV) (N=7). In the Raji model, MVhGCSF treated tumours 

regressed very efficiently and completely and generated a highly significantly 

superior (p=0.0020) anti-tumour effect by comparison to MVNSe (Fig 3-13a) 

treated tumours. The Kaplan Meier analysis showed that the MVhGCSF 

treated mice survived significantly longer than MVNSe treated mice 

(p=0.0098) (Fig 3-13b). In the Nalm-6 model, both the MVhGCSF and 

MVNSe treated tumours resulted in complete regression of the tumours in 

both cohorts (Fig 3-13c), and all mice survived tumour free in both the 

groups, hence there was no survival advantage to MVhGCSF therapy (Fig 3-

13d). 
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Figure 3-12: Tumour volume before start of MV therapy in two different SC B-cell malignancies: Raji (a) and Nalm-6 (b) xenografts were 
established SC in SCID mice. Tumour volumes before commencing the MV injections in the three treatment groups MVhGCSF (cyan), MVNSe 
(green) and MVUV (red) are shown in both (a) and (b). 
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Figure 3-13: Tumour volumes and Kaplan Meier survival curves in two 
different SC B-cell malignancies: Raji (a and b) and Nalm-6 (c and d) xenografts 
were established SC in SCID mice. Tumour volume measurement was documented 
after MVhGCSF (cyan), MVNSe (green) and MVUV (red) injections in both the 
model (a - Raji and c – Nalm-6).  Kaplan Meier survival plots in MVhGCSF (cyan 
line), MV-NSe (green line) and MVUV (red line) treated cohorts in Raji (b) and Nalm-
6 (d). MVhGCSF N=6; MVNSe N=5; MVUV N=7. Wilcoxon signed rank test and Log 
rank statistical tests were performed to obtain the P-values in (a) and (b) 
respectively. 

 MVhGCSF play different roles in disseminated model of B-cell 3.3.6

malignancies: 

MVhGCSF was shown to be therapeutic in both Raji and Nalm-6 SC 

models, but B-cell malignancies are disseminated diseases, therefore, the 

therapeutic efficacy of MVhGCSF was tested in systemic therapeutic models. 
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In this experiment, Nalm-6 and Raji tumour cells expressing luciferase (luc) 

were used, in order to enable in-vivo monitoring of disease progression by 

live imaging. In the Nalm-6 luc model, mice were treated with 6 injections of 

1x106 PFU of MVNSe (N=7), MVhGCSF (N=6), or MVUV control (N=3) and 

an additional control of hGCSF alone, using pegylated hGCSF (Peg hGCSF) 

(N=5) at 120μg/kg once a week, for total 6 injections was also included. In 

the Raji luc model, only 3 of the 6 planned weekly injections of 1x106 PFU of 

MVNSe (N=10), MVhGCSF (N=10), MVUV (N=8) and Peg hGCSF (N=9) 

were possible before the mice succumbed. 

Fig 3-14a shows weekly in-vivo images in the Nalm-6 luc experiment. 

In this Nalm-6 luc model (Fig 3-14a), the two non-therapeutic/control groups 

MVUV and Peg hGCSF (Fig 3-14(a)(i)), and the two therapeutic/experimental 

groups MVNSe and MVhGCSF (Fig 3-14(a)(ii)) were carried out at slightly 

different times, so the luciferase signal can only be appropriately compared 

between those groups imaged at the same time, due to threshold setting. In 

the Nalm-6 luc model, signal was detected as early as week 2 in Peg hGCSF 

treated group when compared to the MVUV treated group, and by week 6 in 

the Peg hGCSF treated group, 2 of 5 mice had to be taken down (Fig 3-

14(a)(i)). Similarly, in the MV therapeutic groups, the signal was detected at 

week 5 in the MVhGCSF treated group when compared to the MVNSe 

treated group and by week 10, 2 of 6 mice had to be taken down in the 

MVhGCSF group (Fig 3-14(a)(ii)). Total signal was quantified by plotting 

individual values for luminescence (photons/second) performed on each 

surviving animal in the non-therapeutic groups at week 6 (Fig 3-14b) and the 
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therapeutic groups at week 10 (Fig 3-14c). These data show a significant 

difference between the groups with a higher tumour signal in the mice, which 

had received any therapy including GCSF (either the Peg hGCSF control or 

MVhGCSF). In the Raji luc model (Fig 3-15), tumour signal was detected at 

week 2 (Fig3-15a). Quantification of total signal (Fig 3-15b) at week 2 

showed that, by contrast to the Nalm-6 luc model, the MVhGCSF treated 

mice had significantly lower tumour burden compared to the MVNSe treated 

group (p=0.0457). 
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Figure 3-14: In-vivo imaging of Nalm-6 luciferase disseminated SCID model: Bioluminescent images showing comparison of leukaemia 
signal in Nalm-6 model; (a)(i) non-therapeutic MVUV (middle panel) and Peg hGCSF (right panel) groups at week 2 and week 6 post tumour 
inoculation and (a)(ii) therapeutic MVNSe (middle panel) and MVhGCSF (right panel) groups at week 5 and week 10 post tumour inoculation. 
Both (a) (i) and (a) (ii) images were taken with PBS injected controls (Ctrl) to account for background luminescence. The scales are on the right, 
next to the set of images compared at each week. (b) and (c) Quantification of tumour burden using bioluminescence; Scatter dot plot showing 
individual values for luminescence (photons/second) performed on each surviving animal in each treatment group at week 6 (Nalm-6 luc non-
therapeutic groups) (b), week 10 (Nalm-6 luc therapeutic group) (c). Values are represented minus background activity. Unpaired t test was 
performed to obtain the P-values. 

 



 

 

1
5

8
 

 



 

 

1
5

9
 

Figure 3-15: In-vivo imaging of Raji luciferase disseminated SCID model: Bioluminescent images comparing all the groups in the Raji 
luciferase model at week 2, post tumour inoculation (a). Images were taken with PBS injected control (Ctrl) to account for background 
luminescence. The scale is on the right side of the image. (b) Quantification of tumour burden using bioluminescence - scatter dot plot showing 
individual values for luminescence (photons/second) performed on each surviving animal in each treatment group at week 2 (Raji luc). Values 
are represented minus background activity. Unpaired t test was performed to obtain the P-value. 
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The survival and post mortem analysis of the mice in the two different 

B-cell malignancy models Nalm-6 luc (Fig 3-16; 3-17) and Raji luc (Fig 3-18; 

3-19) were compared. The Kaplan Meier curves, shown in Fig 3-16a illustrate 

that, in the Nalm-6 luc model, mice treated with the controls alone 

succumbed to leukaemia the most quickly; the survival was least good in the 

group treated with GCSF alone, where the median survival was 50 days 

compared to 75 days in the MVUV treated group (p=0.0120). Seventy five 

percent of the mice treated with MVNSe responded well and were alive at the 

end of the experiment. Surprisingly, mice receiving treatment with MVhGCSF 

had a significantly inferior outcome with a median survival of 78.5 days 

compared to the MVNSe treated cohort where the median was not reached 

by the end of the experiment (p=0.0149) (Fig 3-16a). At humane end-point, 

CD10+CD19+ cells were detected in the BM of the mice confirming presence 

of leukaemia (Fig 3-16b). hGCSF was detected at comparable levels in the 

serum of the Peg hGCSF and MVhGCSF treated cohorts confirming the 

appropriate dosing of the exogenously administered Peg hGCSF (Fig 3-17a). 

There was no significant difference in total cell numbers recovered from the 

spleens (MVNSe - mean = 2.338, range 2.0-2.675 million; MVhGCSF - mean 

= 5.922, range 0.625-25.0 million; MVUV - mean = 2.275; range 0.5-2.275 

million; Peg hGCSF – mean = 4.450, range 1.75-8.5 million) indicating that 

hyperleucocytosis was not the cause of increased death in the MVhGCSF 

treated ALL mice. Flow cytometric analysis of GR1+ neutrophils (Fig 3-17b) 

and percentage NK and Mac3 (Fig 3-20a) did not show any difference in the 

neutrophil, macrophage and NK cell percentages between the different 

groups. Taken together these data indicate that expression of hGCSF by MV 
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results in a much poorer survival of Nalm-6 ALL leukaemic mice compared to 

MVNSe and that this is due to enhanced tumour progression. 

In the Raji luc model (Fig 3-18; 3-19), the disease progressed very 

quickly in all the groups. The Kaplan Meier survival curve (Fig 3-18a) shows 

that by Day 32 all the mice had reached their humane end-point (hind limb 

paralysis). BM analysis showed the presence of CD19+CD20+ cells in all 

these mice confirming presence of disease (Fig 3-18b) at the time of death. 

Very high levels of hGCSF in the serum of the mice treated with MVhGCSF 

and Peg hGCSF (Fig 3-19a) was detected, which correlated with significantly 

higher levels of GR1+ neutrophils in the spleen of these mice, MVhGCSF 

(median 59.88), MVNSe (median 37.41), MVUV (median 39.64) and Peg 

hGCSF (median 59.48) (MVhGCSF vs. MVNSe; p=0.0016) (MVhGCSF vs. 

MVUV; p=0.0217) (MVNSe vs. Peg hGCSF; p=0.0049) (Fig 3-19b). There 

were also significantly higher levels of macrophages infiltration in the spleens 

of MVhGCSF treated mice when compared to the MVNSe treated groups 

(Fig 3-20b), consistent with the higher levels of circulating hGCSF. 
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Figure 3-16: Survival and %CD10CD19 positive cells in disseminated Nalm-6 model: (a) Kaplan Meier survival curve showing MVhGCSF 
(cyan), MVNSe (green), MVUV (red) and Peg hGCSF (pink) treated mice. (b) At humane end-point (hind limb paralysis), the presence of 
disease was confirmed by flow cytometry by %CD10CD19 in the BM compartment. 
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Figure 3-17: hGCSF levels in serum and %neutrophils in spleen of Nalm-6 disseminated model: (a) hGCSF levels (ng/ml) in the serum of 
the mice quantified by ELISA. (b) %Neutrophils in the spleens determined by flow cytometry. 
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Figure 3-18: Survival and %CD19CD20 cells in disseminated Raji model: (a) Kaplan Meier survival curve showing MVhGCSF (cyan), 
MVNSe (green), MVUV (red) and Peg hGCSF (pink) treated mice. (b) At humane end-point (hind limb paralysis), the presence of disease was 
confirmed by flow cytometry by %CD19CD20 in the BM compartment. 
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Figure 3-19: hGCSF levels in serum and percentage neutrophils in spleen of Raji disseminated model: (a) The level of hGCSF in the 
serum of the mice was quantified by ELISA. (b) Percentage of neutrophils in the spleens was determined by flow cytometry. ***p<0.002; 
*≤p0.04. Unpaired t test was performed to obtain the P-values. 
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Figure 3-20: Spleen analysis in disseminated models of Nalm-6 and Raji: At humane end point, the percentage of NK cells and 
macrophages were determined in the spleen of mice treated with MVhGCSF (cyan), MVUV (red), MVNSe (green) and Peg hGCSF (pink) in the 
disseminated models of Nalm-6 luciferase (a) and Raji luciferase (b) models. ***p=0.0006. Unpaired t test was performed to obtain the P-value. 
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 MVhGCSF does not enhance cell proliferation in-vitro: 3.3.7

To ensure that the in-vivo data did not simply result from a direct effect 

of GCSF on cell proliferation, the cell lines were treated with increasing 

concentrations of recombinant hGCSF in-vitro and the cell numbers were 

enumerated over 4 days (Fig 3-21). No significant difference between GCSF 

treated and control cell lines in-vitro was observed in either Raji (Fig 3-21a) 

or Nalm-6 (Fig 3-21b) cells. 

 MVhGCSF in MV-infectable, CD46 transgenic mice is not toxic: 3.3.8

Finally, MVhGCSF was evaluated in CD46 transgenic mice, in which 

all cells, not just tumour cells, are infectable by MV. To assess this, IfnarKO 

CD46 Ge mice194 were injected IV with either MVNSe or MVhGCSF. They 

were monitored carefully for signs of ill health for 35 days after which spleen 

size, and differential cell count in spleen cells (NK, macrophage, neutrophil 

percentages) as well as serum hGCSF level were determined. There was no 

difference in spleen size (Fig 3-22a) or cellular contents in the spleen 

between the groups (Fig 3-22b). None of the mice became unwell. The mice 

treated with MVhGCSF showed significant levels of hGCSF in the serum at 

Day 35 (Fig 3-22c), but there was no toxicity seen. Taken together these 

data in the disseminated Nalm-6 model, suggests that any adverse effect of 

expressing hGCSF as an additional transcription unit in tumour bearing mice 

relates solely to promotion of tumour growth and not to toxicity of GCSF 

production. 
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Figure 3-21: Effect of human GCSF on Raji and Nalm-6 cells in-vitro: Raji (a) and Nalm-6 (b) cells were treated with increasing amounts of 
rhGCSF and counted every 24 hours by trypan blue exclusion method in-vitro. The number of cells/ml is plotted against the time. 
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Figure 3-22: MVhGCSF treatment in IfnarKO CD46 Ge mice: CD46 transgenic mice were injected IV with MVNSe (N=5) or MVhGCSF (N=7). 
Evaluation was carried out at day 35 after injection for (a) spleen size in mm, (b) percentage of NK cells, macrophages and neutrophils in the 
spleens, and (c) serum hGCSF levels (ng/ml). 
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3.4 DISCUSSION:  

The interest of the lab in developing MV as a therapy in B-cell 

malignancies specifically ALL, led to the investigation of the Nalm-6 model to 

get an insight into the therapeutic efficacy of MV in this model. It was shown 

that like other B-cell malignancies, ALL too is sensitive to MV therapy in-vivo 

in both SC and disseminated xenograft models. 

We know that lymphoid malignancies are disseminated diseases. A 

key component of success of oncolytic virotherapy lies in engendering an 

overall “positive” interaction with the immune system. The ability to deliver a 

replicating virus to individuals with pre-existing adaptive immunity, although 

not the focus of the present work is crucial. However, the stimulation and 

exploitation of positive immune responses to target cells infected by oncolytic 

viruses is a key counterbalance. Just as it was seen in the phase 1 trial of 

MV in multiple myeloma an initial ‘free pass’ for measles viruses, but only in 

patients with highly compromised antibody response292, a balance between 

anti-tumour immune response by the T-cells390 and anti-viral activity of T-

cells may be expected. 

Hence, innate immunity, which may be less compromised and quicker 

to recover after anti-cancer chemotherapy - may play a pivotal role in viral 

oncolysis. On this basis, and taking into account previous work from the lab, 

in which it was clearly demonstrated that oncolytic MV is able to beneficially 

affect their anti-tumour properties, an attempt to augment these properties by 

cloning human GCSF as an additional transcription unit to MV was made, as 
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GCSF is known to stimulate the survival, proliferation and cytotoxic function 

of neutrophils both in-vitro and in-vivo391. 

Two tumour models of relatively similar aggressive B-cell 

malignancies were chosen, both of which are known to respond to MV-

oncolysis. Raji - Burkitt’s lymphoma-derived cells - respond to MV therapy, 

but less quickly and completely than does the Nalm-6 model derived from 

ALL. 

In the initial neutrophil depletion experiments, the therapeutic effect of 

MV in the Raji model was significantly abrogated, whereas in the Nalm-6 SC 

model, depletion of neutrophils did not abrogate the 100% response rate. 

The animal project license at the time of the Nalm-6 experiment allowed only 

2 IV injections of antibody and therefore to maintain the neutrophil depletion, 

2 IT antibody injections were introduced, which was successful in maintaining 

the depletion throughout the course of the MV treatment. By the time the Raji 

experiment was performed the project license had been amended allowing IP 

route of antibody administration along with IV route to deplete neutrophils. 

This facilitated the experiment, as the IP route of administration was more 

straightforward technically. Both the IV and IP routes of neutrophil depletion 

were effective, but the IP administration of the antibody could maintain the 

depletion for 3-4 days and therefore the antibody was given every 4 days in 

the Raji model. In both the Raji and Nalm-6 models, the neutrophils did start 

coming back at a later time-point in the experiment, but the depletion was 

stringently maintained throughout the course of MV treatment in both the 
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models. The observations confirmed that MV was oncolytic in both the 

tumour models as expected, but the role of neutrophils seemed to be 

different between the models. A possible explanation could be the kinetics of 

tumour sensitivity to virus, as the Nalm-6 tumours simply regressed so 

rapidly compared to the Raji tumours, that the direct oncolytic effect of MV in 

the Nalm-6 tumours superseded any involvement of neutrophils in-vivo. It 

may also relate to the initial size of the tumour, as the threshold tumour 

volume of Raji tumours was higher than that of the Nalm-6 tumours at the 

start of therapy. However, it is also possible that the individual targets are 

differentially responsive to neutrophil effects. 

Murine and human GCSF share 73% amino acid sequence homology 

and full cross reactivity392 and hence can be tested in both human and 

murine experimental systems, and therefore was cloned into MV. In the in-

vivo SC tumour models, the MV expressing hGCSF had a significantly 

superior therapeutic effect to MVNSe in the Raji model, but was equivalently 

good at tumour eradication to MVNSe in the Nalm-6 model, both in the 

proportion of responding tumours and time to response, consistent with the 

expectations from the neutrophil depletion experiments. 

As B-cell malignancies are disseminated diseases, systemic tumour 

models of Nalm-6 and Raji were established and the therapeutic efficacy of 

the MV expressing human GCSF was tested in a systemic therapeutic 

approach by delivering the treatment IV. In disseminated Nalm-6 xenografts, 

previous data showed that approximately 42% of mice have complete 
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regression of the tumours with IV delivered MV386, offering a greater 

probability to observe any potential therapeutic benefit to MVhGCSF. In the 

Raji model the previous data showed that neutrophils could play a beneficial 

role in improving therapeutic efficacy of MV280. Surprisingly, in the Nalm-6 

disseminated model, not only was there no benefit to MVhGCSF treatment, 

there was an increased rate of death in those mice, which also occurred with 

the Peg hGCSF alone control conditions. The level of GCSF detected in the 

mouse sera was confirmed to be almost identical between exogenously 

administered and GCSF produced by administration of MVhGCSF 

suggesting an active, productive infection of tumour targets. The disease 

progression rather than GCSF toxicity was suggestive to be responsible for 

these observations and further analysis showed that the immune cell 

composition of the spleens from MVNSe and MVhGCSF did not differ, 

especially, there was no excess of neutrophils, ruling out direct toxicity of 

GCSF. Furthermore, lack of toxicity in the CD46 transgenic model confirmed 

this. In the Raji disseminated model, the disease progressed very rapidly in 

all the groups. By third week all of them had succumbed to hind limb 

paralysis, and had to be sacrificed. In contrast to the Nalm-6 model, the Raji 

disseminated model showed significantly higher level of infiltrating 

neutrophils in the spleen of the mice treated with MVhGCSF or Peg hGCSF 

when compared to the MVNSe and MVUV treated groups. Human GCSF 

levels in the serum of these mice were also very high. At week 2, some 

therapeutic benefit of using MVhGCSF over MVNSe was observed by the 

live in-vivo imaging quantification (Fig 3-15b), but this was short lived. The 

percentage of tumour cells in the BM of the mice at the time of death was 
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similar all across the groups (Fig 3-18b), whereas in the Nalm-6 model, the 

peg hGCSF treated group had significantly high level of tumour cells in their 

BM in comparison to the other groups at the time of death (Fig 3-16b), which 

again showed a proliferating effect of GCSF on Nalm-6 cells in-vivo. But this 

effect was not demonstrated for Raji cells in-vivo. 

It can be concluded that the Raji model can benefit from use of 

MVhGCSF, as neutrophils have consistently shown to play a role in MV-

mediated oncolysis in this model. It is possible that the short-term benefit 

observed in this model was due to the tumour cell inoculation dose (1 million 

cells) and the schedule of weekly injections of MV therapy, which was kept 

similar to that of the Nalm-6 model, to be able to directly compare the two 

models. As Raji is more aggressive than the Nalm-6 model, with lowering of 

tumour inoculation dose and increasing the therapeutic dose and frequency 

of MV, it is possible to see a more robust therapeutic benefit. 

GCSF is widely used in the clinical treatment of patients with 

aggressive B-cell malignancies and has been shown to improve outcome393, 

although it is long known that GCSF when used to mobilise normal 

haematopoietic stem cells can also facilitate mobilisation of leukaemia from 

the bone marrow niche360. However, pre-clinical studies of the CXCR4 

antagonist plerixafor, typically used in conjunction with GCSF, have shown 

promising results in in-vivo models of primary ALL, suggesting that bone 

marrow microenvironment disruption may be therapeutically beneficial394,395 

by increasing chemo sensitivity of resistant, possibly quiescent, leukaemia, 
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clones after removal from their niche. A clinical trial NCT01331590 is being 

conducted, evaluating the role of GCSF in priming the bone marrow of ALL 

patients for subsequent chemotherapy targeting396. By contrast, GCSF 

accelerated disease progression in a sub set of primary ALL patient 

xenografts in NSG mice397. Additionally, microarray analysis in samples 

where disease progression was promoted by GCSF, revealed significantly 

higher expression of cell cycle regulators like cyclin A1 and ALCAM than in 

mice without disease progression. In the same article, no evidence for a 

direct mitogenic effect of GCSF could be demonstrated in any of the 

xenografts using exogenous GCSF in in-vitro cultures in the presence or 

absence of human or murine stromal support. It has also been shown that 

quiescent leukaemia cells can be induced to enter the cell cycle by treatment 

with GCSF398 and then targeted by chemotherapy. 

This chapter echoes the multiple roles of GCSF when used in the 

treatment of B-cell malignancies. It was confirmed that MVhGCSF could be 

used as a potent oncolytic agent in the Raji model. Serum GCSF level was 

comparable to those seen when GCSF is administered to patients399. In this 

model, MVhGCSF potentially carry an advantage, especially in combination 

with non-myelosuppressive chemotherapies. However, based on these data 

that showed an unexpectedly aggressive progression of Nalm-6 leukaemia 

in-vivo by MV expressing hGCSF, future studies would need to proceed very 

cautiously as any benefit from hGCSF as expressed by oncolytic viruses 

could be difficult to predict and may even vary from patient to patient.  
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Chapter 4: Mechanism of neutrophil mediated cytotoxicity in 

MV-infected target cell, differ between tumour types and 

the MV strain used  

4.1 BACKGROUND: 

 Antibody Dependent Cellular Cytotoxicity – ADCC: 4.1.1

In this chapter, my work aims to decipher, whether MV-induced, 

neutrophil mediated killing that was observed in the previous chapter, may 

result from neutrophil-mediated antibody dependent cellular cytotoxicity 

(ADCC). ADCC, is a mechanism by which, antibody coated target cells are 

killed by a cytotoxic effector cell in a non-phagocytic process, by releasing 

cytotoxic cellular contents or by expression of cell-death inducing 

molecules400-402. ADCC is activated when the Fc components of the 

antibodies (IgG, IgA and IgE classes) bind to their respective Fc receptors 

(FcγR, FcαR and FcεR) present on the effector cells. Although typically 

framed as a function of monocytes and NK cells, ADCC has been clearly 

identified as a mechanism by which neutrophils can eliminate cancer 

cells403,404. Neutrophils from healthy donors constitutively express FcγRII 

(CD32) and FcγRIII (CD16), but not FcγRI (CD64), but do not lyse tumour 

cells without activation405. Upon stimulation with GMCSF405, IFNγ406 or 

GCSF407, neutrophils are activated to lyse cells via the different Fc receptors 

(FcRs). Neutrophils can also mediate cytotoxicity via FcαRI (CD89), which 

binds to IgA404. An anti-FcγRI bi-specific antibody directed against the proto-
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oncogene product Her2/neu have shown enhanced lysis of Her2/neu 

expressing tumour cells by GCSF primed neutrophils403. Furthermore, a bi-

specific antibody directed against CD20 and FcαRI was shown to effectively 

kill a broad range of malignant B-cell lines404. 

Challacombe et al. showed that topical PEP005 (ingenol-3-angelate) 

treatment induces primary necrosis of tumour cells and an inflammatory 

response, characterised by a pronounced neutrophil infiltrate. Tumours 

treated with PEP005, led to elevation in anti-cancer antibodies, which could 

induce neutrophil mediated ADCC. Furthermore, in Foxn1 (nu) mice, 

depleted of neutrophils and in CD18-deficient mice (in which neutrophil 

extravasation is severely impaired), PEP005 treatment was associated with a 

>70% increase in tumour relapse rates408. Additionally neutrophils play a 

critical effector role in mAb treatment of cancer. In a SCID xenograft model of 

Burkitt’s lymphoma, when neutrophils were depleted, the therapeutic effect of 

rituximab (chimeric antibody targeted to CD20) was partially lost389. In a 

recent study, reovirus was shown to enhance killing of CLL cells by NK cell 

mediated ADCC when used in combination with anti-CD20 antibodies409. 

Previous published work from my lab has shown that MV Moraten 

(MVMor) (a vaccine, oncolytic strain – see Fig 1-4) infected neutrophils from 

healthy donors were activated and survived longer in culture compared to 

infection with a WT MV strain. Besides, infection with MVMor promoted a 

more cytotoxic effector phenotype, whereby the neutrophils produced pro-

inflammatory cytokines - TNFα, MCP-1, IL8 and IFNα357. Direct MVMor 
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infection of neutrophils also led to the secretion of pre-formed soluble TRAIL 

from granules (i.e. did not require protein synthesis) and induction of 

neutrophil degranulation357. Furthermore, three lines of evidence from the lab 

(Dr. Zhang, unpublished data) suggested that ADCC might be a mechanism. 

First, Dr. Zhang showed that MV-infection of neutrophils lead to FcαRI 

upregulation. Second, while investigating TRAIL mediated killing of MV-

infected Jurkat T-cells in the presence of neutrophils, Dr. Zhang made an 

interesting observation. Upon addition of an antibody (RIK2), which was used 

to block TRAIL-mediated apoptosis410, there was enhancement rather than 

blocking of neutrophil mediated killing. This was completely unexpected, and 

generated the hypothesis that the RIK2 antibody was binding to cell surface 

TRAIL on the Jurkat cells, and to the Fc receptor on the neutrophils, thereby 

mediating ADCC. To test this, Jurkats were infected with MV and co-cultured 

with neutrophils in the presence of anti-MV antibody containing serum (anti-

MV serum), which augmented the neutrophil mediated killing, further 

suggesting ADCC as a possible mechanism (Dr. Zhang, unpublished data). 

In chapter 3, MV expressing human GCSF enhanced the neutrophil 

mediated killing in-vivo resulting in improved therapeutic effect in the Raji 

SCID model and showed increased infiltration of neutrophils in the spleen 

compared to the unmodified MVNSe treatment, and stimulated neutrophil-

mediated oncolysis in B-cell malignancy. GCSF greatly enhances the 

cytotoxic activity of neutrophils; in particular, it can enhance ADCC. In an in-

vivo study of B-cell malignancy, GCSF primed neutrophils were shown to 

efficiently lyse antibody coated malignant B-cells, compared to non-primed 
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neutrophils411 by ADCC. In a different study, neutrophils isolated from 

patients undergoing rhGCSF therapy showed higher cytotoxicity against 

Daudi cells (B lymphoma cell line) in-vitro when compared to the neutrophils 

isolated from non-treated control patients or healthy donors. The neutrophils 

from these rhGCSF treated patients were also shown to express the FcγRI in 

significantly higher proportion than the untreated or healthy controls, which 

correlated with higher cytotoxicity407. 

Hence, based on the literature, preliminary data from my laboratory 

and my own findings in chapter 3, I chose to investigate ADCC as a 

mechanism of neutrophil mediated MV oncolysis in more detail. Two different 

vaccine strains of MV were used; MVNSe and MVMor. MVNSe has been the 

parental virus in most of the in-vivo studies of oncolysis to date and has been 

administered to humans in the completed and ongoing MV clinical trials50. 

The MVMor strain was included in this chapter as a comparator, as this strain 

helped generate some of the preliminary data (Dr. Zhang, 2012357 and 

unpublished data). 

A schematic representation of the hypothesis, that ADCC might be 

involved in MV-mediated tumour cell killing is shown in Fig 4-1. MV-infected 

target tumour cells (dark blue) express MV-H (yellow) and MV-F (red) 

proteins on their cell surface. Anti-MV antibody in the serum, which is 

primarily directed against the MV-H (light blue) and to a lesser extent to MV-

F (brown)241,412 can bind to the MV-H (yellow) and MV-F (red) on the target 

cells whilst also binding by their Fc portions to Fc receptors (green) on 
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neutrophils (orange). Once bound by Fc receptor, the neutrophils can bring 

about target cell lysis by ADCC (grey). 
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Figure 4-1: Schematic representation of neutrophils’ antibody dependent cellular cytotoxicity (ADCC) as a mechanism of MV-infected 
tumour cell lysis: 
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 Hypothesis: 4.1.2

ADCC is a possible mechanism by which neutrophils can eliminate 

MV-infected tumour cells. 

4.1.2.1 Aims: 

1. To investigate if neutrophils from healthy human donors can mediate 

killing of MV-infected targets in-vitro. 

2. To determine whether ADCC is a mechanism by which neutrophils 

may mediate MV oncolysis. 

4.2 RESULTS: 

 Comparison of MVNSe with MVMor at induction of neutrophil-4.2.1

specific lysis: 

To specifically look at the role of neutrophils and mechanisms involved 

in MV oncolysis, in-vitro assays were designed with the B-cell lines of interest 

- Raji and Nalm-6. In the previous chapter, in Raji SCID xenografts, 

neutrophils were shown to play a role and using a MV expressing hGCSF 

(MVhGCSF) significantly improved the oncolytic effect, reiterating the role of 

neutrophils. Nalm-6 on the other hand was not susceptible to neutrophil 

mediated effect. However, data in both Raji and Nalm-6 models were 

obtained in-vivo and the effect observed was with murine neutrophils and 

therefore, to study the effect of human neutrophils in both these model was 

of interest. The human T-cell line Jurkat was also included, as previous work 

in the lab had suggested possible susceptibility to neutrophil mediated ADCC 

in this cell line. 
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First, the percentage neutrophil mediated specific cell death (called 

neutrophil-specific lysis from here on) in all the three cell lines was 

determined by chromium release assay. Briefly, cells were infected with 

MVNSeGFP or MVMorGFP and imaged to confirm MV infection (Fig 4-2). 

Twenty-four or forty-eight hours post infection they were labelled with 52Cr. 

Neutrophils were extracted from the blood of 10 different individual healthy 

donors, and added to the MV-infected target cells at different E:T ratio. 

Twenty-four hours later, the supernatant was collected and read in a beta 

emission counter. The cells infected with MV alone in the absence of 

neutrophils were used as negative control (spontaneous cpm) to account for 

MV-mediated cell death, and cells treated with 1% tri fluoro acetic acid (TFA), 

which ensured complete lysis was used as positive control (maximal cpm). 

The neutrophil-specific lysis was calculated taking into account both positive 

and negative controls using the formula: % of neutrophil-specific lysis = 

(experimental cpm – spontaneous cpm)/(maximal cpm – spontaneous cpm) 

x100; (cpm – count per min). 

Fig 4-3 shows the neutrophil-specific lysis of the MV-infected cells. 

The cell lines infected with MVMor were not susceptible to neutrophil-specific 

lysis at any E:T ratio, except for Nalm-6 (Fig 4-3a, dark red line). In Nalm-6, a 

maximum of 20% neutrophil-specific lysis was observed, more pronounced 

at the lower E:T ratios. In contrast, MVNSe infection (Fig 4-3b) led to high 

percentage of neutrophil-specific lysis in Jurkat cells (25-45%) (black line) 

and Nalm-6 (10-20%) (dark red line) across all different E:T ratio, and around 

10% in Raji at higher E:T ratio of 20:1 and 40:1 (blue line). 
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These experiments in different cell lines showed that neutrophils were 

playing a role in MV oncolysis in-vitro but similar to the observation in chapter 

3, the neutrophils seemed to play very different roles in different 

malignancies, with some of them less dependent on neutrophil mediated MV 

oncolysis than others. Interestingly and somewhat unexpectedly, MVNSe 

and MVMor had very different effects in the different cell lines and though 

there are not many differences known between the two strains of viruses 

used, difference in fusogenicity might have a role to play50, as it is known that 

MVMor is less fusogenic than the MVNSe strain. Overall in all the cell lines, 

neutrophil-specific lysis in MVNSe infected cells was higher than MVMor 

infected cells. 

 

Figure 4-2: Images confirming MV infection of cell lines: Jurkat cells (left panel), 
Raji cells (middle panel) and Nalm-6 cells (right panel) infected with MVNSeGFP 
(top row) or MVMorGFP (bottom row) and imaged at 24 or 48 hours at 10X zoom. 
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Figure 4-3: Neutrophil-specific lysis in MV-infected cell lines: Percentage neutrophil-specific lysis calculated at different E:T ratio in Jurkat 
cells (black), Raji cells (blue) and Nalm-6 cells (dark red), infected with MVMor (a) or MVNSe (b). The black dashed line shows the minimum 
threshold percentage (5%) of neutrophil-specific lysis used for the experiment. 
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 Investigating ADCC as a mechanism: 4.2.2

Next, ADCC was investigated as a mechanism of neutrophil-specific 

lysis of MV-infected target cells. Neutrophil-specific lysis was determined by 

chromium release assay in the presence or absence of anti-MV anti-serum. 

Pooled serum from individuals with high anti-MV antibody titres {titrated using 

VIDAS® enzyme linked fluorescent immunoassay (EIA) (Biomérieux, 

France)}, was obtained from the virology department at the Royal Free 

Hospital. The serum was heat inactivated in the lab at 56°C for 30mins to 

inactivate complement. The concentration of serum added at 1:100 dilution 

was based on previous experiments in the lab where highest percentage of 

neutrophil-specific lysis was observed in MV-infected Jurkat cells at this 

dilution (Dr. Zhang, unpublished data). 

In the Nalm-6 cell line, infected with MVNSe, there was no change in 

the neutrophil-specific lysis upon addition of serum (Fig 4-4a green line) in 

comparison to the absence of serum (Fig 4-4a black line). When the same 

cell line was infected with MVMor, the neutrophil-specific lysis was abrogated 

upon addition of serum (Fig 4-4c, red line) when compared to no serum 

control (Fig 4-4c black line). 

In the Raji cell line, infected with MVNSe, neutrophil-specific lysis was 

abrogated upon addition of serum (Fig 4-4b, green line) in comparison to no 

serum control (Fig 4-4b black line). However, MVMor infection of Raji cells 

did not show any neutrophil–specific lysis in the presence or absence of 
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serum (Fig 4-4d, red line and black line respectively). Both Nalm-6 and Raji 

cell lines infected with either of the viruses did not show any ADCC. 

The experiments with Jurkat cells demonstrated significant abrogation 

(p≤0.0001) of neutrophil-specific lysis upon addition of serum (Fig 4-5a green 

line), when they were infected with MVNSe in comparison to absence of 

serum (Fig 4-5a black line). By contrast, after infection with MVMor (Fig 4-

5b), the neutrophil-specific lysis was lower than the threshold of 5% in the 

absence of serum (Fig 4-5b black line) but addition of anti-MV serum (Fig 4-

5b red line), significantly enhanced the neutrophil-specific lysis (p≤0.0347) at 

8:1 and 20:1 E:T ratio, showing ADCC as a possible mechanism, and in 

keeping with the previous observation from the lab. 
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Figure 4-4: ADCC as a mechanism of neutrophil-specific lysis in MV-infected 
cell lines: Nalm-6 (a and c) and Raji (b and d) cell lines were infected with MVNSe 
(a and b) or MVMor (c and d) in the presence (black lines) or absence (green or red 
lines) of anti-MV serum. Percentage neutrophil-specific lysis was calculated for all 
with 5% (black dashed line) as minimum threshold of neutrophil-specific lysis. 
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Figure 4-5: ADCC as a mechanism of neutrophil-specific lysis in MV-infected Jurkat cell line: Jurkat cell line was infected with MVNSe (a) 
or MVMor (b) and percentage neutrophil-specific lysis determined in the presence (black lines) or absence (green and red lines) of anti-MV 
serum. 5% was used as the minimum threshold of neutrophil-specific lysis (black dashed line). Paired t test was performed to obtain the P-
values. *** p≤0.0001, *p≤0.0347. 
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 Neutrophil-specific lysis and ADCC is not a T-cell specific 4.2.3

phenomena: 

Substantial neutrophil-specific lysis after MV infection was observed 

only in Jurkat cells after infection with MVNSe. Enhancement upon the 

addition of anti-MV antibody containing serum was observed only when 

Jurkat cells were infected with MVMor. In order to rule out whether this 

observation is related to the fact that Jurkat cells were of T-cell origin, 

another T acute lymphoblastic leukaemia cell line, DND41 was chosen and 

examined for neutrophil-specific lysis and ADCC. 

The chromium release assay was carried out for DND41 as described 

earlier, in the presence and absence of anti-MV serum. No neutrophil-

specific lysis was observed with either strain of MV in the absence of serum, 

as shown in Fig 4-6a and b; black lines, showing that DND41 was not 

susceptible to neutrophil-specific lysis in-vitro. Addition of anti-MV serum too 

did not have any effect - the neutrophil-specific lysis remained below the 5% 

set threshold level (Fig 4-6a and b; green and red lines respectively). Taken 

together these data suggested that the results obtained from Jurkat cells was 

likely to be a non-generalisable finding. 
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Figure 4-6: Neutrophil-specific lysis and ADCC in MV-infected DND41 cell line: DND41 cell line was infected with MVNSe (a) or MVMor (b) 
and percentage of neutrophil-specific lysis calculated in the presence (green and red lines) and absence (black line) of anti-MV serum. 5% was 
used as the minimum threshold of neutrophil-specific lysis (black dashed line). 
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 MVhGCSF infected Jurkat does not enhance the neutrophil 4.2.4

mediated ADCC: 

MV expressing hGCSF has the potential to enhance neutrophil-

mediated ADCC. Since Jurkat cells were the only cells in which possible 

ADCC was observed, they were the only cell line selected for evaluation with 

MVhGCSF. Cytotoxicity assays were performed after addition of neutrophils 

from individual healthy donors (N=10) at different E:T ratios. The neutrophil-

specific lysis was 15-35% at different E:T ratios. This was completely and 

significantly abrogated in the presence of anti-MV serum at all E:T ratios { 2:1 

(p=0.0343), 8:1 (p=0.0045), 20:1 and 40:1 (p≤0.0008)} (Fig 4-7). Hence, 

MVhGCSF showed exactly the same pattern of neutrophil-specific lysis as 

the parental MVNSe (Fig 4-5a). The expression of GCSF by MV did not have 

any additional effect on the neutrophil-specific lysis in the presence or 

absence of serum in-vitro. For this reason, MVhGCSF was not tested on any 

of the other cell lines. 

Taken together, the data make ADCC very unlikely as a possible 

mechanism by which neutrophils may enhance target cell killing by MV. 
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Figure 4-7: Neutrophil-specific lysis and ADCC in MVhGCSF infected Jurkat 
cell line: Jurkat cells were infected with MVhGCSF and percentage neutrophil-
specific lysis determined in the presence (black lines) or absence (brown line) of 
anti-MV serum. 5% was used as the minimum threshold of neutrophil-specific lysis 
(black dashed line). Paired t test was performed to obtain the P-values. *p=0.0343, 
**p=0.0045, ***p≤0.0008. 

 

 Dissecting the difference between MVNSe and MVMor in 4.2.5

provoking neutrophil-specific lysis: 

One interesting finding from these experiments so far was the 

difference in neutrophil-specific lysis observed in Jurkat cells between the 

two different strains of MV which was unexpected and not readily explained. 

It was also unclear why this response was enhanced by serum only with 

MVMor but not MVNSe. Both of these attenuated vaccine strains of MV are 

derived from the MVEdmB strain, and there are very few known differences. 
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MVMor has been sequenced in both their coding and non-coding 

regions413,414 and differs with the MVNSe only in few amino acids, isolated in 

the H and L part of the genome232. There are also phenotypic differences in 

the cytopathic effects between the two strains, which cannot at present be 

directly related to their modest genetic differences. One key difference is that 

MVMor is less fusogenic than MVNSe strain50 and infection results in fewer 

and smaller multinucleated syncytia. At the functional level too, some 

differences in the expression of MV proteins has been reported between 

different vaccine strains415. Whether some of these functional differences in 

fusogenicity are responsible for the difference in the cytotoxicity observed 

between the two strains, were tested further. 

4.2.5.1 Is MV-H expression after MVMor and MVNSe infection 

responsible for the differential stimulation of neutrophil-specific 

lysis? 

It was hypothesised (Fig 4-8) that the surface area of the cell 

membrane expressing the viral envelope protein MV-H, may be higher 

overall in the individually infected cells after infection with the less fusogenic 

MVMor (Fig 4-8a) compared to in the large syncytia formed by the highly 

fusogenic MVNSe (Fig 4-8b). This could be highly relevant to ADCC, as it 

would allow more antibody binding and facilitate greater Fc receptor 

interaction. 

First, the MV-H expression on Jurkat cells after infection with the two 

different viruses was investigated. The Jurkat cells were infected with 
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MVNSe or MVMor at an MOI of 1.0. Twenty-four hours later, the percentage 

of MV-H cell surface expression (Fig 4-9a) and MFI of MV-H expression (Fig 

4-9b) was determined by flow cytometry. There was significant difference in 

both the percentage MV-H expression (p=0.0025) (Fig 4-9a) and MFI MV-H 

expression (p<0.0001) (Fig 4-9b) with higher MV-H in MVMor in comparison 

to MVNSe infected cells. 

The relevance of fusion to H expression was further determined by the 

use of fusion inhibitory peptide (FIP), which blocks cell-cell fusion. After 

addition of FIP, MV-H expression would be expected to result in an increase 

in H expression in MVNSe infected cells. When the percentage MV-H 

expression was determined in the presence of FIP, there was a very small, 

but non-significant (p=0.0652) augmentation observed in the MVNSe infected 

cells (Fig 4-10, dark grey bar), whereas in the MVMor infected cells there 

was significant abrogation (p=0.0071) in MV-H expression (Fig 4-10 dark 

pink bar); this was opposite of the hypothesis, and the reason is not clear. 

The increase in MV-H expression due to blocking of fusion was evident in 

MVNSe infected cells albeit not significant. It was expected that, MVMor 

would either show increase in MV-H expression or no change after FIP 

treatment, but there was decrease in MV-H expression and this was 

unexpected. 
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Figure 4-8: Schematic representation of MV-H expression hypothesis after MVNSe and MVMor infection of Jurkat cells in the 
presence and absence of FIP: 
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Figure 4-9: MV-H expression on Jurkat cells: Jurkat cells infected with MVNSe 
(grey) or MVMor (pink) were quantified for percentage MV-H expression (a) and MFI 
(b) on Jurkat cell surface by flow cytometry. Paired t test was performed to obtain 
the P-values. 

 

Figure 4-10: MV-H expression on Jurkat cells in the presence and absence of 
FIP: Jurkat cells infected with MVNSe (grey) or MVMor (pink) were quantified for 
percentage MV-H expression on Jurkat cell surface by flow cytometry in the 
presence (dark colours) or absence (light colours) of FIP. Paired t test was 
performed to obtain the P-values. 
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4.2.5.2 Effect of fusion inhibition on neutrophil ADCC in MV-infected 

Jurkat: 

It was concluded that ADCC is not a possible mechanism of 

neutrophil-mediated MV oncolysis, but the difference observed in MV-H 

expression in Jurkat cells infected with MVNSe with and without FIP above 

(Fig 4-10) and ADCC observed with MVMor infection earlier (Fig 4-5b) was 

very intriguing and led to the second hypothesis illustrated in Fig 4-8 c and d; 

upon blocking fusion in MVNSe infected Jurkat cells, the higher MV-H 

expression may enable the binding of more anti-MV-H antibody, enhancing 

neutrophil Fc receptors interaction, in turn enhancing the neutrophil mediated 

killing (Fig 4-8c and d). 

To determine whether the difference in the MV-H expression on MV-

infected Jurkat cells between the two viruses was responsible for the 

difference in the ADCC observed earlier in section 4.2.2, FIP was used to 

block fusion. The chromium release cytotoxicity assay was performed in the 

Jurkat infected with MVNSe or MVMor in the presence or absence of FIP. 

These results are shown in Fig 4-11. Upon MVNSe infection (Fig 4-11a), in 

the presence of FIP (black empty triangle) the neutrophil-specific lysis 

disappeared completely and significantly (p≤0.0003) across all the E:T ratios, 

compared to the absence of FIP (black filled triangle) showing abrogation of 

neutrophil mediated killing on inhibition of fusion. Addition of anti-MV serum 

(Fig 4-11a - red empty and filled circle), when the fusion was blocked did not 

show any enhancement in killing by ADCC. After MVMor infection (Fig 4-11b) 

too, there was a significant decrease in the neutrophil-mediated killing in the 
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presence of FIP (black empty triangle) but only in 20:1 (p=0.0421) and 40:1 

(p=0.0017) E:T ratios, compared to the no FIP control (black filled triangle). 

However, there was no enhancement in ADCC by addition of FIP (red empty 

circle) compared to the no FIP control (red filled circle). Overall, though a 

difference in the percentage of MV-H expression was seen on Jurkat after 

infection with the viruses, this did not facilitate ADCC. The main significant 

observation from the work in this chapter was that, upon addition of FIP, the 

neutrophil-specific killing after MVNSe infection of Jurkat was completely and 

significantly abrogated. This suggested a potential role for MV-induced cell-

cell fusion as a mechanism of neutrophil-mediated MV oncolysis. This 

question is investigated in detail in chapter 5. 

 

Figure 4-11: Neutrophil-specific lysis and ADCC in Jurkat cells in the presence 
and absence of FIP: Percentage neutrophil-specific lysis in Jurkat cell line infected 
with MVNSe (a) or MVMor (b) with (red lines) or without (black lines) anti-MV serum 
in the presence (empty symbols) or absence (solid symbols) of FIP using chromium 
release assay. 5% was used as the minimum threshold of neutrophil-specific lysis 
(black dashed line). Paired t test was performed (between MVNSe (a) or MVMor (b) 
treated conditions to their FIP treated counterparts) to obtain the P-values. 
***p≤0.0003, **p=0.0017, *p=0.0421. 
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4.3 DISCUSSION: 

In this chapter, I investigated ADCC as a possible mechanism of 

neutrophil mediated MV oncolysis (neutrophil-specific lysis). Except in Jurkat 

cells infected with MVMor, ADCC was not shown to be a mechanism. 

Neutrophil-specific lysis also varied among the different cell lines used and 

most interestingly, the two vaccine strains of MV used showed unexpected 

and highly significant difference in their ability to mediate a neutrophil effector 

response, specifically in the Jurkat cells. 

ADCC has been established as a mechanism by which effector cells 

can kill target cells infected by different viruses like HSV416,417, VZV418 and 

MV419 after natural infection. The presence of ADCC was shown to correlate 

with reduction in viral load after WT MV infection244,420. Previous data from 

my lab have shown enhanced killing of target tumours in SCID xenografts 

when MV using a murine GMCSF was used, which also correlated with 

higher neutrophil infiltration280. From data in chapter 3, in-vivo observation of 

neutrophil mediated enhancement of MV killing was very clear in the two B-

cell malignancy models, but different susceptibility to neutrophils in the two 

models suggested more than one mechanism of neutrophil mediated MV 

oncolysis in play. SCID mice lack any adaptive immune cells and therefore 

are unable to produce antibodies, also, as murine cells are not susceptible to 

MV infection, the enhancement of MV oncolysis by MVhGCSF in the Raji 

SCID xenografts with increased neutrophil infiltration in the spleen, that was 

observed is unlikely by ADCC in the models described in-vivo. However, 
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there is a report suggesting that certain IgGs can enhance MV entry and 

infection in murine monocytes and macrophages, via a Fc receptor mediated 

mechanism421, and also in older SCID mice presence of mature lymphocytes 

has been reported as they are known to be “leaky”422, and therefore some 

direct infection of the effector cells and presence of ADCC like effect cannot 

be completely ruled out even in the in-vivo models. 

Choosing an appropriate model to test the role of the immune system 

and the mechanisms involved in oncolysis can be tricky due to difference in 

the effector functions between different species423. Though mice are frequent 

experimental tools of choice, and have helped us understand the working of 

the human immune system, there are significant differences and known 

discrepancies in both innate and adaptive immunity424. The overall structure 

of the immune system in mice and humans are similar, but among other 

differences, the balance of lymphocytes and neutrophils is striking, with 

mouse blood more rich in lymphocyte (75-90% lymphocytes, 10-25% 

neutrophils), while human blood more rich in neutrophils (50-70% 

neutrophils, 30-50% lymphocytes)425. Mouse and human neutrophils also 

differ in their Fc receptor expression. In mice a single gene encodes for each 

class of Fc receptors whereas in human eight genes have been identified426. 

Additionally, mice don't express FcαRI, FcγRIIa, FcγRIIIB and FcγRIIC, 

which are important Fc receptors present on human neutrophils, and there is 

also difference in the IgG sub classes that are present in mice and 

humans425. Moreover, mouse FcγRI is mainly expressed on macrophages. 

Further, human FcγRI, which is a high affinity receptor does not bind mouse 
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IgG1423. How these differences can affect their functions in studying the 

effector mechanism is still not very clear. Besides, MV does not readily infect 

and replicate within murine cells, therefore the in-vivo observations in mice 

will not always reciprocate the same mechanisms that may be expected in 

human in-vivo. Human donors were used as the source of neutrophils in this 

chapter due to the wider clinical relevance, in the hope of providing better 

insight into the potential mechanisms in trial scenarios. 

The neutrophil-specific lysis was variable between the three cell lines 

in-vitro. Jurkat cells were particularly susceptible to neutrophil-specific lysis 

with MVNSe infection. However, it was only Jurkat cells infected with MVMor 

that were lysed via an apparent ADCC. The two B-ALL cell lines and the 

other T-ALL cell line DND41 did not show any susceptibility to neutrophil-

mediated ADCC. 

By contrast to the apparent ADCC finding with MVMor infected Jurkat 

cells, there was significant decrease in the neutrophil-specific lysis of MVNSe 

infected Jurkat cells upon addition of serum. One possible explanation is 

neutralisation of the virus by the anti-MV neutralising antibody present in the 

serum174. Pooled serum from donors with high anti-MV antibody was used for 

the ADCC experiments in this chapter. Anti-MV serum contains both 

neutralising and non-neutralising (ADCC and complement-mediated lysis) 

antibodies. Neutralising antibodies against both MV-F and MV-H are present 

in the serum, with majority of neutralising antibody against MV-H240,241. After 

natural MV infection, most robust antibody response is observed against N 
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protein followed by MV-H, MV-F and to a very small extent against MV-M239. 

Though MV-N is an intracellular protein, it has been shown to associate with 

the FcγRIIB in the late endocytic compartment and transported to the cell 

surface, where it interacts with other non-infected cells427 and therefore might 

be important in ADCC. Since antibodies against different MV proteins could 

be capable of mediating ADCC, the purpose and possible advantage of using 

pooled serum from patients in the ADCC experiment was to cover the whole 

repertoire of anti-MV antibodies that might be relevant in ADCC. However, a 

high level of anti-MV IgG would not necessarily reflect a high level of 

antibody with capacity to mediate ADCC419. 

Jurkat cells were the only cell line where neutrophil-mediated lysis 

observed was highest after MV infection. They were first chosen in the lab as 

they belong to the lymphoid lineage and are a cell line of choice for 

cytotoxicity assay studies. They are also sensitive to TRAIL mediated killing 

and MV has been shown to upregulate TRAIL via degranulation of 

neutrophils357. Jurkat cells are often used to study acute leukaemia, cell 

signalling, expression of different surface receptors or studying mechanisms 

of action of anti-cancer drugs and radiation428. They are known to produce 

high levels of IL-2 upon stimulation with phorbol esters, lectins or monoclonal 

antibodies429. After screening several leukaemic T and B-cell lines, Jurkat 

cells were shown to produce 100-300 times more IL2 upon stimulation with 

lectin like phytohaemagglutinin (PHA) and concanavalin A (con A)430. 

Moreover, Jurkat cells have also been shown to produce IL-2, when 

persistently infected with vaccinia virus431. The IL2 receptor is present on 
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neutrophils432, and the binding of the IL2 to the IL2 receptor has been shown 

to have important regulatory effect on neutrophil functions433. It is possible 

that MV infection stimulates Jurkat cells to produce IL2, which can modulate 

the function of neutrophils via the IL2 receptor to induce higher neutrophil 

toxicity in this cell line and not the others, as observed in the experiments in 

this chapter. T-cells do not normally express Fc receptors, however some T-

cell lines like the CD4+ T lymphoblastoid cell line C8166 have been shown to 

express various Fc receptors434. Jurkat cells have also been shown to 

express the FcγRIII receptor in our lab (Dr. Zhang, unpublished data), and 

others have shown that FcγRIII receptor can activate and mediate both 

proximal and distal signalling in Jurkat cells and it is cell type restricted435. 

This allows another possible alternative explanation to ADCC in my findings, 

which are very specific to Jurkat cells. Fc receptors on the Jurkat may be 

able to bind to the Fc portion of the anti-MV-H antibody in the serum, which 

can bind to MV-H proteins expressed on the neutrophils and bring about lysis 

by “reverse ADCC”436. This can lead to induction of signalling through both 

FcγRIII on Jurkat cells and Fc receptors on neutrophils leading to enhanced 

killing of Jurkat cells. 

The two different vaccine strains acting very differently on neutrophils 

to cause different cytotoxic effects in the Jurkat cells, was also unexpected. 

There are few differences between the two vaccine strains of virus. Firstly, 

there are some known differences in the coding and non-coding sequences 

between the MV strains414. MVMor and MVNSe are both derived from the 

Edmonston seed B (see 1.2.4). To obtain MVNSe MV-tag-Edmonston B was 
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slightly modified, to exhibit unique NarI and SpeI sites (MVNSe stands for 

“Nar-Spe eliminiated”)180 to enable easier cloning. MVNSe is derived from 

p(+)MV15894181 which contains the Edmonston molecular clone Genebank 

Z66517 with 13 point mutations including the “tag” AC>GA at positions 1818-

9 of the genome and a point mutation in P gene resulting in 272Cys>272Arg 

mutation in the V coding region, that disables this protein. MVNSe contains 

an additional sequence CGTACGATGACGTCCTAG inserted just after 

nucleotide 3368 to introduce unique restriction sites while maintaining the 

genome length in compliance with the rule of six (www.addgene.org/58799/). 

MVMor also has been sequenced413,414 and differs from the MVNSe only in 

few amino acids, isolated to the H and L genes232. Whether and how these 

minor genetic differences may play a role in my findings is not clear. 

Secondly, the difference could be at the functional level with dissimilarity in 

expression of the MV glycoproteins on the cell surface after infection with 

different strains. Functional differences have been reported between 

polymerase L protein of different vaccine and WT MV strains and might 

depend on the passage history of each attenuated strain437. And thirdly, the 

known difference between the fusogenicity of the two strains could be 

responsible for the differences observed50. 

I was able to explore one of the potential functional differences by 

assessing the MV-H expression on Jurkat cells after infection with either of 

the viruses. MV-H expression was much higher after infection with MVMor 

than with MVNSe. This was in keeping with the hypothesis that the surface 

area of cell membrane expressing the viral envelope protein MV-H may be 
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higher overall in the individually infected cells after infection with the less 

fusogenic MVMor (Fig 4-8a) compared to in the large syncytia formed by the 

highly fusogenic MVNSe (Fig 4-8b). Therefore, blocking of fusion with FIP 

showed slight increased in the %MV-H expression on Jurkat cells infected 

with MVNSe, possibly due to the increase in surface area of cell membrane 

expressing MV-H as hypothesised (Fig 4-8). Interestingly, the MVMor 

infected Jurkat cells showed slight abrogation of %MV-H expression upon 

blocking of fusion, which was unexpected and opposite of the hypothesis. 

One probable explanation could be decrease in the level of infection in the 

cells (and therefore MV-H expression) due to inhibition in viral spread 

resulting from blocking of fusion, as cell-cell fusion is one known way by 

which the virus can spread438. Additionally, as the MV-H expression was 

determined by flow cytometry, there is a possibility of an experimental bias in 

this observation, whereby large syncytia might ‘break’ while passing through 

the flow cytometer, artificially reducing the level of cell surface MV-H 

expression by concentrating the observations to cells which are less well 

infected. Furthermore, determination of syncytia formation by flow cytometry 

requires the capacity to distinguish between simple cell aggregates and 

genuine doublets due to actual syncytium formation. When syncytia are 

observed on a flow cytometer, their FSC/SSC profile should be very similar 

to that of doublets, i.e. they are large (high FSC-A) and have unusual shapes 

(high FSC-W) and granularity (high SSC). These characteristics would 

typically be gated out of the analysis439. So, I have tried to interpret any data 

where cell-cell fusion is estimated by flow cytometry cautiously. 



 

 

207 

In this chapter I began to observe the effects of fusion inhibition and 

its relation to tumour cell cytotoxicity. It has been reported that blocking virus 

mediated cell-cell fusion can lead to abrogation of tumour cell cytotoxicity440, 

where addition of FIP to tumour cells infected with a modified fusogenic 

strain of adenovirus, led to inhibition of syncytium formation, which in turn 

decreased the cytotoxicity. In the experiments in this chapter too, upon 

addition of FIP to the MVNSe infected Jurkat cells, there was significant 

abrogation of neutrophil-specific lysis of the Jurkat cells. 

All the data from this chapter taken together have showed that ADCC 

is not a likely mechanism of neutrophil-mediated MV oncolysis. The results in 

Jurkat cells appear as an exception and have potential alternative 

explanations. Based on the data in this chapter, I have proposed that 

possible cell-cell fusion between the neutrophils and MV-infected target cells 

might have a role to play in MV oncolysis. This will be investigated further in 

chapter 5. 
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Chapter 5: Fusion between neutrophils and target cells 

mediate cytotoxicity during measles virus oncolysis - a 

novel mechanism of oncolysis 

5.1 BACKGROUND: 

 Virus mediated fusion: 5.1.1

Numerous viruses and fusogenic viral envelope glycoproteins - termed 

“fusion membrane glycoproteins” (FMG) are reported in the literature to 

cause cell-cell fusion and multi-nucleated syncytium formation, a cytopathic 

effect (CPE) which may eventually lead to cell death, at least in-vitro. Virus 

mediated cell-cell fusion is a multistage process and is used by enveloped 

viruses primarily to gain host cell entry. For example, during MV infection, the 

interaction of the MV-H protein with its receptors (CD46/ CD150) initiates a 

conformational change in the MV-F glycoprotein, which in turn mediates 

fusion of the viral envelope and the host cell membrane, facilitating cell 

entry441. Although not characteristic of non-enveloped viruses, the oncolytic 

virus Reovirus expresses non-structural, fusion associated small 

transmembrane (FAST) proteins. FAST proteins are not necessary for 

Reovirus entry or replication in host cells; they appear to have evolved to 

mediate cell-cell fusion rather than virus-cell fusion, thereby contributing to 

the rapid dissemination of the infection442-445. 

Virus-mediated cell-cell fusion has been shown to induce apoptosis. 

For instance, HIV infected CD4+ cells show extensive CPE in-vitro. Co-
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culturing CD4+ cells with HIV glycoprotein or MV glycoprotein-expressing 

cells led to apoptosis, which was exclusively induced by cell-cell fusion446. In 

another study, Sendai virus infection of primary paediatric bronchial epithelial 

cells induced enhanced CPE with evidence of syncytia that led to apoptosis. 

The observed syncytia were associated with secretion of several pro-

inflammatory cytokines - RANTES, TRAIL, IP-10, IL-6, IL-8, etc.447. 

 Measles Virus-mediated fusion: 5.1.2

MV-induced syncytia have been implicated in stimulating anti-viral 

immune responses. In a normal human fibroblast cell line (IMR-90) and in 

A549 cancer cells MV-induced syncytia led to the down regulation of different 

cell cycle regulators of the retinoblastoma protein (pRB) pathway and the 

fused cells showed a senescent phenotype with a halt in cell cycle 

progression448. Furthermore, MV-induced syncytia in human epithelial cells 

and in mature DCs, led to IFNβ amplification in epithelial cells and both 

IFNα/β amplification in mature DCs. Interestingly, IFNβ amplification was 

inhibited in a dose dependent manner by FIP in the epithelial cells. Moreover, 

MV-induced syncytia in epithelial cells showed highly dynamic behavior with 

an unexpectedly long lifespan449. This finding was later echoed by findings 

from our lab, where neutrophils from healthy donors infected with oncolytic 

MV became activated and survived longer ex-vivo than uninfected cells, 

although in this study, syncytia formation between neutrophils was not 

investigated357. 
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Cell-cell fusion within different cells and tissues after MV infection can 

be variable. Our own published data show substantial differences in the 

levels of syncytia formation - as an example there was minimal cell-cell 

fusion in MV-infected primary patient chronic lymphocytic leukaemia (low 

grade B-cell malignancy) cells for which the reasons were not clear; since the 

virus demonstrably replicated within the cells and the MV-H and MV-F 

expression was confirmed in all cases indicating that lack of cell-cell fusion in 

these cells was not due to a failure of viral envelope protein expression386. In 

spite of this, published data on MV therapy in a variety of tumours 

consistently report substantial induction of fusion in tumour targets, at least 

in-vitro51,52,175,176,260,450, and thus regarded as a potential mechanism of MV-

induced oncolysis. 

 Other FMG-mediated fusion: 5.1.3

Virally derived FMGs reported in the literature as having potential 

relevance to cancer therapy include not only F and H glycoproteins of MV, 

but also the rhabdoviral VSV-G envelope451 and retroviral Gibbon Ape 

Leukaemia Virus (GALV) envelope protein452. F/H and GALV delivered by 

adenoviral and lentiviral vectors have shown therapeutic activity in xenograft 

models453. When compared to herpes simplex virus thymidine kinase or 

cytosine deaminase suicide genes, one log more potent cytotoxicity was 

observed by using FMGs in an in-vivo model of human xenograft, with a 

significant bystander effect454. Cell death observed was due to sequestration 

of cell nuclei and nuclear fusion. In this model, syncytia formation was 

accompanied by the induction of immune-stimulatory heat shock proteins, 
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which can act as non-specific stimulants of innate immune system454. FMG 

mediated cell death occurs predominantly by non-apoptotic pathways with 

mitochondrial failure and ATP depletion. With progression of syncytium 

formation, the nuclei fuse; this is associated with premature chromosome 

condensation and autophagic degeneration and the subsequent release of 

the cellular vesicles termed ‘syncytiosomes’ (vesicles reminiscent of 

exosomes)455,456. 

 Fusion mediated immunogenicity: 5.1.4

The immune-stimulatory mechanisms of FMG mediated cell death 

have been exploited therapeutically to enhance anti-tumour immune 

responses457. Loading DCs with fusing tumour cells has been used as a 

strategy to cross present tumour antigens to T-cells457. In a human in-vitro 

model, syncytiosomes from dying syncytia more effectively loaded DCs for 

cross presentation of a melanoma tumour-associated antigen for T-cell 

priming than normal cells or cells killed by irradiation455. Additionally, GALV-

mediated cell fusion reversed the suppressive effect of human melanoma 

Mel888 cells on DC maturation and potentiated IL-12 production by activated 

DCs. These DCs when loaded with fusing Mel888 cells were able to present 

the melanoma specific cytotoxic response against Mel888 in-vitro453. In a 

different mouse melanoma model, tumour cells that were fused ex-vivo acted 

as a potent vaccine against a live tumour challenge and against a pre-

established disease457. 
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 Replicating fusogenic viruses as oncolytic agents: 5.1.5

The concept of fusogenicity as a therapeutic component of replicating 

virus therapy has also been explored using viruses other than MV. Several 

studies have reported the implication of direct cell-cell fusion to enhance 

oncolytic virotherapy. Bioknife™, a modified Sendai virus (SeV) with 

enhanced fusogenic ability is oncolytic in different tumour types in-vitro 

where cell-cell fusion and cell death were observed458. A single Gly-to-Ala 

substitution in the SeV F protein generates a hyperfusogenic mutant, which 

is more cytopathic in prostate cancer cell lines in-vitro than the non-fusogenic 

counterpart. Additionally, prostate cancer xenografts responded better to 

therapy with the hyperfusogenic mutant SeV compared to the non-fusogenic 

counterpart459. Moreover, oncolytic adenovirus expressing the GALV 

envelope glycoprotein under the control of the adenovirus major late 

promoter (ICOVIR16), induced extensive syncytia formation and enhanced 

tumour cell killing in various tumour types including melanoma and 

pancreatic cancer both in-vitro and in-vivo compared to the non-fusogenic 

virus (ICOVIR15). In-vivo injection of ICOVIR16 led to tumour cell fusion in-

vivo with extensive and enhanced viral spread within the tumour460. Another 

fusogenic adenovirus created by expressing the MV-H and MV-F proteins 

replacing the E1 gene of the adenovirus showed enhanced cytotoxicity in 

HER911 cells (human embryonic retinoblast 911) compared to the non-

fusogenic control440. 
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 Fusion inhibitory peptide: 5.1.6

Fusion inhibitory peptide or FIP (Z-D-Phe-Phe-Gly-OH) is a 

polypeptide originally designed to resemble the N-terminal regions of the 

paramyxovirus F1 polypeptide or the myxovirus HA2 polypeptide461,462. The 

mechanism of cell-cell fusion relies on a conformational change in the lipid 

bilayer membrane structure, which is temperature sensitive. FIP can raise 

the temperature of the lipid bilayer by 10 degrees thereby disrupting the 

conformational change, which inhibits the cell membranes from fusing461. FIP 

may also compete for the binding sites on the cell plasma membranes and 

inhibit fusion and has been shown to work by stabilising the H-F complex463. 

FIP has mainly been used in-vitro to block cell-cell fusion. The MV-induced 

syncytia are formed by co-ordinated action of MV-H and MV-F glycoproteins. 

MV-H engages with its receptor, which leads to structural transition in MV-F 

that facilitates fusion of MV with target cell membrane. FIP can interfere with 

this structural transition of MV-F thereby inhibiting cell infection at the entry 

stage464. Exploiting this characteristic, FIP has been recently used to prevent 

MV infection in-vivo in animal models, where intra-nasal administration 

results in accumulation of the peptide in the airway epithelium that efficiently 

blocks MV infection464. 

 The current study: 5.1.7

In this chapter, the question of whether fusion between MV-infected 

tumour cells and neutrophils can activate neutrophils and engage their 

cytotoxic mechanisms will be investigated. The hypothesis was derived from 



 

 

214 

findings in chapter 4 in which the neutrophil-specific lysis of MV-infected 

Jurkat cells was higher after target cells were infected with a fusogenic 

MVNSe strain than after infection with the less fusogenic MVMor strain. The 

complete abrogation of neutrophil-specific lysis in the presence of FIP was 

also striking. 

 Hypothesis: 5.1.8

The cytotoxic effector function(s) of MV-infected neutrophils relates, at 

least in part, to fusion between neutrophils and target cells. 

5.1.8.1 Aims: 

1. To determine the effect of fusion on degranulation and reactive 

oxygen species (ROS) generation in neutrophils when co-cultured with 

MV-infected targets. 

2. To determine the effect of fusion on type I IFN production and RLR 

signalling pathway in neutrophils when co-cultured with MV-infected 

targets. 

3. To visualise fusion between neutrophil and MV-infected targets. 

5.2 METHODS: 

 Neutrophil degranulation: 5.2.1

Neutrophils were added to MVNSe infected Jurkat cells (24hpi) at an 

E:T ratio of 8:1, and co-cultured in the presence or absence of FIP. Twenty-

four hours later, the cells were collected, washed and resuspended in 
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1xPBS. To determine neutrophil degranulation, the cells were stained with 

CD35 FITC, CD63 FITC, CD66b FITC or IgG isotype antibodies before 

performing the flow cytometric analysis as described in chapter 2, section 

2.9. The neutrophil population was gated on the forward scatter (FSC)/side 

scatter (SSC) in the co-cultures and the percentage degranulation calculated 

based on the isotype control. The results were compared to the uninfected 

co-culture controls. This experiment was repeated in neutrophils from 3 

donors. 

 ROS production: 5.2.2

Neutrophils were added to MVNSe infected Jurkat cells (24hpi) at an 

E:T ratio of 8:1, and co-cultured in the presence or absence of FIP. Twenty-

four hours later, the cells were collected, washed and resuspended in 

1xPBS. To determine ROS generation, the cells were stained with 5mM 

CellROX® Green reagent (Life TechnologiesTM) according to manufacturer’s 

instructions and then washed 3 times with 1xPBS before performing the flow 

cytometric analysis as described in chapter 2, section 2.9. The neutrophil 

population was gated on the FSC/SSC in the co-cultures and the %ROS 

generation was calculated only in the neutrophil population compared to the 

uninfected controls. This experiment was performed in 3 different neutrophil 

donors. 

 RIG-I/MDA5/MAVS gene expression: 5.2.3

Neutrophils were added to MVNSe infected Jurkat cells (24hpi) at an 

E:T ratio of 8:1, and co-cultured in the presence or absence of FIP. Twenty-
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four hours, later the cells were collected, and total RNA was extracted using 

TRIzol® extraction (chapter 2, section 2.8.4). First strand cDNA was 

synthesised from the total RNA (chapter 2, section 2.8.5) and then the 

relative expression of RIG-I, MDA5 and MAVS was determined by Quanti 

Tect® Primer assay (Qiagen, UK) as described in chapter 2, section 2.8.6. 

 Live cell imaging: 5.2.4

5.2.4.1 Jurkat cells: 

Jurkat cells were infected with MVNSeGFP at an MOI of 1.0. To 

immobilise the cells, they were aliquoted into 24-well plates coated with 

20μg/ml of Fibronectin (R&D Systems, USA). At 24hpi, either neutrophils, 

extracted from a healthy donor or uninfected Jurkat cell controls were stained 

with 3μM concentration of CellTrackerTM Red CMTPX Dye (Molecular 

Probes, Life technologies) for 30-45mins in serum free medium (RPMI1640, 

pre-warmed at 37°C) according to manufacturer’s guidelines. The cells were 

then washed 5-6 times and added onto the infected Jurkat cells at a ratio of 

1:1. The cells in co-culture were then imaged on a Nikon ECLIPSE Ti-S 

inverted microscope system for 2-3 hours every 5mins using the 40X ELWD 

(extra length working distance) objective, to facilitate imaging through plastic. 

The sequence of images was stitched together and analysed using FIJI 

(ImageJ) software. 
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5.2.4.2 Vero cells: 

Vero cells were plated at 0.5x106 per well in a 12-well tissue culture 

plate and infected with MVNSeGFP at an MOI of 1.0. Twenty-four hpi the 

neutrophils were extracted and stained as described before (5.2.4.1) and 

added to the infected Jurkat cells. They were then imaged on a Nikon 

ECLIPSE Ti-S inverted microscope system for the first 3 hours every 5mins, 

and the next 2 hours every 10mins using the 40X ELWD objective and 

analysed using FIJI (ImageJ) software. 

5.3 RESULTS: 

 Neutrophil degranulation when co-cultured with MVNSe infected 5.3.1

Jurkat cells in the presence and absence of FIP: 

Direct MVMor infection of neutrophils has already been shown to lead 

to neutrophil degranulation357. Neutrophil degranulation is a multi-stage 

process, which leads to release of the granule contents into the extracellular 

or phagolysosomal spaces and fusion of membranes319. The granules 

translocate to the neutrophil cell surface, where they interact with the lipid 

bilayer, leading to priming of the granules. This facilitates rapid fusion of the 

granule membrane to the neutrophil membrane, thereby releasing the 

granule contents318, showing fusion as an inherent mechanism during 

neutrophil degranulation. To determine whether co-culture of MVNSe 

infected Jurkat target cells with neutrophils could enhance neutrophil 

degranulation, MVNSe infected Jurkat cells were incubated with neutrophils 

(N=3) from healthy donors in the presence or absence of FIP for 24 hours. 



 

 

218 

The cells were then analysed by flow cytometry for the presence of granule 

markers on the cell surface. The gating strategy is shown in Fig 5-1. 

FSC/SSC was used to gate on the neutrophil population (Fig 5-1a). Based on 

the isotype control (Fig 5-1b), the percentage degranulation (Fig 5-1c) and 

MFI of degranulation were calculated on the neutrophils for degranulation 

markers CD66b (specific granules), CD35 (secretory vesicles) and CD63 

(azurophilic granules). The representative FACS histogram plots for each of 

the degranulation markers are shown in Fig 5-2. FIP did not have any direct 

effect on neutrophil degranulation per se, as is evident from the uninfected 

controls treated with FIP (Fig 5-3, 5-4, 5-5). No significant change in the 

percentage of neutrophils expressing CD66b (Fig 5-3a) and CD35 (Fig 5-4a) 

or in the MFI (Fig 5-3b; Fig 5-4b) of these two markers was observed on co-

culture with MVNSe infected Jurkat targets and FIP did not have any effect 

on those processes. 

By contrast, the percentage of neutrophils expressing azurophilic 

granule markers CD63 on their cell surface (Fig 5-5a) and MFI of CD63 (Fig 

5-5b) significantly increased upon co-culture with MV-infected targets 

(p=0.0073 and p=0.0494 respectively) compared to the uninfected targets. 

Moreover, the percentage of CD63 was significantly abrogated upon blocking 

of fusion with FIP (p=0.0417). However, the MFI reduction upon addition of 

FIP though evident, was not statistically significant. 

Overall, the data showed that neutrophil degranulation was variably 

affected when in contact with MVNSe infected Jurkat target cells compared 
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to the uninfected Jurkat cell controls; more affected was azurophilic granules 

(CD63). When fusion was blocked, there was abrogation in degranulation, 

which was most significant in the percentage of azurophilic granules, 

suggesting that MVNSe infection of Jurkat target cells plays a role in 

neutrophil degranulation upon co-culture. 
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Figure 5-1: Gating strategy to assess degranulation markers on neutrophils in co-culture: Representative FACS plots (from MVNSe 
infected Jurkat cells showing %CD63 expression on the FITC channel) showing the gating strategy used to assess neutrophil degranulation. 
Based on the FSC/SSC in Jurkat cells and neutrophil co-culture, neutrophil subset was gated (a). The degranulation percentage was 
determined on the neutrophil population alone by FITC conjugated antibodies. The quadrant gates for FITC isotype antibody control were set 
(b), based on which the percentage degranulation on neutrophils was determined (c).  
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Figure 5-2: Representative histogram FACS plots for neutrophil granules marker expression on neutrophils in co-culture: 
Representative histogram FACS plots are shown for CD66b, CD35 and CD63 on neutrophils co-cultured with uninfected (light grey and dark 
grey lines) or MVNSe infected (light pink and dark pink lines) Jurkat cells in the presence (darker shades) or absence (lighter shades) of FIP. 
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Figure 5-3: Specific granules marker expression on neutrophils in co-culture: The percentage of cells expressing (% positive cells) (a) 
MFI (b) of CD66b on neutrophils at baseline (white) (n=3), after MVNSe infection (n=3) in the presence (dark pink) or absence (light pink) of FIP 
and uninfected control (n=3) in the presence (dark grey) or absence (light grey) of FIP. MFI of the degranulation marker was normalised against 
the respective isotype controls. ‘Baseline’ represents the expression on freshly isolated neutrophils. The bars show the mean±SEM. Paired t 
test was performed to obtain the P-values. 
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Figure 5-4: Secretory vesicle marker expression on neutrophils in co-culture: The percentage of cells expressing (% positive cells) (a) and 
MFI (b) of CD35 on neutrophils at baseline (white) (n=3), after MVNSe infection (n=3) in the presence (dark pink) or absence (light pink) of FIP 
and uninfected control (n=3) in the presence (dark grey) or absence (light grey) of FIP. MFI of the degranulation marker was normalised against 
the respective isotype controls. ‘Baseline’ represents the expression on freshly isolated neutrophils. The bars show the mean±SEM. Paired t 
test was performed to obtain the P-values. 
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Figure 5-5: Azurophilic granules marker expression on neutrophils in co-culture: The percentage of cells expressing (% positive cells) (a) 
and MFI (b) of CD63 on neutrophils at baseline (white) (n=3), after MVNSe infection (n=3) in the presence (dark pink) or absence (light pink) of 
FIP and uninfected control (n=3) in the presence (dark grey) or absence (light grey) of FIP. MFI of the degranulation marker was normalised 
against the respective isotype controls. ‘Baseline’ represents the expression on freshly isolated neutrophils. The bars show the mean±SEM. 
Paired t test was performed to obtain the P-values. 
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 ROS generation by neutrophils when co-cultured with MV-5.3.2

infected Jurkat cells in the presence and absence of FIP: 

ROS generation precedes neutrophil degranulation465. In order to 

investigate if MV infection of targets cells had any effect on ROS generation 

by neutrophils, Jurkat cells were infected with MV, and 24hpi, neutrophils 

from healthy donors (N=3) were added at 8:1 E:T ratio. Experiments were 

carried out in the presence or absence of FIP to test the role of cell-cell 

fusion. Freshly extracted neutrophils were used to determine the baseline 

ROS levels. The gating strategy is shown in Fig 5-6 on representative FACS 

plots. Within the neutrophil and target cell (infected/uninfected) co-culture, 

the percentage of cells expressing ROS was calculated on the neutrophil 

population alone (Fig 5-6a). The gates were set on the ROS production by 

neutrophils in co-culture with uninfected Jurkat cells (Fig 5-6b) in the 

presence or absence of FIP, based on which, the ROS percentage and MFI 

in FIP (Fig5-6c) and no FIP (Fig 5-6d) infected conditions were determined. 

Figure 5-7a and b show the percentage cells expressing ROS and the 

MFI of ROS expressing cells, respectively. Neutrophils co-cultured with MV-

infected Jurkat cells showed a higher MFI and percentage of cells stained 

positive for ROS compared to neutrophils co-cultured with uninfected Jurkat 

cells. The increase in ROS production was abrogated upon blocking of cell-

cell fusion with FIP. However, the observations were not statistically 

significant possibly due to the low power of the experiment. 



 

 

2
2

6
 

 

 

Figure 5-6: Gating strategy to assess ROS production by neutrophils in co-culture: Representative FACS plots showing the gating 
strategy used to assess ROS production. Based on the FSC/SSC in Jurkats and neutrophil co-culture, neutrophil subset was gated (pink gate) 
(a). The ROS percentage was determined on the neutrophil population alone by CellROX® green reagent in the FITC channel. The quadrant 
gates for uninfected co-culture control was set to determine the baseline ROS production (b), based on which the percentage ROS production 
by neutrophils in FIP (c) and no FIP (d) conditions were determined. 
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Figure 5-7: ROS on neutrophils in co-culture: The percentage of cells expressing (% positive cells) (a) and MFI (b) of ROS on neutrophils at 
baseline (white) (n=3), after MVNSe infection (n=3) in the presence (dark pink) or absence (light pink) of FIP and uninfected control (n=3) in the 
presence (dark grey) or absence (light grey) of FIP. ‘Baseline’ represents the ROS expression on freshly isolated neutrophils. The bars show 
the mean±SEM. 
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 Neutrophils produce significant amounts of IFNα and IFNβ when 5.3.3

co-cultured with MV-infected Jurkat cells, which disappears in 

the presence of FIP: 

To test whether fusion between the MV-infected Jurkat target cells 

and neutrophils can lead to type I IFN production, infected Jurkat target cells 

were co-cultured with neutrophils for 24 hours in the presence or absence of 

FIP and the supernatant from the cultures was collected and quantified for 

IFNα/β production by ELISA. A number of important control conditions were 

included to ensure that any IFN produced was from the neutrophils and not 

the target cells and that it was definitely a response to MV infection; target 

cells alone, MV-infected target cells alone, neutrophils alone, MV-infected 

neutrophils alone and target cells with neutrophils but no MV were all 

included as experimental conditions and each was repeated with the addition 

of FIP (N=3). Figure 5-8a shows the results for IFNα production. Neutrophils 

produced 161-5594 pg/ml of IFNα but only when co-cultured with MV-

infected Jurkat cells (light pink bars). None of the other experimental control 

conditions generated any IFNα, confirming that the virus, target cells and 

neutrophils were all necessary for the interferon response. There was a very 

substantial reduction in IFNα production upon addition of FIP (0-315pg/ml). 

The experiment failed to reach significance due to very low IFNα produced 

by one donor (161pg/ml). Therefore, the absolute quantities of IFNα 

produced in the infected Jurkat cell/neutrophil co-culture in the presence or 

absence of FIP were analysed separately and are shown in Fig 5-8b. Figure 

5-8c shows the data for IFNβ. Neutrophils co-cultured with MV-infected 

Jurkat cells secreted IFNβ in the range of 54-92pg/ml (light pink bar), which 
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was significantly (p=0.0111) abrogated upon addition of FIP (0-2.9pg/ml). 

Again, there was little or no IFNβ production without the presence of both 

MV-infected target cells plus neutrophils. The absolute quantities of IFNβ 

produced in the infected Jurkat cell/neutrophil co-culture in the presence or 

absence of FIP were analysed separately and are shown in Fig 5-8d. 

These data indicated that neutrophils are the source of IFNs after 

contact with MV-infected target cells and that IFN is produced specifically 

when the neutrophils are in contact with the MV-infected Jurkat target cells. 

The substantial reduction in the IFN production in the presence of FIP 

suggested that fusion between neutrophils and MV-infected Jurkat cells 

might be involved in the generation of an IFN response. 
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Figure 5-8: Effect of FIP on type I IFN production in Jurkat/neutrophil co-
culture: IFNα (a) and IFNβ (c) production in infected and uninfected Jurkats, 
neutrophils and Jurkat/neutrophil co-culture in the presence or absence of FIP in all 
conditions by ELISA. IFNα (b) and IFNβ (d) production only in MV-infected 
Jurkat/neutrophil co-culture conditions in the presence (dark pink dots) or absence 
(light pink dots) of FIP. The bars in (a) and (c) show the mean±SEM. Paired t test 
was performed to obtain the P-values. 
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 The (RIG-I like receptor) RLR signalling pathway is upregulated 5.3.4

when MV-infected Jurkat cells are co-cultured with neutrophils 

compared to neutrophils and Jurkat cells alone. 

To determine the upstream events of the type I IFN production, the 

induction of genes in the RLR signalling pathway was quantified by RQPCR. 

Similarly to the previous experiments, this was carried out in the presence 

and absence of FIP in order to evaluate the contribution of fusion. Jurkat 

cells and/or neutrophils were infected and either co-cultured or incubated on 

their own for 24 hours and the RIG-I/MDA5 and MAVS gene expression 

determined. The level of expression was normalised to the uninfected 

controls of each condition. The data are shown in Fig 5-9. Both RIG-I and 

MDA5 were very modestly upregulated in neutrophils but not Jurkats after 

direct infection with MV. However, after co-culture of neutrophils with infected 

Jurkat cells, expression of both RIG-I and MDA5 were increased 20-40 fold 

with some reduction upon FIP addition. There was no significant upregulation 

of MAVS in any of the conditions. These data show that the presence of both 

MV-infected target cells and neutrophils together is important for activation of 

the RLR signalling pathway. Since minimal upregulation was observed in 

Jurkat cells infected with MV compared to neutrophils infected with MV, it can 

be speculated that when in co-culture, MV-infected Jurkat cells stimulate the 

RLR signalling pathway particularly in the neutrophils. The relative lack of 

change upon FIP addition suggests that this upstream step is not fusion-

related. 
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Figure 5-9: Quantification of genes of the RLR signalling pathway in Jurkat/neutrophil co-cultures: RIG-I, MDA5 and MAVS genes 
quantified by RQPCR in MV-infected Jurkat cells on their own (grey bars), neutrophils on their own (blue bars) and Jurkat/neutrophil co-culture 
(pink bars) in the presence (dark shades) or absence (light shades) of FIP. The data is normalised to uninfected controls and represented as 
relative quantities to GAPDH house keeping gene by ΔΔCt method. N=3. The data is represented as mean±SEM.  
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 IFN does not have any direct cytotoxic effect on MV-infected or 5.3.5

uninfected Jurkat cells 

In order to test whether type I IFN generation by neutrophils could be, 

in part, responsible for the target cell cytotoxicity observed, exogenous IFN 

was added in increasing concentrations to Jurkat cells which had been 

infected with MV or mock-infected. Both cell numbers (Figs 5-10a and b) and 

percentage cell viability (Fig 5-11a and b) in uninfected controls were 

significantly higher than the MVNSe infected cells but did not change with 

increasing concentrations of IFNα or IFNβ. Taken together the data suggest 

that the production of IFN by neutrophils does not directly result in the Jurkat 

target cell cytotoxicity we observed. 
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Figure 5-10: Effect of exogenous type I IFN on Jurkat cell number: Jurkat cell numbers counted by trypan blue in uninfected (grey) and 
MVNSe infected (pink) conditions, 24hpi in variable concentrations of IFNα (a) and IFNβ (b). Paired t test was performed to obtain the P-values. 
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Figure 5-11: Effect of exogenous type I IFN on Jurkat cell viability: Percentage Jurkat cell viability determined by trypan blue in uninfected 
(grey) and MVNSe infected (pink) conditions, 24hpi in variable concentrations of IFNα (a) and IFNβ (b). Paired t test was performed to obtain 
the P-values. 
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 Neutrophils produce a significant quantity of soluble TRAIL when 5.3.6

cultured with MV-infected Jurkat cells, which is abrogated in the 

presence of FIP: 

Tumour necrosis factor (TNF) – related apoptosis-inducing ligand 

(TRAIL) is a member of the TNF superfamily, which is selectively cytotoxic in 

cancer cells and its production by neutrophils is known to be consequent on 

IFNα stimulation466. In our previous publication, MV infection of neutrophils 

was shown to induce TRAIL secretion in the absence of de novo synthesis, 

by triggering release of pre-fabricated TRAIL, via direct effect upon 

degranulation357. To test whether the observed upregulation of type I IFNs 

can lead to soluble TRAIL production, infected Jurkat target cells were co-

cultured with neutrophils for 24 hours in the presence or absence of FIP and 

the supernatant from the cultures was collected and quantified for soluble 

TRAIL production by ELISA (Fig 5-12). Important control conditions similar to 

IFN secretion ELISA experiment were included – target cells alone, MV-

infected target cells alone, neutrophils alone, MV-infected neutrophils alone 

and target cells with neutrophils but no MV. Neutrophils co-cultured with MV-

infected Jurkat cells produced significantly high levels of soluble TRAIL (1000 

– 1200pg/ml) compared to neutrophils in the presence of uninfected Jurkat 

cells (200pg/ml) (p=0.0290). In the presence of FIP, TRAIL production was 

significantly reduced (p=0.0119) to that seen in uninfected conditions (250-

500pg/ml), suggesting again that fusion between Jurkat target cells and 

neutrophils may be a key component of the cytotoxic response of 

neutrophils. 
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Figure 5-12: Effect of FIP on soluble TRAIL production in Jurkat/neutrophil co-
culture: Soluble TRAIL production determined in infected and uninfected Jurkats, 
neutrophils and Jurkat/neutrophil co-culture in the presence or absence of FIP in all 
conditions by ELISA. The bars in (a) and (c) show the mean±SEM. Paired t test was 
performed to obtain the P-values. 

 

To determine whether this quantity of TRAIL may be responsible for 

the neutrophil-mediated cytotoxicity, a dose response experiment to evaluate 

the direct effect of recombinant human TRAIL (rhTRAIL) on Jurkat cells was 
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performed. (This experiment was carried out by my colleague Dr. Zhang, and 

I have permission to include the data here). Data in Fig 5-13 shows that 

soluble TRAIL below 5000pg/ml did not induce significant cell death in Jurkat 

cells when compared to the untreated negative control (0pg/ml) in-vitro. This 

implies that, even though contact with MV-infected Jurkat cells clearly 

induces neutrophils to release soluble TRAIL, release into the supernatant in 

these experiments (or the cell milieu, in-vivo) might not be the mechanism by 

which a significant biological effect is exerted. The abrogation in TRAIL 

secretion in the presence of FIP further suggests that possible fusion 

between MV-infected Jurkat cells and neutrophils may be at least in part 

responsible for the neutrophil-mediated cytotoxicity that was observed. 
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Figure 5-13: A dose response experiment of Jurkat cells to recombinant human TRAIL: Jurkat cells treated with increasing concentrations 
of soluble TRAIL in-vitro and flow cytometry analysis done to determine percentage of AnnexinV-PI positive cells. 
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 Live cell imaging show possible fusion between neutrophils and 5.3.7

MV-induced syncytium: 

All the data so far with FIP suggested, but did not prove that fusion 

between neutrophils and MV-infected target cells is an important element of 

the effects found. Therefore to be certain, live cell imaging was used to 

determine whether fusion between the infected Jurkat cells and neutrophils 

could be visualised. 

5.3.7.1 Optimisation: 

5.3.7.1.1 Basic conditions for observation of cell-cell fusion using target cells 

alone: 

To optimise the basic conditions for observation of cell-cell fusion and 

to understand the timing of the events, Jurkat cells were infected with 

MVNSeGFP and immobilised onto fibronectin-coated plates. Uninfected 

Jurkat cells, stained with 3μM CMTPX red, were added to the immobilised 

cells. Cells were imaged every 5 mins for 1.5 hours from start of co-culture at 

40X to create a time-lapse video (for full video see Appendix – SV5-1). 

Snapshots from the SV5-1 show a fusion event between the MV-GFP 

infected green Jurkat syncytium and a red uninfected single Jurkat cell at the 

20th min post start of co-culture (shown by the white arrows in Fig 5-14 and a 

purple arrow in SV5-1). The observed fusion between target cells was rapid 

and occurred within 15-20 mins of start of the co-culture. Based on this 

experiment, the infected vs. uninfected cell ratio of 1:1 was set to be the 

optimal ratio. 
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Figure 5-14: Images from MVNSeGFP infected and uninfected Jurkat cell co-culture: Uninfected Jurkat cells stained with CMTPX red dye 
(red cells) were added at 1:1 ratio to 24-well fibronectin coated tissue culture plates containing MVNSeGFP infected Jurkat cells (green), 24hpi. 
Images were taken at 40X zoom using an ELWD lens. Images from SV5-1 (Appendix) showing a fusion event (white arrows) are shown over a 
time period of 30 mins. 
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5.3.7.1.2 Basic conditions for observation of Jurkat-neutrophil fusion: 

Next, MVNSeGFP infected Jurkat cells were immobilised onto 

fibronectin coated plates and then CMTPX-stained neutrophils extracted 

freshly from a donor were added at 1:1 ratio. Imaging was carried out every 

5mins for 2.5 hours at 40X. Fig 5-15 shows snapshots from SV5-2 between 

5th and 130th min. Unlike the previous experiment with target cells alone, 

neutrophils were not observed to fuse with MVNSeGFP infected Jurkat 

syncytia. Instead, neutrophils were seen interacting and clustering beneath 

the green Jurkat syncytia at later time-points, suggesting ongoing interaction 

between the MV-induced target syncytia and uninfected neutrophils. 

However, even 2.5 hours later, no hetero-fusion events were detected. The 

whole series of events are shown in SV5-2 (white arrows) (for full video see 

Appendix). 
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Figure 5-15: Images from MVNSeGFP infected Jurkat cells and uninfected 
neutrophils in co-culture: Uninfected neutrophils stained with CMTPX red dye (red 
cells) were added to MVNSeGFP infected Jurkat cells (green) attached to 
fibronectin coated 24-well tissue culture plates, 24hpi. Images were taken at 40X 
zoom using an ELWD lens. Images from SV5-2 (Appendix) showing neutrophils 
clustering under green GFP positive MV-infected Jurkat cell syncytia (white arrows) 
are shown over a time period of 130 mins. 
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5.3.7.1.3 Fusion between neutrophils and MV-infected adherent Vero cell 

line: 

Jurkat cells and neutrophils are both non-adherent cells, making their 

visualisation on the same focal plane somewhat challenging. Therefore, as a 

proof of principle, the next experiment was designed to determine whether 

neutrophils could fuse with MV-induced syncytia. To achieve that, adherent 

Vero cells that can form a monolayer were plated onto a 12-well tissue 

culture plate and infected with MVNSeGFP at an MOI of 1.0. Red CMTPX 

stained neutrophils were added to the infected Vero cells at 1:1 ratio and 

then imaged every 5 mins for 3 hours at 40X zoom. SV5-3a and SV5-3b (for 

full video see Appendix) suggested that the neutrophils (red) might be 

adhering to the syncytia, which may be indicative of an interaction of the 

neutrophil cell membrane with the membrane of the target syncytia. The 

interacting neutrophils then collapsed and flattened on the surface of the 

syncytia (shown by the white arrow), appearing to be fusing with the syncytia. 

Finally, the dying green Vero syncytium in the same experiment shrunk and 

completely collapsed at the end of 5 hours of co-culture (for full video see 

Appendix - SV5-4), along with the interacting neutrophils, indicating 

attachment and interaction of neutrophils with the syncytia. This experiment 

suggested that neutrophils can actively interact with the MV-induced syncytia 

and possibly fuse with them, but this fusion is delayed when compared to 

target-target cell fusion. Whether the constantly changing morphology of the 

neutrophils that was observed is related to a fusion event is yet to be 

established. This is however a preliminary observation that needs to be 
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confirmed by more quantitative methods. An important consideration in this 

experiment is whether this fusion event between neutrophil and Vero 

syncytia is real and occurring at the same focal plane. Since Vero syncytia 

form a monolayer, it can therefore be presumed that the neutrophils are in 

the same plane as the syncytia. This can be further elucidated with Z-stack 

confocal imaging at different focal planes, to visualise the entirety of the 

sample. 

Preliminary imaging data indicated that visualisation of two target cells 

fusing after MV infection is possible. Additionally, neutrophils were clearly 

shown to interact closely with infected target cells (Jurkat and Vero) with 

possible fusion. 

5.4 DISCUSSION:  

In this chapter, viral infection induced fusion between infected target 

cell and effector cell was investigated as a possible novel mechanism of MV-

mediated oncolysis. Addition of FIP, which was used to block fusion, 

abrogated neutrophil mediated killing of MV-infected Jurkat cells. It was a 

significant and very consistent observation across all the 10 neutrophils from 

different healthy donors that were tested, suggesting fusion as a possible 

mechanism of target cell killing. 

Degranulation and ROS generation are two crucial mechanisms that 

activated neutrophils use to combat infection467. In a previous publication, 

MVMor infection of neutrophils was shown to lead to neutrophil degranulation 
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and neutrophil activation357. Another paramyxovirus – respiratory syncytial 

virus (RSV) that is also known to cause cell-cell fusion, has also been shown 

to stimulate neutrophil degranulation, which was determined by 

myeloperoxidase release, though the effect of fusion blocking was not 

investigated468. It was later reported that the fusion protein of RSV causes 

NADPH oxidase derived ROS production and ERK and p38 MAPK 

phosphorylation469. The effect of target-neutrophil cell fusion on neutrophil 

degranulation and ROS generation was assessed in this chapter. Typically, 

azurophilic granules undergo very limited and controlled exocytosis, due to 

their highly toxic and pathogenic content320. When MVNSe infected Jurkat 

cells were co-cultured with neutrophils, the most significant degranulation 

was of azurophilic granules, which was abrogated in the presence of FIP. 

The other granules exhibited some upregulation upon infection, which was 

also associated with fusion. However, differences in their expression levels 

were not statistically significant requiring further investigation. Furthermore, 

neutrophils, in the presence of Jurkat cells, produced higher levels of ROS 

compared to untreated neutrophils at baseline. This was further increased 

when Jurkat cells were themselves infected. The blocking of fusion led to 

reduced ROS generation by neutrophils. These experiments suggested that 

fusion between MV-infected Jurkats and neutrophils might be able to 

enhance the cytotoxic phenotype of the neutrophils, thereby making it a 

potent killer of cancer cells. 

Other players of the neutrophil cytotoxic effector response, such as 

Neutrophil Extracellular Traps (NETs), incorporated by neutrophils, might 



 

 

247 

also play a role in neutrophil-specific MV oncolysis470. Traditionally thought to 

be involved in bacterial infections, NETs have now emerged as important 

contenders in viral infections. NETs are comprised of sticky, complex mesh 

of de-condensed strands of nuclear DNA formed by the release of granular 

and nuclear contents of neutrophils in the extracellular space in response to 

bacterial or viral stimuli470. The fusion protein of respiratory syncytial virus 

(RSV) has been shown to promote TLR4 dependent NET formation by 

human neutrophils469. Whether NET formation is induced by measles virus 

infection of Jurkat cells is of interest and might have an effect that needs to 

be elucidated. 

The components of the IFN response pathway were investigated in 

the target cells infected with MV in the presence of neutrophils in this 

chapter. An early response to viral infection is the generation of IFNα/β, but 

the role of IFN in MV infection is not very clear237. RNA viruses induce IFNβ 

production in the cytoplasm through RIG-I, MDA5 or LGP2 or through the 

TLR3 in the endosome471. The RIG-I of the RLR pathway can recognise the 

5’-triphosphate-ended RNA of MV small RNA leader transcript. This leads to 

activation of the pathway downstream via activation of the IRF genes (IRF 

1,3,7) leading to IFN production449. Both RIG-I and MDA5 gene expression 

were significantly increased in the co-culture conditions compared to the 

individually infected cells, but addition of FIP did not have any significant 

effect. Whether other pathways involving proteins like STING, a recently 

identified adaptor molecule found on the mitochondrial membrane and 
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believed to act in conjunction with RIG-I and MAVS, have any role to play still 

needs to be elucidated472. 

In a different study, MV infection of mature DCs (mDCs) induced 

multinucleated syncytia that led to enhanced production of IFNα/β, which 

was inhibited by addition of FIP. This clearly showed the contribution of MV-

induced syncytia in an anti-viral immune response449. In this chapter, the high 

expression of the RIG-I and MDA5 genes, irrespective of low MAVS 

expression, in the co-culture experiments correlated with very high amounts 

of type I IFNs, and FIP completely abrogated the IFN production in these co-

cultures. Although production of type I IFN has been long believed to be a 

hindrance in anti-cancer virotherapy, there is growing body of evidence 

showing that they contribute to the induction of tumour associated antigen 

(TAA) specific tumour responses473. Newcastle disease virus treatment 

combined with CTLA4 blockade was reported to eradicate B16 melanomas 

through immune responses that require IFNAR1474. Also Semliki Forest virus 

was shown to elicit an anti-tumour CTL response only if the host expresses 

IFNAR1475. Type I IFN has been reported to have anti-cancer function and 

contribute in immune-surveillance and the success of conventional 

chemotherapy473. Moreover, targeted anti-cancer agents, radiotherapy and 

immunotherapy rely on type I IFN signalling, which may mainly function by 

stimulating anti-cancer immune responses473. In this chapter, infected 

neutrophils or Jurkat cells on their own, uninfected neutrophils and Jurkat 

cells in co-culture, did not produce any detectable levels of IFN, suggesting 
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neutrophils are only able to elicit an IFN response when in co-culture with 

infected Jurkat cells. 

Type I IFNs are known to directly inhibit the proliferation of tumour and 

virus infected cells and increase class I MHC expression, enhancing antigen 

recognition and is approved for systemic therapy in a variety of diseases 

including solid and haematological malignancies, multiple sclerosis and 

chronic viral hepatitis476. Nevertheless, high levels of IFN in the co-culture 

experiments were not found to be directly toxic to the infected Jurkat cells as 

treatment with increasing amounts of exogenous IFN did not have any effect 

on the target cell number and percentage of target cell viability, suggesting 

that IFN did not have a direct cytotoxic effect on the Jurkat cells in these 

experiments. 

Immune cells, such as monocytes and neutrophils, can be stimulated 

by IFNα to release biologically active soluble TRAIL. This, in turn, can exert 

selective apoptotic activities towards tumour cells and virus-infected cells477. 

MV infection of neutrophils has been shown to induce neutrophils to produce 

pre-formed soluble TRAIL from their granules357. Besides, MV-infected 

human DCs were also shown to produce functional TRAIL478. In the co-

culture experiments in this chapter, significant levels of soluble TRAIL was 

detected in the conditions where high IFNα/β levels were produced, which 

decreased in the presence of FIP. However, from previous un-published data 

from the lab, we know that soluble TRAIL below 5ng/ml is not sufficient to 

induce significant death in Jurkat cells in-vitro. Therefore, the level of soluble 
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TRAIL produced (1-1.25ng/ml) in these experiments, might not have been 

responsible for a direct cytotoxic effect on the target cells. 

All the experiments where addition of FIP abrogated the neutrophil-

specific lysis of MV-infected target cells suggested that fusion between target 

and effector cells was possibly playing a crucial role in target cell killing. 

However, the downstream event of fusion that might have a direct role in 

killing of target cells was not clear. Neutrophils have been shown to bind and 

fuse with Epstein Barr Virus (EBV) followed by penetration and subsequent 

localisation to the nucleus of the neutrophils. Visualising the fusion of the 

viral envelope with the neutrophil cell membrane by electron microscopy 

showed the presence of EBV particles inside the vacuoles, suggesting 

phagocytosis of the virus particles by the neutrophils, which was followed by 

apoptosis479. It was therefore postulated that the visualisation of neutrophils 

co-cultured with infected Jurkat cells might provide some insight into the 

actual mechanism of neutrophil mediated MV cytotoxicity of Jurkat cells. To 

investigate that, imaging experiments were designed. As both Jurkat cells 

and neutrophils are suspension cells, the main technical challenge was to 

make one adhere to the plates to form a monolayer, which needs further 

optimisation. Some of the preliminary experiments with an adherent cell line, 

Vero (which forms large syncytia upon infection with MV) and neutrophils, 

showed possible fusion events across all the area of the syncytium. This was 

a proof of principle experiment showing that neutrophils are capable of fusing 

with MV-induced syncytia. However, it was evident that MV-infected Jurkat 

cells can clearly fuse with uninfected Jurkat cells in a very short span of time. 
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Nonetheless, multiple experiments trying to show fusion between the infected 

Jurkat cells and neutrophils were not very successful due to technical 

reasons and needs further optimisation and experimentation. At the same 

time, these experiments need to be repeated in the presence of FIP, to 

attribute any of the observation to be fusion related. 

Overall, data in this chapter suggest that MV infection of Jurkat target 

cells stimulate neutrophils to develop a cytotoxic effector phenotype. All 

aspects of which are blocked by fusion inhibition and hence, may be and is 

potentially mediated by fusion between infected Jurkat cells and neutrophils. 
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Chapter 6: General Discussion 

Measles virus (MV) has been established as a candidate for oncolytic 

virotherapy of haematological malignancies480. Data from this thesis has 

contributed to adding acute lymphoblastic leukaemia (ALL) to the list of 

applicable therapeutic uses and indeed has shown that ALL is particularly 

sensitive to MV oncolysis386. Data from phase I/II clinical trials indicated use 

of oncolytic MV as a safe and well tolerated oncolytic agent173,277,292,390. 

While there is much advancement in this field, the mechanisms of oncolysis 

remain unclear. Understanding the mechanism by which MV kills cancer cells 

holds a crucial key to its continuing success. This thesis has tried to address 

some of the mechanisms that might be playing a role in MV-mediated 

oncolysis. My data show, it is extremely likely, that more than one single 

credible mechanism is in play and ‘one size fits all’ model of “MV therapy for 

cancer” probably does not exist. 

Once the virus is delivered to the specific location of tumour, direct 

oncolysis of the cancer cells alone is very unlikely to deplete all malignant 

cells satisfactorily due to the heterogeneity of the cancer microenvironment. 

The involvement of the immune system will be indispensable to generate a 

more potent response70. In previous work from my host laboratory the 

distribution of the virus within the tumour environment, even after IT injection 

was very patchy. However, the tumours regressed completely, suggesting a 

role of an anti-tumour immune response induced by the MV infection175. The 

tumours were infiltrated with neutrophils but not NK cells or macrophages. 
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This led us to the initial investigation of the role of neutrophils in MV-

mediated oncolysis in detail. 

6.1 GCSF AS A POTENTIAL ENHANCER OF MV ONCOLYSIS IN-VIVO: 

MV modified to express hGCSF was used in chapter 3 to enhance the 

oncolytic activity of MV by stimulating one of the important members of the 

innate immune system – neutrophils. Unexpectedly, the role of neutrophils 

was remarkably different, even in two different models of B-cell malignancy. 

While it was already established by previous work from our lab280 that Raji 

model is sensitive to neutrophil-specific lysis enhanced by MV in-vivo, this 

was reiterated by extended findings in chapter 3. Firstly, in the neutrophil 

depletion experiments the efficacy of MV therapy was abrogated in the 

depleted conditions only in Raji model, showing their importance in MV-

mediated killing. Secondly, MV expressing GCSF in the Raji disseminated 

model enhanced the neutrophil infiltration in the peripheral blood of mice and 

correlated with improved survival when compared to the unmodified MV. By 

contrast, the results in the Nalm-6 disseminated model were unexpected; no 

enhanced effect of addition of the hGCSF gene was observed in MVhGCSF 

treated mice when compared to MVNSe. Besides, unpredictably, the Nalm-6 

ALL progressed rapidly in the disseminated groups treated with hGCSF 

(expressed by MV or on its own). 

GCSF is widely used in the clinical treatment of patients with 

aggressive B-cell malignancies and has been shown to improve outcome393. 

A clinical trial NCT01331590 is being conducted, evaluating the role of GCSF 
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in priming the bone marrow of ALL patients for subsequent chemotherapy 

targeting396. Additionally, in an AML trial, GCSF has been used as a growth 

factor primer as it has been indicated to sensitise the leukaemia cells to 

chemotherapy. In this clinical trial the four-year cancer free survival was 

improved in patients treated with GCSF at induction, compared to the non-

treated group (42% to 33%). In the Raji model, MVhGCSF might carry an 

advantage, especially in combination with non-myelosuppressive 

chemotherapies. However, based on our data that showed an unexpectedly 

aggressive progression of Nalm-6 leukaemia in-vivo by MV expressing 

hGCSF, future studies would need to proceed very cautiously as any benefit 

from hGCSF as expressed by oncolytic viruses could be difficult to predict 

and may even vary from patient to patient. 

6.2 MECHANISMS OF MV ONCOLYSIS IN-VITRO: 

 ADCC as a mechanism of MV oncolysis: 6.2.1

The difference in neutrophil mediated response to MV infection in-

vivo, led to investigation of the mechanisms in detail in chapter 4 and chapter 

5. However, an in-vitro model was used to probe into the mechanisms using 

human neutrophils. In chapter 4, ADCC was explored as a mechanism based 

on previous data from the lab. ADCC, a mechanism by which antibody 

coated cells can induce cytotoxicity via a network of immune effector cells is 

also implicated in virus eradication after natural infection. More than 18 

different mAbs are approved for clinical use for treating cancer481 and can kill 

cancer cells by ADCC482,483. Monoclonal antibody bound to the effector cells 
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and in case of viral infection, the antibodies directed against the viral-infected 

cells can be recognised by effector cells and lead to cell killing by ADCC484-

487. Furthermore, systemic administration of virus hidden in immune-cells in 

combination with mAb like rituximab and cetuximab therapies can facilitate 

NK cell mediated ADCC488. The presence of anti-MV antibody in the 

serum239-241 can be a potential facilitator of ADCC during measles oncolytic 

virotherapy427 and previous data from the lab using Jurkat cells had indicated 

ADCC to be a likely mechanism of MV oncolysis. Nevertheless, after 

elaborate study in different other cell lines in chapter 4, ADCC could not be 

proven as a mechanism of MV oncolysis in-vitro in the cell lines examined 

except in Jurkats. 

 Fusion between neutrophils and MV-infected target cells as a 6.2.2

potential mechanism of oncolysis: 

Chapter 5 focussed on fusion as a mechanism of MV-mediated 

oncolysis. The hypothesis was derived from findings in chapter 4 in which the 

neutrophil-specific lysis of MV-infected Jurkat cells was higher after target 

cells were infected with a fusogenic MVNSe strain, than after infection with 

the less fusogenic MVMor strain. The complete abrogation of neutrophil-

specific lysis of MV-infected Jurkat cells in the presence of FIP was also 

prominent. Therefore, it was proposed that the neutrophils might possibly 

fuse with the MV-infected tumour cells thereby generating a cytotoxic 

neutrophil phenotype that can ultimately kill the tumour cells. 
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In chapter 5, addition of FIP in neutrophil and MV-infected Jurkat cell 

co-culture was shown to abrogate the neutrophil cytotoxic phenotype and 

showed reduced cytotoxicity towards MV-infected Jurkat cells. This was 

suggestive of neutrophil fusing with MV-infected target cells leading to target 

cell killing. Cytotoxic phenotype included neutrophil degranulation, ROS 

production and activation of type I IFN signalling pathway and there was a 

trend observed, where addition of FIP reduced induction of neutrophil 

cytotoxic phenotype. Certain components of the RLR signalling pathway 

tested were shown to be involved (RIG-I, MDA5), whereas others were not 

(MAVS) and hypothetically several others that might be playing important 

role still require testing. 

Sendai virus, a ssRNA virus which can also induce syncytia formation, 

has been shown to induce a pro-apoptotic phenotype in cancer cells via the 

RIG-I/MDA5 pathway activation, by regulated balance between pro and anti-

apoptotic members of the BCL-2 protein family489. Furthermore, ssRNA of 

MV is known to activate the RIG-I/MDA5 signalling 490, which can potentially 

lead to IRF gene expression – this remains to be elucidated. It can be 

hypothesised that this may either directly upregulate pro-apoptotic genes like 

Noxa and TRAIL489, leading to cell death, or could lead to activation of the 

anti-viral and anti-tumoural immunity via production of type I IFN and 

CXCL10. Additionally, as I have shown in chapter 5, a type I IFN response 

consequent on encountering MV-infected target cells can directly induce 

neutrophils to produce soluble TRAIL. Fusion blocking significantly reduced 

both type I IFN and TRAIL production by neutrophils. 
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 In the in-vivo system of cancer therapy, where other members of the 

innate immune family will be present, the type I IFN could further activate NK 

cells to produce IFN gamma, which in turn can attract and activate a CTL 

mediated adaptive immune response against the tumour cells489. 

6.2.2.1 Technical challenges and considerations: 

Attempts to visualise a fusion event between neutrophils and MV-

infected target cells was not successful. However, live cell imaging did 

indicate clear interaction between the MV-induced syncytia in target cells and 

the neutrophils which needs further experimentation. 

To determine fusion formation, various different methods have been 

used, including reporter assays491, spectrofluorometric measurement of 

fluorescent probe redistribution, such as fluorescence dequenching, 

photosensitised labelling, and fluorescence resonance energy transfer 

(FRET)492,493. These methods provide an overall estimation of fusion. 

Although, methods and assays, which can help understand the detailed 

mechanism of fusion by monitoring the detailed kinetic changes in the lipid 

and cytosolic compartments have been used494, they don't allow 

understanding of the functional and biological features of fusion and what 

effect this has on the surrounding environment, which should also be the 

subject of further work. Flow cytometric methods have also been used to 

determine cell-cell fusion495. However, determining the fusion and syncytia 

formation by flow cytometry needs expertise in analysing and being able to 

distinguish between cell aggregates and doublet due to actual syncytium 
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formation. The syncytium, on a flow cytometer show up with an FSC/SSC 

profile very similar to doublets, i.e. they are large (high FSC-A) and have 

unusual shapes (high FSC-W) and granularity (high SSC) that most people 

would typically gate out of their analysis439. All these will need to be taken 

into account before further experiments are designed to be certain that fusion 

between effector cells and MV-infected target cells is a possible mechanism 

of oncolysis. 

 Final Conclusions: 6.2.3

The concept of fusing immune cells with cancer cells has been used 

previously to make cancer vaccines, where hepatoma cells were fused with 

activated B-cells. The hybrid cells produced, lost their tumourigenicity and 

became immunogenic496. If the neutrophils are fusing with MV-infected 

cancer cells, they have the potential to generate a potent immunogenic 

effect, in turn alerting the immune system of the presence of tumour cells. 

Although conventionally, neutrophils are not seen as antigen presenting cells 

(APCs), there are reports that after virus infection they can prime naïve CD8+ 

T-cells and cross-present antigens from the virus infected cells497. They can 

also acquire an APC phenotype in the presence of GMCSF by upregulating 

MHC class II and CD80/CD86 co-stimulatory molecules498. Therefore, upon 

fusion of neutrophils with MV-infected cancer cells, in addition to direct, 

neutrophil-mediated cytotoxicity, I would hypothesise, will generate a more 

specific immune response by presenting the tumour antigens of the virally 

infected cells. This will be a potential benefit, especially in a tumour 
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microenvironment known for their immunosuppressive properties499. This 

should be the subject of further work. 

An additional potential value to MV-mediated target-immune cell 

fusion is the induction of cellular senescence, which has recently been 

shown to occur after MV-infection448. This is a robust mechanism that causes 

permanent cell cycle arrest of potentially harmful cells500,501. 

Chemotherapeutic drugs can induce tumour cell senescence502-504, which 

leads to the phenomena called therapy induced senescence (TIS). TIS have 

been suggested to halt cancer cell progression by different dysfunctional 

apoptosis signalling mechanisms such as overexpression of anti-apoptotic 

BCl-2 proteins and caspase inhibition504-507. Senescent cells, which exhibit 

profoundly altered phenotype, support enhanced MV replication when 

compared to non-senescent cells508. Fusion mediated by MV might be able 

to generate a senescent phenotype in tumour cells enabling enhanced 

replication and more efficient direct killing of the tumour cells. 

Overall the findings in this thesis suggest that neutrophils play an 

important role in MV-mediated killing of B-cell malignancies demonstrating 

specific toxicity against MV-infected target cells. This role can be enhanced 

by GCSF in very specific circumstances. However, I demonstrated that 

MVhGCSF would not be a safe and reliable tool for cancer therapy as the 

high levels of GCSF expressed by this virus can adversely affect tumour 

progression. My data indicates likely fusion induced by MV infection between 

cancer cells and neutrophils, which can potentially contribute to the 
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cytotoxicity. Further work is needed to confirm this fusion by direct 

visualisation. An investigation into the broader immunogenic effect of fusion 

of target cells and neutrophils and into MV-induced senescence would be an 

appropriate direction for further work. 
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Appendix: Live cell imaging (CD-ROM) 

Supplementary Video 1 (SV5-1): Time-lapse video with uninfected 

and MVNSeGFP infected Jurkat cells: Jurkat cells stained with CMTPX red 

dye were added at a ratio of 1:1 to MVNSeGFP infected Jurkat cells that are 

attached to fibronectin coated 24-well tissue culture plates. The plates were 

then imaged at 40X using ELWD lens every 5 mins for 1.5 hours. The purple 

arrow shows a fusion event. 

Supplementary Video 2 (SV5-2): Time-lapse video with uninfected 

neutrophils and MVNSeGFP infected Jurkat cells: Uninfected neutrophils 

stained with CMTPX red dye (red cells) were added to MVNSeGFP infected 

Jurkat cells (green) attached to fibronectin coated 24-well tissue culture 

plates, 24hpi. Images were then taken at 40X zoom using an ELWD lens. 

Neutrophils clustering under green GFP positive MV-infected Jurkat cell 

syncytia (white arrows) are shown over a time period of 2.5 hours. 

Supplementary Video 3 (SV5-3a and 3b): Time-lapse video with 

uninfected neutrophils and MVNSeGFP infected Vero cells: Vero cells 

cultured in 12-well tissue culture plates were infected with MVNSeGFP. 

Twenty-four hours post infection, neutrophils stained with CMTPX red dye 

were added to the infected Vero cells at 1:1 ratio. The videos 3a (green, red 

and bright field image overlay) and 3b (red and bright field overlay) were 

taken over a period of 3 hours and show neutrophils (red) interacting with the 
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Vero syncytium (green), alongside constant changing morphology before 

collapsing completely (white arrows). 

Supplementary Video 4 (SV5-4): Time-lapse video with uninfected 

neutrophils and MVNSeGFP infected Vero cells: Vero cells cultured in 12-

well tissue culture plates were infected with MVNSeGFP. Twenty-four hours 

post infection, neutrophils stained with CMTPX red dye were added at 1:1 

ratio. The video was taken between 3 and 5 hours of co-culture and show 

neutrophils (red) with flattened morphology on the surface of the green 

syncytium (shown by blue arrows). The green syncytium collapses at the end 

of 5-hour co-culture dragging along the red neutrophils. 


