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Abstract

We consider Bayesian estimation of state space models when the measurement density

is not available but estimating equations for the parameters of the measurement density are

available from moment conditions. The most common applications are partial equilibrium

models involving moment conditions that depend on dynamic latent variables (e.g., time-

varying parameters, stochastic volatility) and dynamic general equilibrium models when

moment equations from the first order conditions are available but computing an accurate

approximation to the measurement density is difficult.
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1 Introduction

We propose a method for conducting Bayesian inference regarding the parameters of a non-

linear structural model that has dynamic latent variables. By latent variables we mean all

endogenous and exogenous variables in the model that are not observed.

The general approach to dealing with dynamic latent variables in econometrics is to

resort to filtering techniques (e.g., the particle filter), which, in connection with Markov

Chain Monte Carlo (MCMC) methods, deliver estimates of the structural parameters (see

Andrieu, Doucet, and Holenstein, 2010). To implement a particle filter one needs to be able

to: 1) draw from the transition density of the latent variables, which specifies the distribution

of the latent variables conditional on their past history; and 2) evaluate the measurement

density, which specifies the distribution of the observable variables conditional on the latent

variables.

In this paper, we maintain the assumption that one can draw from the transition density

of the latent variables but we assume that a measurement density is not available and/or

it is difficult to approximate numerically. What is available is instead a set of moment

conditions that provide estimating equations for the parameters of the measurement density.

The most common applications in econometrics where this situation arises are 1) partial

equilibrium models that involve moment conditions depending on dynamic latent variables

(e.g., time-varying parameters, stochastic volatility); and 2) dynamic general equilibrium

structural models when moment equations from the first order conditions are available but

computing an accurate approximation to the measurement density is difficult. There are

currently no econometric methods that apply to the first class of models, and for the second

class of models our method can be considered as an alternative to existing approaches that

does not rely on approximations or numerical solutions of the model.

The method of moments has a powerful appeal in economic research and researchers

are increasingly keen to use prior information as a means to deal with data limitations.

The method we propose here has potential to become a useful tool in applied economic

research, because - as argued by Cochrane (2005) - most researchers find evidence based on

method of moments more persuasive than evidence based on fully specified likelihoods. Our
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contribution is to show that combining method of moments and priors is viable theoretically

and practically in economic models where the presence of dynamic latent variables makes it

impossible to apply standard GMM estimation.

In fact, if one considers calibration to be Bayesian method of moments with extremely

strong priors, then most of the science that matters in our daily lives uses Bayesian method

of moments. In particular, climate models and macro models. The main exception is health,

but this is mostly due to government regulation. Also, the exceptions one finds in macro

are mostly due to the pressure of central banks. Our view is that if statistics is to become

relevant to major policy decisions, then something along the lines of what we propose has

to become viable.

We illustrate the usefulness of our method by applying it to the problem of estimating the

latent endowment process in a Lucas (1978) economy given only knowledge of the agent’s

first order conditions and of the transition density of the latent process. The process we

extract differs markedly from measured consumption and suggests the presence of stochastic

volatility and jumps.

The central idea of the paper is to show that the moment conditions can be used to

construct a “GMM representation” of the measurement density that one can substitute for

the measurement density as an input into an otherwise standard filtering MCMC algorithm.

To illustrate, suppose we have a set of M moment conditions

E [g(yt+1, xt+1, θ)] = 01

implied by a structural model. We observe a realization y = {y1, . . . , yT} from the stochastic

process {. . . , yt−1, yt, yt+1, . . .} but we do not observe {. . . , xt−1, xt, xt+1, . . .} which is thus

the latent process. What we know about the latent process is a parametric specification for

its transition density. The objective is to obtain the posterior distribution of the structural

parameter θ (comprised of the parameters of both the moment conditions and the transition

density) and the posterior distribution of the latent process. Formally, the posterior is given

1Expectation for moment conditions is determined by context. If θ is regarded as exogenous and a
likelihood p(x, y | θ) is well defined, then the meaning is

˜

g(yt+1, xt+1, θ) p(x, y | θ) dy dx = 0. If θ is regarded
as endogenous, then the meaning is

˝

g(yt+1, xt+1, θ) p(x, y, θ) dy dx dθ = 0. Equation (43) of the application
in Section 6 is an instance of the latter case. The examples in Section 5 are instances of the former.
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by

po(θ, x|y) ∝ po(y|x, θ)po(x|θ)po(θ)

where the measurement density po(y|x, θ) is unknown aside from the restrictions implicitly

imposed by the moment conditions, the joint density of the latent variables po(x|θ) is pinned
down by the transition density, and the prior po(θ) of the parameters is specified by the

researcher. The contribution of this paper is twofold. We first show that the moment

conditions induce a probability structure that allows us to replace the unknown transition

density po(y|x, θ) with a known density p∗(y|x, θ). We then propose a numerical algorithm

that uses the particle filter and a Metropolis algorithm to draw from the posterior p∗(θ, x|y) ∝
p∗(y|x, θ)po(x|θ)po(θ).

Regarding the first contribution, we build on and extend the results of Gallant and Hong

(2007) and Gallant (2016a, 2016b, 2016c) to an environment with dynamic latent variables.

The key insight is to show how to replace the probability space over (Y × X × Θ, Co, P o)

implied by the structural model and a prior for θ (where Y × X is the support of the

observable and latent variables, Θ is the support of θ, and Co is the collection of Borel

subsets of Y×X×Θ) by an alternative probability space (Y×X×Θ, C∗, P ∗). The alternative

probability space is such that C∗ is a subset of Co and the density of P ∗ is the same as P o

except that the measurement density is replaced by a density function evaluated at the sample

moment conditions gT (scaled to have variance equal to the identity matrix, i.e., p∗(y | x, θ) =
ψ([Σ(y, x, θ)]−1/2 gT (y, x, θ)]). We call this density function the “GMM representation” of

the measurement density. Because we are concerned with subjective Bayesian inference,

we assume that the density function ψ is specified by the user.2 In practice, we suggest

using the standard normal density, which is motivated by the asymptotic normality of the

sample moments under the standard regularity assumptions. The key insight that allows us

to substitute the unknown measurement density with its GMM representation is the fact

that both probability measures assign the same probability to sets in C∗. Naturally, because

C∗ is a subset of Co, some information is lost. Intuitively this is similar to the information

loss that occurs when one divides the range of a continuous variable into intervals and uses a

2While this article was in press, methods for determining Ψ from primitives were proposed in Gallant
(2016d).
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discrete distribution to assign probability to each interval. Both the continuous and discrete

distributions assign the same probability to each interval but the discrete distribution cannot

assign probability to subintervals. How much information is lost depends on how well one

chooses moment conditions. An in-depth investigation of the effects of moment choice on

inference is beyond the scope of this paper, but we provide some advice on choice strategy

for some key economic applications. In many instances, as in the application of Section 6,

discussion of the choice of moments is moot because the economics of the situation dictate

the choice.

In the state-space literature to which we contribute, (cf. Flury and Shephard (2011),

Fernandez-Villaverde and Rubio-Ramirez (2006)) the assumption that one can draw from

the transition density is standard. Our contribution is to be able to perform Bayesian

inference without knowledge of the measurement density.

The importance of the first contribution is easy to overlook. What it does is establish

the methodology as exact within the Bayesian paradigm given the information that the

researcher chooses to use. Leaving aside specification error, inaccurate algorithms, etc. that

plague all statistical methods, we are proposing exact Bayesian methods, not approximate

Bayesian methods.

Regarding our second contribution, which builds on ideas from Beaumont (2003), An-

drieu and Roberts (2009), Andrieu, Doucet, and Holenstein (2010), and Flury and Shephard

(2011), the computational strategy we propose consists of two steps: a conditional particle

filter step that draws x given y, θ, and the previously drawn x and a Metropolis step that

draws θ given y, x, and the previously drawn θ. The validity of the algorithm follows from

the results of Andrieu, Doucet, and Holenstein (2010) as it can be thought of as an adap-

tation of their particle Gibbs sampler when one has to resort to the GMM representation

of the measurement density. The application of the algorithm results in an MCMC chain

in (θ, x) and thus parameter estimates, standard deviations, and other characterizations of

the posterior distribution can be computed from this chain in the standard way (Gamerman

and Lopes, 2006).

The main attraction of the method we propose is that one does not have to solve the

structural model. For partial equilibrium models this is crucial because, in general, there do
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not exist practicable alternatives.

We also expect that an important application for our results will be statistical infer-

ence regarding general equilibrium models in macroeconomic applications such as dynamic

stochastic general equilibrium models (DSGE). For analytically intractable DSGE models

there are alternatives to what we propose that rely on being able to solve the model numer-

ically. For instance, one can use perturbation methods to approximate the model, use the

approximation to obtain an analytical expression for the measurement density, and then use

some method of numerical integration such as particle filtering to eliminate the latent vari-

ables along the lines proposed by Fernandez-Villaverde and Rubio-Ramirez (2006) and Flury

and Shephard (2011). Alternatively, one can solve the model only to the point of being able

to simulate it and then use the methods proposed by either Gallant and McCulloch (2009),

who use an SNP (Gallant and Nychka, 1987) representation of the measurement density, or

Gallant and Tauchen (2015), who use an EMM (Gallant and Tauchen, 1996) representation

of the measurement density.

In the case of DSGE models, the main reason one might want to consider our alternative

to the existing procedures is that one has misgivings about the quality of the numerical

methods one has used to solve the structural model. For instance, perturbation methods

such as linearization cause loss of information: they typically require dealing with singularity

issues and with possible multiplicity of solutions (indeterminacy). Moreover, lower order

expansions can lose important features of a model such as stochastic volatility (Bloom,

2009; Benigno, Benigno, Nisticó, 2012). A secondary reason is to avoid singularities in the

measurement equation that can arise when using a likelihood based approach with particle

filtering; see, e.g., Subsection 5.2.

2 Assumptions and Implications

ASSUMPTION 1 We require the existence of (but not complete knowledge of) a dynamic

structural model that has parameter θ ∈ Θ. We observe y = (y1, y2, . . . , yT ) ∈ Y , a subset

of the endogenous and exogenous variables in the model. We do not observe the variables

in the model that remain: x = (x1, x2, . . . , xT ) ∈ X . These are the latent variables. Partial

histories are denoted y1:t = (y1, y2, . . . , yt) and x1:t = (x1, x2, . . . , xt). The variables yt and
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xt are vectors, as is θ. �

ASSUMPTION 2 The set Y×X ×Θ is a Borel subset of Rdim(y)+dim(x)+dim(θ). Denote the

probability measure over the Borel subsets of Y × X × Θ implied by the structural model

and the prior for θ by P o. P o has joint density density po(y, x, θ) that factors as

po(y, x, θ) = po(y | x, θ)po(x | θ)po(θ), (1)

where po(x | θ) =
[∏T

t=2 p
o(xt | xt−1, θ)

]
po(x1 | θ). We do not assume knowledge of the mea-

surement density po(y | x, θ). We assume that the process {xt}∞t=−∞
is ergodic, that we can

draw from its transition density po(xt | xt−1, θ), and that we can evaluate the prior po(θ). �

If po(y, x, θ) exists, the factorization (1) is always available. Interest in this article is

focused on the case where one knows po(x | θ) and po(θ) but not po(y | x, θ) and therefore

not po(y, x, θ). Note that we can draw from the stationary density po(x1 | θ) of the process

{xt}∞t=−∞
by drawing from the transition density with an arbitrary start x0 and waiting for

transients to die out.

Examples of latent variables that satisfy Assumption 2 and are routinely used in economic

models are time-varying parameters, structural shocks, state-dependent parameters, and

state-dependent factors. If necessary to accommodate state dependence, e.g., Markov switch-

ing, one can modify the functional form of the transition density provided that ergodicity is

retained. Therefore, the transition density could, e.g., be of the form po(xt+1 | x1:t, y1:t, θ).
However, in this case, one must be able to evaluate the transition density and the formulas

for the weights in the particle filters we describe later become more complicated. On this

see Gallant, Hong, and Khwaja (2015).

When working with DSGE models one is used to thinking in terms of observables and

states. That is not the dichotomy we have in mind here. Our division is into what is observed

and what is not observed. Thus, what we term latent variables can include unobserved states,

unobserved exogenous variables, and unobserved endogenous variables. The practical limit

on what is permitted is determined by Assumption 2.

ASSUMPTION 3 The structural model implies a set of moment conditions of the form

E [g(yt, xt, θ)] =
ˆˆˆ

g(yt, xt, θ) p
o(y, x, θ) dy dx dθ = 0, (2)
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where g : (yt, xt, θ) 7→ R
M . �

REMARK 1 Usually, but not always, the derivation of (2) proceeds as follows. The pa-

rameter θ is not regarded as endogenous so that the structural model has a well defined

likelihood po(y, x | θ) that we shall assume is Markovian for convenience. The structural

model implies a conditional moment condition of the form
ˆˆ

h(yt+1, xt+1, θ) p
o(yt+1, xt+1 | yt, xt, θ) dyt+1 dxt+1 = 0

that holds for every θ in the model’s parameter space, where h(yt+1, xt+1, θ) is vector valued.

Let A(yt, xt) be matrix valued. Then, because A(yt, xt) is orthogonal to h(yt+1, xt+1, θ),

E [A(yt, xt)h(yt+1, xt+1, θ)] =

ˆˆ

A(yt, xt)h(yt+1, xt+1, θ) p
o(y, x | θ) dy dx = 0 (3)

holds for every θ. Because (3) holds for every θ, (3) implies (2) for g(yt, xt, θ) =

A(yt−1, xt−1)h(yt, xt, θ). ✷

Sample moments corresponding to (2) are

gT (y, x, θ) =
1√
T

T∑

t=1

g(yt, xt, θ) (4)

with weighting matrix

Σ(y, x, θ) =
1

T

T∑

t=1

[g̃(yt, xt, θ)][g̃(yt, xt, θ)]
′ (5)

g̃(yt, xt, θ) = g(yt, xt, θ)−
1√
T
gT (y, x, θ) (6)

If the moment conditions are serially correlated one will have to substitute a heteroskedastic

autoregressive consistent (HAC) weighting matrix (Andrews, 1991) for that shown as (5).

Whether Σ(y, x, θ) is cross-sectional as in (5) or HAC, the residuals used to compute it

should be of the form shown as (6).

ASSUMPTION 4 The sample moments normalized by the weighting matrix

Z = [Σ(y, x, θ)]−1/2 gT (y, x, θ) (7)

have a known distribution Ψ with density ψ(z). When Z is computed from a partial history

we write Z1:t. Note that Z : (y, x, θ) 7→ R
M and Z1:t : (y1:t, x1:t, θ) 7→ R

M . �
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We are concerned with Bayesian subjective inference so that one asserts that Z follows

Ψ rather than assumes although one should take care that the assertion is not contradicted

by the primitives of the structural model. A standard choice for Ψ in applications is the

standard normal distribution Φ with density φ(z) = (2π)M/2e−
1

2
z′z. Regularity conditions

such that (7) is asymptotically normal are in Hansen (1982), Gallant and White (1987),

and elsewhere. When these regularity conditions are in force, asserting that Z is standard

normal becomes more palatable, as does an assertion that Z has the multivariate Student-T

should one wish to allow fatter tails to acknowledge a modest sample size. There are risks in

following this approach for which see Gallant (2016b, 2016d). An asymptotic equicontinuity

condition under which asymptotic normality of Ψ is necessary and sufficient for uniform (in

x, y, and θ) convergence of the density ψ of Ψ is given by Theorem 3 of Sweeting (1986). If

Sweeting’s asymptotic equicontinuity condition can be verified, then this risk is considerably

mitigated. A compact Θ, domination and smoothness conditions on g(yt, xt, θ), and bounds

on the eigenvalues of the weighting matrix Σ(y, x, θ) usually figure among the regularity

conditions that insure asymptotic normality. As seen later, these assumptions lead to a

presumption that particle filter weights will be bounded and that the MCMC chain we

propose will mix.

Our final assumption is critical. It provides Z with some of the properties of a pivotal.

ASSUMPTION 5 Let Z = {z ∈ R
M : ψ(z) > 0} and

C(θ,z) = {(y, x) ∈ Y × X : Z(y, x, θ) = z}. (8)

We assume that C(θ,z) is not empty for any (θ, z) ∈ Θ×Z. �

As yet we have not encountered a practical application that violates Assumption 5.

Sufficient in the case Z = R
M is that each element of gT is continuous with respect to at

least one continuous element of (y, x), is neither bounded from above nor below as that

continuous variable varies over its support, and that the residuals used to compute the

weighting matrix are centered as in (6).

Assumption 5 allows us to replace the probability space

(Y × X ×Θ, Co, P o)

10



given by Assumption 2 with a probability space

(Y × X ×Θ, C∗, P ∗)

where P ∗ has density

p∗(y, x, θ) = p∗(y | x, θ) po(x | θ) po(θ) (9)

p∗(y | x, θ) = ψ[Z(y, x, θ)] (10)

and C∗ ⊂ Co for the purpose of Bayesian inference (Gallant, 2016a).

C∗ is defined as follows.3 Let C be the smallest σ-algebra that contains the preimages

C = { (y, x, θ) : Z(y, x, θ)∈B ∩Z} where B ranges over the Borel subsets of RM . C∗ is the

smallest σ-algebra that contains all sets in C plus all sets of the form RB = (Rdim(y)×B) ∩
(Y × X × Θ), where B is a Borel subset of Rdim(x) × R

dim(θ). Gallant (2016a, Section 3)

proves that P o(C) = P ∗(C) for all C ∈ C∗.

There is a term missing in (10); i.e., the right hand side should read adj(y, x, θ)ψ[Z(y, x, θ)].

The normalizing constant adj(y, x, θ) is analogous to a Jacobian term. Its construction is

described in Gallant (2016b, 2016d). If adj(y, x, θ) does not depend on θ, then it can be

disregarded when using MCMC as we propose. When it does depend on θ, its omission can

be interpreted as using a data dependent prior. Even so, Gallant (2016b) argues on the basis

of interpretability of results that it is preferable to omit the adjustment in applications; i.e.,

set adj(y, x, θ) = 1. Comparison of lines 2 and 5 of his Table 1 suggests that in samples of

reasonable size, neglecting the adjustment does not markedly affect results.

As mentioned earlier, C∗ ⊂ Co implies a possible loss of information. The choice of

moment conditions governs how much, if any, information is lost. If they are chosen such

that C∗ = Co, then no information is lost. Saying that the measurement density has a “GMM

representation” is motivated by the fact that when Ψ is the standard normal distribution we

have

p∗(y1:T |x1:T , θ) = (2π)
M

2 exp

{
−1

2
gT (y1:T , x1:T , θ)

′ [Σ(y1:T , x1:T , θ)]
−1 gt(y1:T , x1:T , θ)

}
,

3The correspondence with Gallant’s (2016a, Section 3) notation is that y is his random variable X and
(x, θ) is his random variable Λ.
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which is a transformation of the GMM objective function we could use to estimate θ were

x1:T to be observed. See, e.g., Chernozhukov and Hong (2003).

Bayesian inference relies on the joint posterior density

p∗(θ, x1:T |y1:T ) ∝ ψ [Z(y1:T , x1:T , θ)]
T∏

t=1

po(xt|xt−1, θ)p
o(θ). (11)

Because ψ [Z(y, x, θ)] can only be evaluated point-wise, it is necessary to resort to the Monte

Carlo method to conduct inference about (x1:T , θ). To this end, we will employ the Particle

MCMC of Andrieu, Doucet, and Holenstein (2010). The key idea is that for a fixed value of

θ the particle filter provides an unbiased estimate of the marginal likelihood

p∗(y1:T ) =

ˆ

ψ [Z(y1:T , x1:T , θ)]
T∏

t=1

po(xt|xt−1, θ)p
o(θ) dx1:T dθ.

A possibility is to use the unbiased estimate of p(y1:T ) within a Metropolis-Hastings algorithm

to target the joint posterior in (11). This is the Particle Marginal Metropolis-Hastings

(PMMH) algorithm (Algorithm 2 of Section 3).

Instead of relying on this algorithm, the chain that we propose for Bayesian estimation,

described in more detail in Section 3, is a Particle Gibbs sampler that draws from p(θ,X1:T )

by sampling iteratively from p(θ|y1:T , x1:T ) and p(x1:T |θ, y1:T ). Since the density p(θ|y1:T , x1:T )
is intractable, we use a Metropolis step to draw θ. Notice that draws of x1:T need to be

conditional on previously drawn x otherwise the algorithm would not target the correct

posterior distribution (see, Andrieu, Doucet, and Holenstein, 2010). Such conditional draws

can be obtained by using a particle filter based on a conditional Sequentially Monte Carlo

(SMC).

2.1 Choice of Moments

There are several received facts regarding method of moments: 1) The choice of moments

affects results; 2) Algebraic manipulation of moment conditions can affect results; e.g., using

one moment equation to substitute out a variable in another; 3) Optimal moments span the

scores of the density of observables given parameters. These we accept in what follows.

Often the science dictates the moments. That is, referring to Remark 1, economics

dictates moments A(yt, xt)h(yt+1, xt+1, θ(1)) that identify the parameters θ(1) of scientific
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interest and there is little flexibility other than the choice of instruments A(yt, xt). What

remains is to add additional moments to identify x and the parameters θ(2) of the transition

density p(xt | xt−1, θ(2)). The scores for xt−1 and θ(2) are the best choice. The application in

Section 6 is an illustration of this situation.

We now argue on the basis of heuristics and experience that the moment conditions for the

Gibbs and Metropolis steps can be different. Obviously, if one has misgivings about splitting

moments into two groups, then one can elect to follow our recommendations for each group

and combine the two groups into one and use the one group in both the conditional particle

filter and Metropolis steps. Splitting moments into two groups reduces computation time.

If, say, one can divide ten moment conditions into two groups of five each, then computation

time would more than halve.

We advise the reader that the notion of splitting moments does not appeal to the referees.

Our recommendations below are based on the received facts above, intuition, and experience,

not formal proof. Our experience is that the particle filter step and the Metropolis step are

most affected by different subsets of the entire set of moments. Intuition suggests that this

is because each is targeting different variables conditional on knowing those not targeted.

Therefore, if one can deliberately enhance this separation and then divide the moments into

two groups, computational costs can be reduced and the accuracy of posterior credibility

intervals improved.

For the particle filter step the perfect moments would be those that spanned the scores

of the conditional density of y given x and θ, were they known. For the Metropolis step the

perfect moments would be those that spanned the scores of the density for y given θ, were

they known. These choices are not practicable without an analytic expression for po(y, x, θ),

in which case there is no point to using our proposals. However, there do seem to be some

principles one can apply in selecting moments at the Metropolis step that we have discovered

in our experimentation.

For the Metropolis step, one should try to identify as many parameters as possible from

the observed data alone and try to make the latent variables depend as much as possible

on quantities that can be computed from the observed data. If one is successful at this,

then estimation results will be satisfactory, in our experience, but particle filter draws from
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the conditional distribution of the latent variables will not mimic the true (but unobserved)

trajectory of the latent variables very well. This can be corrected, in our experience, by

choosing the moments used in the particle filter step so that observed variables depend on

the latent variables as much as possible without regard for identification of parameters. I.e.,

the exact opposite of the goal for choosing moments for the Metropolis step. We illustrate

these principles in the DSGE example of Subsection 5.2. Oddly enough, if our DSGE example

is not misleading, a poor choice of moments at the particle filter step does not materially

degrade the performance of the estimator for θ, as seen in Subsection 5.2.

Some parameters of a model, particularly a DSGE model, may not be identified even if

the correct likelihood involving only observables were known. When this problem occurs, the

unidentified parameters must be calibrated or restricted by tight priors. The DSGE example

in Subsection 5.2 exhibits this problem and we deal with it by calibration.

3 Algorithms

In this section we present the particle Gibbs algorithm that we use in our applications. We

also discuss the PMMH algorithm which, as said in the previous section, could also be used

to sample from p∗(θ, x1:T |y1:T ), but in our experience does not work as well as the Gibbs

method. We previously introduced the notation y1:t = (y1, . . . , yt), x1:t = (x1, . . . , xt), and

Z1:t. The densities p∗(y1:t | x1:t, θ) and p∗(y1:t, x1:t, θ) for partial histories are

p∗(y1:t, x1:t, θ) = p∗(y1:t | x1:t, θ)po(x1:t | θ)po(θ) (12)

p∗(y1:t | x1:t, θ) = ψ[Z1:t(y1:t, x1:t, θ)]. (13)

Three building blocks are required to implement the particle Gibbs algorithm. These

are:

• A particle filter algorithm4

– Input: θ.

– Output: Draws {xi1:T}
N

i=1 from p∗(x1:T | y1:T , θ).

• A conditional particle filter step.

4Used for PMMH, Algorithm 2, or to generate counter-factuals given θ.
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– Input: The previous draw x
(j−1)
1:T and a draw θ(j) from p∗(θ | y1:T , x(j−1)

1:T ).

– Output: A draw x
(j)
1:T from p∗(x1:T | y1:T , θ(j)) that is conditional on x(j−1)

1:T .

• A Metropolis-Hastings step.

– Input: The previous draw θ(j) and a draw x
(j)
1:T from p∗(x1:T | y1:T , θ(j)).

– Output: A draw θ(j+1) from p∗(θ | y1:T , x(j)1:T ) via a chain started at θ(j).

While the particle filter, Algorithm 1, gives draws from the conditional distribution of x1:T

given y1:T and θ that is memoryless with respect to previous draws of x1:T , the conditional

particle filter step of Algorithm 3 produces a draw from the conditional distribution of x1:T

given y1:T and θ with memory of the previously drawn x1:T . This dependence on the past

trajectory of x1:T is necessary to guarantee that the resulting algorithm targets the right

posterior. The last step is a basic Metropolis-Hasting algorithm that produces a draw from

the conditional distribution of θ given x1:T and y1:T .

Algorithm 1 about here

The particle filter is presented in Algorithm 1. It is a standard algorithm where the

importance weights are constructed using po(xt|xt−1; θ) as proposal. More efficient algorithms

that take into account current partial histories y1:t and/or future values of the latent variables

are available. We do not consider these extensions of the particle filters since our main focus

is to study the quality of inference when the measurement density has a GMM representation.

However, it seems feasible to extend existing methods to obtain a more informative proposal

such as the auxiliary particle filter of Pitt and Shephard (1999). The particle filter described

in Algorithm 1 gives an unbiased estimator of p∗(y1:T ), viz.,

p̂∗(y1:T |θ) =
T∏

t=1

1

N

N∑

i=1

wi
t(θ). (14)

The PMMH sampler is an MCMC algorithm based on this unbiased estimate of the

marginal distribution and it targets the full joint posterior distribution p∗(θ, x1:T |y1:T ). A

description of this algorithm is given in Algorithm 2. An issue with the particle marginal

Metropolis-Hastings samplers in high dimensions is that it often exhibits “sticky” behavior

as an unusually “good” accepted x1:T is hard to displace. This motivates consideration of
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a Gibbs-style algorithm where draws from p∗(x1:T |y1:T , θ) are always accepted. As reported

by Chopin and Singh (2015), the particle Gibbs has favorable performance in practice, and

this is also our experience.

Algorithm 2 about here

In an idealized Gibbs sampler, the posterior in (11) could be targeted by the following

two steps (for j = 1, . . . , R)

1. Draw θ(j)|x(j−1)
1:T ∼ p∗(·|y1:T , x(j−1)

1:T ), and

2. Draw x
(j)
1:T |θ(j) ∼ p∗(·|y1:T , θ(j)).

While in standard applications a draw from p∗(θ|y1:T , x1:T ) can sometime be carried out

exactly, when the measurement density has the GMM representation one has to re-

sort to Metropolis-Hastings. The second step could be accomplished by sampling from

p∗(x1:T |y1:T , θ) using a standard particle filter like the one described in Algorithm 1. Unfortu-

nately, this naive strategy would fail to target p∗(θ, x1:T |θ) (Andrieu, Doucet, and Holenstein,

2010). A remedy is to sample new particles conditional on a previous sampled trajectory.

This can be accomplished by a slight modification of the particle filter described in Algo-

rithm 1. The full algorithm that we implement to sample from p∗(θ, x1:T |y1:T ) is described
in Algorithm 3.

Algorithm 3 about here

To implement the Metropolis-Hastings step we require a proposal density for θ. A pro-

posal density is a transition density of the form q(θ|θ(j−1)) such as a move-one-at-a-time

random walk. In the examples of Section 5, we use the move-one-at-a-time random walk

that uniformly selects an index k and then moves the element θ
(j−1)
k of θ(j−1) to θ

(j)
k according

to a normal with mean θ
(j−1)
k and variance σk, where σk is chosen by trial and error to achieve

a rejection rate of about 50% in the Accept-Reject step of the algorithm that follows. In our

implementation we also found useful to thin highly correlated chains by only writing every

Sth element of the chain; we refer to S as the “stride” when reporting results.
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The good performance of the Particle Gibbs algorithm is backed up by theory. Chopin

and Singh (2015) have recently shown that the particle Gibbs kernel is uniformly ergodic.

The same paper shows that the particle Gibbs sampler can be made computationally more

efficient by using a different way of conditioning on a past trajectory. As in the case of

the particle filter, it is beyond the scope of the current paper to pursue such improvement,

although we believe it could be useful to consider more sophisticated algorithms in future

studies.

4 Theory

THEOREM 1 Under Assumptions 1 through 5 and mild additional regularity conditions,

the particle Gibbs described in Algorithm 3 generates draws from p∗(x1:T , θ | y1:T ).

Proof

Regularity conditions sufficient to imply that particles are draws from the density

p∗(x | y, θ) are in Andrieu, Doucet, and Holenstein (2010). They are mild, requiring that

the weights at the importance sampling step be bounded and that multinomial resampling

be used, which is the scheme used at the selection step.

In most applications regularity conditions such that the GMM estimator is consistent

and asymptotically normal, were x and y observed, are in force. The regularity conditions

used to prove consistency and asymptotic normality of GMM estimators typically include a

compact parameter space, domination conditions on the moment conditions, and bounds on

the eigenvalues of the weighting matrix so that bounded weights are typically a side effect

of these conditions.

A prior with compact support and a move-one-at-a-time proposal are enough to ensure

that the Metropolis-Hastings part of the particle Gibbs algorithm will mix (Gamerman and

Lopes, 2006). ✷

4.1 Comments on Particle Filter Performance

The performance of the particle filter depends upon the variance of the weights. For small

t there are few degrees of freedom for computing the weighting matrix and the variance of
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the weights is a problem. One might try to control this by setting T0 larger than strictly

necessary at the initialization step of the particle filter but doing this has a deleterious effect

on the performance of the algorithm because the information from y1:T is not being used

until t exceeds T0.

A better approach is regularization of the weighting matrix. If the condition number

of the weighting matrix (ratio of smallest singular value to the largest) falls below a preset

value η (e.g. η = 10−8) an amount δ is added to the diagonal elements of the weighting

matrix just sufficient to bring the condition number to η prior to inversion of the weighting

matrix.

Regarding the number of particles one should use in the conditional particle filter, we

found that N = 1000 gave about the same results as N = 5000 and larger. Andrieu, Doucet,

and Holenstein (2010) report similar experience for their examples and suggest that the

length of the MCMC chain R be increased rather than N because runtimes increase less

with R than with N for most of their examples. Because our runtimes increase at the rate

RM [(T !)N + TK], the suggestion that N be kept small at the cost of increasing R carries

considerable force.

5 Examples

We illustrate our method with two examples: a stochastic volatility model and a DSGE

model. In both cases the measurement density is known and thus the examples will provide

some insight into information loss and the effect of moment selection in comparison to full

information methods. We set Ψ = Φ so that (9) and (10) become

p∗(y, x, θ) = p∗(y, x | θ)po(x, θ)po(θ) (15)

p∗(y | x, θ) = (2π)−M/2 exp

{
−1

2
gT (y, x, θ)

′ [Σ(y, x, θ)]−1 gT (y, x, θ)

}
. (16)

We use flat priors for po(θ) in order to enable comparison with maximum likelihood estima-

tion and to try to insulate comparisons from the influence of a prior.
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5.1 A Stochastic Volatility Model

Our first example is a stochastic volatility (SV) model:

yt = ρyt−1 + exp(xt) ut

xt = φxt−1 + σet

et ∼ N(0, 1)

ut ∼ N(0, 1)

The true values of the parameters are

θ0 = (ρ0, φ0, σ0) = (0.9, 0.9, 0.5)

for the purpose of plotting the particle filter (PF) and

θ0 = (ρ0, φ0, σ0) = (0.25, 0.8, 0.1)

for illustrating estimation results. The reason for the difference is that the former generates

plots that are easy to assess visually whereas the latter is more representative of, say, daily

S&P 500 closing prices.

We use the following moment conditions:

g1 = (yt − ρyt−1)
2 − [exp(xt)]

2 (17)

g2 = |yt − ρyt−1||yt−1 − ρyt−2| −
(
2

π

)2

exp(xt) exp(xt−1) (18)

...

gL+1 = |yt − ρyt−1||yt−L − ρyt−L−1| −
(
2

π

)2

exp(xt) exp(xt−L) (19)

gL+2 = yt−1(yt − ρyt−1) (20)

gL+3 = xt−1(xt − φxt−1) (21)

gL+4 = (xt − φxt−1)
2 − σ2 (22)

Moment (20) identifies ρ independently of xt; moments (17) through (20) overidentify xt

given ρ. Moment (21) identifies φ given xt and moment (22) identifies σ given xt and φ.

What may not be obvious here is how an equation such as (17) identifies xt. One can

see this at the point at which one computes weights in the importance sampling step of the
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particle filter algorithm (Section 3). The weight wt depends on xt while the weight wt−1 does

not. Therefore the incremental information regarding xt provided by (17) does get used at

time t to determine xt. For the particle Gibbs algorithm itself, the incremental information

is used at the particle step but is not used at the Metropolis step because the Metropolis

step uses sums over all the data rather than partial sums.

Estimates of θ for the SV model are shown in Table 1 for our particle Gibbs GMMmethod

in comparison with the Flury and Shephard (2011) approach. The Flury and Shephard

method can be regarded as state-of-the-art. The MCMC chain generated using the method

are draws from the exact posterior with a flat prior.

Applying the particle filter at the true value of θ and N = 5000, we obtain the estimate

of x shown as Figures 1 and 2. The plots for the Flury and Shephard estimator are Figures 3

and 4. In the particle filter vernacular, the particle Gibbs GMM estimator is computed from

a smooth whereas the Flury and Shephard estimator is computed from a filter; accordingly,

the plots shown for the particle Gibbs GMM estimator are smooths whereas the plots shown

of the Flury-Shephard estimator are filters.

(Table 1 about here)

(Figure 1 about here)

(Figure 2 about here)

(Figure 3 about here)

(Figure 4 about here)

5.2 A Dynamic Stochastic General Equilibrium Model

The second example is taken from Del Negro and Schorfheide (2008). We need to have a

model with an exact analytical solution to generate accurate data with which to test our

proposed method. The working paper version of the article has some simplified versions of

the full model that have an analytic expression for the solution. The example is one of the

simplified versions.
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The full model is a medium-scale New Keynesian model with price and wage rigidities,

capital accumulation, investment adjustment costs, variable capital utilization, and habit

formation. The simplified model discussed here is obtained by removing capital, fixed costs,

habit formation, the central bank, and making wages and prices flexible. With these choices,

the model has three shocks: the log difference of total factor productivity zt, a preference

shock that affects intertemporal substitution between consumption and leisure φt, and the

price elasticity of intermediate goods λt, called a mark-up shock in the article. In the full

model the endogenous variables are output, consumption, investment, capital, and the real

wage, which are detrended by exp(zt) and expressed as log deviations from the steady-state

solution of the model, and inflation. Of these, the ones of interest in the simplified model

are the log deviations of wages and output, wt and yt, respectively, and inflation πt. The

time increment is one quarter.

The exogenous shocks are

zt = ρzzt−1 + σzǫz,t (23)

φt = ρφφt−1 + σφǫφ,t

λt = ρλλt−1 + σλǫλ,t,

where ǫz,t, ǫφ,t, and ǫλ,t are independent standard normal random variables.

The first order conditions are

0 = yt +
1

β
πt − Et(yt+1 + πt+1 + zt+1) (24)

0 = wt + λt

0 = wt − (1 + ν)yt − φt

where ν is the inverse Frisch labor supply elasticity and β is the subjective discount rate.

The solution for the endogenous variables is

wt = −λt (25)

yt = − 1

1 + ν
λt −

1

1 + ν
φt

πt = β
1− ρλ

(1 + ν)(1− βρλ)
λt + β

1− ρφ
(1 + ν)(1− βρφ)

φt + β
ρz

(1− βρz)
zt
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The true values of the parameters are

θ = (ρz, ρφ, ρλ, σz, σφ, σλ, ν, β) = (0.15, 0.68, 0.56, 0.71, 2.93, 0.11, 0.96, 0.996)

which are the parameter estimates for model PS of Del Negro and Schorfheide (2008) as

supplied by Frank Schorfheide in an email communication.

We take wt, yt, and πt as measured and zt and φt as latent.

This model is simple enough that an analytical expression for the likelihood is immedi-

ately available by substituting equations (23) into equations (25). By inspection one can

anticipate identifications issues: a small change in σφ can be compensated by small changes

to ν, β, and σz. This, in turn, causes the MCMC chain for estimating the model by maxi-

mum likelihood (Chernozhukov and Hong, 2003) to fail to mix. If one is going to estimate

this model by maximum likelihood, one must, as a practical matter, calibrate three of the

four parameters σz, σφ, ν, and β. Our choice is to calibrate σz, σφ, and ν, leaving β as the

free parameter. The situation here is rather stark: without calibrating σz, σφ, and ν, the

MCMC chain for maximum likelihood estimation (MLE) will not mix. Given that the MLE

MCMC chain will not mix without these calibrations, one would hardly expect the particle

Gibbs GMM chain to mix without them. Indeed, our experience confirms this conjecture.

We shall follow the general principles guiding moment selection set forth in Subsection 2.1,

which are to identify as many parameters as possible from the observed data and try to

identify the latent variables themselves indirectly from quantities that can be identified from

the observed data. The moment conditions (26) – (34) that follow were designed with these

principles in mind.

g1 = (wt − ρλwt−1)
2 − σ2

λ (26)

g2 = wt−1(wt − ρλwt−1) (27)

g3 = [wt−1 − (1 + ν)yt−1][wt − (1 + ν)yt − ρφ(wt−1 − (1 + ν)yt−1)] (28)

g4 = [wt−1 − (1 + ν)yt−1](φt − ρφφt−1) (29)

g5 = [wt − (1 + ν)yt]
2 − σ2

φ (30)

g6 = wt−1(yt−1 +
1

β
πt−1 − yt − πt − ρzzt−1) (31)

g7 = yt−1(yt−1 +
1

β
πt−1 − yt − πt − ρzzt−1) (32)
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g8 = πt−1(yt−1 +
1

β
πt−1 − yt − πt − ρzzt−1) (33)

g9 = (yt−1 +
1

β
πt−1 − yt − πt)

2 − ρ2zσ
2
z

1− ρ2z
(34)

Conditions (26) and (27) identify ρλ and σλ. Recalling that ν is calibrated, (28) identifies

ρφ; (29) identifies φt given ρφ. (This is not literally true because φt and ρφ will interact in the

Metropolis iterations; this qualification applies a few times below also.) Because both ν and

σφ are calibrated, (30) helps enforce an identity linking wt and yt. Because σz is calibrated,

(31) – (33) identify ρz, β, and zt; here we cannot identify ρz and β without making use of

the latent variable zt, which is likely to negatively affect GMM relative to MLE. However,

(34) does help identify ρz and β without using zt.

One could attempt a comparison with the methods proposed in (Fernandez-Villaverde

and Rubio-Ramirez, 2006) using equations (25) to avoid numerical solution methods. The

difficulty is that (25) is a singular set of measurement equations. The customary approach

is to add measurement error to these equations. This presents the additional difficulty

of determining how to calibrate the scale of the measurement error. The scale can be

manipulated to make results nearly the same as for the MLE (larger scale) or very poor

(smaller scale). We do not present these results because we feel one learns nothing from

them. One of the advantages of GMM, SMM, and EMM type methods is that singular

measurement equations do not cause problems.

Applying the proposed particle Gibbs GMM method to the DSGE model of Subsec-

tion 5.2, we obtain the estimates of θ shown in Table 2. Table 2 suggests that the particle

Gibbs GMM estimates are reasonable relative to MLE estimates and within the range one

might expect for GMM estimates.

(Table 2 about here)

As mentioned in Subsection 2.1, while the moment conditions (26) through (34) can be

expected to obtain reasonable results for estimating the parameters θ, they can be expected

to do a poor job of estimating the latent variables x. That this is the case here can be

verified by inspecting figures similar to Figures 5 and 6 that are not shown. In particular,

the plots not shown have slopes that are much shallower than those of Figure 5 and 6.
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In order to improve the estimate of x given y we consider the following additional moment

conditions derived from the first order conditions of the DSGE model:

h1 = yt−1 +
1

β
πt−1 − yt − πt − ρzzt−1 (35)

h2 = wt−1 h1 (36)

h3 = yt−1 h1 (37)

h4 = πt−1 h1 (38)

h5 = wt − (1 + ν)yt − φt (39)

h6 = wt−1 h5 (40)

h7 = yt−1 h5 (41)

h8 = πt−1 h5 (42)

Applying the particle filter using conditions (35) through (42) at the true value of θ and

N = 10000, we obtain the estimates of x given y shown as time series plots in Figure 5 and

as scatter plots in Figure 6.

(Figure 5 about here)

(Figure 6 about here)

Estimation results using moment conditions (26) through (34) at the Metropolis step

and conditions (35) through (42) at the particle step are shown in Table 3. As seen, by

comparing Table 2 to Table 3, estimation performance only improves marginally.

(Table 3 about here)

Using moment conditions (26) through (34) at the Metropolis step and conditions (35)

through (42) at the particle step rather than conditions (26) through (34) for both reduces

computational cost slightly because runtimes for the particle step increase at approximately

RM(T !)N whereas runtimes for the Metropolis step increase at approximately RMTK.

A referee’s remark elegantly summarizes the notion of splitting moments: “all moment

conditions may be considered present but only (35) through (42) show up when performing

the smoothing step.”
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5.3 Discussion of Examples

There are several conclusions we can draw from these examples. As expected, in a state

space model where an analytic form for the measurement density is available, conventional

Bayes when possible, or Flury and Shephard (2011) when not, are better than what we

propose unless one is incredibly clever at choosing moment equations. On the other hand,

when there is no alternative that does not rely on perturbation or numerical approximations

that one would rather avoid, our proposal is a viable option.

The “quality” of the moments matters and there are some principles guiding selection.

For the Metropolis algorithm to estimate the parameters θ accurately one should identify

as many parameters as possible from the observed data making the latent variables depend

as much as possible on quantities that can be computed from the observed data. To track

the trajectory of the unobserved latent variables x1:T accurately—the particle part of Algo-

rithm 3—one should choose moments for the particle filter so that observed variables depend

on the latent variables as much as possible without regard for identification of parameters.

For computational tractability we used two set of moments in the different part of Algorithm

3. A comparison of the results in Table 2 and in Table 3 suggests that computational gains

do not come at the expense of precision in the estimation of the static parameter.

However, as noted earlier, economic considerations can render discussion of moment

selection moot by dictating the moments that must be used as in the following application.

6 Application

We apply our method to estimate the latent endowment process compatible with a Lucas’

(1978) economy with constant relative risk aversion (CRRA) utility, where we only assume

knowledge of the first order conditions of the agents’ optimization problem and an ARCH

specification for the latent process. There is currently no other Bayesian method to estimate

the latent endowment process without imposing additional assumptions.

The endowment process in a Lucas (1978) economy is typically assumed to equal con-

sumption, whereas our estimates of the latent log endowment growth process indicate that

it has larger mean and variance than log consumption growth and we find some evidence of
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stochastic volatility.

The agent’s first order conditions in a Lucas (1978) economy are

1 = E(Mt+1Rt+1 | Ft), (43)

where Mt+1 = β
(
Ct+1

Ct

)γ
is the marginal rate of substitution, t is time in annual increments,

β is the discount factor, γ is the risk aversion parameter, Ct is the endowment process,

Rt+1 = (Pt+1 +Dt+1)/Pt is the gross return at time t + 1 to an asset that costs Pt at

time t with payoff Pt+1 + Dt+1 inclusive of dividends and/or interest and Ft is the agent’s

information set at time t. We set β = 0.98 and γ = 2 as in Mehra and Prescott (1985).

In empirical work Ct is typically measured by annual consumption of nondurables and

services and its distribution is usually specified in terms of log consumption growth xt =

log(Ct/Ct−1) rather than Ct itself. Here we assume that the endowment process xt is latent

and that it follows an ARCH model:

xt = µ+ ρxt−1 +
√
vt−1zt (44)

vt−1 = σ2 + [τ(xt−1 − µ− ρxt−2)]
2 (45)

where zt is a standard normal, the scores for which are

g1 =
∂ log f

∂zt

∂zt
∂µ

+
∂ log f

∂
√
vt−1

∂
√
vt−1

∂vt−1

∂vt−1

∂µ
(46)

g2 =
∂ log f

∂zt

∂zt
∂ρ

+
∂ log f

∂
√
vt−1

∂
√
vt−1

∂vt−1

∂vt−1

∂ρ
(47)

g3 =
∂ log f

∂zt

∂zt
∂
√
vt−1

∂
√
vt−1

∂vt−1

∂vt−1

∂σ
+
∂ log f

∂
√
vt−1

∂
√
vt−1

∂vt−1

∂vt−1

∂σ
(48)

g4 =
∂ log f

∂zt

∂zt
∂
√
vt−1

∂
√
vt−1

∂vt−1

∂vt−1

∂τ
+
∂ log f

∂
√
vt−1

∂
√
vt−1

∂vt−1

∂vt−1

∂τ
(49)

where

∂zt
∂µ

= −1/
√
vt−1

∂zt
∂ρ

= −xt−1/
√
vt−1

∂zt
∂
√
vt−1

= −(xt − µ− ρxt−1)/vt−1
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∂
√
vt−1

∂vt−1

= 0.5/
√
vt−1

∂vt−1

∂σ
= 2σ

∂vt−1

∂τ
= 2τ(xt−1 − µ− ρxt−2)

2

∂vt−1

∂µ
= −2τ 2((xt−1 − µ− ρxt−2)

∂vt−1

∂ρ
= −2τ 2(xt−1 − µ− ρxt−2)xt−2

∂ log f

∂zt
= −(xt − µ− ρxt−1)/

√
vt−1

∂ log f

∂
√
vt−1

= −1/
√
vt−1

We shall reverse engineer the endowment process using Bayesian statistical methods that

presume only equations (43) and (44) and standard time series regularity conditions.

Note in particular thatMt is endogenous so that one needs the results of Gallant (2016a)

to infer a measurement density from moment conditions that can be used in Bayesian infer-

ence. Specifically, to condition on Mt in order to obtain a measurement density one must

follow Gallant’s protocol to stay within the Bayesian paradigm. Gallant (2016b) contains a

detailed discussion of this point.

We compare our results to Gallant and Hong (2007), who treat the marginal rate of

substitutionM1, ...,MT as an unknown parameter and estimate it nonparametrically using a

prior derived from a Bansal and Yaron (2004) economy. We shall use their annual panel data

comprised of returns on twenty-four Fama-French (1993) portfolios and thirty-day U.S. Trea-

sury obligations over the period 1930–2004 (one of the twenty-five Fama-French portfolios is

lost to missing values). These returns are augmented using information available to agents

when portfolios are formed. Specifically, the returns are interacted with a constant, lagged

returns on the Fama-French portfolios, lagged debt returns, lagged consumption growth,

and lagged labor income growth. All data are real and per capita. For a discussion of the

ideas involved in this augmentation see Gallant, Hansen, and Tauchen (1990) and Hansen

and Jagannathan (1991). For a discussion of the factors relevant to pricing payoffs and the

role that labor income growth plays see Campbell (1996). For the specific details of data
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construction see Gallant and Hong (2007). The observable variables in our application are

returns, consumption growth, and labor income growth and we denote them by y.

The differences between the nonparametric approach of Gallant and Hong (2007) and

this paper can be seen from their respective posteriors

pgh(y | θ(1)) pgh(θ(1) | θ(2)) pgh(θ(2)) (50)

pgh{y | β[exp(x)]γ} pggr(x | θ(3)) pggr(θ(3)), (51)

where θ(1), θ(2), θ(3) refer to different sets of parameters. The functional form of the density

pgh(· | ·) is the same in both (50) and (51); it is the normal density φ(z) with Z given by (7)

using (54) below as the moments g in (7).5

In Gallant and Hong there are no latent variables: Inference is by means of straightfor-

ward MCMC using a move-one-at-a-time proposal density on the parameters (θ(1), θ(2)).

Let st denote the vector of gross returns at time t on the twenty-four Fama-French

portfolios and let bt denote the gross returns at time t on the thirty-day Treasury debt issue.

Let ct = Ct/Ct−1 = exp(xt) denote endowment growth and let lt denote labor income growth.

Define the instruments

Vt =




st − 1

bt − 1

ct − 1

lt − 1

1




,

where st−1 and bt−1 denote 1 subtracted from each element of st and bt. Denote the vector

of Euler equation errors by

et(st+1, bt+1,Mt+1) = 1 − Mt+1


 st+1

bt+1


 , (52)

where 1 denotes a vector of 1’s of length twenty-seven. Consider the moment functions

mt(st, bt, ct, lt, st+1, bt+1,Mt+1) = Vt ⊗ et(st+1, bt+1,Mt+1), (53)

5There are defects in the derivation of pgh(· | ·) in Gallant and Hong that are corrected in Gallant (2016a,
2016b). Therefore, in this paper, we are relying on Section 2 for the correct derivation of pgh(· | ·).
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where t = 1, . . . , T = 75. The length of the vector mt is 700. One can view (53) as a set of

payoffs that has been enlarged by interacting returns with Vt so that the actual set of payoffs

under consideration is Vt ⊗ (st+1, bt+1). On this see Gallant, Hansen, and Tauchen (1990)

and Hansen and Jagannathan (1991). Following Gallant and Hong (2007) we assume that

(Mtst,Mtbt) has a factor structure: There is one error common to all elements of Mtst and

twenty-four idiosyncratic errors, one for each element of Mtst. Denote this matrix by Σe. A

set of orthogonal eigenvectors Ue for Σe are easy to construct and can be used to diagonalize

Σe. To illustrate, if there were four stocks, then

Ue =




1/4 1/
√
2 1/

√
6 1/

√
12 0

1/4 −1/
√
2 1/

√
6 1/

√
12 0

1/4 0 −2/
√
6 1/

√
12 0

1/4 0 0 −3/
√
12 0

0 0 0 0 1




.

Similarly Uv and Σv for Vt. (Uv looks like Ue but with an extra 2x2 block for (ct, lt) and a

one appended to the southeast corner.) Then equation (4) becomes

gT (y, x, θ) =
1√
T
(Uv ⊗ Ue)

′mt(st, bt, ct, lt, st+1, bt+1,Mt+1), (54)

where yt+1 = (st, bt, ct, lt, st+1, bt+1), xt+1 is given by (44), and θ = (µ, ρ, σ, τ, β, γ). Expres-

sion (5) is used to compute the weighting matrix.

Our prior for θ is a truncated normal determined as follows. Annual, real, per capita,

U.S. log consumption growth data approximately follows (44) with τ = 0 and (µ, ρ, σ) =

(0.015, 0.35, 0.015) over most subperiods of the dates 1925 through 2015. We choose these

values of (µ, ρ, σ) for the location parameter of the normal part of our prior and the location

parameter for τ to 0.01 to shift τ somewhat to the right of zero. Scale parameters are set so

that the marginal probabilities of being within S × 100% of the location parameter is 95%.

The joint is the product of the marginals. The support conditions are −100 < µ < 100,

−.999 < ρ < .999, 0 < σ < 100, and 0 < τ < 100, which more than encompasses all

reasonable values of these four parameters. We computed estimates using scale factors

S=50, 500, and 1000 and report them in Table 4. The prior for (β, γ) is (β, γ) = (0.98, 2)

with probability one. The proposal for the MCMC chain is move-one-at-a-time random walk.
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Estimation results are presented in Table 4. They suggest that location and scale of

estimated log endowment growth shift upwards relative to log consumption growth and there

is evidence of stochastic volatility. The evidence is not overwhelming because the standard

deviations of the posterior are large. Converted to the marginal rate of substitution Mt, the

estimated endowment process and the Gallant and Hong (2009) estimate of the MRS are

plotted in Figure 7 as a time series and in Figure 8 as a scatter plot. Relative to the results

of Gallant and Hong, the estimated marginal rate of substitution is more volatile because,

apparently, the prior used by Gallant and Hong is tighter than our prior here. Both suggest

the presence of jumps, but the evidence here is stronger. Histograms of draws from the

posterior for the parameters of the log endowment process are displayed in Figure 9. The

distributions are rather markedly skewed.

(Table 4 about here)

(Figure 7 about here)

(Figure 8 about here)

(Figure 9 about here)

7 Conclusion

We proposed an algorithm for Bayesian estimation of the parameters of a dynamic model

with latent dynamic variables when the model does not provide a measurement density but

only a set of moment conditions involving observable and latent variables. The algorithm

is a modification of a particle filter algorithm where the measurement density is substituted

with its “GMM representation”. We showed how to construct such a density and provided a

theoretical justification. We illustrated with two examples: a stochastic volatility model and

a dynamic stochastic general equilibrium model. We applied the method to estimating the

latent endowment process compatible with a Lucas (1978) economy and found that it has

dramatically different properties than the consumption time series that are typically used in

the literature.
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Benigno, G., Benigno, P., and Nisticó, S., 2012, Risk, monetary policy and the exchange

rate. NBER Macroeconomics Annual 26, 247–309.

Beaumont, M. A., 2003, Estimation of population growth or decline in genetically monitored

populations. Genetics 164 1139-1160.

Bloom, Nicholas, 2009, The impact of uncertainty shocks. Econometrica 77, 623–685.

Campbell, J. Y., 1996, Understanding risk and return. The Journal of Political Economy

104, 298–345.

Chernozhukov, Victor, and Han Hong, 2003, An MCMC approach to classical estimation.

Journal of Econometrics 115, 293–346.

Chopin, Nicolas; Singh, Sumeetpal S, 2015, On particle Gibbs sampling. Bernoulli 21,

1855–1883.

Cochrane, John H., 2005, Asset pricing (Revised Edition). Princeton University Press, Ch.

16, esp. pp. 292 & 298.

Del Negro, Marco, and Frank Schorfheide, 2008, Forming priors for DSGE models (and

how it affects the assessment of nominal rigidities). Journal of Monetary Economics

55, 1191–1208.

31



Fama, E., and K. French., 1993, Common risk factors in the returns on stocks and bonds.

Journal of Financial Economics 33, 3–56.

Fernandez-Villaverde, J., and J. F. Rubio-Ramirez, 2006, Estimating macroeconomics mod-

els: a likelihood approach. NBER Technical Working Paper No. 321. http://www.nber.org/papersbyprog/TWP

Flury, Thomas, and Neil Shephard, 2011, Bayesian inference based only on simulated like-

lihood: particle filter analysis of dynamic economic models. Econometric Theory 27,

933–956.

Gallant, A. Ronald, 2016a, Reflections on the probability space induced by moment condi-

tions with implications for Bayesian inference. Journal of Financial Econometrics 14,

227–228.

Gallant, A. Ronald, 2016b, Reply to comments on Reflections. Journal of Financial Econo-

metrics 14, 284–294.

Gallant, A. Ronald, 2016c, Addendum to Reply to Reflections. Working paper, http://www.aronaldg.org.

Gallant, A. Ronald, 2016d, Complementary Bayesian Method of Moments Strategies.

Working paper, http://www.aronaldg.org.

Gallant, A. Ronald, and Han Hong, 2007, A statistical inquiry into the plausibility of

recursive utility. Journal of Financial Econometrics 5, 523–590.

Gallant, A. Ronald, Han Hong, and Ahmed Khwaja, 2015, A Bayesian approach to esti-

mation of dynamic models with small and large number of heterogeneous players and

latent serially correlated states. Working paper, http://www.aronaldg.org.

Gallant, A. R., L. P. Hansen, and G. Tauchen, 1990, Using conditional moments of asset

payoffs to infer the volatility of intertemporal marginal rates of substitution. Journal

of Econometrics 45, 141–180.

Gallant, A. R., and R. E. McCulloch, 2009, On the determination of general statistical mod-

els with application to asset pricing. Journal of the American Statistical Association

104, 117–131.

32



Gallant, A. Ronald, and Douglas W. Nychka, 1987, Semi-nonparametric maximum likeli-

hood estimation. Econometrica 55, 363–390.

Gallant, A. Ronald, and George Tauchen, 1996, Which moments to match? Econometric

Theory 12, 657–681.

Gallant, A. Ronald, and George Tauchen, 2015, Efficient indirect Bayesian estimation:

with application to the dominant generalized Blumenthal-Getoor index of an Ito semi-

martingale. Working paper, www.aronaldg.org.

Gallant, A. Ronald, and Halbert L. White, Jr., 1987, A unified theory of estimation and in-

ference for nonlinear dynamic models. Basil Blackwell Ltd., Oxford. http://www.aronaldg.org/webfiles/gwb

Gamerman, D., and H. F. Lopes, 2006, Markov chain Monte Carlo: stochastic simulation

for Bayesian inference (2nd edition). Chapman and Hall, Boca Raton, FL.

Hansen, L. P., 1982, Large sample properties of generalized method of moments estimators.

Econometrica 50, 1029–1054.

Hansen, L. P., and R. Jagannathan, 1991, Implications of security market data for models

of dynamic economics. Journal of Political Economy 99 225–262.

Hansen, L. P., and Singleton, K. J., 1982, Generalized instrumental variables estimation of

nonlinear rational expectations models. Econometrica 50 1269–1286.

Lucas, R. E., Jr., 1978, Asset prices in an exchange economy. Econometrica 46, 1429–1445.

Mehra, Rajnish, and Edward C. Prescott, 1985, The equity premium: a puzzle. Journal of

Monetary Economics 15, 145–161.

Pitt, M. K., and N. Shephard, 1999, Filtering via simulation: auxiliary particle filters.

Journal of the American statistical association 94, 590-599.

Sweeting, T.J., 1986, On a converse to Scheffe’s theorem. The Annals of Statistics 14,

1252–1256.

33



Algorithm 1 Particle filter with GMM representation of the measurement density

Step 1. Initialization.

(a) Given θ (and y1:T ),

(b) Set T0 to the smallest t required to compute gt(y1:t, x1:t, θ) and Σ(y1:t, x1:t, θ).

(c) For i = 1, . . . , N sample (xi1, x
i
2, . . . , x

i
T0
) from po(xt|xt−1, θ).

(d) Set t to T0 + 1.

(e) Set xi1:t−1 = (xi1, x
i
2, . . . , x

i
T0
).

Step 2. Importance sampling.

(a) For i = 1, . . . , N sample x̃it from po(xt|xit−1, θ) and set

x̃i1:t = (xi0:t−1, x̃
i
t).

(b) For i = 1, . . . , N compute weights wi
t(θ) = p∗(y1:t | x̃i1:t, θ).

(c) Scale the weights to sum to one,

W i =
wi(θ)

∑N
i=1w

i(θ)
.

Step 3. Selection.

(a) For i = 1, . . . , N sample with replacement particles xi1:t from the set {x̃i1:t}
according to the weights {W i}Ni=1.

Step 4. Repeat

(a) If t < T , increment t and go to importance sampling step;

(b) else output {xi1:T}
N

i=1.
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Algorithm 2 PMMH with GMM representation of the measurement density

Step 1 Initialization, i = 1.

(a) Set θ(0) arbitrarily.

(b) Run the particle filter of Algorithm 1, obtain a sample x
(0)
1:T from p∗(·|y1:T |θ(0))

and let p̂∗(y1:T , θ
(0)) be the marginal distribution estimate (14).

Step 2 for i > 1,

(a) Sample θprop ∼ q(·|θ(i−1))

(b) Run the particle filter of Algorithm 1, obtain a sample xprop1:T from p∗(·|y1:T , θprop)
and let p̂∗(y1:T |θprop) the marginal distribution estimate.

(c) With probability

min

{
1,

p̂∗(y1:T |θprop)p(θprop)
p̂∗(y1:T |θ(i−1))p(θ(i−1))

q(θ(i−1)|θprop)
q(θprop|θ(i−1))

}

set θ(i) = θprop, x
(i)
1:T = xprop1:T , and p̂∗(y1:T |θ(i)) = p̂∗(y1:T |θprop);

(d) otherwise set θ(i) = θ(i−1), x
(i)
1:T = x

(i−1)
1:T , and p̂∗(y1:T |θ(i)) = p̂∗(y1:T |θ(i−1)).
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Algorithm 3 Particle Gibbs algorithm targeting p∗(θ, x1:T |y1:T ).
Step 1 Start

(a) Set j = 0.

(b) Set x̂
(1)
1:T and θ̂(1) from the output of Algorithm 2, from some other estimation

scheme, or arbitrarily subject to support conditions.

Step 2 Conditional particle filter

(a) Initialization.

(i) Increment j and set x̃11:T = x11:T = x̂
(j)
1:T .

(ii) Set T0 to the smallest t required to compute gt(y1:t, x1:t, θ) and Σ(y1:t, x1:t, θ)

(iii) For i = 2, . . . , N sample (xi1, x
i
2, . . . , x

i
T0
) from po(xt|xt−1, θ).

(iv) Set t to T0 + 1.

(v) Set xi1:t−1 = (xi1, x
i
2, . . . , x

i
T0
) for i = 2, . . . , N .

(b) Importance sampling step.

(i) For i = 2, . . . , N sample x̃it from po(xt|xit−1, θ) and set x̃i1:t = (xi0:t−1, x̃
i
t).

(ii) For i = 1, . . . , N compute weights w̃i
t = p∗(y1:t | x̃i1:t, θ).

(iii) Scale the weights to sum to one, W i = w̃i/
∑N

i=1 w̃
i.

(c) Selection step.

(i) For i = 2, . . . , N sample with replacement particles xi1:t from the set

{x̃i1:t}Ni=1
according to the weights {W i}Ni=1.

(d) Repeat conditional particle filter
(i) If t < T, increment t and go to Importance sampling step;

(ii) else put x̂(j+1) = xN1:T and go to Metropolis step.

Step 3 Metropolis step

(a) Initialize: Put i = 1 and θi = θ̂(j).

(b) Propose: Draw θprop from q(θ|θi)
(c) Accept-Reject: Put θi+1 to θprop with probability

α = min

[
1,
p∗(y, x̂(j+1), θprop)q(θi|θprop)
p∗(y, x̂(j+1), θi)q(θprop|θi)

]

else put θi+1 to θi.

(d) Repeat Metropolis
(i) If i+ 1 < K increment i and go to Propose;

(ii) else set θ̂(j+1) = θK and go to Repeat outer loop.

Step 4 Repeat outer loop

(a) If j + 1 < R go to Conditional particle filter step.

(b) else terminate; {θ̂(j), x̂(j)}Rj=1 is the MCMC chain.
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Table 1. Parameter Estimates for the SV Model

Using Moment Conditions (17) through (22) at
both the Metropolis and Particle Steps.

Parameter True Value Mean Mode Standard Error

Bayesian

ρ 0.25 0.30271 0.30939 0.076758

φ 0.8 0.15348 0.85765 0.643400

σ 0.1 0.11400 0.08435 0.070081

Flury and Shephard Estimator

ρ 0.25 0.30278 0.28555 0.059320

φ 0.8 0.17599 0.89189 0.509780

σ 0.1 0.09737 0.07839 0.064661

Data of length T = 250 was generated by simulating the model of Subsection 5.1 at
the parameter values shown in the column labeled “True Value”. In the first panel the
model was estimated by using the particle Gibbs method (Algorithm 3) described in
Section 3 with a one-lag HAC weighting matrix using N = 1000 particles and K = 50
draws for Metropolis. In the second panel the estimator is the Bayesian estimator
proposed by Flury and Shepard (2010) with a flat prior. It is a standard maximum
likelihood particle filter estimator except that the seed changes every time a new θ is
proposed with N increased as necessary to control the rejection rate of the MCMC
chain. The columns labeled mean, mode, and standard deviation are the mean, mode,
and standard deviations of a particle Gibbs chain of length R = 9637 for the first panel
and the same from an MCMC chain of length R = 500000 with a stride of 5 for the
second.
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Table 2. Parameter Estimates for the DSGE Model

Using Moment Conditions (26) through (34) at

Both the Metropolis and Particle Steps.

Parameter True Value Mean Mode Standard Error

Bayesian

ρz 0.15 0.21887 0.23069 0.09179

ρφ 0.68 0.59967 0.60750 0.04988

ρλ 0.56 0.50884 0.31473 0.28981

σλ 0.11 0.10797 0.11613 0.06896

β 0.996 0.98201 0.99634 0.01834

Maximum Likelihood

ρz 0.15 0.15165 0.15087 0.00583

ρφ 0.68 0.59185 0.59419 0.05044

ρλ 0.56 0.56207 0.56549 0.05229

σλ 0.11 0.11225 0.11189 0.00508

β 0.996 0.99640 0.99643 0.00186

Data of length T = 250 was generated by simulating the model of Subsection 5.2 at
the parameter values shown in the column labeled “True Value”. In the first panel the
model was estimated by using the particle Gibbs method (Algorithm 3) described in
Section 3 with a two-lag HAC weighting matrix using N = 1000 particles and K = 50
draws for Metropolis. In the second panel the model was estimated by maximum
likelihood. The columns labeled mean, mode, and standard deviation are the mean,
mode, and standard deviations of a particle Gibbs chain of length R = 9637 for the
first panel and the same from an MCMC chain of length R = 500000 with a stride of
5 for the second.
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Table 3. Parameter Estimates for the DSGE Model Using

Conditions (26) through (34) at the Metropolis Step

and Conditions (35) through (42) at the Particle Step

Parameter True Value Mean Mode Standard Error

Bayesian

ρz 0.15 0.23508 0.15007 0.08975

ρφ 0.68 0.69870 0.58945 0.06127

ρλ 0.56 0.49904 0.46443 0.28418

σλ 0.11 0.11292 0.08924 0.06559

β 0.996 0.97465 0.99604 0.02479

Maximum Likelihood

ρz 0.15 0.15165 0.15087 0.00583

ρφ 0.68 0.59185 0.59419 0.05044

ρλ 0.56 0.56207 0.56549 0.05229

σλ 0.11 0.11225 0.11189 0.00508

β 0.996 0.99640 0.99643 0.00186

As for Table 2.
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Table 4. Parameter Estimates for the MRS Model Using

Conditions (46) through (49) at the Metropolis Step

and Condition (54) at the Particle Step

Parameter Mean Standard Deviation

Prior Scale Factor = 50

µ 0.18203 0.13172

ρ 0.56149 0.28256

σ 0.48836 0.20040

τ 0.23083 0.28940

β 0.98 0.0

γ 2.0 0.0

Prior Scale Factor = 500

µ 0.22091 0.19625

ρ 0.51358 0.40154

σ 0.36577 0.34499

τ 1.68040 1.37980

β 0.98 0.0

γ 2.0 0.0

Prior Scale Factor = 1000

µ 0.18904 0.25181

ρ 0.33079 0.56017

σ 0.29808 0.36470

τ 2.17500 1.75620

β 0.98 0.0

γ 2.0 0.0

The model was estimated from 75 real, per-capita, annual observations from 1930
to 2004 on twenty-four Fama-French (1993) portfolios, thirty-day U.S. Treasury debt
obligations, consumption growth, and labor income growth using the particle Gibbs
method (Algorithm 3) described in Section 3 with weighting matrix given by (5) using
N = 500 for the conditional particle step and K = 50 draws for the Metropolis step.
Parameters β and γ are fixed as shown. The columns labeled mean and standard
deviation are the mean and standard deviations of a particle Gibbs chain of length R =
9610. For measured log consumption growth, the parameter values are (µ, ρ, σ, τ) =
(0.015, 0.35, 0.015, 0.0) over most subperiods of the dates 1925 through 2015.
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Figure 1. PF for Λ, Time Series Plot, SV Model. Data of length T = 100 was

generated from a simulation of the stochastic volatility model of Subsection 5.1 and

N = 5000 particles computed using the particle filter algorithm (Algorithm 1) described

in Section 3. The dashed blue line plots the simulated Λ. The solid red line is the mean

of the particles and the dotted red lines are plus and minus two pointwise standard

errors. The moment equations were (17) through (22); a one lag HAC estimator was

used for (5).
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Figure 2. PF for Λ, Scatter Plot, SV Model. As for Figure 1 except that plotted is the

mean of the particles vs. the simulated Λ.
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Figure 3. PF for Λ, Flurry-Shephard Method, Time Series Plot, SV Model. As for

Figure 1 except that plotted is a filter, not a smooth, and weighting is by the actual measurement

density, not the “GMM representation” of the measurement density.
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Figure 4. PF for Λ, Flurry-Shephard Method, Scatter Plot. As for Figure 3 except that

plotted is the mean of the particles vs. the simulated Λ.
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Figure 5. PF for Λ, Time Series Plot, DSGE Model. Data of length T = 250 was generated

by simulating the DSGE model of Subsection 5.2 and N = 10000 particles were computed using

the particle filter algorithm (Algorithm 1) described in Section 3. The dashed blue line in the

upper panel plots the simulated φt for the last 50 time points. The lower panel is the same for

zt. In both panels, the solid red line is the mean of the particles and the dotted red lines are plus

and minus two pointwise standard errors. The moment equations were (35) through (42); a two

lag HAC estimator was used for (5).
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Figure 6. PF for Λ, Scatter Plot, DSGE Model. As for Figure 5 except that

plotted is the mean of the particles vs. the simulated Λ for all 250 time points.
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Figure 7. Particle Filter for MRS, Time Series Plot. The model was estimated

as described in Table 4 for the case scale factor 500. The dashed blue line plots the

MRS estimated by Gallant and Hong (2007). The solid red line is the mean of the

particles transformed to MRS using Mt = β[exp(xt)]
γ
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Figure 8. Particle Filter for MRS, Scatter Plot. As for Figure 7 except that plotted is the

mean of the particles vs. the MRS estimated by Gallant and Hong (2007).
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Figure 9. Particle Filter for MRS, Time Series Plot. The figure shows the

histograms of the draws in the MCMC chain described in Table 4 for the case scale

factor 500. Mt = β[exp(xt)]
γ
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