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Abstract. We consider a restricted Dirichlet-to-Neumann map
ΛT
S,R associated to the operator ∂2

t −∆g + A + Q where ∆g is the

Laplace-Beltrami operator of a Riemannian manifold (M, g), and A
and Q are a vector field and a function on M . The restriction ΛT

S,R
corresponds to the case where the Dirichlet traces are supported
on (0, T )×S and the Neumann traces are restricted on (0, T )×R.
Here S and R are open sets on the boundary of M . We show that
ΛT
S,R determines the geometry and the lower order terms A and

Q up the natural gauge invariances in a neighborhood of the set
R assuming that R is strictly convex and that the wave equation
is exactly controllable from S in time T/2. We give also a global
result under a convex foliation condition. The main novelty is the
recovery of A and Q when the setsR and S are disjoint. We allow A
and Q to be non-self-adjoint, and in particular, the corresponding
physical system may have dissipation of energy.

1. Introduction

Let (M, g) be a smooth, connected and compact Riemannian mani-
fold of dimension n with nonempty boundary ∂M , let A be a smooth
complex valued vector field on M , and let Q be a smooth complex
valued function on M . We consider the wave equation with Dirichlet
data f ∈ C∞0 ((0,∞)× ∂M),

(∂2
t −∆g + A+Q)u(t, x) = 0, in (0,∞)×M,

u|(0,∞)×∂M = f, in (0,∞)× ∂M,

u|t=0 = ∂tu|t=0 = 0, in M,

(1)

and denote by uf = u(t, x) the solution of (1). For open and nonempty
sets S,R ⊂ ∂M and T ∈ (0,∞] we define the response operator,

ΛT
S,R : f 7→ (∂νu

f − 1

2
(A, ν)gu

f )|(0,T )×R, f ∈ C∞0 ((0, T )× S).
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Here ν is the interior unit normal vector field on ∂M , and (A, ν)g is
the inner product of A and ν. We use real inner products throughout
the paper. If A(x) =

∑n
j=1A

j(x)∂j in local coordinates, then (A, ν)g
is given by gjkA

jνk locally.
When f is regarded as a boundary source, the operator ΛT

S,R models
boundary measurements for the wave equation with sources on the set
(0, T ) × S and the waves being observed on (0, T ) × R. We consider
the inverse boundary value problem to determine the manifold (M, g),
the vector field A and the potential Q from ΛT

S,R.
We have studied previously the determination of the geometry (M, g)

[24], in the case that A = 0 and Q = 0, and the main focus of the
present paper is on the recovery of the lower order terms A and Q. In
order to recover A and Q, we construct boundary sources f such that,
at time t = T , the corresponding solutions uf are essentially localized
at a point near R. This differs from the construction in [24] which does
not use localized waves.

The lower order terms A and Q can be determined only up to the
action of a group gauge transformation, that we will describe next.
Let κ be a smooth nowhere vanishing complex valued function on M
satisfying κ = 1 on R. The response operator ΛT

S,R does not change
under the transformation (A,Q) 7→ (Aκ, Qκ) where

(2) Aκ = A+ 2κ−1 gradg κ, Qκ = Q+ κ(A−∆g)κ
−1,

and gradg is the gradient on (M, g). We refer to [19] for a similar
computation in the self-adjoint case. When U ⊂M is a neighborhood
of R, we write

GU ,R(A,Q) = {(Aκ|U , Qκ|U); κ ∈ C∞(U), κ 6= 0, κ|R = 1}
for the orbit of the group of gauge transformations on U .

We allow also the geometry (M, g) to be apriori unknown, and there
is a second group of transformations leaving ΛT

S,R invariant. Namely, if
Φ : M →M is a diffeomorphism fixing S ∪R, that is, Φ is the identity
on S ∪ R, then ΛT

S,R does not change if g, A and Q are replaced with
their pullbacks under Φ.

We recall that the wave equation (1) is said to be exactly controllable
from S in time T if the map

(3) f 7→ (uf (T ), ∂tu
f (T )) : L2((0, T )× S)→ L2(M)×H−1(M),

is surjective. If there is such T > 0, then we say that (1) is exactly
controllable from S. The exact controllability can be characterized in
terms of the billiard flow of the manifold (M, g) [2, 6]. The geometric
characterization says roughly that all unit speed geodesics, continued
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by reflection on ∂M \ S, must exit M through S during time T . In
particular, the geometric characterization implies that the exact con-
trollability does not depend on the lower order terms A and Q.

In this paper we show the following theorem:

Theorem 1. Let S ⊂ ∂M be open and suppose that the wave equation
(1) is exactly controllable from S in time T > 0. Let R ⊂ ∂M be
open and strictly convex. Then there is a neighborhood U ⊂ M of R
such that Λ2T

S,R determines the Riemannian manifold (U , g), up to an
isometry, and the orbit GU ,R(A,Q).

We show also a global uniqueness result under the assumption that
there is a convex foliation similar to that in [29]. We assume that Σs,
s ∈ (0, 1], satisfy the following:

(F1) Σs ⊂M int is a smooth manifold of codimension one.
(F2) The union Ωs =

⋃
r∈(0,s) Σr ⊂ M int is open and connected, and

Ωr ⊂ Ωs when r < s.
(F3) ∂Ωs = Σs ∪Rs and Rs ⊂ R where Rs = Ωs ∩ ∂M.
(F4) Σs is strictly convex as a subset of ∂Ms where

Ms = M \ (Ωs ∪Rs).

(F5) The Hausdorff distances satisfy dist(Ωr,Ωs)→ 0 as r → s.
(F6) There is a set R0 ⊂ R such that dist(Ωs,R0)→ 0 as s→ 0.

Furthermore, to simplify the notation, we assume

(F7) R =
⋃
s∈(0,1]Rs.

Theorem 2. Let S ⊂ ∂M be open and suppose that the wave equation
(1) is exactly controllable from S. Let R ⊂ ∂M be open and strictly
convex and let Σs, s ∈ (0, 1], be a convex foliation satisfying (F1)-
(F7). Then Λ∞S,R determines the Riemannian manifold (Ω1, g), up to
an isometry, and the orbit GΩ1,R(A,Q).

In Section 6 we show that, in the above theorem, exact controllability
from S can be replaced with exact controllability from R. Our result
is new even in the following case:

Example 1. Let (M, g) be the Euclidean unit disk {z ∈ C; |z| ≤ 1}.
Let ε > 0 and define R = {eiθ; θ ∈ (−ε, π + ε)}. Let S ⊂ ∂M be
open and nonempty. Then Λ∞S,R determines A and Q, up to the gauge
transformations, in the convex hull of R.

Let us also point out that we could use a time continuation argument
analogous to [24, Lemma 4] and prove Theorem 2 also for measurements
on a long enough but finite time interval.
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Our proof is based on the Boundary Control (BC) method. The
BC method was introduced by Belishev [3], and it was first used in a
geometric context in [4]. Stability properties of the method are dis-
cussed in [1]. First order perturbations have been considered in the
self-adjoint case in [16], and in the non-self-adjoint case in [20, 22]. All
the above results assume that S = R. The case of disjoint S and R
was first considered in the above mentioned [24] where no first order
perturbation was present.

In addition to [24], we are aware of only two results on inverse bound-
ary value problems with disjoint data analogous to the case S ∩R = ∅.
Rakesh [27] considers a wave equation on a one-dimensional interval
with sources supported on one end of the interval and the waves ob-
served on the other end, and Imanuvilov, Uhlmann, and Yamamoto
[15] proved that a zeroth order term in a Schrödinger equation on a
two-dimensional domain homeomorphic to a disk, whose boundary is
partitioned into eight parts Γ1,Γ2, . . . ,Γ8 in the clockwise order, is de-
termined by boundary measurements with Dirichlet data supported on
S = Γ2 ∪ Γ6 and the Neumann trace observed on R = Γ4 ∪ Γ8.

Let us mention also the result on recovery of a conformal scaling
factor in the metric tensor given the Dirichlet-to-Neumann map [31]
that, analogously to our result, uses local convexity of the boundary.
The proof [31] is based on a reduction to the boundary rigidity result
[30] and this approach seems to require that S = R.

A vast majority of results on inverse boundary value problems as-
sume that S∩R 6= ∅. For this type of non-disjoint, partial data results,
we refer to [7, 8, 9, 11, 12, 13, 14, 18].

2. Tools for the reconstruction

In this section we present the two main components of the Boundary
Control method: an integration by parts technique originating from
Blagoveščenskĭı’s study of the 1+1 dimensional wave equation [5], and
a density result based on the hyperbolic unique continuation result by
Tataru [32].

2.1. Blagoveščenskĭı’s identity. Let Γ ⊂ ∂M and B ⊂ M int be
open, and let κ : B → C. We define for f ∈ C∞0 ((0,∞)× S),

ΛΓf = (∂νu−
1

2
(A, ν)gu)|(0,∞)×Γ, ΛB,κf = κu|(0,∞)×B,

where u is the solution of (1), and write ΛB = ΛB,κ when considering
a fixed κ. Note that ΛR is just a shorthand notation for the response
operator Λ∞S,R.
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For V = Γ or V = B, we define

(4) KT
V = JΛV −RΛVRJ,

where Rψ(t) = ψ(T − t) and Jψ(t) = 1
2

∫ 2T−t
t

ψ(s)ds. We write also
UTf = u(T ).

Let us now suppose that κ ∈ C∞(B) and consider the adjoint wave
equation

(∂2
t −∆g − A+Qad)v = κH, in (0, T )×M,(5)

where H ∈ C∞0 (B). We impose the initial and boundary conditions

v|(0,T )×∂M = φ, in (0, T )× ∂M,(6)

v|t=0 = 0, ∂tv|t=0 = 0, in M,

where φ ∈ C∞0 ((0,∞) × ∂M). Here Qad = Q − divgA, where divg is
the divergence on (M, g). We define

W T
Γ φ = v(T ), W T

Γ : C∞0 ((0,∞)× Γ)→ C∞(M),

where v is the solution of (5), (6) with H = 0, and

W T
BH = v(T ) W T

B : C∞0 ((0,∞)×B)→ C∞(M),

where v is the solution of (5), (6) with φ = 0.

Lemma 1 (Blagoveščenskĭı type identity). Let T > 0 and let Γ ⊂ ∂M
and B ⊂ M int be open. Let V = Γ or V = B. Then for functions
f ∈ L2((0,∞)× S) and p ∈ L2((0,∞)× V) we have

〈W T
V p, U

Tf〉L2(M) = 〈p,KT
V f〉L2((0,T )×V).(7)

Proof. Let u be the solution of (1) with f ∈ C∞0 ((0,∞)×S) and let us
consider a smooth solution v of the adjoint equation (5). Then

〈u, κH〉L2((0,T )×M)(8)

= 〈u, (∂2
t −∆g − A+Qad)v〉L2((0,T )×M)

−〈(∂2
t −∆g + A+Q)u, v〉L2((0,T )×M)

= 〈u(T ), ∂tv(T )〉L2(M) − 〈∂tu(T ), v(T )〉L2(M)

+〈u, ∂νv +
1

2
(A, ν)gv〉L2((0,T )×∂M)

−〈∂νu−
1

2
(A, ν)gu, v〉L2((0,T )×∂M).

We define

LTΓφ = (∂νv +
1

2
(A, ν)gv)|(0,T )×S , φ ∈ C∞0 ((0,∞)× Γ),
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where v is the solution of (5), (6) with H = 0, and

LTBH = (∂νv +
1

2
(A, ν)gv)|(0,T )×S , H ∈ C∞0 ((0,∞)×B),

where v is the solution of (5), (6) with φ = 0.
Note that if we replace v with Rv in the integration by parts (8), we

see that

〈ΛVf, p〉L2((0,T )×V) = 〈f,RLTVRp〉L2((0,T )×S).(9)

Hence RΛVR is the adjoint of LTV .
Let t ∈ (0, T ) and s ∈ (0, 2T ). Then

(∂2
t − ∂2

s )〈u(s), v(t)〉L2(M)

= 〈u(s), (∆g + A−Qad)v(t)〉L2(M)

−〈(∆g − A−Q)u(s), v(t)〉L2(M)

= 〈u(s), κH(t)〉L2(M) − 〈u(s), ∂νv(t) +
1

2
(A, ν)gv(t)〉L2(∂M)

+〈∂νu(s)− 1

2
(A, ν)gu(s), v(t)〉L2(∂M)

= 〈ΛVf(s), p(t)〉L2(V) − 〈f(s), LTVp(t)〉L2(S),

where v is the solution of (5), (6) either with H = 0 and φ = p or with
H = p and φ = 0. Thus the function (t, s) 7→ 〈u(s), v(t)〉L2(M) satisfies
a 1 + 1 dimensional wave equation with a known right-hand side. We
solve this wave equation in the triangle with corners (T, T ), (0, 0) and
(0, 2T ), and obtain

〈u(T ), v(T )〉L2(M) =
1

2

∫ T

0

∫ 2T−t

t

〈ΛVf(s), p(t)〉L2(V)dsdt(10)

−1

2

∫ T

0

∫ 2T−t

t

〈f(s), LTVp(t)〉L2(S)dsdt,

where we have used the fact that u(0) = ∂tu(0) = 0. The identity (7)
for f ∈ C∞0 ((0, T ) × S) and p ∈ C∞0 ((0, T ) × V) follows from (10) by
applying the identity (9) to Jf .

The map UT is continuous L2((0, T )× S)→ L2(M), and the analo-
gous statement is true for the map W T

V [23, 17]. Hence the operator KT
V

has a unique continuous extension as an operator from L2((0, T )× S)
to L2((0, T )× V) and the identity (7) holds for the extension. �

2.2. Approximate controllability. Next we consider approximate
controllability on a domain of influence. Let Γ ⊂ ∂M and B ⊂M int be
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open, and let V = Γ or V = B. Let h : V → R be piecewise continuous,
and define the domain of influence

M(V , h) := {x ∈M ; inf
y∈V

(d(x, y)− h(y)) ≤ 0},

where d is the distance function of M . Moreover, we write

B(V , h;T ) := {(t, y) ∈ (0,∞)× V ; T − h(y) < t}.
We extend the notations M(V , h) and B(V , h;T ) for constants h ∈ R
by interpreting h as a constant function. Moreover, we define M(x, h)
by M({x}, h) for points x ∈ ∂M .

We have the following approximate controllability result that is anal-
ogous to [24, Lemma 5] and [21, Lemma 3.6].

Lemma 2. Let Γ ⊂ ∂M and B ⊂ M int be open, and let V = Γ or
V = B. Let h : V → R to be piecewise continuous. In the case when
V = B suppose, moreover, that h > 0 pointwise. Then

W T
V (C∞0 (B(V , h;T )))

is dense in L2(M(V , h)) = {w ∈ L2(M); supp (w) ⊂ M(V , h)}. More-
over, for all x ∈ M(V , h) there is p ∈ C∞0 (B(V , h;T )) such that
W T
V p(x) 6= 0.

3. Local reconstruction of the first order perturbation

In this section we prove Theorem 1. As we have established the key
elements of the Boundary Control method, that is, Lemmas 1 and 2,
in the present context, the reconstruction of the geometry near R is
analogous to the local reconstruction step in [24]. We refer to [25] for
the details, and focus here on the recovery of the lower order terms A
and Q.

Our proof is based on using the convexity of R. Let us recall the
definition of the boundary normal coordinates. Let Γ ⊂ ∂M be open.
Then the boundary normal coordinates adapted to Γ are given by the
map

(s, y) 7→ γ(s; y, ν), y ∈ Γ, s ∈ [0, σΓ,M(y)),(11)

where the cut distance σΓ,M : Γ→ (0,∞) is defined by

σΓ,M(y) = max{s ∈ (0, τM(y)]; d(γ(s; y, ν),Γ) = s},(12)

τM(y) = sup{s ∈ (0,∞); γ(s; y, ν) ∈M int}.
Here γ(·;x, ξ) is the geodesic with the initial data (x, ξ) ∈ TM , and
we recall that ν is the interior unit normal on ∂M . We often write
σΓ = σM,Γ. Note that σΓ(y) > 0, see e.g. [17, p. 50].
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We define

MΓ = {γ(s; y, ν); y ∈ Γ, s ∈ [0, σΓ(y))}.
Then a point x ∈ MΓ is represented in the coordinates (11) by (s, y),
where s = d(x,Γ) and y is the unique closest point to x in Γ.

3.1. A convexity argument. Our aim is to construct a sequence of
functions hj, j = 1, 2, . . . on R such that the difference of the domains
of influences M(Γ, s) \M(R, hj) converges to a point as j →∞. Here
Γ ⊂ R and s > 0 will be chosen suitably. We use the notation

B(p, r) = {x ∈M ; d(x, p) < r}, p ∈M, r > 0.

Lemma 3. Let Γ ⊂ ∂M be open and strictly convex, and let K ⊂ Γ be
compact. Then there is δ(K) > 0 and a neighborhood U(K) ⊂ MΓ of
K such that, for all p ∈ U(K) and q ∈ B(p, δ(K)) \ {p}, there is z ∈ Γ
satisfying d(z, q) < d(z, p).

Proof. Let us consider a unit speed geodesic γ(t) = (s(t), z(t)) in coor-
dinates (11) and denote the initial data of γ by

γ(0) = (s, y), γ̇(0) = (ρ, η),

where s = s(0). We will first show that there is a neighborhood U ⊂M
of K and ρ0 > 0 such that, for all (s, y) ∈ U and ρ ∈ [−1, ρ0], the
geodesic γ intersects Γ and is distance minimizing until the intersection.

To this end recall that, in coordinates (11), the metric tensor g is of
the form

g(s, y) =

(
1 0
0 h(s, y)

)
,

and the Christoffel symbols Γljk satisfy

Γ1
j1 = Γj11 = 0, gαγΓ1βγ = −Γαβ1,

where gjk is the inverse of gjk and we are using the Einstein summa-
tion convention with the Greek indices running over 2, 3, . . . , n. In
particular,

s(t) = s+ tρ− t2

2
Γ1
αβ(s, y)ηαηβ +O(t3).

Let us also recall that the second fundamental form of Γ is given by
II(∂α, ∂β) = Γ1

αβ(0, y), see e.g. [28, p. 113].
The strict convexity of Γ, the lower semi-continuity of the cut dis-

tance function σΓ and the compactness of K imply that there is a neigh-
borhood U0 ⊂MΓ of K and c > a > 0 such that, for all (s, y) ∈ U0,

a|η|2h ≤ Γ1
αβ(s, y)ηαηβ ≤ c|η|2h.
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We will consider only the case |η|2h > 1/2. Note that if ρ0 > 0 is
small and |η|2h ≤ 1/2, then ρ < ρ0 implies that ρ < 0 since (ρ, η) is an
unit vector. For small t > 0, we have the bound

s+ tρ− ct2 ≤ s(t) ≤ s+ tρ− at2

8
.

As K ⊂ Γ is closed and γ is unit speed, z(t) ∈ Γ for small t > 0, if
s > 0 or s = 0 but ρ > 0. It then follows that there is σ > 0 such that,
for s ≤ σ, y ∈ K, ρ ≤ σ with (s, y) ∈ U0, the geodesic γ(t) intersects
Γ at some t = τ(s, y; ρ, η). Moreover, y(t) ∈ Γ for 0 ≤ t ≤ τ(s, y; ρ, η)
and γ(t) is the distance minimizing up to zγ = γ(τ). Thus, for t > 0,

d(zγ, γ(t)) = τ − t < d(zγ, γ(0)).(13)

Let us emphasize that the case s = 0 is also allowed in the above
argument. We take U = {(s, y) ∈ U0; s < σ} and ρ0 = σ.

Let (s, y) ∈ U , (ρ, η) be a unit vector and suppose that ρ > ρ0. We
may choose η0 = bη, 0 < b < 1, such that (ρ0, η0) is also a unit vector
at (s, y). Then the geodesic γ0(s) with the initial data

γ0(0) = (s, y), γ̇0(0) = (ρ0, η0)

intersects Γ at zγ0 and is distance minimizing until the intersection.
As ρ0 > 0 we have that τ(s, y; ρ0, η) is strictly positive for (s, y) ∈ U

and η0 ∈ S := {η ∈ Rn−1; |η|2h + ρ2
0 = 1}. Together with continuity of

τ this implies

τU := min
(s,y)∈U,η0∈S

τ(s, y; ρ0, η0)/2 > 0.

Moreover, the first variation formula, see e.g. [26, Prop. 10.2], implies

∂td(γ0(τU), γ(t))|t=0 = −(γ̇0(0), γ̇(0))g = −ρ0ρ− b|η0|2h ≤ −ρ2
0.

It follows from the above inequality together with the relative com-
pactness of U that there is δ > 0 such that, if t ∈ (0, δ), (s, y) ∈ U ,
ρ > ρ0, then

d(zγ0 , γ(t)) ≤ d(zγ0 , γ(0))− tρ2
0/2.(14)

The claim now follows from (13) and (14). �

Lemma 4. Let Γ ⊂ ∂M be open and let p ∈ MΓ. Then, for all
q ∈M(Γ, d(p,Γ)) \ {p}, there is z ∈ Γ satisfying d(z, q) < d(z, p).

Proof. Let p = (s, y), s = d(p,Γ), in coordinates (11), and let z be a
closest point to q in Γ. If z 6= y then

d(z, q) = d(q,Γ) ≤ d(p,Γ) < d(z, p),
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since z is not the closest point to p in Γ. Suppose now that z = y and
write r = d(y, q). Then r ≤ d(p,Γ) = s and q = (r, y) in coordinates
(11). Moreover q 6= p, whence r < s. �

We define B∂M(y, ε) = {x ∈ ∂M ; d(x, y) < ε}.

Lemma 5. Let δ > 0 and let p ∈ MΓ have the boundary normal
coordinates (s, y). Then there is ε = ε(p, δ) > 0 such that for all
q ∈ B(p, ε),

M(B∂M(y, ε), s+ ε) ⊂M(Γ, d(q,Γ)) ∪B(q, δ).(15)

Proof. To prove (15) we assume the contrary. Then there exist se-
quences εn → 0,

qn = (rn, zn) ∈ B(p, εn), q′n ∈M(B∂M(y, εn), s+ εn),

such that d(q′n,Γ) > rn and d(q′n, qn) ≥ δ. Taking if necessary a subse-
quence, we may assume that q′n → q′. Then it follows from the above
that

d(q′, y) ≤ s, d(q′,Γ) ≥ s, d(q′, p) ≥ δ.

This is a contradiction since the first two conditions imply q′ = p. �

Lemma 6. Let Γ ⊂ ∂M be open and strictly convex and let K ⊂ Γ be
compact. Let δ > 0 and U ⊂MΓ be as in Lemma 3. Let p = (s, y) ∈ U
and let ε = ε(p, δ) > 0 be as in Lemma 5. We decrease ε > 0, if
necessary, so that B∂M(y, ε) ⊂ Γ. Furthermore, we define

Cp = ((s− ε′, s+ ε′) ∩ [0,∞))×B∂M(y, ε′),

where ε′ ∈ (0, ε) is chosen so that, in the coordinates (11), Cp ⊂ B(p, δ).
Let x ∈ Cp and define, for j = 1, 2, . . . ,

Xj = M(B∂M(y, ε), s+ ε)int \M(Γ, hj),

hj(z) = d(z, x)− 1/j, z ∈ Γ.

Then Xj is a neighborhood of x, and diam (Xj)→ 0 as j →∞.

The set Xj is visualized in Figure 1.

Proof. It is clear that Xj+1 ⊂ Xj and that x ∈ Xj for all j. Sup-
pose that q ∈ Xj for all j. If q /∈ B(x, δ) then (15) yields that
q ∈M(Γ, d(x,Γ)). Now Lemma 4 implies that q ∈M(Γ, hj)

int for large
j which is a contradiction with q ∈ Xj. If, however, q ∈ B(x, δ) \ {x},
then Lemma 3 implies that q ∈ M(Γ, hj)

int for large j which is again
a contradiction. Thus q = x. As the sequence of sets Xj is decreasing
and

⋂
j≥1Xj = {x}, we have that diam (Xj)→ 0 as j →∞. �
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x Γ

p

y

Figure 1. Left. A part of the domain of influence M(Γ, hj) in
gray, where (M, g) is the Euclidean unit disk, x = (0, 3/5), j = 20,
and Γ is slightly less than the upper half circle. The black curve is
the boundary of M(B∂M(y, ε), s+ ε) where p = (s, y), y = (0, 1),
s = 1/2 and ε = 1/5. The set Xj is the white region around
x. Right. Schematic diagram of the sets B∂M(y, ε) ⊂ Γ, in black
around the gray point y, and Cp, in gray around the black point
p = (s, y). The black curve is the boundary of M(B∂M(y, ε), s+ε).

3.2. Localized solutions. We denote by |X| the Riemannian volume
of a measurable set X ⊂M .

Lemma 7. Let X ⊂M be open, x ∈ X and let Xj ⊂M , j = 1, 2, . . . ,
be a sequence of neighborhoods of x satisfying limj→∞ diam (Xj) = 0.
Let ψ0 ∈ C∞0 (X ) satisfy ψ0(x) 6= 0. Let T > 0 and suppose that a
sequence (fj)

∞
j=1 of functions in L2((0, T )× S) satisfies

(i) there is C > 0 such that ‖fj‖L2((0,T )×S) ≤ C|Xj|−1/2 for all j,

(ii) supp (UTfj) ⊂ Xj ∪ (M \ X ) for all j,
(iii) (〈UTfj, ψ0〉L2(M))

∞
j=1 converges.

Then there is κ ∈ C such that 〈UTfj, ψ〉L2(M) → κψ(x) for all functions
ψ ∈ C∞0 (X ).

Furthermore, if the wave equation (1) is exactly controllable from S
in time T , then there is a sequence (fj)

∞
j=1 that satisfies (i)-(iii) and

for which κ = 1.

Let us emphasize that X may intersect ∂M in which case x may
belong to ∂M .

Proof. To simplify the notation, we write U = UT and uj = Ufj. Let
ψ ∈ C∞0 (X ). Then supp (ujψ) ⊂ Xj and

〈uj, ψ〉L2(M) = ψ(x)〈uj, 1〉L2(M) +Rj,
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where, using some local coordinates x̃ in Xj for all large enough j, the
remainder term satisfies

|Rj| ≤ C ‖∇ψ‖C(Xj)

∫
Xj

|uj(x̃)|d(x̃, x)dx̃

≤ C ‖∇ψ‖C(Xj) ||uj||L2(M)

(∫
Xj

d2(x̃, x)dx̃

)1/2

≤ C ‖∇ψ‖C(Xj) diam (Xj)→ 0.

Notice that the constant C > 0 may increase between the inequalities
and that, at the last inequality, we use ||uj||L2(M) ≤ C ‖fj‖L2((0,T )×S),

see [23], together with (i). We choose ψ = ψ0 and see that limj→∞〈uj, 1〉L2(M)

exists. We denote the limit by κ. Thus for any ψ ∈ C∞0 (X ) it holds
that 〈uj, ψ〉L2(M) → κψ(x) as j →∞.

Let us now assume that (1) is exactly controllable from S in time T .
By exact controllability,

U : L2((0, T )× S)→ L2(M),

is surjective. Hence its pseudoinverse

U † : L2(M)→ L2((0, T )× S)

is continuous and the composition UU † gives the identity map, see e.g.
[10, pp. 33-34]. Now fj = U †1Xj

/|Xj| has the required properties. �

Lemma 8. Let Γ ⊂ ∂M and B ⊂ M int be open, and let V = Γ or
V = B. Let T > 0 and let h : V → [0, T ] be piecewise continuous. In
the case when V = B suppose, moreover, that h > 0 pointwise. Let
C ⊂M(V , h) ∩M int be open and let κ : C → C. We define

wφ(x) = κ(x)(W T
V φ)(x), φ ∈ C∞0 (B(V , h;T )), x ∈ C,

and have the following:

(1) If wφ ∈ C∞(C) for all φ ∈ C∞0 (B(V , h;T )) then κ ∈ C∞(C).
(2) If for all x ∈ C there is φ ∈ C∞0 (B(V , h;T )) such that wφ(x) 6= 0,

then κ(x) 6= 0 for all x ∈ C.

Moreover, in the case V = Γ we can enforce smoothness up to the

boundary, that is, we define C̃ = C ∪ (S ∩ C) where S is an open set in
∂M such that h > 0 in S, and have the following:

(3) If wφ ∈ C∞(C̃) for all φ ∈ C∞0 (B(V , h;T )) then κ ∈ C∞(C̃).

Proof. Let x ∈ C. By Lemma 2, there is a neighborhood U of x and
φ ∈ C∞0 (B(V , h;T )) such that W T

V φ is non-vanishing in U . We have
that κ = wφ/W

T
V φ in U , and (1) and (2) follow.
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Suppose now that V = Γ and that x ∈ S ∩ C. Then there is a
neighborhood of U ⊂ M of x and φ ∈ C∞0 (B(V , h;T )) such that W T

Γ φ
is non-vanishing in U , since on S we can choose W T

Γ φ = φ(T ) to be
non-vanishing. The function W T

Γ φ is smooth up to ∂M , whence κ is
smooth in U . �

The below lemma follows immediately from Lemma 2.

Lemma 9. Let Γj ⊂ ∂M and Bj ⊂ M int be open, and let Vj = Γj or
Vj = Bj, j = 1, 2. Let T > 0 and let hj : Vj → [0, T ] be piecewise
continuous. In the case when Vj = Bj suppose, moreover, that hj > 0
pointwise. We define V = V2 ∩ V1 and h = min(h1, h2) on V. Let
Cj ⊂ M(Vj, hj) be open in M int, and let κj ∈ C∞(Cj). Suppose that
C1 ∩ C2 ⊂M(V , h) and that

κ1W
T
V φ = κ2W

T
V φ, φ ∈ C∞0 (B(V , h;T )),

on C1 ∩ C2. Then κ1 = κ2 on C1 ∩ C2.

Let C ⊂ M int be open and let κ ∈ C∞(C). We define AC,κ as the
restriction of κ−1Aκ on C, where A = ∆g − A−Q.

Lemma 10. Let Γ ⊂ ∂M and B ⊂ M int be open, and let V = Γ or
V = B. Let T > 0 and h : V → [0, T ] be piecewise continuous. Let
C ⊂ M(V , h) ∩M int be open and let κ ∈ C∞(C) be nowhere vanishing.
Then the functions

κW T
V φ, φ ∈ C∞0 (B(V , h;T )),

on C, together with the Riemannian structure (C, g), determine the co-
efficients of the operator AC,κ.

Proof. Taking into account the translation invariance in time of (5),
we can differentiate κW T

V φ|C twice in time to get κA∗W T
V φ|C. Let ψ be

a function in C∞0 (C). As we know the Riemannian structure on C, we
can compute

〈κA∗W T
V φ, ψ〉L2(C) = 〈κW T

V φ, κ
−1Aκψ〉L2(C).

As the functions W T
V φ|C, φ ∈ C∞0 (B(V , h;T )), are dense on L2(C), and

we know κW T
V φ|C and κA∗W T

V φ|C, we can recover κ−1Aκψ. This allows
us to determine the coefficients of the operator κ−1Aκ on C. �

3.3. Local reconstruction near the set R. We are ready to prove
the local result formulated in the introduction.

Proof of Theorem 1. As the wave equation is exactly controllable from
S in time T , [2, Theorem 3.2] implies that σR ≤ T pointwise on R.
We recall that σR is defined by (12).
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Let K ⊂ R be compact, and consider the sets defined in Lemma 6.
We write Cp(K) = Cp to emphasize the dependence on K, and use an
analogous notation also for other quantities in Lemma 6. Furthermore,
we write Γp(K) = B∂M(y, ε).

As discussed in the beginning of Section 3, by using the method of
[24, 25], we recover first (MR, g). Then we can construct the functions
hj and the sets Xj for any x ∈ Cp(K) and p ∈ U(K). We choose
X = M(Γp(K), s + ε)int in Lemma 7. As (MR, g) is known, we can
determine if the condition (i) of Lemma 7 holds. Lemmas 1 and 2
imply that the condition (ii) holds if and only if

〈φ,KT
Rfj〉L2((0,T )×R) = 0, φ ∈ C∞0 (B(R, hj;T )),

where KT
R is defined by (4). Note that (MR, g) determines the Rie-

mannian volume measure of (R, g), whence we can compute the above
inner products. The condition (iii) holds if limj→∞〈φ,KT

Rfj〉L2((0,T )×R)

exists for all φ ∈ C∞0 ((0,∞) × R). Indeed, by Lemma 2 there is
φ ∈ C∞0 ((0,∞)×R) such that W T

Rφ does not vanish at a given point
in MR, and we can apply Lemma 7 with ψ0 = W T

Rφ.
Let us use the shorthand notation Bp(K) = B(Γp(K), s+ε, T ). As we

can verify if all the conditions (i)-(iii) in Lemma 7 hold, we can choose
for all p ∈ U(K) and x ∈ Cp(K) a sequence

F (x; p,K) = (fj)
∞
j=1 ⊂ L2((0, T )× S)

such that 〈φ,KT
Rfj〉L2(M) converges to

κ(x;F, p,K)(W T
Rφ)(x), φ ∈ C∞0 (Bp(K)),

where the factors κ(x;F, p,K) remain unknown and depend on x, p,
K and the choice of the sequence F = F (x; p,K). We will next im-
pose further conditions on the choice of F that enforce the functions
κ(x;F, p,K) to be restrictions of a smooth function defined in a neigh-
borhood of R.

Using Lemma 8 we choose F = F (x) such that

κp,K(x) = κ(x;F (x), p,K)

is smooth and nowhere vanishing on Cp(K). Note that the second claim
in Lemma 7 implies that there exists such a choice of F (x). We choose
a collection J of compact sets in R such that

⋃
K∈J K = R. Let us now

use Lemma 9 to enforce the functions

(16) κp,K ∈ C∞(Cp(K)), p ∈ U(K), K ∈ J,



HYPERBOLIC INVERSE PROBLEM WITH DATA ON DISJOINT SETS 15

to be restrictions of a smooth function defined on the set U(K). Let
Kj ∈ J and pj = (sj, yj) ∈ U(Kj), j = 1, 2, and define

C = Cp1(K1) ∩ Cp2(K2).

Note that since Cpj(Kj), j = 1, 2, are cylinders so is C, in fact,

C = ((a, b) ∩ [0,∞))× Γ,

where a = maxj=1,2 sj − ε′pj(Kj), b = minj=1,2 sj + ε′pj(Kj) and

Γ =
⋂
j=1,2

B∂M(yj, ε
′
pj

(Kj)).

Note that C ⊂M(Γ, b). We require that

κp1,K1W
T
Rφ = κp2,K2W

T
Rφ, φ ∈ C∞0 (

⋂
j=1,2

Bpj(Kj)),

on C. Then κp1,K1 = κp2,K2 on C by Lemma 9. It follows that the
functions (16) fit together on U =

⋃
K∈J U(K) and form a function

κ ∈ C∞(U). We require, furthermore, that

κ(x)W T
Rφ(x) = φ(T, x), x ∈ Cp(K) ∩ K, φ ∈ C∞0 (Bp(K)),

whenever K ∈ J and p ∈ U(K) satisfy Cp(K) ∩ K 6= ∅. By varying p
and K, we get κ = 1 on R. We may choose U to be a slightly smaller
neighborhood of R to guarantee that κ ∈ C∞(U).

We apply Lemma 10 to recover κ−1Aκ on each Cp(Kj), p ∈ U(Kj).
This gives us κ−1Aκ = ∆g − Aκ −Qκ on U , and (Aκ|U , Qκ|U) belongs
to the orbit GU ,R(A,Q). Hence we can determine the orbit GU ,R(A,Q).

�

4. Reconstruction of the first order perturbation along
a convex foliation

In this section we prove the following global result:

Theorem 3. Let S ⊂ ∂M be open and suppose that the wave equation
(1) is exactly controllable from S. Let R ⊂ ∂M be open and strictly
convex and let Σs, s ∈ (0, 1], be a convex foliation satisfying (F1)-(F7).
Then Λ∞S,R, together with (Ω1, g), determines the orbit GΩ1,R(A,Q).

The proof is based on iterating the local reconstruction method of
the previous section along the convex foliation.
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4.1. Local reconstruction near the set Σs. Let Σs, s ∈ (0, 1], be
a convex foliation satisfying (F1)-(F7). Let Γ ⊂ Σs be open and let
h : Γ → R be piecewise continuous. We recall that Ms is defined in
(F4), and consider the domain of influence on Ms,

Ms(Γ, h) := {x ∈Ms; inf
y∈Γ

(dMs(x, y)− h(y)) ≤ 0}.

Here dMs(x, y) is the distance function on (Ms, g). We will also use the
notation dΩs

(x, y) for the distance function on (Ωs, g).

Lemma 11. Let Σs, s ∈ (0, 1], be a convex foliation satisfying (F1)-
(F7), and let s ∈ (0, 1]. Let h : Σs → R be piecewise continuous.
Then

(17) Ms(Σs, h) ∪ Ωs = M(Ωs, h̃),

where h̃(y) = max(supz∈Σs
(h(z)− dΩs

(z, y)), dΩs
(y, ∂Ωs)).

Proof. Let us show first that

d(x, z) = dMs(x, z), x, z ∈Ms.

It is enough to show that a shortest path γ between x and z stays in
Ms. To get a contradiction suppose that S < s, where

S = inf{r ∈ [0, s]; γ ∩ Σr 6= ∅},

and we have used the notation Σ0 = R0. Let p ∈ γ∩ΣS. Let us consider
first the case S > 0. Then γ is a geodesic near p. As γ ∩ ΩS = ∅, the
intersection is tangential. But then the strict convexity of ΣS implies
that γ is in ΩS near p, which is a contradiction. On the other hand, if
S = 0 then the intersection must be tangential again, since a shortest
path is C1. But this is impossible by the strict convexity of Σ0 ⊂ R.

Let us now show (17). Note that h̃(y) ≥ h(y) for y ∈ Σs and that

h̃ > 0 on Ωs. Hence Ms(Σs, h) ∪ Ωs ⊂ M(Ωs, h̃). On the other hand,

if x ∈ M(Ωs, h̃) \ Ωs then there is y ∈ Ωs such that d(x, y)− h̃(y) ≤ 0

and z ∈ Σs such that h̃(y) = h(z)− dΩs
(z, y). Thus

dMs(x, z)− h(z) = d(x, z)− dΩs
(z, y)− h̃(y) ≤ d(x, y)− h̃(y) ≤ 0,

and x ∈Ms(Σs, h). �

Let us prove next the following analogue of Theorem 1 with data
on Ωs. Note that contrary to Theorem 1, we do not require κ to have
a specific value on Σs. We recall that for and open set U ⊂ M int,
ΛU,κf = κu|(0,∞)×U , where u is the solution of (1).
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Lemma 12. Let S ⊂ ∂M be open and suppose that the wave equation
(1) is exactly controllable from S in time T > 0. Let Σs, s ∈ (0, 1],
be a convex foliation satisfying (F1)-(F7), let s ∈ (0, 1], and let κ0 ∈
C∞(Ωs) be nowhere vanishing. Then there is a neighborhood Us ⊂ Ms

of Σs such that ΛΩs,κ0 determines the family of operators

(18) {AUs,κ; κ ∈ C∞(Us), κ(x) 6= 0, x ∈ Us}.

Proof. Let K ⊂ Σs be compact, and let us consider the sets defined in

Lemma 6 where M is replaced with Ms. We define X = Ms(Ωs, h̃)int

and Bp(K) = B(Ωs, h̃, T ), where h̃ is as in Lemma 11 with the choice
h = (s+ ε)1Γp(K), and s and ε are as in Lemma 6.

Analogously to the proof of Theorem 1, we use Lemma 2 together
with Lemma 11 to determine if the conditions (i)-(iii) of Lemma 7 hold.
We can choose for all p ∈ U(K) and x ∈ Cp(K) a sequence

F (x; p,K) = (fj)
∞
j=1 ⊂ L2((0, T )× S)

such that 〈φ,KT
Ωs
fj〉L2(M) converges to

κ(x;F, p,K)(W T
Ωs
φ)(x), φ ∈ C∞0 (Bp(K)),

where the factors κ(x;F, p,K) remain again unknown and depend on
x, p, K and the choice of the sequence F = F (x; p,K).

We choose a collection J of compact sets in Σs such that they cover
Σs, and use again Lemmas 8 and 9 to enforce

κ(x;F, p,K), x ∈ Cp(K), p ∈ U(K), K ∈ J,
to form a smooth nowhere vanishing function κ on Us =

⋃
K∈J U(K).

Finally, we apply Lemma 10 to recover the orbit (18). �

4.2. Gluing of the gauges. Let S,R ∈ ∂M satisfy the assumptions
of Theorem 3, and let Σs, s ∈ (0, 1], be a convex foliation satisfying
(F1)-(F7). We define

J = {s ∈ (0, 1]; ΛR determines the orbit GU,R(A,Q)(19)

for open U ⊂M containing Ωs}.
The set J is nonempty by (F6), since for small enough s we have that
Ωs ⊂ U , where U is a neighborhood of R as in Theorem 1. Moreover,
the continuity condition (F5) implies that J is open. Theorem 3 follows
after we have shown that J is closed.

Lemma 13. Let U ⊂ M int be open and suppose that U ∩ ∂M ⊂ R.
Suppose that κ : U → C is smooth near R and that ΛU,κf ∈ C∞(U)
for all f ∈ C∞0 ((0,∞)× S). Then κ ∈ C∞(U).
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Proof. Let x ∈ U ∩M int. By Lemma 2 there is f ∈ C∞0 ((0,∞) × S)
and a neighborhood B ⊂ M int of x such that u(T ) 6= 0 in B. This
implies that κ is smooth in B ∩ U . �

Let U ⊂M int be open. We define

K(U) := {κ ∈ C∞(U); κ|U∩R = 1, κ(x) 6= 0, x ∈ U}.

Lemma 14. Let U ⊂ M int be open and connected and suppose that
U ∩ ∂M ⊂ R and that the interior of U ∩ R in ∂M is nonempty.

We consider the family of operators F = {AU,κ; κ ∈ K̃(U)}, where

K̃(U) is the set of piecewise smooth functions κ : U → C such that κ
is nowhere vanishing, κ = 1 in U ∩ R, κ is smooth near R, and that
AU,κ has smooth coefficients. Then F and ΛR determine the family
{(AU,κ,ΛU,κ); κ ∈ K(U)}.

Proof. Let κ−1Aκ ∈ F . Let p ∈ U be such that p ∈ M(Γ, r) ⊂ U for
some open set Γ ⊂ U ∩ R and r > 0. We solve the wave equation
corresponding to the adjoint of κ−1Aκ,

∂2
tw − κA∗κ−1w = 0, in (0, T )×M,

w|(0,∞)×∂M = φ, in (0, T )× ∂M,

w|t=0 = ∂tw|t=0 = 0, in M.

where φ ∈ C∞0 ((T − r, T )×Γ). Then κ−1w = v, where v solves (5), (6)
with H = 0. By Lemma 1, ΛR determines the inner products

〈W T
Rφ, U

Tf〉L2(M) = 〈w(T ), κ−1UTf〉L2(M).

The functions w(T ), h ∈ C∞0 ((T − r, T )×Γ), are dense in L2(M(Γ, r))
by Lemma 2, and thus we can recover κ−1UTf in M(Γ, r). By using
the translation invariance in time, we recover the operator ΛB,κ, where
B = M(Γ, r)int.

Let us now suppose that p ∈ U and ε > 0 satisfy B(p, 2ε) ⊂ U . We
will show that the maps ΛB(p,ε),κ and κA∗κ−1 on U determine the map
ΛB(p,2ε),κ.

We can compute the inner products

〈W T
B(p,ε)H,U

Tf〉L2(M), H ∈ C∞0 ((0,∞)×B(p, ε)), f ∈ C∞0 ((0,∞)×S),

by using Lemma 1, and we can solve the wave equation

∂2
tw − κA∗κ−1w = H, in (0, T )×M,

w|(0,∞)×∂M = 0, in (0, T )× ∂M,

w|t=0 = ∂tw|t=0 = 0, in M.
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wheneverH ∈ C∞0 ((T−ε, T )×B(p, ε)). Moreover, W T
B(p,ε)H = κ−1w(T ),

whence κ−1UTf |B(p,2ε) can be determined from the inner products

〈W T
B(p,ε)H,U

Tf〉L2(M) = 〈κ−1w(T ), UTf〉L2(M).

By using the translation invariance in time, we recover the operator
ΛB(p,2ε),κ.

A point p ∈ U can be connected to R with a path γ : [0, 1]→ U such
that γ can be covered by a domain of influence M(Γ, r) ⊂ U , where
Γ ⊂ R is open and r > 0, and sets B(γ(t), ε) such that B(γ(t), 2ε) ⊂ U .
Here t ∈ [t0, 1], ε > 0 andB(γ(t0), ε) ⊂M(Γ, r). Now we can iteratively
move the data ΛB(γ(t),ε),κ along γ. This gives us the operator ΛB(γ(t),ε),κ,
and as p ∈ U can be chosen arbitrarily, the operator ΛU,κ is determined.
Finally, by using Lemma 13, we can enforce κ to be smooth in U . �

Corollary 1. Let s ∈ J where J is defined by (19). Then ΛR deter-
mines the family {(AΩs,κ,ΛΩs,κ); κ ∈ K(Ωs)}.
Lemma 15. Let s1, s2 ∈ J where J is defined by (19), and suppose
that s1 < s2. Then ΛR determines the family

{((AΩsj ,κj
,ΛΩsj ,κj

))2
j=1; κ2|Ωs1

= κ1, κj ∈ K(Ωsj), j = 1, 2}.

Proof. By Corollary 1 we can determine the two families of operators
Fj = {(AΩsj ,κj

,ΛΩsj ,κj
); κj ∈ K(Ωsj)}, j = 1, 2. Let (AΩsj ,κj

,ΛΩsj ,κj
)

be in Fj, j = 1, 2. We require that on Ωs1

ΛΩs1 ,κ1
f = ΛΩs2 ,κ2

f, f ∈ C∞0 ((0,∞)× S).

Let x ∈ Ωs1 . By Lemma 2 there is f ∈ C∞0 ((0,∞)×S) and a neighbor-
hood B ⊂ M int of x such that u(T ) 6= 0 in B, where u is the solution
of (1). Thus κ1 = κ2 in B. �

Lemma 16. Let sj ∈ J , j = 1, 2, . . . , form a strictly increasing se-
quence, and suppose that limj→∞ sj = s. Here J is defined by (19).
Then ΛR determines the family {(AΩs,κ,ΛΩs,κ); κ ∈ K(Ωs)}.
Proof. An induction using Corollary 1 and Lemma 15 shows that ΛR
determines the family

{((AΩsj ,κj
,ΛΩsj ,κj

))∞j=1; κj+1|Ωsj
= κj, κj ∈ K(Ωsj), j = 1, 2, . . . }.

The functions κj, j = 1, 2, . . . , fit together and give a function Ωs.
Thus ΛR determines the families of (AΩs,κ,ΛΩs,κ), where κ is smooth
in Ωs, up to Ωs ∩ R, κ is nowhere vanishing and satisfies κ = 1 in
Ωs ∩ R. By using Lemma 13 we can enforce κ to be smooth up to
Ωs ∩M int. �

We are now ready to prove the global result.
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Proof of Theorem 3. It remains to show that J is closed. Let sj ∈ J ,
j = 1, 2, . . . , form a strictly increasing sequence, and suppose that
limj→∞ sj = s. We will show that s ∈ J . By Lemma 16 we can
determine AΩs,κ0 and ΛΩs,κ0 for some κ0 ∈ K(Ωs). By Lemma 12,
ΛΩs,κ0 determines the family (18). Let AUs,κ be in the family (18),
and require furthermore that AΩs,κ0 and AUs,κ fit together in the sense
that they are restrictions of an operator with smooth coefficients on
U = Ωs ∪ Us. Then (2) implies that the function

κ̃(x) =

{
κ0(x), x ∈ Ωs,

κ(x), x ∈ Us,

is smooth except possibly on Σs. Now Lemma 14 allows us to restrict
the choice of κ so that κ̃ is in K(U). �

5. Reconstruction of the geometry

In this section we briefly explain how the method of [24] can be
adapted to the reconstruction of (Ω1, g) in the context of Theorem 2.

The lemma below follows immediately from the identity (7) and the
definition of the exact controllability.

Lemma 17. Suppose that the wave equation (1) is exactly controllable
from S in time T . Let Γ ⊂ ∂M and B ⊂ M int be open, and let V = Γ
or V = B. Let (fj)

∞
j=1 ⊂ C∞0 ((0,∞)× V). Then (W T

V fj)
∞
j=1 converges

weakly to zero in L2(M) if and only if

lim
j→0

〈
fj, K

T
Vψ
〉
L2((0,T )×V)

= 0, ψ ∈ L2((0, T )× S).

The lemma below allows us to extract geometric information from
the knowledge of weakly convergent sequences. The lemma follows
from Lemma 2 and we refer to [24, Lemma 6] for a proof.

Lemma 18. Let Γ ⊂ ∂M and B ⊂ M int be open, and let V = Γ
or V = B. Let h` : V → [0, T ], ` = 1, 2, be piecewise continuous
functions. In the case that V is B suppose, moreover, that h1 > 0 and
h2 > 0 pointwise. Then the following properties are equivalent:

(i) M(V , h1) ⊂M(V , h2).
(ii) For all f0 ∈ C∞0 (B(V , h1;T )) there is (fj)

∞
j=1 ⊂ C∞0 (B(V , h2;T ))

such that W T
V (f0 − fj) converges weakly to zero in L2(M).

By combining Lemmas 1, 11,17 and 18 we see that ΛΩs and (Ωs, g)
determine if

Ms(Σs, h1) ⊂Ms(Σs, h2)
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holds for piecewise continuous h1 and h2 on Σs. Now [24] implies that
this relation determines (MΣs , g), where MΣs is the image of

{(r, y) ∈ (0,∞)× Σs; r < σMs,Σs(y)}

under the map (r, y) 7→ γ(r; y, νs). Here νs is the interior unit normal
of Ms.

The above step recovering (MΣs , g) given ΛΩs can be iterated sim-
ilarly to the iteration in Section 4. We refer to [21, Section 4] for a
detailed exposition of gluing arguments that can be used to construct
an isometric copy of (Ω1, g).

6. Complementary results

In this section we show that instead of assuming exact controllability
from S and strict convexity of R, we may assume that exact control-
lability holds from S or R and that one of them is strictly convex.
Then we can determine the geometry and the lower order terms near
the strictly convex set R or S.

Observe first that the adjoint of ΛT
S,R is RΛT

R,SR where R is the
time-reversal Rφ(t) = φ(T − t). Thus Theorem 1 implies that we can
determine the geometry and the lower order terms near S if it is strictly
convex and exact controllability holds from R.

Let us show that the conclusion of Theorem 1 holds whenR is strictly
convex and the wave equation (1) is exactly controllable from R. The
fourth case, that is, S is strictly convex and exact controllability holds
from there, follows then again by transposition.

We used the exact controllability twice in the proof of Theorem 1,
namely in Lemma 17 and when we invoked Lemma 7 in the proof of
Theorem 1. We will give next the analogies of Lemmas 17 and 7 in
the case when the exact controllability holds from R instead of from
S, and outline how this change affects the proof of Theorem 1.

Lemma 19. Suppose (1) is exactly controllable from R in time T and
that T > maxx∈M d(x,S). Let Γ ⊂ ∂M and B ⊂ M int be open, and
let V = Γ or V = B. Let (fj)

∞
j=1 ⊂ C∞0 ((0,∞)× V). Then (W T

V fj)
∞
j=1

converges weakly to zero in L2(M) if and only if both (a) and (b) hold
where

(a) supj,k∈N |
〈
fj, K

T
Vψk

〉
L2((0,T )×V)

| < ∞ for all sequences (ψk)
∞
k=1

in C∞0 ((0, T )×S) such that (KT
Vψk)

∞
k=1 is bounded in the space

L2((0, T )× V).
(b) limj∈N

〈
fj, K

T
Vψ
〉
L2((0,T )×V)

= 0 for all ψ ∈ C∞0 ((0, T )× S).
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Proof. We begin by showing that (KT
Rψk)

∞
k=1 is bounded in the space

L2((0, T )×R) if and only if (UTψk)
∞
k=1 is bounded in the space L2(M).

Suppose that (KT
Rψk)

∞
k=1 is bounded and let w ∈ L2(M). As (1) is

exactly controllable from R in time T , there is f ∈ L2((0, T )×R) such
that W T

Rf = w. Thus〈
w,UTψk

〉
L2(M)

=
〈
f,KT

Rψk
〉
L2((0,T )×R)

, k = 1, 2, . . .

is bounded. This shows that (UTψk)
∞
k=1 is weakly bounded, and there-

fore bounded in norm, in L2(M). On the other hand if (UTψk)
∞
k=1 is

bounded, then〈
f,KT

Rψk
〉
L2((0,T )×R)

=
〈
W T
Rf, U

Tψk
〉
L2(M)

, k = 1, 2, . . .

is bounded for any f ∈ L2((0, T )×R), and we see that also (KT
Rψk)

∞
k=1

is bounded.
Suppose that (W T

V fj)
∞
j=1 converges weakly to zero in L2(M). Then

(b) follows from Lemma 1, and (a) follows from Lemma 1 together
with the fact that both the sequences (W T

V fj)
∞
j=1 and (UTψk)

∞
k=1 are

bounded in L2(M).
Suppose now that (a) and (b) hold, and let w ∈ L2(M). The as-

sumption T > maxx∈M d(x,S) together with the analogue of Lemma 2
for UT imply that there is a sequence (ψk)

∞
k=1 in C∞0 ((0, T ) × S) such

that limk→∞ U
Tψk = w in L2(M). Note that KT

Vψk = (W T
V )∗UTψk,

k = 1, 2, . . . , is then bounded. By (a) it holds that

sup
j∈N
|
〈
W T
V fj, w

〉
L2(M))

| = sup
j∈N

lim
k→∞
|
〈
fj, K

T
Vψk

〉
L2((0,T )×V)

| <∞.

Hence (W T
V fj)

∞
j=1 is bounded. Moreover,

|
〈
W T
V fj, w

〉
L2(M))

| ≤ sup
j∈N

∥∥W T
V fj
∥∥
L2(M)

∥∥w − UTψk
∥∥
L2(M)

+|
〈
W T
V fj, U

Tψk
〉
L2(M))

|,

where the first term on the right-hand side is small when we choose
large k, and the second term converges to zero for fixed k. �

Lemma 20. Let X ⊂M be open, x ∈ X and let Xj ⊂M , j = 1, 2, . . . ,
be a sequence of neighborhoods of x satisfying limj→∞ diam (Xj) = 0.
Let ψ0 ∈ C∞0 (X ) satisfy ψ0(x) 6= 0. Let T > 0 and suppose that a
sequence (fjk)

∞
j,k=1 of functions in L2((0, T )× S) satisfies

(0) for all j, there is uj ∈ L2(M) such that the sequence (UTfjk)
∞
k=1

converges weakly to uj in L2(M),
(i) there is C > 0 such that

∥∥UTfjk
∥∥
L2(M)

≤ C|Xj|−1/2 for all j

and k,
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(ii) supp (uj) ⊂ Xj ∪ (M \ X ) for all j,
(iii) (〈uj, ψ0〉L2(M))

∞
j=1 converges.

Then there is κ ∈ C such that limj→∞ limk→∞〈UTfjk, v〉L2(M) = κv(x)
for all v ∈ C∞0 (X ).

Furthermore, if T > maxx∈M d(x,S), then there is a sequence (fjk)
∞
j,k=1

that satisfies (i)-(iii) and for which κ = 1.

Before giving a proof of the lemma, let us show that the conditions
(0)-(iii) of Lemma 20 can be verified, when X and Xj are chosen as in
the proof of Theorem 1, given Λ2T

S,R and assuming that (1) is exactly
controllable from R in time T and that (MR, g) is known. This should
be compared with the second paragraph of the proof of Theorem 1.

Let K ⊂ R be compact. We construct hj and the sets Xj for each
x ∈ Cp(K) and p ∈ U(K) as in the proof of Theorem 1, see also Lemma
6, and define X = M(Γp(K), s+ ε)int.

As (MR, g) is known, we know also the Riemannian volume and
surface measures on MR and R, respectively. In particular, we can
compute the volumes |Xj|.

The exact controllability from R in time T implies that the sequence
(UTfjk)

∞
k=1 converges weakly in L2(M) if and only if

〈φ,KT
Rfjk〉L2((0,T )×R), k = 1, 2, . . .

converges for all φ ∈ L2((0, T ) × R). Thus the condition (0) can be
verified.

The condition (i) holds if and only if the sequence (|Xj|1/2UTfjk)
∞
j,k=1

is weakly bounded in L2(M). As in the proof Lemma 19, this holds if
and only if (|Xj|1/2KT

Rfjk)
∞
j,k=1 is bounded in L2((0, T )×R). Thus the

condition (i) can be verified.
Lemma 2 implies that the condition (ii) holds if and only if

lim
k→∞
〈φ,KT

Rfjk〉L2((0,T )×R) = 0, φ ∈ C∞0 (B(R, hj;T )).

Finally, the condition (iii) holds if limj→∞ limk→∞〈φ,KT
Rfjk〉L2((0,T )×R)

exists for all φ ∈ C∞0 ((0,∞)×R).
We can also prove Theorem 2 in the case where the exact control-

lability holds from R instead of from S, since we can determine if the
conditions (0)-(iii) hold when Lemma 20 replaces Lemma 7 in the proof
of Lemma 12. In this case we use ΛR to determine if the conditions
(0) and (i) hold and ΛΩs,κ0 to determine if the conditions (ii) and (iii)
hold.

Proof of Lemma 20. Let ψ ∈ C∞0 (X ). Then supp (ujψ) ⊂ Xj and

〈uj, ψ〉L2(M) = ψ(x)〈uj, 1〉L2(M) +Rj,
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where the remainder term Rj converges to zero as j →∞. This can be
seen as in the proof of Lemma 7 since (i) implies that ‖uj‖ ≤ C|Xj|−1/2

for all j. We choose ψ = ψ0 and see that limj→∞〈uj, 1〉L2(M) exists. We
denote the limit by κ. Thus for any ψ ∈ C∞0 (X ) it holds that

lim
j→∞

lim
k→∞
〈KT
Rfjk, ψ〉L2((0,T )×R) = lim

j→∞
〈uj, ψ〉L2(M) = κψ(x).

Let us now assume that T > maxx∈M d(x,S). Then the analogue of
Lemma 2 for UT implies that for each j there is a sequence (fjk)

∞
k=1 in

L2((0, T ) × S) such that (UTfjk)
∞
k=1 converges to 1Xj

/|Xj| in L2(M).
Then the conditions (0), (ii) and (iii) hold. By considering a suitable
tail of each of the sequences (fjk)

∞
k=1 we see that the sequence (fjk)

∞
j,k=1

can be chosen so that (i) holds with C = 2. �
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