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HYPERBOLIC INVERSE PROBLEM WITH DATA ON
DISJOINT SETS

YAROSLAV KURYLEV, MATTI LASSAS, AND LAURI OKSANEN

ABSTRACT. We consider a restricted Dirichlet-to-Neumann map
AgR associated to the operator 97 — A, + A+ @ where A, is the
Laplace-Beltrami operator of a Riemannian manifold (M, g), and A
and @ are a vector field and a function on M. The restriction Ag,n
corresponds to the case where the Dirichlet traces are supported
on (0,7) x S and the Neumann traces are restricted on (0,7") X R.
Here S and R are open sets on the boundary of M. We show that
AE,R determines the geometry and the lower order terms A and
Q@ up the natural gauge invariances in a neighborhood of the set
R assuming that R is strictly convex and that the wave equation
is exactly controllable from & in time 7'/2. We give also a global
result under a convex foliation condition. The main novelty is the
recovery of A and @) when the sets R and S are disjoint. We allow A
and @ to be non-self-adjoint, and in particular, the corresponding
physical system may have dissipation of energy.

1. INTRODUCTION

Let (M, g) be a smooth, connected and compact Riemannian mani-
fold of dimension n with nonempty boundary dM, let A be a smooth
complex valued vector field on M, and let () be a smooth complex
valued function on M. We consider the wave equation with Dirichlet

data f € C5°((0,00) x OM),

(0F — Ay + A+ Q)u(t,x) =0, in (0,00) x M,
(1) ul(0,00)xom = f in (0,00) x OM,
u|t:0 = atult:() =0, in M,

and denote by u/ = u(t, ) the solution of . For open and nonempty
sets S, R C OM and T € (0, 00| we define the response operator,

1
Asg: fr (0! - 54, v)gul)lomxr:  f€C((0,T) x S).
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Here v is the interior unit normal vector field on dM, and (A,v), is
the inner product of A and v. We use real inner products throughout
the paper. If A(z) = 377 | A7(x)d; in local coordinates, then (A,v),
is given by g;x A7vF locally.

When f is regarded as a boundary source, the operator A%, models
boundary measurements for the wave equation with sources on the set
(0,T) x S and the waves being observed on (0,7) x R. We consider
the inverse boundary value problem to determine the manifold (M, g),
the vector field A and the potential @ from A§ r.

We have studied previously the determination of the geometry (M, g)
[24], in the case that A = 0 and @ = 0, and the main focus of the
present paper is on the recovery of the lower order terms A and (. In
order to recover A and (), we construct boundary sources f such that,
at time ¢ = T, the corresponding solutions u/ are essentially localized
at a point near R. This differs from the construction in [24] which does
not use localized waves.

The lower order terms A and () can be determined only up to the
action of a group gauge transformation, that we will describe next.
Let xk be a smooth nowhere vanishing complex valued function on M
satisfying k = 1 on R. The response operator AE’R does not change
under the transformation (A4, Q) — (A, Q.) where

(2) A, =A+2k1 grad, k, Q.= Q+r(A— Ak

and grad, is the gradient on (M,g). We refer to [19] for a similar
computation in the self-adjoint case. When & C M is a neighborhood
of R, we write

gLﬁR(Av Q) = {(AF»|Ma Qn|u>; K€ Coo(u)’ K 7é O? K’|R = 1}
for the orbit of the group of gauge transformations on Y.

We allow also the geometry (M, g) to be apriori unknown, and there
is a second group of transformations leaving Agﬁ invariant. Namely, if
® : M — M is a diffeomorphism fixing S UR, that is, ® is the identity
on SUR, then AE,R does not change if g, A and () are replaced with
their pullbacks under ®.

We recall that the wave equation (|1)) is said to be exactly controllable
from § in time 7T if the map

(3)  f (W(T), 00 (T)): L*((0,T) x S) — L*(M) x H (M),

is surjective. If there is such T" > 0, then we say that is exactly
controllable from §. The exact controllability can be characterized in
terms of the billiard flow of the manifold (M, g) [2, [6]. The geometric
characterization says roughly that all unit speed geodesics, continued
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by reflection on OM \ S, must exit M through S during time 7". In
particular, the geometric characterization implies that the exact con-
trollability does not depend on the lower order terms A and Q).

In this paper we show the following theorem:

Theorem 1. Let S C OM be open and suppose that the wave equation
is exactly controllable from S in time T > 0. Let R C OM be
open and strictly convex. Then there is a neighborhood U C M of R
such that A%TR determines the Riemannian manifold (U, g), up to an
isometry, and the orbit Gy r(A, Q).

We show also a global uniqueness result under the assumption that
there is a convex foliation similar to that in [29]. We assume that X,
s € (0, 1], satisfy the following:

(F1) ¥, C M™ is a smooth manifold of codimension one.

(F2) The union Q4 = Ure(o,s) ¥, C M™ is open and connected, and

Q, C Q, when r < s.
(F3) 09, = ¥,UR, and R, C R where R, = Q, N OM.
(F4) X5 is strictly convex as a subset of 0M where

M, = M\(QSURS)-

(F5) The Hausdorff distances satisfy dist(£2,,€) — 0 as r — s.
(F6) There is a set Ry C R such that dist(£2s, Ry) — 0 as s — 0.

Furthermore, to simplify the notation, we assume
(F7) R = UsE(O,l] Rs.

Theorem 2. Let S C OM be open and suppose that the wave equation
is exactly controllable from S. Let R C OM be open and strictly
convex and let ¥s, s € (0,1], be a convex foliation satisfying (F1)-
(F7). Then AZp determines the Riemannian manifold (Q1,g), up to
an isometry, and the orbit Go, r(A, Q).

In Section [6] we show that, in the above theorem, exact controllability
from S can be replaced with exact controllability from R. Our result
is new even in the following case:

Example 1. Let (M, g) be the Euclidean unit disk {z € C; |z| < 1}.
Let € > 0 and define R = {€%;0 € (—e,m +¢€)}. Let S C OM be
open and nonempty. Then AFx determines A and Q, up to the gauge
transformations, in the convezr hull of R.

Let us also point out that we could use a time continuation argument
analogous to [24, Lemma 4] and prove Theorem[2|also for measurements
on a long enough but finite time interval.
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Our proof is based on the Boundary Control (BC) method. The
BC method was introduced by Belishev [3], and it was first used in a
geometric context in [4]. Stability properties of the method are dis-
cussed in [I]. First order perturbations have been considered in the
self-adjoint case in [16], and in the non-self-adjoint case in [20, 22]. All
the above results assume that & = R. The case of disjoint & and R
was first considered in the above mentioned [24] where no first order
perturbation was present.

In addition to [24], we are aware of only two results on inverse bound-
ary value problems with disjoint data analogous to the case SNR = 0.
Rakesh [27] considers a wave equation on a one-dimensional interval
with sources supported on one end of the interval and the waves ob-
served on the other end, and Imanuvilov, Uhlmann, and Yamamoto
[15] proved that a zeroth order term in a Schrodinger equation on a
two-dimensional domain homeomorphic to a disk, whose boundary is
partitioned into eight parts I'y, I, ..., I's in the clockwise order, is de-
termined by boundary measurements with Dirichlet data supported on
S =1y UI's and the Neumann trace observed on R = I'y U T's.

Let us mention also the result on recovery of a conformal scaling
factor in the metric tensor given the Dirichlet-to-Neumann map [31]
that, analogously to our result, uses local convexity of the boundary.
The proof [31] is based on a reduction to the boundary rigidity result
[30] and this approach seems to require that S = R.

A vast majority of results on inverse boundary value problems as-
sume that SNR # (). For this type of non-disjoint, partial data results,
we refer to [7, [8 9 111, 12| 13], 14] 18].

2. TOOLS FOR THE RECONSTRUCTION

In this section we present the two main components of the Boundary
Control method: an integration by parts technique originating from
Blagovescenskii’s study of the 1+ 1 dimensional wave equation [5], and
a density result based on the hyperbolic unique continuation result by
Tataru [32].

2.1. Blagoveséenskii’s identity. Let ' ¢ OM and B C M™ be
open, and let x : B — C. We define for f € C§°((0,00) x S),

1
Arf = (&/U - §(A’ I/)gu>|(0,oo)><1"7 AB,nf = HU\(o,oo)xB,

where wu is the solution of , and write Ap = Ap, when considering
a fixed k. Note that A is just a shorthand notation for the response
operator Agp.
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For V =T or V = B, we define
(4) K5 =JA, — RAVRI,
where Riy(t) = ¢(T —t) and Jy(t) = L tQTft@/J(s)ds. We write also
UTf =u(T). B

Let us now suppose that £ € C*°(B) and consider the adjoint wave
equation

(5) (0} — Ay — A+ Qug)v =rH, in (0,T)x M,
where H € C§°(B). We impose the initial and boundary conditions

(6) U|(O7T)><8M = ¢, n (O,T) X 8M,
V=0 =0, Opw|i=o =0, in M,

where ¢ € C§°((0,00) x OM). Here Quq = Q — divyA, where div, is
the divergence on (M, g). We define

Wi =v(T), Wy :Cg((0,00) xT) = C=(M),
where v is the solution of , @ with H = 0, and

WEH =o(T) Wg : C°((0,00) x B) — C™(M),
where v is the solution of , @ with ¢ = 0.

Lemma 1 (Blagovescenskii type identity). Let T > 0 and let I' C OM
and B C M™ be open. Let V =T orV = B. Then for functions
f € L?(0,00) x8) and p € L*((0,00) x V) we have

(7) Wy, U e = (s Ky f) 12(0.m)xv)-

Proof. Let u be the solution of (1)) with f € C§°((0,00) x S) and let us
consider a smooth solution v of the adjoint equation . Then

(8) (u, “H>L2((0,T)xM)
= (u, (8} — By — A+ Qaa)v) L2((01)x M)
—((07 — Ay + A+ Q)u,v) L2((0,7)x M)
= (u(T), 00 (T)) L2 ary — (Qe(T), v(T)) 12(ar)

1
+(u, Oyv + §(A, V)gV) L2((0,T)x OM)

1
—<8VU - E(Aa V)gua U>L2((0,T)><8M)~
We define

1
LE6 = @0+ 5(AV)W)0ms. 6 € CF((0,00) x T),
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where v is the solution of @ @ with H = 0, and
LpH =00+ 5 (A V)g0)lor)xs, H € C57((0,00) x B),

where v is the solution of (|5 ., @ with ¢ = 0.
Note that if we replace v with Rv in the integration by parts , we
see that

(9) (Avf, p>L2 (0,T)xV) = = (f, RLY, Rp>L2 ((0,T)xS)-

Hence RAyR is the adjoint of Li,.
Let t € (0,7) and s € (0,27"). Then

(07 = ) (u(s), v(t)) L2 ()
= (u(s), (Ag + A = Qaa)v(t)) r2(n)
—((Ag — A —Q)u(s),v(t)) r2(an

= (u(s), KH(t))r2(nry — (u(s), Ov(t) + %(A, V)gu(t)) L2om)

+ayuls) — %(A, V)gu(3), 0(0)) 2ot
= (Avf(s), p(0) r2vy — (f(5), Lyp(t)) r2(s)s

where v is the solution of , @ either with H = 0 and ¢ = p or with
H =pand ¢ = 0. Thus the function (¢,s) — (u(s),v(t))r2(m) satisfies
a 1 4+ 1 dimensional wave equation with a known right-hand side. We

solve this wave equation in the triangle with corners (7,T'), (0,0) and
(0,27), and obtain

(1) (u(T), v(T)) 12000 // (Av s (5). p()) 2 dsdt

27—t
S v o s

where we have used the fact that «(0) = d;u(0) = 0. The identity
for f € C§°((0,T) x S) and p € C§°((0,T) x V) follows from by
applying the identity @ to Jf.

The map U7 is continuous L*((0,T) x §) — L*(M), and the analo-
gous statement is true for the map Wy} [23][17]. Hence the operator K,
has a unique continuous extension as an operator from L?((0,7) x S)
to L*((0,T) x V) and the identity (7)) holds for the extension. O

2.2. Approximate controllability. Next we consider approximate
controllability on a domain of influence. Let I' C M and B C M™ be
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open, andlet V =T or V = B. Let h: ¥V — R be piecewise continuous,
and define the domain of influence

MV, h) = {x € M; ;g{(d(x,y) — h(y)) < 0},

where d is the distance function of M. Moreover, we write
BV, h;T) :={(t,y) € (0,00) x V; T'— h(y) < t}.

We extend the notations M(V, h) and B(V, h;T) for constants h € R
by interpreting h as a constant function. Moreover, we define M (x, h)
by M ({x}, h) for points x € OM.

We have the following approximate controllability result that is anal-
ogous to [24, Lemma 5] and [21, Lemma 3.6].

Lemma 2. Let I' C IM and B C M™ be open, and let V =T or
YV =DB. Let h: V — R to be piecewise continuous. In the case when
V = B suppose, moreover, that h > 0 pointwise. Then

Wy (G (BOV, i T))
is dense in L*(M(V,h)) = {w € L*(M); supp(w) C M(V,h)}. More-
over, for all x € M(V,h) there is p € C§(B(V,h;T)) such that
Wyp(z) # 0.

3. LOCAL RECONSTRUCTION OF THE FIRST ORDER PERTURBATION

In this section we prove Theorem [T, As we have established the key
elements of the Boundary Control method, that is, Lemmas [I] and [2
in the present context, the reconstruction of the geometry near R is
analogous to the local reconstruction step in [24]. We refer to [25] for
the details, and focus here on the recovery of the lower order terms A
and Q.

Our proof is based on using the convexity of R. Let us recall the
definition of the boundary normal coordinates. Let I' C M be open.
Then the boundary normal coordinates adapted to I' are given by the
map

(11) (S’ y) = 7(87 Y, V)7 ) € Fa CRS [07 O-F,M(y))v

where the cut distance op s : I' = (0, 00) is defined by

(12)  orm(y) = max{s € (0,7 (y)]; d(v(s;9,v),T) = s},
Tu(y) = sup{s € (0,00); y(s;y,v) € M™}.

Here ~(-;x,€) is the geodesic with the initial data (z,£) € TM, and
we recall that v is the interior unit normal on OM. We often write
or = oy . Note that op(y) > 0, see e.g. [17, p. 50].
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We define

Mr={y(s;y,v); y €L, s €[0,0r(y))}-
Then a point € Mr is represented in the coordinates by (s,y),
where s = d(z, ) and y is the unique closest point to x in I'.

3.1. A convexity argument. Our aim is to construct a sequence of
functions hj, j = 1,2,... on R such that the difference of the domains
of influences M(I',s) \ M (R, h;) converges to a point as j — oco. Here
I' C R and s > 0 will be chosen suitably. We use the notation

B(p,r) ={x € M;d(xz,p) <r}, pe M, r>Q0.

Lemma 3. Let I' C OM be open and strictly convex, and let IC C " be
compact. Then there is 6(K) > 0 and a neighborhood U(KC) C Mr of
K such that, for allp € U(K) and q € B(p,6(K)) \ {p}, there is z € I’
satisfying d(z,q) < d(z,p).

Proof. Let us consider a unit speed geodesic y(t) = (s(t), z(¢)) in coor-
dinates and denote the initial data of v by

7(0) = (s,9), 7(0) = (p,m),
where s = 5(0). We will first show that there is a neighborhood U C M
of K and py > 0 such that, for all (s,y) € U and p € [—1, po|, the
geodesic v intersects [ and is distance minimizing until the intersection.
To this end recall that, in coordinates , the metric tensor g is of

the form
1 0
g(s,y) = < 0 h(s,y) )

and the Christoffel symbols Fé-k satisfy
F;l = F{I =0, ¢"Tg, = _th

where ¢/* is the inverse of g;; and we are using the Einstein summa-
tion convention with the Greek indices running over 2,3,...,n. In
particular,

2 N
s(t)=s+tp— gfig(s, y)n°n’ + O().

Let us also recall that the second fundamental form of I' is given by
I1(0a,05) = I'35(0,y), see e.g. [28, p. 113].

The strict convexity of I', the lower semi-continuity of the cut dis-
tance function or and the compactness of K imply that there is a neigh-
borhood Uy C My of K and ¢ > a > 0 such that, for all (s,y) € Uy,

alnly < Ths(s,y)n"n” < clnl;.
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We will consider only the case || > 1/2. Note that if py > 0 is
small and |n|? < 1/2, then p < py implies that p < 0 since (p,7n) is an
unit vector. For small £ > 0, we have the bound

at?

s+tp—ct2§5(t)§5+tp—?.

As I C T is closed and + is unit speed, z(t) € T' for small ¢t > 0, if
s> 0or s=0but p> 0. It then follows that there is ¢ > 0 such that,
for s <o,y € K, p <o with (s,y) € Uy, the geodesic y(t) intersects
[ at some t = 7(s,y; p,n). Moreover, y(t) € I' for 0 <t < 7(s,y;p,7)
and 7(t) is the distance minimizing up to z, = (7). Thus, for ¢t > 0,

(13) Az () = 7 — 1 < d(2,7(0)).

Let us emphasize that the case s = 0 is also allowed in the above
argument. We take U = {(s,y) € Up; s < ¢} and py = 0.

Let (s,y) € U, (p,n) be a unit vector and suppose that p > py. We
may choose 19 = bn, 0 < b < 1, such that (pg, o) is also a unit vector
at (s,y). Then the geodesic vo(s) with the initial data

70(0) = (s,9),  70(0) = (po, o)
intersects I' at z,, and is distance minimizing until the intersection.
As pg > 0 we have that 7(s, y; po,n) is strictly positive for (s,y) € U

and ng € S :={n € R" Y |n|? + p? = 1}. Together with continuity of
7 this implies

= min  7(s,y;po,M0)/2 > 0.
(s,y)EU,mo€S

Moreover, the first variation formula, see e.g. [26, Prop. 10.2], implies

0d(70(0), (1)) li=o = —(70(0),%(0))g = —pop — blrol;, < —p5.

It follows from the above inequality together with the relative com-
pactness of U that there is § > 0 such that, if ¢t € (0,9), (s,y) € U,
p > po, then

(14) (20, 7(t)) < d(2y0,7(0)) — 3/ 2.
The claim now follows from and . O

Lemma 4. Let I' C OM be open and let p € Mr. Then, for all
g€ M(T,d(p, )\ {p}, there is z € I satisfying d(z,q) < d(z,p).

Proof. Let p = (s,y), s = d(p,T'), in coordinates (11, and let z be a
closest point to ¢ in I'. If 2z # y then

d(z,q) = d(q,I') < d(p,T") < d(z,p),



10 YAROSLAV KURYLEV, MATTI LASSAS, AND LAURI OKSANEN

since z is not the closest point to p in I'. Suppose now that z = y and
write r = d(y,q). Then r < d(p,I") = s and ¢ = (r,y) in coordinates
(11). Moreover g # p, whence r < s. O

We define Bon(y, €) = {z € OM; d(x,y) < €}.

Lemma 5. Let 6 > 0 and let p € Mr have the boundary normal
coordinates (s,y). Then there is € = €(p,0) > 0 such that for all

q € B(p;e),
(15) M (Bap(y,€),s+¢) € M(T,d(q,T)) U B(q,9).
Proof. To prove we assume the contrary. Then there exist se-
quences €, — 0,
Gn = (Tns 2n) € B(p,€), 4, € M(Bom(y, €n), s + €n),

such that d(¢/,,I') > r, and d(q,, g,) > 0. Taking if necessary a subse-
quence, we may assume that ¢/, — ¢’. Then it follows from the above
that

dlgy) <s, dg\T)=s, d(d.p) =0
This is a contradiction since the first two conditions imply ¢ = p. O
Lemma 6. Let I' C OM be open and strictly convex and let K C T" be
compact. Let § >0 and U C My be as in Lemmal3 Let p = (s,y) € U
and let € = €(p,8) > 0 be as in Lemma [J. We decrease € > 0, if
necessary, so that Boy(y,€) C I'. Furthermore, we define
Cp=((s —€,s+€)N[0,00)) X Bons(y, €),
where € € (0, €) is chosen so that, in the coordinates (11]), C, C B(p,?).
Let v € C), and define, for j =1,2,...,
Xj = M(Bom(y,€),s + €)™\ M(T, hy),
hi(z) = d(z,z)—1/j, zeTl.
Then X, is a neighborhood of x, and diam (X;) — 0 as j — oo.
The set X is visualized in Figure

Proof. It is clear that X;;; C X; and that € X; for all j. Sup-
pose that ¢ € X, for all j. If ¢ ¢ B(wx,0) then yields that
g € M(I',d(z,T)). Now Lemma [d] implies that ¢ € M (L', h;)™* for large
j which is a contradiction with ¢ € X;. If, however, ¢ € B(z,9) \ {z},
then Lemma |3 implies that ¢ € M(T, h;)™ for large j which is again
a contradiction. Thus ¢ = . As the sequence of sets X is decreasing
and ﬂQlyj = {z}, we have that diam (X;) — 0 as j — 0. O
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p

FIGURE 1. Left. A part of the domain of influence M(T', h;) in
gray, where (M, g) is the Euclidean unit disk, z = (0,3/5), j = 20,
and I is slightly less than the upper half circle. The black curve is
the boundary of M (B (y,€),s + €) where p = (s,y), y = (0,1),
s = 1/2 and € = 1/5. The set X; is the white region around
x. Right. Schematic diagram of the sets By (y,€) C I, in black
around the gray point y, and C), in gray around the black point
p = (s,y). The black curve is the boundary of M (Bgys(y, €), s+¢€).

3.2. Localized solutions. We denote by | X| the Riemannian volume
of a measurable set X C M.

Lemma 7. Let X C M be open, x € X and let X; C M, j=1,2,...,
be a sequence of neighborhoods of x satisfying lim;_, diam (X;) = 0.
Let ¢y € C(X) satisfy vo(z) # 0. Let T > 0 and suppose that a
sequence (f;)32, of functions in L*((0,T) x S) satisfies

(i) there is C' >0 iwh that || fill 2 0.ryxs) < C|X;|7V2 for all j,
(i) supp (UTf;) C X; U(M\ X) for all j,
(iii) ((U" f5,%0) 2(an))32) converges.

Then there is k € C such that (U f;,9) 12y — w(x) for all functions
P e CR(X).

Furthermore, if the wave equation is exactly controllable from S
in time T', then there is a sequence (f;)32, that satisfies (i)-(iii) and
for which k = 1.

Let us emphasize that X may intersect 0M in which case x may
belong to OM.

Proof. To simplify the notation, we write U = U” and u; = Uf;. Let
Y € C§°(X). Then supp (ujy)) C X; and

(uj, )2y = Y(x)(uj, Ve ary + Ry,
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where, using some local coordinates  in X for all large enough j, the
remainder term satisfies

Rl < ClIVWle, [ @)

1/2
< ClIVliei, Nusllean (/X dz(”ﬂi%’)di>

< ClViligx, diam (X;) = 0.

Notice that the constant C' > 0 may increase between the inequalities
and that, at the last inequality, we use ||uj|[z2(n) < C || fill 20,7y
see [23], together with (i). We choose ¢ = v and see that lim;_, (v, 1) r2(ar)
exists. We denote the limit by x. Thus for any ¢ € C§°(X) it holds
that (u;, )2y — k() as j — oo.

Let us now assume that is exactly controllable from & in time 7.
By exact controllability,

U:L*(0,T) xS) — L*(M),
is surjective. Hence its pseudoinverse
U LA (M) — L*((0,T) x S)

is continuous and the composition UUT gives the identity map, see e.g.
[10, pp. 33-34]. Now f; = U'lx, /| X}| has the required properties. [

Lemma 8. Let I' C OM and B C M™ be open, and let YV =T or
V=DB. Let T >0 and let h : V — [0,T] be piecewise continuous. In

the case when V = B suppose, moreover, that h > 0 pointwise. Let
CC M(V,h)NM™ be open and let k : C — C. We define

we(z) = K(2)(Wyo)(x), ¢ € BV, sT)), x€C,

and have the following:
(1) If wy € C°°(C) for all ¢ € CF(B(V, h;
V,h

(2) If for allz € C thereis ¢ € C°(B(V,
then k(x) # 0 for all x € C.

Moreover, in the case V = I' we can enforce smoothness up to the
boundary, that is, we define C = CU (S NC) where S is an open set in
OM such that h > 0 in S, and have the following:

(3) If wy € C=(C) for all ¢ € C(B(V, h;T)) then k € C(C).
Proof. Let x € C. By Lemma [2] there is a neighborhood U of z and
¢ € C(B(V,h;T)) such that Wl¢ is non-vanishing in U. We have
that k = wy/W{L¢ in U, and (1) and (2) follow.

T)) then k € C*(C).
;1)) such that wy(z) # 0,

I
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Suppose now that V = I' and that x € S N C. Then there is a
neighborhood of U C M of z and ¢ € C§*(B(V, h; T)) such that W{'¢
is non-vanishing in U, since on S we can choose Wf'¢ = ¢(T') to be
non-vanishing. The function W{'¢ is smooth up to M, whence & is
smooth in U. O

The below lemma follows immediately from Lemma [2]

Lemma 9. Let T'; C OM and B; C M™ be open, and let V; =T or
V, = Bj, j=1,2. Let T > 0 and let h; : V; — [0,T] be piecewise
continuous. In the case when V; = B; suppose, moreover, that h; >0
pointwise. We define V = Vo N Vy and h = min(hy, hy) on V. Let
C; € M(Vj, hj) be open in M™, and let k; € C*°(C;). Suppose that
CiNCy C M(V,h) and that

WS¢ = kWi, o€ C(B(V,h;T)),
on C; NCy. Then k1 = ko on C; N Cs.

Let C C M™ be open and let k € C(C). We define Ac, as the
restriction of k' Ak on C, where A=A, — A — Q.

Lemma 10. Let I' C OM and B C M™ be open, and let V =T or
V=DB. Let T >0and h:V — [0,T] be piecewise continuous. Let
C C M(V,h)NM™ be open and let k € C*(C) be nowhere vanishing.
Then the functions

KWy o, ¢ e C(BV,hT)),

on C, together with the Riemannian structure (C,g), determine the co-
efficients of the operator Ac,.

Proof. Taking into account the translation invariance in time of ,
we can differentiate kW3 @|c twice in time to get K A*W  ¢|c. Let ¢ be
a function in C§°(C). As we know the Riemannian structure on C, we
can compute

(RA WY, ¢, ) 20y = (KW &, k™ ARY) 12(0).

As the functions Wi ¢|c, ¢ € C5°(B(V, h;T)), are dense on L?*(C), and
we know kW ¢|c and K A*WS ¢|c, we can recover k1 Akt). This allows
us to determine the coefficients of the operator = Ax on C. O

3.3. Local reconstruction near the set R. We are ready to prove
the local result formulated in the introduction.

Proof of Theorem [l As the wave equation is exactly controllable from
S in time T, [2 Theorem 3.2] implies that og < T pointwise on R.
We recall that o is defined by .
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Let K C R be compact, and consider the sets defined in Lemma [6]
We write C,(K) = C, to emphasize the dependence on K, and use an
analogous notation also for other quantities in Lemma[6] Furthermore,
we write I',(K) = Ban(y, €).

As discussed in the beginning of Section 3, by using the method of
[24], 25], we recover first (Mg, g). Then we can construct the functions
h; and the sets X; for any x € C,(K) and p € U(K). We choose
X = M(T,(K),s + €)™ in Lemma [7} As (Mg,g) is known, we can
determine if the condition (i) of Lemma [7| holds. Lemmas [I| and
imply that the condition (ii) holds if and only if

(6, KX fi)r2(0myxry = 0, ¢ € C(B(R, hy; T)),

where K7 is defined by (4). Note that (Mg, g) determines the Rie-
mannian volume measure of (R, g), whence we can compute the above
inner products. The condition (iii) holds if lim;_o. (&, K% f;) 12((0.1)xR)
exists for all ¢ € C§°((0,00) x R). Indeed, by Lemma [2| there is
¢ € C5°((0,00) x R) such that W1¢ does not vanish at a given point
in Mg, and we can apply Lemma [7| with 1 = WE¢.

Let us use the shorthand notation B,(K) = B(I',(K), s+¢,T). As we
can verify if all the conditions (i)-(iii) in Lemma [7] hold, we can choose
for all p € U(K) and z € C,(K) a sequence

F(z;p,K) = ()52 € L2((0,T) x 8)

j=1
such that (¢, KX f;) 12w converges to
K(a; Fup, K)(Wro)(), ¢ € C3(B,(K)),

where the factors x(x; F,p, K) remain unknown and depend on z, p,
K and the choice of the sequence F' = F(x;p,K). We will next im-
pose further conditions on the choice of F' that enforce the functions
k(x; F,p, K) to be restrictions of a smooth function defined in a neigh-
borhood of R.

Using Lemma [8| we choose F' = F(z) such that

kpi(r) = k(z; F(z),p,K)

is smooth and nowhere vanishing on C,(K). Note that the second claim
in Lemma [7|implies that there exists such a choice of F'(z). We choose
a collection J of compact sets in R such that (.., K = R. Let us now
use Lemma [9] to enforce the functions

(16) kpi € CF(C(K)), peU(K), K€ J,
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to be restrictions of a smooth function defined on the set U(K). Let
K; € Jand p; = (s;,y;) € UK,), 5 = 1,2, and define

C= Cpl (’Cl) n Cp2 (’CZ)
Note that since C,, (K;), j = 1,2, are cylinders so is C, in fact,
C = ((a,b)N[0,00)) x T,

— / _ : /
where a = max;—1 5 s; — €, (K;), b =min;_1 2 s; + €, (K;) and

= ﬂ Bon (s €, (K;5))-

=12

Note that C' € M(I",b). We require that

RP1JC1W7€¢ = ’%pz,/Czwg(bv (b € Cgo< ﬂ Bp'(lcj))a

§=1,2

on C. Then ky x, = kpy ik, on C by Lemma [} It follows that the
functions fit together on U = Jio, U(K) and form a function
k € C*(U). We require, furthermore, that

k(@) Wro(z) = o(T,z), =€ C(K)NK, ¢ € C5¥(B,(K)),
whenever K € J and p € U(K) satisty C,(K) N K # (). By varying p
and IC, we get kK = 1 on R. We may choose U to be a slightly smaller
neighborhood of R to guarantee that x € C°(U).

We apply Lemma (10| to recover ™' Ax on each C,(K;), p € U(K;).
This gives us k' Ak = Ay — A, — Q, on U, and (A, |y, Qxlu) belongs
to the orbit Gy = (A, Q). Hence we can determine the orbit Gy z (A, Q).

U

4. RECONSTRUCTION OF THE FIRST ORDER PERTURBATION ALONG
A CONVEX FOLIATION

In this section we prove the following global result:

Theorem 3. Let S C OM be open and suppose that the wave equation
is exactly controllable from S. Let R C OM be open and strictly
convez and let X, s € (0,1], be a convex foliation satisfying (F1)-(F7).
Then AFR, together with (§2, g), determines the orbit Go, z(A, Q).

The proof is based on iterating the local reconstruction method of
the previous section along the convex foliation.
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4.1. Local reconstruction near the set ;. Let X, s € (0,1], be
a convex foliation satisfying (F1)-(F7). Let I' C X be open and let
h : T — R be piecewise continuous. We recall that M, is defined in
(F4), and consider the domain of influence on M,

M(T, h) = {z € My; inf(da, (2,) = h(y)) < 0}

Here dyy, (z,y) is the distance function on (Ms, g). We will also use the

notation dg_ (7,y) for the distance function on (€2, g).

Lemma 11. Let X5, s € (0,1], be a convez foliation satisfying (F1)-
(F7), and let s € (0,1]. Let h : X5 — R be piecewise continuous.
Then

(17) Ms(zsa h) Ugs - M(Qwﬁ)a

where h(y) = max(sup,ey, (h(2) — dg, (2,)), da, (y, 09)).
Proof. Let us show first that
d(x,z) =dy,(x,2), z,z€ M.

It is enough to show that a shortest path v between x and z stays in
M,. To get a contradiction suppose that S < s, where

S =inf{r € 0,s]; yNX, # 0},

and we have used the notation ¥y = Ry. Let p € yNXg. Let us consider
first the case S > 0. Then 7 is a geodesic near p. As v N Qg = 0, the
intersection is tangential. But then the strict convexity of g implies
that v is in {2g near p, which is a contradiction. On the other hand, if
S = 0 then the intersection must be tangential again, since a shortest
path is C''. But this is impossible by _the strict convexity of Xy C R.

Let us now show . Note that h(y) > h(y) for y € X, and that
h>0on Q,. Hence M,(X,,h) UQ, C M(QS,E). On the other hand,
if # € M(Q,,h)\ € then there is y € Q, such that d(z,y) — h(y) <0
and z € 3, such that h(y) = h(z) — dg (z,y). Thus

dor, (2, 2) = h(z) = d(z, 2) — dg_(2,y) — h(y) < d(z,y) — h(y) <0,
and x € My(3s, h). O

Let us prove next the following analogue of Theorem [I| with data
on €);. Note that contrary to Theorem [1, we do not require x to have
a specific value on ¥,. We recall that for and open set U C M™,
Ay, = Kul,00)x, Where u is the solution of .



HYPERBOLIC INVERSE PROBLEM WITH DATA ON DISJOINT SETS 17

Lemma 12. Let S C OM be open and suppose that the wave equation
is exactly controllable from S in time T > 0. Let 35, s € (0,1],
be a convex foliation satisfying (F1)-(F7), let s € (0,1], and let Ko €

C>*(8s) be nowhere vanishing. Then there is a neighborhood Us C M,
of ¥s such that Aq, ., determines the family of operators

(18) {Au. x; k€ C®(Us), k(z) #0,2 € U}

Proof. Let K C X5 be compact, and let us consider the sets defined in
Lemma |§| where M is replaced with M,. We define X = M (€, h)™
and B,(K) = B(Q,, h,T), where h is as in Lemma m with the choice
h = (s +€)lr,(x), and s and € are as in Lemma |6,

Analogously to the proof of Theorem [I} we use Lemma [2] together
with Lemmall1]to determine if the conditions (i)-(iii) of Lemma[7] hold.
We can choose for all p € U(K) and x € C,(K) a sequence

F(z;p, K) = ()52 € L*((0,T) x 8)
such that (¢, K& f;)r2(r) converges to
k(@ F,p, K)(Wo,0)(x), ¢ € C5°(B,(K)),

where the factors k(z; F, p, K) remain again unknown and depend on
x, p, K and the choice of the sequence F' = F(z;p, K).

We choose a collection J of compact sets in X5 such that they cover
¥, and use again Lemmas [§ and [9] to enforce

k(x; F,p,K), xe€Cy(K), peUK), K€ J,

to form a smooth nowhere vanishing function x on Us = (J,cc; U(K).
Finally, we apply Lemma (10| to recover the orbit .

4.2. Gluing of the gauges. Let S, R € OM satisty the assumptions
of Theorem [3 and let ¥, s € (0,1], be a convex foliation satisfying
(F1)-(F7). We define

(19)  J={s € (0,1]; Ag determines the orbit Gy (A4, Q)
for open U C M containing €),}.

The set J is nonempty by (F6), since for small enough s we have that
Qs C U, where U is a neighborhood of R as in Theorem [} Moreover,
the continuity condition (F5) implies that .J is open. Theorem [3|follows
after we have shown that J is closed.

Lemma 13. Let U C M™ be open and suppose that U N OM C R.
Suppose that k : U — C is smooth near R and that Ay, f € C*(U)

forall f € C((0,00) X S). Then k € C*(U).
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Proof. Let x € U N M™. By Lemma there is f € C§°((0,00) x S)
and a neighborhood B C M™ of x such that u(T) # 0 in B. This
implies that x is smooth in BN U. U

Let U C M™ be open. We define
K(U) :={k € C°U); klgnp =1, k(z) #0, x € U}.

Lemma 14. Let U C M™ be open and connected and suppose that
UNOoM C R and that the interior of U N'R in OM is nonempty.
We consider the family of operators F = {Au.; Kk € K(U)}, where
]K(U) is the set of piecewise smooth functions k : U — C such that
is nowhere vanishing, k = 1 in U N'R, k is smooth near R, and that

Avu has smooth coefficients. Then F and Ar determine the family
{(AU,m AU,.L:); K€ K(U)}

Proof. Let k™' Ak € F. Let p € U be such that p € M(,r) Cc U for
some open set I' C U N TR and r > 0. We solve the wave equation
corresponding to the adjoint of k! Ak,

2w — kA*k'w =0, in (0,T) x M,

w|(0,oo)><(9M = qbv in (OaT) X aMa

U}|t:0 == 6’tw|t:0 == 07 in M.
where ¢ € C°((T —r,T) x I'). Then k™ w = v, where v solves (), (6)
with H# = 0. By Lemma [I] Ax determines the inner products

(Wrd, UT f)r2ony = (w(T), k7 U f) 20

The functions w(T), h € C*((T —r,T) x T'), are dense in L*(M (T, r))
by Lemma 2, and thus we can recover x'U” f in M(T,r). By using
the translation invariance in time, we recover the operator Ap ., where
B = M(T,r)nt,

Let us now suppose that p € U and € > 0 satisfy B(p,2¢) C U. We
will show that the maps Ap(,) . and kA*k~! on U determine the map

AB(;D,2€),K'
We can compute the inner products

WhpoH, U frzon,  H € C3((0,00)xB(p, €)), f € C3°((0,00)x8),
by using Lemma [T} and we can solve the wave equation
Pw — k Ak 'w =H, in (0,T) x M,
w|(0700)X3M = 0, in (O,T) X aM,

w|t:0 = atwlt:() = 0, iIl M
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whenever H € C§°((T—¢,T)x B(p, €)). Moreover, Wg(pﬁ)H = rkw(T),

whence kU7 f| B(p.2¢) can be determined from the inner products

<W§(p,e)H7 UTf>L2(M) = <l{_1w(T), UTf>L2(M).

By using the translation invariance in time, we recover the operator
AB(p,Qg),/v

A point p € U can be connected to R with a path 7 : [0,1] — U such
that 7 can be covered by a domain of influence M(I',r) C U, where
[' C Risopen and r > 0, and sets B(7(t), €) such that B(y(t),2¢) C U.
Heret € [to, 1], € > 0 and B(v(to),€) C M(I',r). Now we can iteratively
move the data Apy ()., along . This gives us the operator Agy(1).e).x;
and as p € U can be chosen arbitrarily, the operator Ay, is determined.
Finally, by using Lemma , we can enforce s to be smooth in U. O

Corollary 1. Let s € J where J is defined by @ Then Agr deter-
mines the family {(Aq, x, Ao, x); k& € K(Q)}.

Lemma 15. Let si,s9 € J where J is defined by (@, and suppose
that s; < sg. Then Agr determines the family

{((AQsjﬁj’AQsj,Hj))?:I; l{2|Qsl =K1, Kj € K(Qsj')aj = 172}'
Proof. By Corollary [1| we can determine the two families of operators
'Fj - {(AQSj15j7AQSj7K‘j); I{J E K(Qsj)}7 '] - 172 Let (AQSjak’:j’AQSjvﬁ‘]')
be in Fj, j = 1,2. We require that on €,

AQSI,/ﬂf = AQSQ,sza f S Cgo((ov OO) X S)

Let z € Q,,. By Lemmal[2 there is f € C§°((0,00) x §) and a neighbor-
hood B C M™ of x such that u(T) # 0 in B, where u is the solution

of . Thus x; = ko in B. O
Lemma 16. Let s; € J, j = 1,2,..., form a strictly increasing se-

quence, and suppose that lim;_,..s; = s. Here J is defined by @
Then Ag determines the family {(Aq, x, Aa.x); k € K(Qs)}

Proof. An induction using Corollary |1l and Lemma |15 shows that A
determines the family

{((AﬂsjﬁijQSj,ﬁj));il; ’ij+1|Qsj = Kj, K; € K(Qsj)7 .] =12,... }
The functions x;, 7 = 1,2,..., fit together and give a function €.
Thus Ag determines the families of (Agq, x, Aq, x), where £ is smooth
in Q,, up to Q, N R, k is nowhere vanishing and satisfies kK = 1 in

@ N R. By using Lemma we can enforce k to be smooth up to
Q, N Mt O

We are now ready to prove the global result.
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Proof of Theorem[3 Tt remains to show that J is closed. Let s; € J,
7 = 1,2,..., form a strictly increasing sequence, and suppose that
lim; o 5; = 5. We will show that s € J. By Lemma [I6] we can
determine Agq, ., and Aq, ., for some xy € K(€;). By Lemma [12]
Agq, ., determines the family . Let Ay, . be in the family
and require furthermore that Aq_ ., and Ay, . fit together in the sense
that they are restrictions of an operator with smooth coefficients on
U = Qg UUs. Then (2) implies that the function

7{(1’) _ {"%(x)? xE qu

Y

k(z), x€Us,

is smooth except possibly on ;. Now Lemma [14] allows us to restrict
the choice of k so that ¥ is in K(U). O

5. RECONSTRUCTION OF THE GEOMETRY

In this section we briefly explain how the method of [24] can be
adapted to the reconstruction of (Q1, ¢) in the context of Theorem 2]

The lemma below follows immediately from the identity and the
definition of the exact controllability.

Lemma 17. Suppose that the wave equation 1s exactly controllable
from S in time T. Let ' C OM and B C M™ be open, and let V =T
or V= B. Let (f;);2, C C5°((0,00) x V). Then (W3 f;)32, converges
weakly to zero in L*(M) if and only if

. T 2
lim (5 BYU) ooy = 0o ¥ € LX((0,T) x S).

The lemma below allows us to extract geometric information from
the knowledge of weakly convergent sequences. The lemma follows
from Lemma [2 and we refer to [24, Lemma 6] for a proof.

Lemma 18. Let I' € OM and B C M™ be open, and let V = T’
orV =DB. Let hy : V — [0,T], £ = 1,2, be piecewise continuous
functions. In the case that V is B suppose, moreover, that hy > 0 and
hs > 0 pointwise. Then the following properties are equivalent:
(i) M(V,hy) C M(V, hy).
(ii) For all fo € C§°(B(V, hy;T)) thereis (f;)52, C C2(B(V, ho; T))
such that W (fo — fj) converges weakly to zero in L*(M).

By combining Lemmas [1] and |18 we see that Ag, and (£, g)

determine if

Ms(zsy hl) C Ms(zsa hZ)
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holds for piecewise continuous h; and hy on ¥,. Now [24] implies that
this relation determines (My_,g), where My, is the image of

{(r,y) € (0,00) x g5 7 < onr, 5, (y)}

under the map (r,y) — ~(r;y,vs). Here vy is the interior unit normal
of M,.

The above step recovering (Msy,, g) given Ag, can be iterated sim-
ilarly to the iteration in Section [l We refer to [21I, Section 4] for a
detailed exposition of gluing arguments that can be used to construct
an isometric copy of (£, g).

6. COMPLEMENTARY RESULTS

In this section we show that instead of assuming exact controllability
from § and strict convexity of ‘R, we may assume that exact control-
lability holds from & or R and that one of them is strictly convex.
Then we can determine the geometry and the lower order terms near
the strictly convex set R or S.

Observe first that the adjoint of Ay is RAL gR where R is the
time-reversal Ro(t) = ¢(T —t). Thus Theorem [1| implies that we can
determine the geometry and the lower order terms near § if it is strictly
convex and exact controllability holds from R.

Let us show that the conclusion of Theorem [[holds when R is strictly
convex and the wave equation (1)) is exactly controllable from R. The
fourth case, that is, § is strictly convex and exact controllability holds
from there, follows then again by transposition.

We used the exact controllability twice in the proof of Theorem [I]
namely in Lemma and when we invoked Lemma (7] in the proof of
Theorem [I We will give next the analogies of Lemmas [I7] and [7] in
the case when the exact controllability holds from R instead of from
S, and outline how this change affects the proof of Theorem [I}

Lemma 19. Suppose 15 exactly controllable from R in time T and
that T > max,ep d(z,S). Let T C OM and B C M™ be open, and
let V=T orV = B. Let (f;)52, C C5°((0,00) x V). Then (WY f;);2,
converges weakly to zero in L*(M) if and only if both (a) and (b) hold
where

(a) sup; ren | <fj, ngk>L2((0,T)><V) | < oo for all sequences (Vr)72,
in C5°((0,T) x S) such that (K{x)2, is bounded in the space
L2((0,T) x V).

(b) limjen {f;, K$¢>L2((0,T)xv) =0 for all p € C((0,T) x S).
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Proof. We begin by showing that (K%1;)%°, is bounded in the space
L2((0,T) x R) if and only if (UT1);)$2 , is bounded in the space L?(M).
Suppose that (K%x)32, is bounded and let w € L*(M). As is
exactly controllable from R in time T', there is f € L*((0,7T) X R) such
that W2 f = w. Thus

<wa UTq/}k>L2(M) = <f7 K£¢k>L2((O,T)XR) ) k= 1a 27 s

is bounded. This shows that (U7;)52, is weakly bounded, and there-
fore bounded in norm, in L2(M). On the other hand if (UT%y,)2, is
bounded, then

<f7 K7€¢"’>L2((O,T)><R) = <W7€f7 UT¢k>L2(M) , k=1,2,...

is bounded for any f € L*((0,T) x R), and we see that also (Kkx)3,
is bounded.

Suppose that (W} f;)52, converges weakly to zero in L*(M). Then
(b) follows from Lemma [I} and (a) follows from Lemma [I] together
with the fact that both the sequences (WY} f;)52, and (UT4y)2, are
bounded in L?(M).

Suppose now that (a) and (b) hold, and let w € L*(M). The as-
sumption 7" > max,ep d(z, S) together with the analogue of Lemma
for UT imply that there is a sequence (¢)2, in C5°((0,T) x S) such
that limg_ Ul = w in L?*(M). Note that Ky = (W) Uy,
k=1,2,...,1s then bounded. By (a) it holds that

e (W52 0) paaryy | = sup I, |G Bk oy | < 00
Hence (WY f;)32, is bounded. Moreover,
| <W$fj’w>L2(M)) | < ?g\? HWEfJHB(M) Hw o UT¢k“L2(M)

+| <W$fj7 UT¢k>L2(M)) |7

where the first term on the right-hand side is small when we choose
large k, and the second term converges to zero for fixed k. 0

Lemma 20. Let X C M be open, x € X and let X; C M, j5=1,2,...,
be a sequence of neighborhoods of x satisfying lim;_, diam (X;) = 0.
Let ¢y € CP(X) satisfy vo(x) # 0. Let T > 0 and suppose that a
sequence (fjr)5%—, of functions in L*((0,T) x S) satisfies
(0) for all j, there is u; € L*(M) such that the sequence (U” f;x)%,
converges weakly to u; in L*(M),
(i) there is C > 0 such that |[U” f;,
and k,

| 2ny < CIXGI7Y2 for all j
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(ii) supp (u;) C X; U (M \ X) for all j,
(i) ({uy, o) L2(ar))j2, converges.
Then there is k € C such that lim;_, limkﬁoo(UTfjk,sz(M) = ro(z)
for allv e C(X).
Furthermore, if T > max,en d(z,S), then there is a sequence (fj1)35.—1

that satisfies (i)-(1ii) and for which k = 1.

Before giving a proof of the lemma, let us show that the conditions
(0)-(iii) of Lemma [20] can be verified, when X and X; are chosen as in
the proof of Theorem , given A?STR and assuming that is exactly
controllable from R in time 7" and that (Mg, g) is known. This should
be compared with the second paragraph of the proof of Theorem [T}

Let K C R be compact. We construct h; and the sets X; for each
z € Cp(K) and p € U(K) as in the proof of Theorem [} see also Lemma
[6} and define X = M(L,(K), s + €)™t

As (Mg, g) is known, we know also the Riemannian volume and
surface measures on Mp and R, respectively. In particular, we can
compute the volumes |.X;/|.

The exact controllability from R in time 7" implies that the sequence
(UT fir)52, converges weakly in L*(M) if and only if

(0. Ki fir)r2qomyxrys  k=1,2,...

converges for all ¢ € L?((0,7) x R). Thus the condition (0) can be
verified.

The condition (i) holds if and only if the sequence (| X;|Y2U7 f;,)%5_,
is weakly bounded in L?(M). As in the proof Lemma this holds if
and only if (| X;|"2K% f;1)35—, is bounded in L*((0,T) x R). Thus the
condition (i) can be verified.

Lemma [2| implies that the condition (ii) holds if and only if

Jim (g, Kifig)2(om)xr) =0, ¢ € C(B(R, hy; T)).

Finally, the condition (iii) holds if lim; o limy_oo (¢, KR fik) 12((0.1)xR)
exists for all ¢ € C§°((0,00) X R).

We can also prove Theorem [2] in the case where the exact control-
lability holds from R instead of from S, since we can determine if the
conditions (0)-(iii) hold when Lemma 20| replaces Lemma[7]in the proof
of Lemma [I2] In this case we use Ag to determine if the conditions
(0) and (i) hold and Aq, ., to determine if the conditions (ii) and (iii)
hold.

Proof of Lemma 20 Let ¢ € C3°(X). Then supp (uj1)) C X, and
(uj, Vyr2ny = V() (s, 1) 20y + Ry,
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where the remainder term R; converges to zero as j — 0o. This can be
seen as in the proof of Lemmasinee (i) implies that ||u;| < C|X;|7/2
for all j. We choose ¢ = v and see that lim;_,(u;, 1) 12(ar) exists. We
denote the limit by x. Thus for any ¢ € C3°(X) it holds that

lim hn1<l(£j}kf¢>L2«QzjR)::jE£;<UjV¢>L%Aﬂ = rp(x).

j—r00 k—o0

Let us now assume that 7" > max,cp d(x,S). Then the analogue of
Lemma [2| for UT implies that for each j there is a sequence (f;x)%, in
L?((0,T) x S) such that (U” ;)32 converges to 1x,/|X;| in L*(M).
Then the conditions (0), (ii) and (iii) hold. By considering a suitable
tail of each of the sequences (fjx)72, we see that the sequence (fj1)35.—
can be chosen so that (i) holds with C' = 2.
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