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Abstract 
The Interspeech 2016 Native Language recognition challenge 
was to identify the first language of 867 speakers from their 
spoken English. Effectively this was an L2 accent recognition 
task where the L1 was one of eleven languages. The lack of 
transcripts of the spontaneous speech recordings meant that 
the currently best performing accent recognition approach 
(ACCDIST) developed by the author could not be applied. 
Instead, the objectives of this study were to explore whether 
within-speaker features found to be effective in ACCDIST 
would also have value within a contemporary GMM-based 
accent recognition approach. We show that while Gaussian 
mean supervectors provide the best performance on this task, 
small gains may be had by fusing the mean supervector system 
with a system based on within-speaker Gaussian mixture 
distances.  

Index Terms: accent recognition, second language, 
computational paralinguistics. 

1. Introduction 
The goal of the Interspeech 2016 Native Language challenge 
was to identify the first language (L1) of 867 speakers from 11 
language groups given recordings of their extemporaneous 
second language (L2) performance in response to a range of 
different question topics. The recordings were collected by the 
Educational Testing Service (ETS) as part of an English 
proficiency test. The recordings were made in the speakers’ 
home environment with a range of different audio equipment 
and background noise levels and contain an average of 40s of 
speech. A larger set of 4265 similar recordings but labelled for 
L1 were also provided for the training and development of 
machine learning systems, see Schuller et al [1] for more 
details. 

In this paper we outline the different ways in which the L1 of a 
speaker influences their L2 accent then consider how current 
machine approaches to accent recognition make best use of 
those influences. We argue that good L1 identification will 
occur when systems are sensitive to the phonetic forms the 
speaker uses to realise known L2 phonological contexts. We 
propose a novel method for extracting more accent 
information from Gaussian Mixture Models (GMM) of 
accented speech using Gaussian mixture distances. We 
describe the training and testing protocols and compare the 
performance of the new technique against established methods 
within the Native Language challenge task. 

2. L2 Accent Recognition 

2.1 Characteristics of L2 Accents 

When a speaker speaks in an L2 that they have learned later in 
life, their accent is often influenced by properties of their L1. 
This is because an adult speaker’s production and perceptual 
systems are highly tuned to speaking and listening in their L1, 
making them less accurate in phonetic performance and less 
sensitive in phonetic perception when speaking the L2. While 
there is much variation across speakers, it appears that some 
aspects of L2 accents are predictable from phonetic and 
phonological differences between the two languages [2]. In 
terms of the Native Language challenge, it is the influence of 
these differences on the L2 which needs to be recognised. 

Following Wells’s analysis of L1 accent differences [3, p.72], 
we may describe the L1 influence on L2 accents under these 
headings: 

a) Phonetic realisation: these are influences of the L1 on the 
phonetic form of L2 phonological units, for example the 
exact quality chosen for the L2 phonemes. These qualities 
may vary with L1 because some L1 phones may be copied 
rather than adapted for the L2. Examples are the re-use of 
L1 vowel qualities or the use by Hindi speakers of the 
voiced retroflex plosive [ɖ] for English /d/. 

b) Phonemic system: these are differences in the phoneme 
inventory between the two languages. These can cause 
problems for speakers particularly where phonological 
choices found in the L2 are not exploited in the L1. 
Examples are the /l/-/r/ difference in English not exploited 
in Japanese, or the /i/-/ɪ/ difference not exploited in 
Spanish. 

c) Phonotactics: these are differences not in the inventory of 
phonemes but on allowable sequences of phonemes in the 
L2 compared to the L1. A speaker may struggle with 
phone sequences found in the L2 that are not used in the 
L1 – the novelty, for example, of the English consonant 
cluster /skw-/ for German speakers. 

d) Lexical distribution: these are differences between L2 
accents in terms of which phonological units are found in 
the lexical pronunciation of some words. These differences 
can arise because of conflicting letter-to-sound rules in the 
L1 and L2 – a particular problem given the vagaries of 
English spelling. A typical error might be a Spanish or 
Italian speaker pronouncing the past tense morpheme "-ed" 
as /-ɪd/ rather than /t/ in a word like "watched". 



e) Prosody: differences in lexical stress, timing, intonation 
and voice quality also occur across L2 accents. English 
lexical stress can be unpredictable and false friends from 
the L1 may give non-native forms. Rhythmical 
characteristics of the L1 may also influence the L2, for 
example the differences between so-called stress-timed 
and syllable-timed languages. The forms of pitch contours 
that realise intonational functions vary with the L1, for 
example the preference of Italian speakers to complete 
pitch movements within the accented syllable, or the 
influence of L1 lexical tone on L2 intonation in a tone 
language such as Chinese. 

From this analysis it is important to see that the influence of 
the L1 on the L2 is not limited to the range of sounds 
produced by the speaker but also includes which sounds are 
used to implement known phonological choices. A French 
speaker may articulate a perfectly English like [z] phone, 
which only becomes an L2 accent difference if it is used to 
represent /ð/ in "this". We also see that the L1 can influence 
sounds in particular contexts, such as specific phone 
sequences, specific lexical stress patterns, or specific 
intonational tunes. Thus for an accurate understanding of the 
L1 influence on the L2 accent we need to consider both the 
sounds and the phonological contexts in which they occur. 

2.2 Approaches to Machine Accent Recognition 

Previous approaches to machine accent recognition have 
included: (i) analysis of linguistic-phonetic forms, (ii) 
variation in the global acoustic signature of the speech signal, 
(iii) variation in the probability density function (pdf) of the 
short-time spectrum, and (iv) variation in the phonetic 
labelling given by automatic speech recognition (ASR) 
systems. We will discuss each of these in turn. 

Systems based on a linguistic-phonetic analysis use 
measurements of the phonetic forms of known phonological 
entities and compare measurements across accents. For L2 
accent recognition such an approach makes use of the actual 
phonetic form of the expected underlying phonological units, 
for example how does this speaker produce the /uː/ vowel in 
“boot”? This approach is particularly powerful when all 
speakers read the same text as even differences in lexical 
distribution can be detected. The ACCDIST method developed 
by the author [4] is an example of this approach.  

Systems based on global spectral properties assume that the L1 
affects the L2 accent in terms of changes to the overall spectral 
signature. Such systems convert a recording into a fixed length 
pattern vector comprising features such as summative statistics 
of spectral energies, pitch variation, voice-quality and 
amplitude envelope modulations. The challenge baseline 
system [1] is of this type and exploits the SMILE feature 
extraction toolkit to generate a feature vector [5].  

Systems based on changes to the short-term spectrum 
probability distribution compute short-term spectral envelope 
features (at say 100/sec) and model these with Gaussian 
Mixture Models (GMMs). The spectral pdfs may be computed 
separately for different accents and exploited to find the accent 
giving the highest posterior probability of generating a 
recording. A number of variants of such systems exist that 
generate feature vectors from the spectral pdf such as Gaussian 
Mean Supervectors, Gaussian Posterior Probability 
Supervectors, or i-Vectors, see Bahari et al [6] for example 
implementations. 

Systems based on the phonotactics of ASR outputs exploit the 
sensitivity of speech recognition systems to accents that differ 
from the ones used to train them. If recognisers produce phone 
transcriptions which have different statistical properties across 
accents, then these may be used to identify the accent. These 
properties not only include the relative frequency of each 
phone, but also the relative frequency of common diphones 
and triphones. Tellingly, the recognition systems do not need 
to be of the L2 language nor even of one language, indeed it 
has been shown to be beneficial to use a mix of languages to 
estimate phone sequence probabilities [7].  

A performance comparison of three of these types of accent 
recognition may be found in [7] and repeated in Table 1. The 
task was identification of 14 regional accents of the British 
Isles from read speech of good quality. Overall the GMM 
systems performed worse than the phone recognition systems, 
but both were worse than the linguistic-phonetic systems 
represented by ACCDIST. We interpret this outcome as 
showing the value of interpreting phonetic form in the context 
of phonological structure, since of the systems tested it is only 
the linguistic-phonetic approach that exploits knowledge of 
what was spoken. 

Table 1. Percentage accent recognition accuracy for 
different systems tested by Hanani et al [7]. 

System Description Accuracy % 

GMM-UBM 61.13 

GMM-SVM 76.11 

Phonotactic 82.14 

Fused GMM+Phonotactic 89.96 

ACCDIST-Correlation 93.17 

ACCDIST-SVM 95.18 

2.3 System Choice for the Native Language 
Challenge 

The ETS corpus of non-native spoken English used in the 
challenge places constraints on the type of system most suited 
to the challenge. Firstly, since the speech was spontaneous, the 
recordings contain different linguistic content which adds 
noise to the spectral signature used in the global spectral 
approach. Secondly the speech is not transcribed which means 
that an approach based on identifying differences in the 
phonetic realisation (across accents) of the same underlying 
phonological representations is not possible except in so far as 
an automatic speech recognition system might provide an 
accurate transcription. This in turn would seem to be unlikely 
given the poor and variable audio quality of the recordings. 

The goal of this work then, is to find means by which some 
advantages of the linguistic-phonetic approach might be 
exploited within a GMM or phonotactic system. We cannot 
rely on the ASR systems used in the phonotactic method to 
establish reliable phonological labels (indeed it is the phoneme 
errors rather than the phoneme truths that give the method its 
power), so instead we turn to GMM systems. 

A typical GMM system for accent recognition models 
individual speakers in terms of their difference to an average 
speaker described by a universal background model (UBM) 
built from a large population of speakers. A feature vector that 
represents the speaker can be calculated by observing the 
change in mixture means caused by MAP adaptation of the 



UBM to the speaker. In previous accent recognition 
approaches this supervector of means  can be used directly for 
recognition using a classifier [6,7], or can be reduced to i-
vector form and processed by linear discriminant analysis to 
increase its sensitivity to accents over speakers and channels 
[8,9]. 

However, other useful information can be found in the UBM, 
for example the relative frequency of use of the mixtures 
might capture the relative frequency of phone types in the 
speech, analogous in some way to the phone frequencies 
estimated in phonotactic systems. A feature vector based on 
the Gaussian mixture posterior probabilities has been shown to 
be useful in accent recognition [6]. 

In ACCDIST, the phonetic properties of known phonological 
units are identified within one recording and compared to the 
properties of other units in the same recording. This table of 
segment similarities is then correlated across speakers such 
that the resulting similarity scores are relatively insensitive to 
speaker or channel. Could this idea be exploited within the 
GMM framework? If the Gaussian mixtures had systematic 
relationships with the underlying phonological forms, then the 
distances between mixtures might stand as proxies for the 
distances between phones used in ACCDIST. We can measure 
the distances between the MAP adapted means for the speaker 
and normalise the mixture distance table to create a feature 
vector that might be less sensitive to speaker and channel than 
the means themselves. 

In summary we have identified three feature vector 
representations that might be used to classify accents in the 
GMM framework: Gaussian Mean Supervectors (GMS), 
Gaussian Posterior Probability Supervectors (GPPS) and 
Gaussian Mixture Distance Supervectors (GMDS). In this 
study we evaluate the relative merit of these representations on 
the Native Language development data set and also investigate 
the performance of the best performing systems on the 
chellenge test set. 

3. Experimental Methods 

3.1 Acoustic Feature Analysis 

Acoustic analysis was chosen to be straightforward, since the 
main focus in this paper was on the different feature vector 
representations. 

Each file was high-pass filtered at 100Hz to remove any DC 
component or main hum. The signals were normalised to unit 
variance and twelve mel-frequency-scaled cepstral coefficients 
plus RMS amplitude were extracted from 30ms windows 
every 10ms. Delta parameters were added to create a basic 
acoustic vector of 26 values. 

Silent frames were detected as frames with RMS amplitude 
more than 50dB below the maximum in the file and removed. 
The acoustic parameters in the remaining frames in each 
recording were then normalised by z-scores (i.e. cepstral mean 
subtraction and variance normalisation). 

3.2 Machine Learning Framework 

Gaussian Mixture Modelling 

Gaussian Mixture modelling was performed using the MSR 
Identity Toolbox [10]. Universal Background Models with 
diagonal covariance were built from all training samples with 
64, 128, 256, 512, 1024 and 2048 mixtures. The MSR Identity 

Toolbox was also used for MAP adaptation of the UBM to 
individual speaker recordings. 

Classification 

Classification of feature vectors into accents was performed 
using a Support Vector Machine classifier [11]. The SVM 
systems were trained using a radial-basis function kernel. Best 
values for the hyper-parameters of cost and gamma were 
found by a simple grid search on the development test set. 
Grid spacing was a factor of two for each hyperparameter. 

System Fusion 

The classifier output for each test recording was stored as a list 
of 11 posterior probabilities, using the SVM facility for 
producing probability estimates. This allowed the 
classifications of different systems to be fused by a weighted 
linear combination trained on development data. System 
fusion was performed with the FoCal Multi-class toolkit [12]. 

3.3 Feature Vector Configurations 

The feature vector construction is given below, and a summary 
may be found in Table 2. 

Gaussian mean supervectors 

The supervectors are concatenations of the acoustic feature 
means for each UBM mixture after adaptation with a specific 
recording. The length of each supervector is thus 26*number 
of mixtures. MAP adaptation of the mixture means only was 
performed with the MAP relevance factor τ=10. 

Each element in the supervector is subsequently normalised by 
z-scores computed across all speakers prior to presentation to 
the SVM. 

Gaussian posterior probability supervectors 

The Gaussian posteriors for each UBM mixture are calculated 
as the average occupancy of the mixture taken over the whole 
speaker recording. Thus for T observations o, and J mixtures 
represented by means µ, covariance Σ and weight w, the 
average occupancy κ for mixture j is computed as: 
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The feature vector is then just the concatenation of the 
occupancy estimates for each recording, and has length equal 
to the number of mixtures. The Gaussian posterior 
probabilities are normalised to the range 0..1 computed over 
all speakers before presentation to the SVM. 

Gaussian mixture distance supervectors 

The distances between all pairs of mixture mean vectors is 
computed using the Bhattacharyya distance metric based on 
the means µ and variances σ2 of each feature in the respective 
mixtures p & q: 
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The mixture distance is then just the sum over all features, and 

the supervector is the concatenation of the )*2+ mixture 

distances. The distances in each individual supervector are 



converted to z-scores to convert absolute to relative 
differences. Each element in the supervector is then further 
normalised by z-scores computed over all speakers prior to 
presentation to the SVM. 

Table 2. Characteristics of the best performing feature 
vector configurations found on development data. 

System 
Description 

#GMM 
Mixtures 

Vector 
Size 

SVM 
Cost 

SVM 
Gamma 

Gaussian 
Means 

512 13312 16 0.00005 

Gaussian 
Posteriors 

2048 2048 8 0.02 

Mixture 
Distances 

256 32640 8 0.0001 

4. System Performance  
Performance is measured in terms of unweighted average 
recall (UAR), which is the average accuracy when all accents 
are weighted equally. The relative quality of the different 
systems is also expressed in terms of the Cllr multi-class 
measure of goodness of log-likelihood ratios computed using 
the FoCal toolkit. Lower values of Cllr are better, and on this 
task a null system would have Cllr= 3.46bits. 

Performance on the development data test set is shown in 
Table 3. Performance on the Native Language Challenge test 
set is shown in Table 4. An accent confusion matrix from the 
best performing system is shown in Figure 1. 

Table 3. Percentage accent recognition accuracy for 
different systems on development data. The Cllr value 
is measured after calibration with the FoCal toolkit. 

System Description Cllr (bits) UAR % 

Mixture Distances 1.971 56.40 

Gaussian Posteriors 1.679 63.07 

Mean Supervector 1.560 66.45 

Mean Supervector +  
Mixture Distances Fused 

1.497 67.68 

Mean Supervector +  
Gaussian Posteriors Fused 

1.452 69.67 

Mean Supervector +  
Gaussian Posteriors +  

Mixture Distances Fused 

1.429 69.72 

 

Table 4. Percentage accent recognition accuracy for 
different systems on test data. 

System Description UAR % 

Baseline 47.5 

Mean Supervector 68.84 

Mean Supervector +  
Gaussian Posteriors +  

Mixture Distances Fused 

69.80 

 

 

Figure 1: Accent confusions of best performing system 
on development data. Rows = true accent, columns = 
recognised accent. 

5. Discussion 
The nature of the Native Language challenge placed 
constraints on the kind of accent recognition system that could 
be deployed. Since ACCDIST could not be used we have 
explored whether ACCDIST-like within-speaker features 
would be useful within a GMM system. Effectively we tested 
how well GMM mixtures serve as proxies for phonological 
units. We found that while performance on accent recognition 
using mixture distances alone is worse than with mean 
supervectors or with posterior probability supervectors, 
mixture distances do contain useful accent information which 
marginally improve overall system performance after fusion. 
The contrast with the effectiveness of phone distances in 
ACCDIST is likely because single mixtures are rarely formed 
from the realisations of single phonological units, particularly 
when measured across speakers. 

Overall performance on the Native Language challenge is 
somewhat worse than that found for regional accents [4, 7, 8]. 
There may be because the audio quality is poor and variable, 
because the language background of the speakers may be 
varied within the identified L1 language group, or because of 
variation in the proficiency of the speakers in English. It is 
well known that the nativeness of an L2 accent is strongly 
affected by the age at which speakers learn a second language 
[2]. The effect of proficiency on accent recognition was also 
reported for L2 speakers of Finnish in [9]. 

Finally, the language confusions shown in Figure 1 are 
interesting as they show confusions between related language 
groups. The greatest confusions are between Spanish & 
Italian, Hindi & Telugu, and between Chinese, Japanese & 
Korean. This pattern of confusions does provide some 
evidence that the accent recognition does exploit phonetic and 
phonological features of the L1 and does not just treat 
languages as arbitrary classes of sound. 
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