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Abstract

The Interspeech 2016 Native Language recognitiaileige
was to identify the first language of 867 speakessn their
spoken English. Effectively this was an L2 accemognition
task where the L1 was one of eleven languages.|lddieof
transcripts of the spontaneous speech recordingstntbat
the currently best performing accent recognitiorprapch
(ACCDIST) developed by the author could not be applie
Instead, the objectives of this study were to esxgplhether
within-speaker features found to be effective in ACED
would also have value within a contemporary GMMeahs
accent recognition approach. We show that while sGian
mean supervectors provide the best performancdisrask,
small gains may be had by fusing the mean supawegstem
with a system based on within-speaker Gaussian unaixt
distances.

Index Terms: accent recognition, second language,
computational paralinguistics.
1 Introduction

The goal of the Interspeech 2016 Native Languagdiesige
was to identify the first language (L1) of 867 dpera from 11
language groups given recordings of their extempsoas
second language (L2) performance in response smgerof
different question topics. The recordings wereexmiid by the
Educational Testing Service (ETS) as part of an liEmg
proficiency test. The recordings were made in theakers’
home environment with a range of different audiaipment
and background noise levels and contain an aveybg6s of
speech. A larger set of 4265 similar recordingsloelled for
L1 were also provided for the training and develepmof
machine learning systems, see Schuéerl [1] for more
details.

In this paper we outline the different ways in whtbe L1 of a
speaker influences their L2 accent then consider twrrent
machine approaches to accent recognition make usestof
those influences. We argue that good L1 identificatwill

occur when systems are sensitive to the phonetinsfadhe
speaker uses to realise known L2 phonological cisitéVe
propose a novel method for
information from Gaussian Mixture Models (GMM) of

accented speech using Gaussian mixture distances. W

describe the training and testing protocols and pzom the
performance of the new technique against estaldistethods
within the Native Language challenge task.

extracting more accent

2. L 2 Accent Recognition

2.1 Characteristics of L2 Accents

When a speaker speaks in an L2 that they havedédater in
life, their accent is often influenced by propestf their L1.
This is because an adult speaker’s production andeptual
systems are highly tuned to speaking and listeimirtgeir L1,
making them less accurate in phonetic performamek l@ss
sensitive in phonetic perception when speakingLtheWhile

there is much variation across speakers, it appgbatssome
aspects of L2 accents are predictable from phonatid
phonological differences between the two langud@ésin

terms of the Native Language challenge, it is tifiénce of
these differences on the L2 which needs to be résed.

Following Wells's analysis of L1 accent differend8s p.72],
we may describe the L1 influence on L2 accents uthise
headings:

a) Phonetic realisation: these are influences of the L1 on the
phonetic form of L2 phonological units, for example
exact quality chosen for the L2 phonemes. Thesétigsa
may vary with L1 because some L1 phones may besdopi
rather than adapted for the L2. Examples are theseeof
L1 vowel qualities or the use by Hindi speakersttof
voiced retroflex plosived] for English /d/.

b) Phonemic system: these are differences in the phoneme
inventory between the two languages. These canecaus
problems for speakers particularly where phonoklgic
choices found in the L2 are not exploited in the. L1
Examples are the /I/-/r/ difference in English e&ploited
in Japanese, or the /il-/difference not exploited in
Spanish.

¢) Phonotactics: these are differences not in the inventory of
phonemes but on allowable sequences of phonentbg in
L2 compared to the L1. A speaker may struggle with
phone sequences found in the L2 that are not usdéei
L1 — the novelty, for example, of the English camesut
cluster /skw-/ for German speakers.

d) Lexical distribution: these are differences between L2
accents in terms of which phonological units anenfbin
the lexical pronunciation of some words. Theseedéihces
can arise because of conflicting letter-to-souridsrin the
L1 and L2 — a particular problem given the vagaoés
English spelling. A typical error might be a Spanisr
Italian speaker pronouncing the past tense morpliesdg
as /1d/ rather than /t/ in a word like "watched".



e) Prosody: differences in lexical stress, timing, intonation
and voice quality also occur across L2 accents.lifing
lexical stress can be unpredictable and false déefnom
the L1 may give non-native forms. Rhythmical
characteristics of the L1 may also influence the fd
example the differences between so-called stresesdti
and syllable-timed languages. The forms of pitchtcors
that realise intonational functions vary with thé&, Lfor
example the preference of Italian speakers to cetapl
pitch movements within the accented syllable, oe th
influence of L1 lexical tone on L2 intonation intane
language such as Chinese.

From this analysis it is important to see that itifeience of
the L1 on the L2 is not limited to theange of sounds
produced by the speaker but also includésch sounds are
used to implement known phonological choices. AnEhe
speaker may articulate a perfectly English like f#one,
which only becomes an L2 accent difference if iuged to
represent /8/ in "this". We also see that the Li icdluence
sounds in particular contexts, such as specific npho
sequences, specific lexical stress patterns, orcifgpe
intonational tunes. Thus for an accurate undergtgndf the
L1 influence on the L2 accent we need to consideh ithe
sounds and the phonological contexts in which thesur.

2.2 Approachesto Machine Accent Recognition

Previous approaches to machine accent recognitiave h
included: (i) analysis of linguistic-phonetic formgii)

variation in the global acoustic signature of theexh signal,
(i) variation in the probability density functiofpdf) of the
short-time spectrum, and (iv) variation in the péin
labelling given by automatic speech recognition RAS
systems. We will discuss each of these in turn.

Systems based on a linguistic-phonetic analysis use
measurements of the phonetic forms of known phaicéd
entities and compare measurements across acceamtd.2F
accent recognition such an approach makes useecddtual
phonetic form of the expected underlying phonolabignits,

for example how does this speaker produce thevhwel in
“boot"? This approach is particularly powerful wheail
speakers read the same text as even differencésxical
distribution can be detected. The ACCDIST method lbgesl

by the author [4] is an example of this approach.

Systems based on global spectral properties asthanthe L1
affects the L2 accent in terms of changes to tleeadvspectral
signature. Such systems convert a recording ifitced length
pattern vector comprising features such as summatatistics
of spectral energies, pitch variation, voice-qyaliand
amplitude envelope modulations. The challenge basel
system [1] is of this type and exploits the SMIL&ature
extraction toolkit to generate a feature vector [5]

Systems based on changes to the short-term spectrum
probability distribution compute short-term spec&avelope
features (at say 100/sec) and model these with sBaus
Mixture Models (GMMs). The spectral pdfs may be poted
separately for different accents and exploitedrtd the accent
giving the highest posterior probability of genargt a
recording. A number of variants of such systemstettiat
generate feature vectors from the spectral pdf asdBaussian
Mean Supervectors, Gaussian Posterior Probability
Supervectors, or i-Vectors, see Bahari et al [6] dgample
implementations.

Systems based on the phonotactics of ASR outpyisiexhe

sensitivity of speech recognition systems to accHmt differ

from the ones used to train them. If recogniseoslpce phone
transcriptions which have different statistical peties across
accents, then these may be used to identify thenacthese
properties not only include the relative frequerafy each

phone, but also the relative frequency of commagrhalnes
and triphones. Tellingly, the recognition systerosndt need
to be of the L2 language nor even of one languegksed it

has been shown to be beneficial to use a mix aguages to
estimate phone sequence probabilities [7].

A performance comparison of three of these typeacsent
recognition may be found in [7] and repeated inl@db The
task was identification of 14 regional accents fud British
Isles from read speech of good quality. Overall GEM

systems performed worse than the phone recogrstistems,
but both were worse than the linguistic-phonetictems

represented by ACCDIST. We interpret this outcome as

showing the value of interpreting phonetic fornthe context
of phonological structure, since of the systemteteg is only
the linguistic-phonetic approach that exploits kienlge of
what was spoken.

Table 1.Percentage accent recognition accuracy for
different systems tested by Hanani et al [7].

System Description Accuracy %
GMM-UBM 61.13
GMM-SVM 76.11
Phonotactic 82.14

Fused GMM+Phonotactia 89.96
ACCDIST-Correlation 93.17
ACCDIST-SVM 95.18

2.3 System Choice for
Challenge

the Native Language

The ETS corpus of non-native spoken English useth@n
challenge places constraints on the type of systest suited
to the challenge. Firstly, since the speech wastspeous, the
recordings contain different linguistic content wlhi adds
noise to the spectral signature used in the glcipactral
approach. Secondly the speech is not transcribéchwheans
that an approach based on identifying differenaesthe

phonetic realisation (across accents) of the sanuenying

phonological representations is not possible exirepd far as
an automatic speech recognition system might peo\ad

accurate transcription. This in turn would seenbéounlikely

given the poor and variable audio quality of theoreings.

The goal of this work then, is to find means by ethsome
advantages of the linguistic-phonetic approach inigk

exploited within a GMM or phonotactic system. Wencat

rely on the ASR systems used in the phonotactic odetb

establish reliable phonological labels (indeed ithie phoneme
errors rather than the phoneme truths that givartbthod its
power), so instead we turn to GMM systems.

A typical GMM system for accent recognition models
individual speakers in terms of their differenceato average
speaker described by a universal background mddiBM)

built from a large population of speakers. A featuector that
represents the speaker can be calculated by obgethie
change in mixture means caused by MAP adaptatiothef



UBM to the speaker. In previous accent recognition
approaches this supervector of means can be urssd\dfor
recognition using a classifier [6,7], or can beuess to i-
vector form and processed by linear discriminaralysis to
increase its sensitivity to accents over speakedschannels
[8,9].

However, other useful information can be foundha UBM,
for example the relative frequency of use of thectames
might capture the relative frequency of phone typeshe
speech, analogous in some way to the phone fretsenc
estimated in phonotactic systems. A feature vebtmed on
the Gaussian mixture posterior probabilities hanishown to
be useful in accent recognition [6].

In ACCDIST, the phonetic properties of known phondaday
units are identified within one recording and coneglato the
properties of other units in the same recordings Table of
segment similarities is then correlated across kssasuch
that the resulting similarity scores are relativelgensitive to
speaker or channel. Could this idea be exploitedhimithe
GMM framework? If the Gaussian mixtures had systema
relationships with the underlying phonological fa;nthen the
distances between mixtures might stand as proxestte
distances between phones used in ACCDIST. We canungeas
the distances between the MAP adapted means faptsker
and normalise the mixture distance table to creafeature
vector that might be less sensitive to speakerciiatinel than
the means themselves.

In summary we have identified three feature vector
representations that might be used to classifyrasca the
GMM framework: Gaussian Mean Supervectors (GMS),
Gaussian Posterior Probability Supervectors (GPBR&)
Gaussian Mixture Distance Supervectors (GMDS). His t
study we evaluate the relative merit of these repr@ations on
the Native Language development data set and mestigate
the performance of the best performing systems lom t
chellenge test set.

3. Experimental Methods

3.1 Acoustic Feature Analysis

Acoustic analysis was chosen to be straightforwsirtke the
main focus in this paper was on the different featuwector
representations.

Each file was high-pass filtered at 100Hz to remamg DC
component or main hum. The signals were normalisashit
variance and twelve mel-frequency-scaled cepstrefficients
plus RMS amplitude were extracted from 30ms windows
every 10ms. Delta parameters were added to crestasia
acoustic vector of 26 values.

Silent frames were detected as frames with RMS anajdi
more than 50dB below the maximum in the file andoeed.
The acoustic parameters in the remaining framesaoh
recording were then normalised by z-scores (i.psttal mean
subtraction and variance normalisation).

3.2 Machine L ear ning Framewor k

Gaussian Mixture Modelling

Gaussian Mixture modelling was performed using M&R
Identity Toolbox [10]. Universal Background Modelsthw
diagonal covariance were built from all trainingrgdes with
64, 128, 256, 512, 1024 and 2048 mixtures. The MfRtity

Toolbox was also used for MAP adaptation of the URM
individual speaker recordings.

Classification

Classification of feature vectors into accents wasgfgomed
using a Support Vector Machine classifier [11]. TREM
systems were trained using a radial-basis fundt@nel. Best
values for the hyper-parameters of cost and gamraese w
found by a simple grid search on the developmestt set.
Grid spacing was a factor of two for each hypenpetear.

System Fusion

The classifier output for each test recording wasesl as a list
of 11 posterior probabilities, using the SVM fagilifor
producing probability estimates. This allowed the
classifications of different systems to be fusedabyeighted
linear combination trained on development data.te3gs
fusion was performed with the FoCal Multi-class kito]12].

3.3 Feature Vector Configurations

The feature vector construction is given below, arsdimmary
may be found in Table 2.

Gaussian mean supervectors

The supervectors are concatenations of the acofesitare
means for each UBM mixture after adaptation withpactfic
recording. The length of each supervector is thaf@mber
of mixtures. MAP adaptation of the mixture means$yomas
performed with the MAP relevance factsr10.

Each element in the supervector is subsequentipalmed by
z-scores computed across all speakers prior teprason to
the SVM.

Gaussian posterior probability supervectors

The Gaussian posteriors for each UBM mixture areutated
as the average occupancy of the mixture taken tbeewhole
speaker recording. Thus for T observationsand J mixtures
represented by means p, covariatteand weight w, the
average occupaneyfor mixture j is computed as:
T
= 12 w;p (¢ |1, Z;)
==
T t=12§=1 wip(0¢luj, Zp)

The feature vector is then just the concatenatibnthe
occupancy estimates for each recording, and haghergual
to the number of mixtures. The Gaussian posterior
probabilities are normalised to the range 0..1 agexg over
all speakers before presentation to the SVM.

Gaussian mixture distance supervectors

The distances between all pairs of mixture meartoveds
computed using the Bhattacharyya distance metrsedan
the means p and varianagsof each feature in the respective
mixtures p & q:

L (1o g Y1l - k)
dp, ) = ~In[ (2 +20 4 2)) 4o (r"Ha)
) 4n<4<a§+ag+ >>+4( o5 + 02 )

The mixture distance is then just the sum ovefeallures, and
the supervector is the concatenation of @e) mixture
distances. The distances in each individual supesveare



converted to z-scores to convert absolute to weati
differences. Each element in the supervector is thuether
normalised by z-scores computed over all speakecs {o
presentation to the SVM.

Table 2.Characteristics of the best performing feature
vector configurations found on devel opment data.

System #GMM Vector | SVM SVM
Description Mixtures Size Cost | Gamma

Gaussian 512 13312 16 0.00004

Means
Gaussian 2048 2048 8 0.02
Posteriors

Mixture 256 32640 8 0.0001
Distances

4, System Perfor mance

Performance is measured in terms of unweightedageer
recall (UAR), which is the average accuracy wheraatients
are weighted equally. The relative quality of thiéfedent
systems is also expressed in terms of the r@ulti-class
measure of goodness of log-likelihood ratios coraguising
the FoCal toolkit. Lower values ofCare better, and on this
task a null system would have, € 3.46bits.

Performance on the development data test set iwrslio
Table 3. Performance on the Native Language Chatléast
set is shown in Table 4. An accent confusion mdtdxn the
best performing system is shown in Figure 1.

Table 3.Percentage accent recognition accuracy for
different systems on development data. The C;, value
ismeasured after calibration with the FoCal toolkit.

System Description Cyr (bits) UAR %
Mixture Distances 1.971 56.40
Gaussian Posteriors 1.679 63.07]
Mean Supervector 1.560 66.45
Mean Supervector + 1.497 67.68
Mixture Distances Fused
Mean Supervector + 1.452 69.67
Gaussian Posteriors Fused
Mean Supervector + 1.429 69.72
Gaussian Posteriors +
Mixture Distances Fused

Table 4.Percentage accent recognition accuracy for

different systems on test data.
System Description UAR %
Baseline 47.5
Mean Supervector 68.84
Mean Supervector + 69.80
Gaussian Posteriors +
Mixture Distances Fused

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR

ARA 61 1 5 2 a 3 3 2 4 2 2
CHI 1 62 4 0 2 0 6 4 4 0 1
FRE 4 1 55 4 0 4 4 1 4 0 3
GER 1 2 5 63 0 5 1 2 5 0 1
HIN 1 0 i E 0 58 0 1 1 0 21 0
ITA 7 4 6 3 0 60 0 1 11 0 2
JPN 0 3 2 2 0 1 56 16 4 0 1
KOR 1 10 2 1 0 0 7 66 3 0
SPA 6 3 6 3 0 6 5 64 2
TEL 1 0 0 1 20 1 1 57 0
TUR 2 0 3 5 0 2 3 6 2 70

Figure 1:Accent confusions of best performing system
on development data. Rows = true accent, columns =
recognised accent.

5. Discussion

The nature of the Native Language challenge placed
constraints on the kind of accent recognition systieat could

be deployed. Since ACCDIST could not be used we have
explored whether ACCDIST-like within-speaker features
would be useful within a GMM system. Effectively wasted
how well GMM mixtures serve as proxies for phondadag
units. We found that while performance on acceobgeition
using mixture distances alone is worse than withaime
supervectors or with posterior probability supetoes;
mixture distances do contain useful accent infoilmnatvhich
marginally improve overall system performance aftesion.
The contrast with the effectiveness of phone distanin
ACCDIST is likely because single mixtures are rarfelyned
from the realisations of single phonological unfarticularly
when measured across speakers.

Overall performance on the Native Language chadlersy
somewhat worse than that found for regional accents, 8J.
There may be because the audio quality is poorvandble,
because the language background of the speakersbmay
varied within the identified L1 language group,b@cause of
variation in the proficiency of the speakers in Esig It is
well known that the nativeness of an L2 accenttiengly
affected by the age at which speakers learn a ddemguage
[2]. The effect of proficiency on accent recognitizvas also
reported for L2 speakers of Finnish in [9].

Finally, the language confusions shown in Figureark
interesting as they show confusions between relaeguage
groups. The greatest confusions are between Spahish
Italian, Hindi & Telugu, and between Chinese, Japan&
Korean. This pattern of confusions does provide esom
evidence that the accent recognition does explwnptic and
phonological features of the L1 and does not justtt
languages as arbitrary classes of sound.
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