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Most animals look at each other to signal threat or interest.
In humans, this social interaction is usually punctuated
with brief periods of mutual eye contact. Deviations from
this pattern of gazing behaviour generally make us feel
uncomfortable and are a defining characteristic of clinical
conditions such as autism or schizophrenia, yet it is unclear
what constitutes normal eye contact. Here, we measured, across
a wide range of ages, cultures and personality types, the
period of direct gaze that feels comfortable and examined
whether autonomic factors linked to arousal were indicative
of people’s preferred amount of eye contact. Surprisingly, we
find that preferred period of gaze duration is not dependent on
fundamental characteristics such as gender, personality traits
or attractiveness. However, we do find that subtle pupillary
changes, indicative of physiological arousal, correlate with the
amount of eye contact people find comfortable. Specifically,
people preferring longer durations of eye contact display faster
increases in pupil size when viewing another person than
those preferring shorter durations. These results reveal that
a person’s preferred duration of eye contact is signalled by
physiological indices (pupil dilation) beyond volitional control
that may play a modulatory role in gaze behaviour.

1. Introduction
Eye contact occurs during most animal interactions, often
signalling either threat or interest [1,2]. In humans, eye contact
provides a non-verbal channel for communicating intentions,
regulating interactions and expressing intimacy [3,4]. People show
a preference for looking at the eyes compared with other facial

2016 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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attributes [5,6], a feature that is present from a very young age [7,8]. Physiological studies have revealed,
using single cell recordings in primates [2,9], and imaging techniques in humans [10,11], the existence of a
dedicated neuronal circuitry for the encoding of another’s gaze direction that underlies people’s accuracy
on gaze tasks [1,3,12]. More recently, it has also been shown that under conditions of uncertainty, people
tend to perceive another’s gaze as being directed towards them; a so-called prior for direct gaze [13].
Taken together, these results highlight the biological significance of gaze processing in human behaviour.

Given the importance of eye contact in human (and non-human) social interactions, as well as the
fact that abnormal eye contact is used as a diagnostic tool for clinical symptoms such as autism and
schizophrenia [14], it is surprising that ‘normal’ eye contact behaviour remains so ill defined. This is
hampered by the fact that gaze behaviour between two people is highly dynamic; therefore, any explicit
characterization of gaze behaviour must quantify its spatio-temporal characteristics. For example, the
amount of time we are looked at can affect our interpretation of another person’s behaviour. Participants
receiving longer gazes interpret an observer as having a more favourable opinion of them, and longer
gazes are preferred to frequent and short glances [15], yet at the same time overlong gazes [16] or
overly short gazes can be discomforting [17–19]. The question therefore is what constitutes a comfortable
duration of mutual gaze along this ‘too short’/‘too long’ continuum?

In this study, we examine gaze interactions between a participant and an actor in the following two
complementary ways to provide the first quantification of gaze-based interaction durations. First, using
behavioural methods, we measure the amount of time an actor can look at a participant without it feeling
uncomfortable for the participant (henceforth called ‘preferred gaze duration’, PGD) and examine if
this depends on participant personality traits. Second, we relate the PGD to pupil dilation (an index of
physiological arousal), motivated by previous reports linking gaze interaction to autonomic responses
[20–25]. More specifically, direct opposed to averted gaze stimuli have been observed to elicit increased
levels of arousal, as evidenced by skin conductance [26,27] and heart rate measures [28], as well as
by increases in blood-oxygen-level dependent (BOLD) signal in the amygdala [29,30]. Similarly, EEG
measures of cortical arousal were observed to be modulated both by direct gaze and interpersonal
distance [22,24]. Pupil dilation, which represents a reliable index of noradrenergic activity [31–33] and
cortical arousal [34], has been directly linked to gaze behaviour by showing increased [3] and prolonged
[35] responses to direct gaze stimuli. Here, we explored in greater detail this relationship by linking
direct gaze duration preference, assessed on an individual basis, to autonomic activity measured through
pupillary response.

Visitors to the London Science Museum judged whether videos of an actor looking at them for
different amounts of time felt too long or too short with respect to what they deemed to be comfortable.
Behavioural and physiological measures were combined with basic demographics and personality
questionnaires to determine whether trait characteristics influenced gazing behaviour.

2. Methods and results
2.1. Experimental procedure

2.1.1. Participants

We recruited 498 (224 male and 274 female; 56 nationalities) visitors to the London Science Museum,
between the ages of 11 and 79 (mean age = 29.9 years; s.d. = 12.3 years; eight participants under 18 years),
who volunteered to take part in the study. Written consent was obtained prior to the experiment (given by
a guardian for participants under 18 years of age). Participants were informed that they could interrupt
the study at any time. The experiment was approved by the UCL Research ethics committee and by the
London Science Museum.

2.1.2. Experimental set-up

The study took place at the Live science Pod in the ‘Who am I?’ exhibition in the London Science
Museum. The experiment was divided into three sections, for a total duration of approximately 15 min.

Personality questionnaire. The Big Five 10-item inventory (BFI-10) [36] was administered on a dedicated
set of computers. Each personality trait (extroversion, conscientiousness, neuroticism, openness and
agreeableness) was assessed through two items, and item order was randomized across participants.

Gaze task. Participants sat at 57 cm from the monitor and head movements were restrained by a
chinrest. A protective opaque white screen encased the monitor and part of the participant’s head in
order to shield the participant from environmental distractions.
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Figure 1. (a) Gaze task participant/actor experiment set-up and trial breakdown. Video clips of an actor (randomly selected from a pool
of four female and four male actors; one actor per participant) are presented throughout 40 trials. On each clip, the actor directly gazes
at the participant for a variable amount of time (between 100 and 10 300 ms, in 300 ms increments, preceded and followed by a 500 ms
averted gaze directed at the bottom of the screen). Participants indicate at the end of the clip whether the actor’s direct gaze was ‘too
short’ or ‘too long’ with respect to what feels comfortable. (b) Psychometric fit and preferred gaze duration (PGD) of one participant’s
proportion of ‘too long’ responses as a function of the actor’s direct gaze duration (top right panel) and distribution of PGDs in whole
participant population.

Behavioural task. Stimuli consisted of video clips of eight different actors (four female, four male;
all Caucasian, 20–33 years age range). Video clips were edited so the eye region roughly occupied an
equivalent area on the screen and the bridge of the nose (nasion) of all actors was aligned with the screen
centre. Actor clips were recorded against a green background in diffuse lighting conditions. Prior to each
trial, the nasion position was cued by a black central fixation cross presented on a grey background to
ensure homogeneity in participants’ first fixation. The stimulus therefore provided a visual reference
aiding the binary classification task based on prior experience in real-life dyadic interactions. After the
participant’s response in each trial, a grey screen with the fixation point appeared for 1 s. In each clip, the
actor directly gazed at the participant for a variable amount of time (between 100 and 10 300 ms, in 300
ms increments, resulting in 35 possible clips) preceded and followed by a 500 ms averted gaze directed
at the bottom of the screen (figure 1a). Clip duration was selected based on randomly perturbed PGD
estimates yielded by two interleaved QUEST adaptive staircase routines [37]. On average, participants
were shown video clips lasting 3905 ± 1645 ms (which is equivalent to a 2905 ± 1645 ms exposure to
direct gaze, having subtracted the 500 + 500 ms of averted gaze in the beginning and end of each trial).
Each participant viewed clips of one randomly selected actor (40 clips in total), and indicated with a key
press whether the amount of time the actor looked at them felt ‘too short’ or ‘too long’ with respect to
what they feel would be comfortable. We provided some context to this by instructing the participant
to imagine engaging in a non-verbal interaction with a stranger as can occur on public transport (the
tube/metro). Clip duration was selected based on randomly perturbed PGD estimates yielded by two
interleaved QUEST adaptive staircase routines [37]. This methodological approach was chosen in order
to obtain reliable estimates of PGD with the smallest number of trials possible. A limited number of trials
were mandatory in order to minimize fatigue in naive participants and to achieve an optimal testing
turnover rate. Through initial piloting, we had preliminarily determined we could get reasonably good
psychometric fits of participant responses as a function of direct gaze duration with as few as 40 trials.

Eyetracking. Eyetracking data were collected on an EyeLink 1000 (250 Hz; see the electronic
supplementary material). The gaze task started once the eye signal could be reliably recorded and eye
data calibration was successful.

Actor rating task. At the end of the mutual gaze duration task, participants over 18 were asked to rate
on a 1–7 scale the attractiveness, threat, dominance and trustworthiness of the actor [38]. Item order was
randomized across the participants.
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2.2. Behavioural results
The randomly perturbed QUEST estimates ensured that each participant was presented stimulus
durations which were shorter, or longer, than his/her PGD in roughly equal numbers. The QUEST
estimates were binned (bin size varied across participants in order to ensure at 1 tested duration per
bin), and we calculated the proportion of ‘too long’/(‘too short’ + ‘too long’) responses per time bin. We
fit each participant’s responses with a cumulative Gaussian (figure 1b, upper right panel). The 50% point
of this function yielded an estimate of the participant’s PGD and the standard deviation of the underlying
Gaussian (s.d.) the participant’s sensitivity to differences in direct gaze duration. Only participants with
acceptable psychometric fits (lower and upper tails outside of the 0.25 and 0.75 bounds) were further
analysed (428 out of 498). We also performed a between subjects one-way ANOVA testing differences
in PGD and psychometric curve s.d. on the whole participant population and across participant/actor
gender groups (male watching male, MM; male watching female, MF; female watching male, FM; and
female watching female, FF). Below, only significant findings are reported (see electronic supplementary
material, table S1 for all correlations).

The mean duration of PGD was 3295 ± 706 ms (figure 1b), whereas the mean s.d. of the fitted
psychometric curves was 703 ms. A one-way ANOVA revealed no significant difference in PGD
across participant/actor gender groups (MM, MF, FM and FF; F3,424 = 1.45, p = 0.23, η2

p = 0.01), and no
significant difference in psychometric curve s.d. across gender groups (F3,424 = 0.074, p = 0.97, η2

p = 0.001).
We performed correlations between PGD, s.d., personality scores and face rating scores. These

correlations were run on the whole participant population, and run separately for all four
participant/actor gender combinations. PGDs significantly correlated with psychometric curve s.d.
(r = 0.43, p < 0.0001), as expected by the scalar property, where variability of time estimates scale
proportionally to the duration of a timed interval [39,40]. PGDs significantly correlated with participant
age only in male participants looking at female actresses (MF group; r = 0.23, p = 0.01): PGDs increased
linearly with the age of the participant (range: 16–68 years old). For face ratings, only ‘threat’ significantly
correlated with PGDs (r = −0.13, p = 0.005); higher actor threat scores were associated with lower periods
of PGD. Surprisingly, no personality trait/PGD correlations were observed, both in the whole participant
population and within the four actor/participant gender combinations. Psychometric curve s.d. values
negatively correlated with actor attractiveness ratings only in the MM group (r = −0.24, p = 0.01):
higher actor attractiveness scores were associated with smaller psychometric curve s.d. values. Finally,
psychometric curve s.d. values correlated with participant personality openness scores in the MF group
(r = 0.32, p = 0.003): male participants with higher openness scores had less steep curves (larger curve
s.d. values), perhaps signalling that they were more ‘relaxed’ in their gaze duration classifications.

2.3. Eyetracking results

2.3.1. Pupil dilation

We analysed the changes in pupil diameter which are known to reflect autonomic responses [3,35,41]
and noradrenergic activity, an important measure of cognitive processing [42,43]. Pupil diameter was
expressed on a trial-by-trial basis as a percentage change in diameter with respect to a baseline measure
that corresponded to the average pupil size during a 200 ms window preceding the onset of the actor
stimulus. Only 200 ms recordings with no loss of signal were accepted as valid baselines. In the instances
in which this requirement was not met (14% of trials in whole population), we expressed trial data as a
percentage change in diameter with respect to the value recorded in the first sample (33 ms frame) of the
trial. Environment luminance was constant throughout the experiment.

In order to test differences in pupil dilation as a function of PGD, we assigned the participants to
short and long PGD groups (S-PGD and L-PGD, respectively), drawing them from six progressively
smaller sampling areas (SAs) of the population PGD distribution (SAs, 1–6, from 0 to 1.5 standard
deviations from population mean PGD; figure 2a and electronic supplementary material, figure S1a).
This was done to evaluate whether progressively greater differences in PGD between S-PGD and L-PGD
groups (determined by sampling participants at progressively larger distances from the mean PGD),
would result in progressively larger differences in pupil signal. We adopted a Functional Data Analysis
approach [34,44,45] to test differences in pupil signal between S-PGD and L-PGD groups across time
at the six SAs described above. We computed for each participant the average percentage change in
pupil diameter across all trials and fit the resulting time series with a b-spline interpolation function
[34,44]. At each SA, we assigned participants (based on their PGD) to either the S-PGD or L-PGD group
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Figure 2. Pupil signal differences between participants favouring direct gaze durations above (longer than) or below (shorter than) the
population’s mean PGD (L-PGD and S-PGD groups, respectively). (a) Participants were sampled at six progressively larger distances from
population’smean PGD (six progressively smaller SA—SA 1–6; see figure insets in bottom right corners). Averaged pupil signals for L-PGD
and S-PGD groups across each sampling area. Note that error bars (s.e.) progressively increase as the number of participants decreases for
greater trial durations. PCA was run on the pupil signal within a 500 ms temporal region of interest (t-ROI; see electronic supplementary
material). (b) First three components of the PCA run on the first 500 ms of the L-PGD and S-PGD averaged signals. (c) PCA mean first
component scores between L-PGD and S-PGD groups. Significance thresholds: **p< 0.01; ***p< 0.001. (d) Pupil signal during a 200
mswindow prior to stimulus onset in L-PGD and S-PGD groups, revealing an anticipatory dissociation in pupil responses between groups.

and computed an average b-spline function per group (electronic supplementary material, figure S1a).
Two-sample t-tests were run on the resulting averaged b-spline functions, testing for differences in pupil
signal between S-PGD and L-PGD groups across time. At SA-1, we observed no significant difference
between S-PGD and L-PGD averaged b-spline functions at any time point. For SA-2 to SA-6, we observe
significant differences between S-PGD and L-PGD averaged b-spline functions between 0 and 500 ms
(SA-2), 0 and 900 ms (SA-3), 0 and 567 ms (SA-4), 0 and 933 ms (SA-5), 0 and 4400 ms (SA-6; electronic
supplementary material, figure S1b). Within all these instances, averaged pupil diameter was greater in
the L-PGD group than in the S-PGD group. These windows of significant difference seemed to roughly
increase in size across SA groupings. In order to further assess differences in L-PGD and S-PGD groups,
and relate these differences to other participant variables (age, PGD, face rating scores and personality
trait scores), we ran a covariance principal component analysis (PCA) on pupil signal within a fixed 500
ms temporal region of interest (t-ROI), which we defined based on the overlap of windows of significant
difference in pupil signal between L-PGD and S-PGD groups across the six SAs as described above
(electronic supplementary material, figure S1c). The PCA approach reduced the dimensions of pupillary
response by identifying a subset of factors along the time axis which account for unique variance in the
data [46,47].

We ran a PCA on the % increase in pupil diameter, with participants as observations and the t-ROI
time samples as variables. The PCA yielded a series of components, ranked in terms of the percentage
of variance in pupil data they explained (the first three components can be seen in the second row
of figure 2). We used the elbow criterion [47,48] to determine which components to retain in order
to provide a sufficiently accurate summary of the information in the pupil data. For each SA, we
ran the PCA on the L-PGD and S-PGD signals within the t-ROI, and found that the first extracted
component accounted for most of the variance in the pupil signal throughout all SAs (89 ± 0.64% of
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variance within t-ROI, figure 2b). Thus, we retained only the first component (PC1), which depicts
a roughly linear increase in pupil diameter as a function of time, because it explained most of the
information. We calculated each participant’s first component score (i.e. PC1 score), which represents
the coordinate occupied by each participant in PC1 space: the higher the participant’s score, the greater
the participant’s rate of pupil dilation. Finally, we tested difference between L-PGD participants and
S-PGD participants to see whether PGD had an influence on rate of pupil dilation. t-Tests (unequal
variance SA-1 to SA-4, equal variance SA-5, SA-6) run on the first component scores between the
L-PGD and S-PGD groups revealed significantly higher first component scores in the L-PGD group
for all, but the first SA (SA-1: t392 = 1.77, p = 0.08, d = 0.17; SA-2: t297 = 3.01, p = 0.002, d = 0.35; SA-3:
t206 = 3.81, p = 0.0002, d = 0.52; SA-4: t132 = 3.31, p = 0.001, d = 0.57; SA-5: t70 = 3.95, p = 0.0002, d = 0.94;
SA-6: t38 = 2.89, p = 0.006, d = 1.08; figure 2c). A Kolmogorov goodness-of-fit test showed that L-PGD
and S-PGD scores across all SAs were normally distributed. Results were comparable, albeit weaker,
for averaged pupil signals obtained when we examined fixations occurring only within the actor’s eye
regions (see the electronic supplementary material).

While the difference between the L-PGD and S-PGD averaged functions notably increased as a
function of SA (figure 2c and figure 3b), the intercepts of these functions appeared to occur at different
positions (y = 0% increase in pupil diameter), suggesting systematic variations in pupil signals prior
to the stimulus onset (figure 2a). In order to examine if the differences between the L-PGD and
S-PGD functions were due to differences in intercept values, we reran the PCA analysis after vertically
repositioning the averaged pupil functions, so their intercepts occurred at y = 0. t-Tests run on the first
component scores between the L-PGD and S-PGD groups revealed weaker but still significantly different
first component scores between L-PGD/S-PGD groups for all but the first SA (SA-1: t392 = 1.04, p = 0.29,
d = 0.11; SA-2: t297 = 2.06, p = 0.04, d = 0.25; SA-3: t206 = 3.2, p = 0.001, d = 0.46; SA-4: t132 = 2.48, p = 0.01,
d = 0.43; SA-5: t70 = 3.02, p = 0.003, d = 0.72; SA-6: t38 = 2.66, p = 0.01, d = 1.02). The L-PGD groups
still showed higher first component scores than the S-PGD groups. Therefore, even after eliminating
differences in the intercepts, L-PGD and S-PGD pupil signals still differed owing to different rates of
pupil dilation following the presentation of the stimulus. To gain further insights into the cause of
these differences in intercept values, we applied the PCA approach to percentage changes in pupil
diameter within the 200 ms period preceding the onset of the actor face (termed ‘anticipatory window’:
figure 2d). In this case, pupil diameter was expressed as a percentage increase from an average value
recorded between 400 and 200 ms prior to the stimulus onset. Consistent with the results in the t-
ROI window following the stimulus onset, we found significantly higher pupil first component scores
in the L-PGD group for all SAs in the 200 ms period preceding the stimulus onset (SA-1: t392 = 2.41,
p = 0.01, d = 0.25; SA-2: t297 = 2.83, p = 0.005, d = 0.33; SA-3: t206 = 2.57, p = 0.01, d = 0.36; SA-4: t132 = 2.34,
p = 0.02, d = 0.57; SA-5: t70 = 2.38, p = 0.02, d = 0.57; SA-6: t38 = 1.92, p = 0.06, d = 0.70), showing an
anticipatory dissociation in pupil response between the L-PGD and S-PGD groups (figure 3a). We further
explored pupil responses in a 600 ms period preceding the stimulus onset (electronic supplementary
material, figure S2), and found that the dissociation between L-PGD and S-PGD groups emerges as an
anticipatory response to the upcoming trial and is not a result of exposure to the previous stimulus
carrying forward.

Pupil signal first component scores (PC1 scores), which summarize for each participant the rate in
pupil diameter increase (occurring in the 200 ms anticipatory window preceding the stimulus onset,
and in the 500 ms t-ROI window following stimulus onset), were correlated with participant age,
PGD, the four actor face rating scores (dominance, threat, attractiveness, trustworthiness), and the
five personality trait scores (extraversion, conscientiousness, neuroticism, openness, agreeableness; see
electronic supplementary material, table S2). We observed only significant PGD/PC1 score correlations,
for both the 200 ms anticipatory window and the 500 ms t-ROI window (anticipatory window:
r = 0.16, p = 0.001; trial t-ROI window: r = 0.18, p = 3.21 × 10−4; Bonferroni-corrected critical p = 0.0045;
figure 3c,d). These results showed that PC1 scores increased linearly with preferred period of mutual
gaze. Pupil signal PCA first component scores did not correlate with participant age, actor face ratings
or participant personality scores (see electronic supplementary material, table S2). We also tested a
pupil signal first component score/coefficient of variation correlation (i.e. s.d. scaled by PGD, providing
an estimate of error that accounts for scalar variability), which yielded no significant result (r = 0.04,
p = 0.37). We did, however, find a significantly positive correlation between pupil signal and participant
psychometric curve variance scaled by PGD (r = 0.15, p = 0.002), which suggests a nonlinear relationship
between response variability and rate of pupil size increase. This positive correlation would imply
that participants with a faster increase in pupil diameter have a less strict criterion (greater error) in
determining if a period of direct gaze has exceeded or fallen short of a ‘comfortable’ duration.
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200 ms anticipatory window preceding the actor face onset (a) and within the early 500 ms t-ROI window following the actor face onset
(b). Mean first component score/PGD correlations related to the pupil signal in the anticipatory (c) and early t-ROI windows (d).

2.3.2. Fixations: duration, proportion and locations

Given the explicit instruction to evaluate the actor’s period of direct gaze, we found that the majority
of fixations occurred within the actor’s eye region (electronic supplementary material, figure S3a). We
thus proceeded to study fixation behaviour within three regions of interest (ROIs) defined as (i) left eye,
(ii) right eye, and (iii) background (fixations outside eye ROIs). We calculated the duration of fixations
(obtained from the data parsing; figure 3b,c) and the proportion of fixations (i.e. number of samples in
ROI/total number of samples in the trial—accounting for variable trial duration; figure 3d) falling within
each ROI. We tested differences in fixation behaviour as a function of PGD by correlating PGDs with
fixation duration and proportion of fixations across the three ROIs, and found that fixation duration and
proportion of fixations are independent of participant PGD.

3. Discussion
In this study, we provide the very first large-scale quantification of preferred direct gaze duration and
relate this measure to eye tracking, physiological, demographic and personality indices. We find that, on
average, participants have a PGD of 3.3 s, consistent with earlier reports obtained in dyadic interactions,
i.e. 2.95 [49] and 4.66 s [50]. We also find that changes in pupil size are indicative of a participant’s
experience of preferred duration of eye contact. Pupil dilation increased at a faster rate in participants
who preferred longer periods of direct gaze.

In humans, eye contact serves as a non-verbal channel for communication and social interaction
[51–53], and is modulated by a multitude of individual and situational factors [54]. Here, we explored
whether preferred duration of direct gaze was modulated by gender, age, face rating and participant
personality variables. We did not observe any significant differences in the evaluation of the actor’s
direct gaze duration across our participant/actor gender combinations, despite gender being suggested
to play a role in gaze behaviour [49,55–57]. This might be due to the unidirectional nature of the
participant/actor set-up we adopted, which does not fully capture the communicative aspects of a dyadic
interaction, or the lack of verbal exchange [58]. We also found no significant variation in PGD across
ages within our whole participant population, suggesting that in adults and adolescents (11–17 years),
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gaze preference is relatively constant. We did, however, find a subtle yet significant interaction between
participant age and participant/actor genders: preferred mutual gaze durations increased linearly with
age in male participants observing female actresses.

We also explored the impact of threat, attractiveness, dominance and trustworthiness of actor face
ratings on PGDs, because these variables can affect engagement or avoidance behaviours [59,60]. We
adopted a four-dimensional face classification model that evaluates face features along social dimensions
[38], because people tend to spontaneously evaluate personality traits from facial appearance [61]. Direct
gaze has been suggested to increase as a function of positive attraction: the number and duration of
eye contact instances tend to be larger when observing attractive peers of the opposite sex [62,63]. Gaze
also functions to signal threat and dominance during conversations, during defence of personal space
and in confrontational scenarios [64,65]. Prolonged gaze in such circumstances increases the likelihood
of avoidance behaviours. We find that the only face rating score to affect PGDs in our study was actor
threat scores, where higher threat scores were associated with shorter periods of PGD. A possible reason
for the lack of influence from the other traits is that they were not scored highly for any of the actors.

There is evidence, albeit some of it conflicting, of a relationship between the amount of mutual gaze
and personality traits [66]. A recent study employing a dual eyetracking set-up showed that mutual
gaze behaviour correlates with the agreeableness score shared by both parties engaged in mutual gaze
[67]. Several studies showed a positive link between gaze and extraversion [19,65,68]; however, others
have failed to find this [69–71]. It is possible that capturing any relationship between personality and
gaze behaviour is highly dependent on contextual and personal variables that are associated with the
experimental set-up [65]. In our dataset, we found no personality/PGD correlation.

Given the explicit instruction to evaluate the actor’s period of direct gaze, we found, unsurprisingly,
that the majority of fixations occupied the actor’s eye regions. We did not detect significant differences
in number (proportion) and duration of fixations as a function of PGD within or outside the actor’s
eye regions. PGD was, however, associated with differences in pupillary response. Emotionally charged
events activate parasympathetic pathways which, in turn, engender increases in pupil diameter [72].
Participants that preferred longer periods of direct gaze exhibited greater increases in pupil signal.
This dissociation was already evident prior to the stimulus onset, suggesting an anticipatory pupillary
response (i.e. trial start was triggered by participant response), and persisted throughout the initial
phases of the trial. The degree of pupil dilation evoked by direct eye contact is known to robustly reflect
autonomic and noradrenergic activity [3,35,41]. Previous studies have shown that gaze behaviours are
typically accompanied by autonomic responses, as assessed through heart rate, galvanic skin response
and EEG measures [23,25,65,73]. Specifically, direct gaze has been shown to increase sympathetic activity,
both in live dyadic interactions [26,27,74] as well as in participant—static actor image set-ups [28].
Moreover, several studies have documented a positive correlation between direct gaze duration and
the amplitude of autonomic responses [21–25]. Here, we further explored this relationship by linking
gaze duration preference, assessed on an individual basis, to autonomic activity. We found that the rate
of pupil dilation provides a physiological correlate of the subjective preference of direct gaze duration.
The PC1 score/PGD correlation implies that one could in theory predict a participant’s PGD based solely
on the rate of pupil dilation in response to direct gaze stimuli, in the absence of any verbal report.

However, the PGD/pupil dilation correlation might be more generically related to an effect of task
difficulty on pupil dilation, which has been frequently documented in the pupillometry literature
[75,76]. Stimulus durations were selected with a QUEST staircase: as trials progress and evidence is
accumulated through participant responses, the tested durations converge towards the participant’s
PGD. This implies that participants with longer PGDs were, on average, presented longer direct gaze
stimuli than participants with shorter PGDs. Because of the scalar property, where variability of time
estimates scale proportionally to the duration of a timed interval [39,40], this suggests that stimuli near
longer PGDs are harder to classify than stimuli near shorter PGDs. Therefore, we have the possibility that
the faster rate of pupil dilation in the L-PGD group is due to greater task demands relative to the S-PGD
group. Two facts, however, work against this possibility. The first is that the difference in pupil dilation
between L-PGD and S-PGD groups was observed in the very first 500 ms of the stimulus, whereas effects
of task difficulty should be expected to emerge during the decisional phase that follows the encoding
of the stimulus [77]. The second is that the L-PGD/S-PGD pupil dissociation anticipates the onset of
the stimulus (i.e. prior to the actual start of the timing task). Differences in the stimuli are unlikely to
account for the effect, as it would imply that the stimuli, or the testing conditions, systematically differed
between the L-PGD and S-PGD groups. The eight actors presented (which might account for differences
in the stimuli) were equally distributed across the L-PGD and S-PGD groups. Differences in participant
anxiety levels (in response to the stimulus duration) are also an unlikely cause of the effect. Because of
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the staircase approach, tested durations converged towards each participant’s PGD, which implies that
all participants were on average presented equally pleasant/unpleasant stimulus durations. Finally, we
also controlled for effects induced by time of day by observing no effect on either PGD or PC1 scores.

The modulatory effect of PGD on pupillary responses could depend on different amplitudes in
the emotional response elicited by direct gaze between the L-PGD and S-PGD groups. In order to
account for the positive correlation between PGD and rate of pupil increase, we could assume that
the emotional response evoked by direct gaze is stronger in the L-PGD than in the S-PGD group. This
explanation, however, seems at odds with the expectation that direct gaze would probably represent a
more discomforting experience for participants with shorter PGDs, and all things being equal, events
with negative emotional valences tend to elicit stronger autonomic and behavioural responses [78].
An alternative explanation is offered by recent models detailing the sequential processing of direct eye
contact information [53]. Direct eye contact elicits activity in a network of brain areas involved in human
social interaction and communication, comprising the fusiform gyrus, anterior and posterior parts of
the right superior temporal sulcus, the medial prefrontal and orbitofrontal cortex and the amygdala,
i.e. ‘the social brain’ [79–81]. It has been proposed that direct eye contact information is relayed to
this cortical network via a ‘fast-track’ subcortical face processing stage, thought to include the superior
colliculus, pulvinar and amygdala [53,82–84]. This subcortical stage provides a coarse, fast (150–170 ms
latency), context independent processing of direct eye contact information [10]. We could speculate that
the dissociation in pupillary response we report as a function of PGD lies in the operation of this ‘fast-
track’ stage. This could be reflected in the very early dissociations we observed in pupillary response,
compatible with the response latency of this subcortical system, and by the fact that the areas that
comprise this fast-track stage are all known to be associated with the noradrenergic system [85–87], of
which pupil dilation is a known proxy. This account would suggest that activity within this early eye
contact processing stage is enhanced in participants who favour longer periods of direct gaze and who
presumably feel more comfortable in engaging in a communicative link. Future studies will be required
to specifically uncover how gaze duration preference affects activity in face processing brain circuits.
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