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Abstract To commemorate the auspicious occasion of the

30th anniversary of IPC, leading pioneers in the field of

cardioprotection gathered in Barcelona in May 2016 to

review and discuss the history of IPC, its evolution to IPost

and RIC, myocardial reperfusion injury as a therapeutic

target, and future targets and strategies for cardioprotec-

tion. This article provides an overview of the major topics

discussed at this special meeting and underscores the huge

importance and impact, the discovery of IPC has made in

the field of cardiovascular research.
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16 IIS-Fundación Jiménez Dı́az Hospital, Madrid, Spain

17 2nd University Department of Cardiology, National and

Kapodistrian University of Athens, Athens, Greece

18 Duke University, Durham, NC, USA

19 Institute of Cardiovascular Sciences, University of

Birmingham, Birmingham, UK

20 Oxford Heart Centre, The John Radcliffe Hospital, Oxford

University Hospitals, Oxford, UK

123

Basic Res Cardiol (2016) 111:70

DOI 10.1007/s00395-016-0588-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s00395-016-0588-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00395-016-0588-8&amp;domain=pdf


Introduction

The year 2016 marks the 30th anniversary since Murry,

Jennings and Reimer first discovered the phenomenon of

ischaemic preconditioning (IPC) [180]. The seminal dis-

covery in 1986, that brief episodes of ischaemia and

reperfusion could dramatically reduce myocardial infarct

(MI) size, gave rise to the field of cardioprotection, and has

resulted in over 10,000 publications in the research litera-

ture. Over the last 30 years enormous efforts have been

made to understand the mechanisms underlying IPC and

have provided huge insights into the mechanisms of car-

diomyocyte death during acute ischaemia/reperfusion

injury (IRI), and the complex signalling pathways under-

lying cytoprotection within the cardiomyocyte and beyond.

In addition, the last 30 years have witnessed enormous

efforts to translate this endogenous cardioprotective strat-

egy into the clinical setting for patient benefit. In this

regard, the evolution of IPC to an intervention which could

be applied at the time of reperfusion [ischaemic postcon-

ditioning (IPost)] [276] and to a remote organ or tissue

[remote ischaemic conditioning (RIC)] [200] has facilitated

the translation of IPC into the clinical setting.

To commemorate the auspicious occasion of the 30th

anniversary of IPC, leading pioneers in the field of car-

dioprotection gathered in Barcelona in May 2016 to review

and discuss the history of IPC (Fig. 1), its evolution to

IPost and RIC, myocardial reperfusion injury as a thera-

peutic target, and future targets and strategies for cardio-

protection. This article provides an overview of the major

topics discussed at this special meeting and underscores the

huge importance and impact, the discovery of IPC has

made in the field of cardiovascular research.

Ischaemic preconditioning

In IPC, several minutes of acute coronary occlusion followed

by reperfusion delay the onset of MI from a subsequent

period of prolonged lethal ischaemia and reperfusion. The

description of IPC 30 years ago in 1986 by Murry et al. [180]

was a landmark discovery. It proved once and for all that the

final size of a MI was not only a function of the area-at-risk

(AAR), ischaemic time and collateral flow, but could indeed

be reduced, as had been originally proposed by Braunwald

and colleagues years before [165]. The Jennings laboratory

was pursuing the observation that a brief ischaemic episode

slowed the rate of ATP consumption when the heart was

subjected to subsequent episodes of ischaemia. Since virtu-

ally no ATP is present in dead cardiomyocytes, they

hypothesised that delaying ATP depletion would attenuate

the development of cardiomyocyte death [181].

Considering the huge number of papers eventually

published on IPC since 1986, it is amazing that it took

4 years before the first confirmatory paper by another

laboratory appeared on the subject [149]. However, after

that virtually everyone who tried to replicate IPC was able

to observe protection that lasted for several hours [258]. In

1991, Liu et al. [153] showed that the preconditioned state

resulted from protective signal transduction. Infusing ade-

nosine or an adenosine A1 receptor-selective agonist into

the coronary arteries for 5 min prior to occluding a coro-

nary branch put the heart into a protected state identical to

IPC. Conversely, an adenosine receptor antagonist com-

pletely blocked the IPC protection but had no effect on a

non-IPC heart. A1 receptors are Gi-coupled and act to slow

the heart rate as opposed to the Gs-coupled adenosine A2

receptors which act to dilate the coronary arteries. In fact it
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was shown that many of the Gi-coupled receptors in the

heart can mimic IPC [40]. A brief coronary occlusion has

been found to release ligands for only four of these

receptors: adenosine, bradykinin, opioid, and sphingosine.

These four receptors act in an additive fashion. Blocking a

single receptor subtype only raises the ischaemic threshold

for protection rather than abolishing the IPC response.

Subsequent studies quickly showed that protein kinase C

[155] and ATP-sensitive potassium channels (KATP) [5],

which later turned out to be in the mitochondria [154] and

could be stimulated by diazoxide (pharmacological pre-

conditioning), were also in the IPC signalling pathway.

The overall signalling pathway is still not completely

understood but extensive research in many laboratories has

revealed much of it (Fig. 2) [29, 74, 101, 273]. In 2002,

Yellon’s group [86, 94, 218] proposed the Reperfusion

Injury Salvage Kinase or RISK Pathway to describe a group

of pro-survival kinases that must be activated at the time of

reperfusion for IPC to protect against MI. Since protection

could be aborted by blocking the RISK pathway at reper-

fusion, IPC must, therefore, protect against a reperfusion

injury. They also went on to demonstrate the importance of

this pathway in all forms of the conditioning process, i.e.

pre-, post-, remote and pharmacological conditioning [90]. It

now appears that much of the cell death in the heart is due to

the formation of permeability transition pores (PTPs) in the

mitochondrial membranes in the first minutes of reperfusion,

and IPC through the RISK signalling protects by suppressing

these PTPs [97, 103]. Lecour et al. [146] subsequently

identified the Salvage Activating Factor Enhancement

(SAFE) pathway which is activated in parallel to the RISK

pathway and appears to play a more important role in larger

mammals [78, 108, 227, 229].

The key to understanding IPC is to appreciate why the

brief period of reperfusion after the preconditioning

ischaemia is so important. The Gi receptor activation leads

to opening of mitochondrial KATP channels during

ischaemia and potassium entry into the mitochondria.

When oxygen is reintroduced during the reperfusion phase

of the IPC protocol, elevated mitochondrial potassium

stimulates the mitochondria to produce reactive oxygen

species (ROS). These ROS cause redox signalling which

ultimately results in PKC activation and completion of the

IPC signalling pathway [52]. In a non-conditioned heart

this pathway is blocked at the redox signalling step during

the prolonged ischaemic period as potassium has entered

the mitochondria but there is no oxygen available. If the

heart is reperfused after a prolonged ischaemic period PTPs

will always open before redox signalling can activate the

downstream pathway to inhibit them [37]. A large series of

recent studies have demonstrated that connexin 43, the

protein forming gap junction channels between cardiomy-

ocytes, is also located at the inner mitochondrial membrane

[15], where it can form hemi-channels that allow the pas-

sage of potassium [175], and that its absence at that loca-

tion prevents ROS generation during the IPC stimulus [98],

and abolishes cardioprotection [205]. There is recent evi-

dence that IPC can protect mitochondria against respiratory

inhibition induced by prolonged IRI independently of

cytosolic signalling [215].

Although IPC is clearly protective, the need for its

application before ischaemia makes it impractical for

Fig. 1 Faculty photo at the 30 year anniversary celebration of IPC in

Barcelona May 2016: ‘‘Ischaemic conditioning and targeting reper-

fusion injury: a 30 year voyage of discovery’’. Back row, left to right

Michael Rahbek Schmidt, Peter Ferdinandy, Hans Erik Bøtker,

Rajesh Kharbanda, Michael Marber, Pasquale Pagliaro, Thomas

Engstrom, Karin Przyklenk, Tetsuji Miura, Hector A. Carbrera-

Fuentes, Sandine Lecour, Derek Hausenloy, Derek Yellon, Borja

Ibanez, Rainer Schulz, Gerd Heusch, Hans Michael Piper, Efstathios

Iliodromitis, Miguel A Perez-Pinzon, Gemma Vilahur, Marisol Ruiz-

Meana. Front row, left to right David Garcia-Dorado, Javier Inserte,

Jose Barrabes, Robert Jennings, Jakob Vinten-Johansen, Andrew

Redington, Michel Ovize, Fabio Di Lisa, James Downey
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treating acute myocardial infarction (AMI). However, if the

protective pathway can be rapidly activated by a drug

administered at reperfusion (known as ‘‘pharmacological

postconditioning’’) then this can ‘‘win the race’’ and protect

the heart against reperfusion injury. Because much of con-

ditioning’s signal transduction pathway is now known [101],

it has been possible to identify agents effective at inducing

pharmacological postconditioning. Figure 2 shows a tenta-

tive map of the signalling pathways underlying IPC, and

some known interventions that, at least in animal models,

reportedly put the heart into a conditioned state.

Second window of protection

The second window of protection (SWOP) describes the

increased resistance to myocardial injury that re-appears

12–24 h after the short durations of ischaemia/reperfusion

that trigger classic or early preconditioning. This phe-

nomenon was first described in 1993 by independent

research groups based in London [164] and Osaka [140].

Yellon’s group in London had been interested in the

cardiac protection that followed whole body heart stress—

this was known to be associated with the induction of stress

proteins and catalase within the myocardium [44]. However,

whole body heat stress was associated with a multitude of

changes both within and outside the heart. Using an exper-

imental method that involved a support animal providing

oxygenated blood to perfuse a donor animal’s isolated heart,

evidence had been obtained that whilst whole body heat

stress protected the heart, it also triggered extra-cardiac

adaptations that aggravated myocardial injury [252]. This

observation provided the impetus to find a way of spatially

restricting the stress response to the heart, thereby avoiding

the deleterious systemic adaptations associated with whole

body heart stress. In 1991, Knowlton had observed cardiac

stress protein induction beginning 6–8 h after short episodes

of myocardial ischaemia [136]. Based on this observation, it

was reasoned that sublethal myocardial ischaemia would

induce stress proteins without causing the detrimental sys-

temic response associated with whole body heat stress. It

was on this basis that Marber et al. designed and performed

the experiments that laid the foundation for the SWOP

[164].

Following the original observations by Marber [164]

and Kuzuya [139], there followed a number of basic sci-

ence studies that indicated the SWOP had a duration of

72–96 h, and whilst the magnitude of protection may be

less robust than that of the first window of protection, there

were likely to be important clinical correlates [272].

Fig. 2 A proposed map of some of the major signalling pathways

involved in ischaemic pre- and postconditioning. The pink coloured

boxes indicate pharmacological interventions that have been reported

to reduce MI size when administered just prior to reperfusion. They

are positioned near their proposed site of action. Figure modified from

that appearing in [38]
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Studies in patients have broadly fallen into two groups;

observational studies, where symptoms and circumstance

are related to outcome after spontaneous plaque rupture

(type I MI) and interventional studies using controlled,

iatrogenic myocardial ischaemia. In the observational

studies, it was found that patients who experience repeated

episodes of pre-infarction angina more than 24 h before the

index event, may develop smaller final MI size than those

without pre-infarction angina [102, 184]. Interpretation of

these studies is complicated by the variation of each

ischaemic episode in terms of its duration, intensity and

exact timing before spontaneous coronary artery occlusion.

Furthermore, most patients have co-morbidities and med-

ications that have been shown to both facilitate and prevent

the manifestation of protection. These uncontrollable

variables may explain the discrepancies that appear in the

literature regarding the benefit of pre-infarction angina.

Consequently, the benefit of the SWOP is more easily

demonstrated in interventional studies that use exercise

treadmill tests, isotope scintigraphy or coronary angio-

plasty to cause and document myocardial ischaemia

[14, 121, 143, 190].

In conclusion, the SWOP is clinically apparent under

pre-specified controlled conditions but is impossible to

identify with certainty in observational retrospective stud-

ies relevant to everyday clinical practice. Furthermore, the

systematic changes in primary percutaneous coronary

intervention (PPCI) services ensure early intervention with

the surety of reperfusion further secured by advances in

antiplatelet drugs and interventional devices [262]. On this

background it is very difficult to demonstrate sufficient

room for novel cardiac protection [28, 76, 99, 110, 262].

Furthermore, any benefit of SWOP may be subsumed by

ischaemic pre- and/or post-conditioning. Nonetheless, one

aspect of SWOP which may yet prove important is its

potential to reveal novel protective proteins that may form

the basis of future therapies.

Remote ischaemic conditioning

Remote ischaemic conditioning is the intriguing phe-

nomenon, first reported by Przyklenk, Whittaker and col-

leagues [200, 260], that brief periods of ischaemia applied

in a distant tissue can render the heart resistant to IRI and

reduce MI size. Although first viewed as a specious finding

[201], the concept of RIC-induced cardioprotection has,

during the past two decades, been corroborated in multiple,

diverse models (reviewed in [29, 93, 104, 193, 226]). A

recent meta-analysis of experimental studies in RIC found

that RIPC reduced MI size as a percentage of AAR by

22.8 %, when compared to untreated controls, and RIPerC/

RIPostC reduced MI size by 22.2 % [26]. Moreover, two

priorities have emerged: (1) identification of the mecha-

nisms responsible for the infarct-sparing effect of RIC; and

(2) translation of RIC to patient cohorts.

The molecular mechanisms contributing to RIC are,

without question, complex and remain incompletely

resolved [30–32, 93, 101, 104, 193, 226]. In brief, the

current hypothesis is that RIC induces a neuro-humoral

response which, in turn, induces a cascade of downstream

effects. Evidence for a neural component of RIC comes

from early observations that pretreatment of animals with

the ganglion blocker hexamethonium abolishes the car-

dioprotective effect of transient mesenteric ischaemia [68],

and subsequent studies showing that transection of the

ipsilateral femoral nerve [152, 235], or bilateral cervical

vagotomy [50], abolishes cardioprotection by RIC induced

by limb ischaemia. Conversely, direct stimulation of the

femoral nerve [204] or sensory nerves [169] within the

limb have been shown to induce cardioprotection. How-

ever, there are also controversial data on neuronal

involvement in RIC, as hexamethonium [257] or nerve

transection [203] did not abrogate cardioprotection. The

consequence of any neural stimulus, whether local to the

limb [221] or of the cardiac ganglia [194], is the release of

dialysable cardioprotective substances into the blood [129].

These include the chemokine SDF-1a [47], Ribonuclease-1

[30], leukotrienes [224], and microRNA 144 [150]. The

exact mechanism by which any of these putative effectors

are released, and their relative importance remains to be

fully understood. Yet, the ultimate effect at the car-

diomyocyte level is to induce a protective kinase response

[151, 227], and modification of PTP opening [247], similar

to that observed with local preconditioning and postcon-

ditioning. Unlike local preconditioning and postcondition-

ing, RIC appears to have additional pleiotropic effects that

modify pathways involved in the acute and chronic

responses to IRI and may contribute to its benefits,

including improved vascular endothelial function [158],

decreased platelet aggregation [10, 191], and a significant

anti-inflammatory effect manifest early by decreased neu-

trophil adhesion [220], and later by reduced inflammatory

cell infiltration, reduced local inflammation [30] and

reduced remodelling in the weeks after experimental MI

[256].

In the clinical setting, remote ischaemic preconditioning

(RIPC) has been administered prior to IRI as three or four

cycles of 5 min ischaemia followed by 5 min reperfusion

of the upper, or less frequently, lower limb in cardiac and

vascular surgery, and elective and emergency angioplasty.

The majority of studies in coronary artery bypass graft

(CABG) surgery patients have shown reduction of post-

operative cardiac biomarker release [2, 33, 35, 84,

138, 239, 240, 250] while others did not

[69, 131, 159, 167, 202, 275]. One randomized study of

Basic Res Cardiol (2016) 111:70 Page 5 of 24 70
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329 CABG patients demonstrated simultaneous reduction

of troponin I release and reduction of all-cause mortality up

to 4 years following the operation [91]. In contrast, a

randomised study of 1280 patients undergoing off-pump

coronary artery bypass graft surgery showed no effect of

RIPC before and after the surgery on a comprehensive

composite endpoint [113]. Two more recent studies, the

ERRICA and the RIPHeart studies, also failed to demon-

strate any beneficial effect on major adverse cardiac and

cerebral events (MACCE) after 12 months and event free

survival after 3 months, respectively [77, 171]. Studies that

failed to demonstrate a beneficial effect of RIPC used

propofol as an anaesthetic regimen. Similar experiences

have been obtained in major non-cardiac surgery [3, 254].

A specific effect of propofol that interacts with neuronal

transfer of the protective RIPC signal may interfere with

the inherent cardioprotective effect of propofol and further

protection by RC [137, 138].

Invasive coronary procedures circumvent any influence

from anaesthetics. In this setting, RIPC attenuated the

release of ischaemic markers in the majority of studies

including patients undergoing elective percutaneous coro-

nary intervention (PCI) [114, 162, 198, 265, 277], and

translated into a prognostic benefit in terms of MACCE at

follow-up period of up to 6 years [49]. Whilst RIPC can be

used in predictable ischaemia, another temporal variant is

necessary in unpredictable ischaemia such as ST-segment

elevation myocardial infarction (STEMI). Remote

ischaemic perconditioning (RIPerC) [217], in which the

RIC intervention is applied during evolving MI prior to

PPCI, has consistently yielded cardioprotection in proof-

of-concept studies using a variety of outcome measures

including myocardial salvage, ST-segment resolution and

biomarker release (Table 1) [25, 42, 54, 179, 199,

205, 259, 271]. The reduction of MI size translated into a

reduction of MACCE [230] and was cost-effective [231]

over a 4-year period following the index infarct. This study

included 333 patients and was not powered for clinical

outcomes. The ongoing CONDI-2/ERIC-PPCI study

including 4300 patients will determine the clinical benefit

of RIPerC as an adjunct to PPCI in patients with STEMI

[79].

Ischaemic postconditioning

Emergence of the concept of ischaemic postconditioning

(IPost) was based on four points: (a) myocardial reperfu-

sion injury was not a laboratory curiosity but an patho-

physiological entity that exacerbated tissue injury (whether

de novo or extending pre-existing injury) after onset of

reflow; (b) lethal myocardial reperfusion injury was initi-

ated quickly after the onset of reperfusion; (c) tissue des-

tined to die in the path of the reperfusion injury ‘‘wave

front’’ after onset of reflow could be salvaged; (d) reper-

fusion injury pathology could be avoided or prevented by

Table 1 Proof-of-concept studies of remote ischaemic conditioning in STEMI

Study No of patients

(control/RIC)

RIC regimen Endpoint Outcome

Bøtker et al.

[25]

69/73 Upper limb

4 cycles I/R (5/5 min)

Salvage index

(SPECT)

20 % increase in salvage index

Munk et al.

[179]

110/108 Upper limb

4 cycles I/R (5/5 min)

LVEF at 30 days 5 % increase in LVEF in anterior infarcts

Rentoukas

et al. [205]

30/33 Upper limb

3 cycles I/R (5/5 min)

ST-segment

resolution

20 % increase in proportion of patients achieving

full ST-segment resolution

Crimi et al.

[42]

50/50 Lower limb

3 cycles I/R (5/5 min)

CK-MB (AUC 72 h

after PCI)

20 % reduction of CK-MB release

Prunier et al.

[199]

17/18 Upper limb

4 cycles I/R (5/5 min)

CK-MB (AUC 72 h

after PCI)

31 % reduction of CK-MB release

Yellon et al.

[271]

260/260 Upper limb

4 cycles I/R (5/5 min)

TnT (AUC 24 h

after PCI)

17 % reduction of TnT release

White et al.

[259]

40/43 Upper limb

4 cycles I/R (5/5 min)

Cardiac MRI 27 % reduction of MI size

Eitel et al. [54] 232/232/232 Upper limb

3 cycles I/R (5/5 min) ?

local IPost)

Salvage index

(cardiac MRI)

23 % increase in salvage index

AUC area under curve, CK-MB creatine kinase-myocardial band, LVEF left ventricular ejection fraction, MRI magnetic resonance imaging, PCI

percutaneous coronary intervention, SPECT single photon emission computerised tomography, Tn troponin
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altering how the ischaemic tissue was reperfused. The latter

point was expanded to include modifying the conditions

and composition of the reperfusate, including the inclusion

of drugs during early reperfusion. Despite considerable

controversy over the very existence and clinical importance

of myocardial reperfusion injury, there is now compelling

evidence that reperfusion contributes to the extent of

transient as well as permanent (lethal) post-ischaemic

injury to the myocardium [27, 65, 73, 251, 274], and that

this injury was initiated within moments after onset of

reflow [246]. Early reports of the protective effects of

gradual or gentle reperfusion (modified conditions of

reperfusion) in the early moments of reperfusion

[22, 115, 216] did not capture the attention of the scientific

or clinical communities. Although initial trials on IPost

were performed in 1992, results were negative due to

(a) excessively long durations of the reperfusion-re-occlu-

sion cycles (5 min emulating preconditioning cycles), and

(b) a single cycle rather than multiple cycles; studies

resumed eight years later using shorter cycle durations in a

large animal model which successfully reduced MI size,

coronary artery endothelial dysfunction, oedema in the

AAR, and apoptosis [276].

Studies confirming and extending the original resultswere

published quickly by independent laboratories [63, 245, 270]

as well as by Vinten-Johansen’s laboratory [71, 135]. Kin

et al. [135] showed that the cardioprotective effects of IPost

were not observed if the manoeuver was delayed by 60 s,

confirming that a IPost window opened in the first few

minutes of reperfusion which was critical to protection. This

IPost window was confirmed by Yang et al. [270] and

implied that reperfusion injury interventions should be

implemented immediately at or before the onset of reperfu-

sion. There is scant evidence that delayed postconditioning is

effective in reducing post-ischaemic injury [209].

IPost has been shown to reduce abnormal alterations in a

multitude of end points associated with post-ischaemic

injury. These include reduction of (1) MI size and possibly

the no-reflow area, (2) apoptosis, (3) interstitial and intra-

cellular oedema, (4) early post-ischaemic arrhythmias, (5)

the pro-inflammatory response to reperfusion, (6) explosive

(injurious) ROS generation by multiple cell types, and (7)

the incidence of heart failure. Whether IPost attenuates

transient (stunning) or permanent contractile dysfunction

globally or regionally is controversial. In addition, the

cardioprotection of IPost may be lost in the presence of

comorbidities (diabetes, hypertension, and hypercholes-

terolemia) or co-medications (such as P2Y12 inhibitors), in

older individuals [19, 56, 225]. Although these data may

imply limited efficacy in patients that present with isolated

or the constellation of comorbidities in the metabolic

syndrome, it must be said that efficacy has been shown in

patients that present for PCI with these demographics

[192].

The mechanisms by which these physiological respon-

ses to reperfusion are attenuated include (1) inhibiting PTP

opening [4, 85, 103], (2) delaying rapid myocardial re-

alkalinisation that, in part, contributes to PTP opening [39],

(3) reducing intracellular and intra-mitochondrial calcium

accumulation [117], (4) reduced oxidative damage of

eNOS and preserved cGMP signalling [125], (5) attenuat-

ing endothelial dysfunction (expression of adhesion mole-

cules [276], production of NO, and other vasoactive and

cardioprotective autacoids such as adenosine) that other-

wise trigger the vascular inflammatory response to reper-

fusion injury, and (6) reducing pro-inflammatory cell

activation and expression of cytokines in blood that con-

tribute to the inflammatory response to reperfusion injury

[31, 32]. A year after its introduction, Tsang et al. [245]

reported that IPost activated the reperfusion injury salvage

kinase (RISK) pathway pro-survival kinases PI3K-Akt and

downstream targets eNOS and p70S6K (see later section).

Unlike preconditioning whose clinical application is

limited by the unpredictability of AMI, IPost immediately

caught the attention of interventional cardiologists. In

2005, Staat et al. [234] reported that four episodes of 1-min

inflation–deflation cycles of the angioplasty balloon per-

formed immediately after coronary artery re-opening were

able to significantly reduce MI size in STEMI patients.

This was the first report demonstrating that reperfusion

injury exists in man, is of pathophysiological importance,

and can be attenuated by a timely intervention. Most

[133, 238, 241], but not all [132], clinical studies in

patients with these conditions undergoing PCI or cardiac

surgery have shown positive outcomes with IPost (re-

viewed in Heusch [99, 101, 110]). Reasons for such dis-

crepancy are unclear but might include a different use of

thrombus aspiration, direct stenting, in-stent balloon infla-

tion–deflation for inducing IPost, as well as the con-

founding role of new adjunct therapies like P2Y12

inhibitors. The recent phase 3 DANAMI-3 IPOST study

(NCT01435408) [111] reported that 4 cycles of 30 s IPost

failed to improve clinical outcomes in STEMI patients, but

this study used a sub-optimal IPost algorithm and was

probably underpowered. Additional studies are awaited to

clarify whether or not MI size reduction observed in phase

2 IPost trials can actually provide any clinical benefit to

STEMI patients.

Whether IPost is cardioprotective in the presence of

comorbidities such as diabetes or hypercholesterolaemia,

or in the presence of co-medications, or wanes with age

[19] is still controversial [56, 192]. In addition, whether the

efficacy of IPost is masked when other forms of cardio-

protection are used, such as IPC, P2Y12 inhibitors, or
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hypothermia and cardioplegia in cardiac surgery, is still

unresolved.

Studies should continue to unravel the numerous and

interacting mechanisms involved in IPost, and how they

relate to other types of conditioning (preconditioning,

perconditioning). In addition to clarifying the mechanisms

of IPost, these studies may lead to the development of

broad spectrum drugs with multiple therapeutic targets

emulating IPost’s broad spectrum therapeutic profile.

Potential loss of cardioprotection in comorbid circum-

stances should be further investigated in large animal

models with genetic predispositions to the comorbidity

spectrum, such as the Ossabaw pig with genetic metabolic

syndrome. Similar studies need to define whether efficacy

of IPost is lost with advancing age. Studies in large animal

models should re-examine the ‘‘ischaemic wavefront’’ to

separate the temporal progression of myocardial injury

after ischaemia only (without reperfusion) and after

ischaemia plus reperfusion to redefine the extent of injury

in patients arriving at the catheter laboratory with unre-

solved occlusions. More clinical studies need to be per-

formed that embrace the design features of randomisation

and adequate statistical power that avoids Type II errors,

and allows stratification of patients into various subgroups

to differentiate responders from non-responders. A com-

bination of different protective interventions, including

remote, per- and postconditioning as well as cocktails of

drugs may be tested in the future.

Myocardial reperfusion injury

Reperfusion Injury has many facets. Apart from reversible

forms of reperfusion injury, including reperfusion arrhyth-

mias and stunning, there is also lethal reperfusion injury, or

cell death, occurring at the time of reperfusion, and thus

preventable by treatments applied at the time of restoration

of blood flow [196]. There is extremely solid evidence of the

existence of lethal reperfusion injury in experimental MI

models. There is also solid evidence of the occurrence of

reperfusion injury in patients with STEMI, although several

interventions to reduce lethal reperfusion injury in patients

have failed or provided inconsistent results in this clinical

setting [76, 106, 110]. The reasons for these failures aremore

likely dependent on the particular treatments applied or on

associated circumstances (age, comorbidities, treatment

received) than to inter-species differences. Over the past

30 years, the importance and mechanisms of cardiomyocyte

cell death in myocardial reperfusion injury have been elu-

cidated in part. AlteredCa2? handling and PTP opening have

been identified to be complementary pathways of reperfu-

sion-induced cell death, but important questions remain

unsolved [118].

Cardiomyocyte death is the main cause of heart failure,

arrhythmias and death in patients with STEMI, and

depends largely on phenomena occurring within car-

diomyocytes themselves, as shown by the fact that it can be

recapitulated in isolated cardiomyocytes submitted to

transient ischaemia [118], but other cells can contribute, in

particular, platelets [8, 9, 174]. Endothelial cells, in which

metabolism is largely independent of mitochondrial respi-

ration [163] are more tolerant of ischaemia than

cardiomyocytes.

A substantial component of reperfusion-induced cell

death occurs during the initial minutes of reperfusion [91].

Apoptosis plays little, if any, role in reperfusion-induced

cardiomyocyte cell death [168] and selective lack of

expression of executioner caspases 3 or 7, does not modify

MI size or post-MI remodeling in mice [122]. Severe

ischaemia stops mitochondrial respiration, progressively

dissipates mitochondrial membrane potential, and ATP

concentration reaches very low levels and triggers rigor

contracture [188]. ATP hydrolysis secondary to reversal of

respiratory Complex V (ATP synthase) plays an important

role [59]. The inactivity of the Na? ATPase pump leads to

Na? and Ca2? overload through reverse Na?/Ca2?

exchange [196]. Anaerobic metabolism in combination

with reduced catabolite washout causes intracellular aci-

dosis, reaching pH 6.4 within a few minutes. Reperfusion

results in the rapid restoration of energy availability [59]

and intracellular pH [126], and generation of large amounts

of reactive oxygen species (ROS) and additional Ca2?

influx [64].

Altered Ca2? handling is a key factor in reperfusion

injury-cardiomyocyte cell death. Na? concentration may

increase in reperfused cardiomyocytes due to Na? influx

associated with pH normalization and passage of Na? from

adjacent cells via gap junctions favoured by impaired Na?

pump function [213], and Na? influx favours Ca2? influx

through the Na?/Ca2? exchanger [164]. Increased Ca2?

and pH normalisation causes calpain activation [124]

resulting in damage of the subsarcolemmal cytoskeleton

leading to Na? pump dysfunction. Restoration of ATP

availability during initial reperfusion leads to Ca2? uptake

into the sarcoplasmic reticulum (SR) followed, when Ca2?

capacity is exceeded, by Ca2? release through the Ryan-

odine receptor channel (RyR2) resulting in oscillations of

Ca2? concentration that propagates across the cell

favouring arrhythmias, hypercontracture and mitochondrial

Ca2? overload [210]. Hypercontracture can cause cell

death, and transient contractile inhibition during the initial

minutes of reperfusion prevents cardiomyocyte death in

isolated cardiomyocytes, isolated hearts and intact large

animals [66, 222]. Reperfusion-generated ROS cause nitric

oxide synthase (NOS) oxidation and reduced NO-cGMP-

PKG signaling. PKG modulates phospholamban (PLB)
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phosphorylation, SR Ca2? uptake, and Ca2? oscillations,

and treatments normalizing PKG signaling in reperfused

myocardium limit MI size in a number of pre-clinical and

clinical studies [123].

Resumption of respiration is associated with increased

ROS generation, due in part to re-oxidation of succinate

accumulated during ischaemia and reverse electron transport

between complex II and complex I of the respiratory chain

[36] and to restoration of mitochondrial potential favoring

mitochondrial Ca2? uptake through the Ca2? uniporter and

Ca2? overload [64]. Studies in mitochondrial preparations

and cells show thatmitochondrial Ca2? andROSmay trigger

an abrupt increase in the permeability of the inner mito-

chondrial membrane resulting in release of molecules from

the mitochondrial matrix into the cytosol, mitochondrial

depolarisation and swelling [85, 185, 186]. Mitochondrial

permeability transition is supposed to be due to the opening

of the PTP, a proposed large conductance cannel in the inner

mitochondrial whose molecular structure is not really clear

[103], except for the involvement of cyclophilin D and more

recently ATP synthase. PTP opening is inhibited by low pH

and favored by ROS and low ATP concentration, conditions

occurring during myocardial reperfusion [72].

Mitochondrial permeability transition and Ca2? oscil-

lations/hypercontracture are closely related cell death

pathways. This is partly due to the tight physical connec-

tion between SR and mitochondria allowing preferential

Ca2? exchange between both organelles [212]. Ca2?

release from mitochondria secondary to PTP opening may

cause hypercontracture in Ca2? overloaded cardiomy-

ocytes [211] while SR-driven Ca2? oscillations may cause

PTP opening [210]. The relative importance of these two

pathways may depend on conditions such as the severity of

the ischaemic insult [214].

Opening of the PTP has been well documented in

mitochondrial preparations exposed to very high Ca2?

concentrations and isolated cardiomyocytes subjected to

simulated IRI [72]. The most important evidence for the

role of PTP in reperfusion injury is the reduced MI size

associated with genetic ablation of cyclophilin D

[6, 75, 81, 183]. Inhibition of cyclophilin D with cyclos-

porine-A (CsA) prevents PTP opening in mitochondrial

preparations but reductions in MI size with this agent have

not been consistent, particularly when applied exclusively

at the time of reperfusion or in large animals [130, 228],

and a positive proof-of-concept trial in patients with

STEMI [195] was not confirmed in a larger phase III trial

[43]. Furthermore, all other drugs aimed at PTP inhibition

in STEMI patients have so far failed. Although disap-

pointing, these results are more likely explained by inef-

fective PTP inhibition by CsA, rather than the PTP not

being important in human reperfusion injury.

Reperfusion signalling via the RISK and SAFE
pathway

It is now well established that ischaemic conditioning

protects the heart from acute IRI through the activation of

signal transduction pathways recruited at the onset of

reperfusion. These signalling cascades mediate the car-

dioprotective signal elicited by ischaemic conditioning

from the sarcolemma to the mitochondria and include,

amongst others, the reperfusion injury salvage kinase

(RISK), and the survivor activating factor enhancement

(SAFE) pathways (reviewed in [80, 92, 94, 145, 146]).

The RISK pathway refers to the pro-survival kinases,

Akt and Erk1/2, the activation of which at the onset of

reperfusion reduces MI size [92, 94]. It was first described

by Yellon and colleagues in 2002 while studying the sig-

nalling mechanisms underlying the cardioprotective effect

induced by the growth factor, urocortin [218]. In that study

the administration of urocortin specifically at the time of

myocardial reperfusion reduced MI size and increased the

phosphorylation of myocardial Erk1/2, the effects of which

were abrogated by the co-administration of the pharma-

cological MEK1/2-Erk1/2 inhibitor, PD98059, at the time

of reperfusion [218]. A large number of experimental

studies have linked the activation of the RISK pathway to

the cardioprotection induced by a diverse variety of phar-

macological agents including growth factors, cytokines,

and other agents such as metformin and statins [92, 94].

The RISK pathway has also been shown to mediate the

cardioprotection induced by IPC and IPost, suggesting that

it may be a common pathway for cardioprotection

[86, 87, 245]. Most of the experimental studies implicating

the RISK pathway as a cardioprotective pathway have been

performed in small rodent models of AMI, whereas recent

studies suggest that the RISK pathway does not appear to

mediate the cardioprotection induced by IPost [132, 229],

gentle reperfusion [182] or RIC [1, 227] in large animal

models, suggesting species differences in the reperfusion

signalling pathways underlying ischaemic conditioning.

In 2005, Lecour and colleagues made the unexpected

observation that the MI-limiting effects of TNF-a at the

onset of reperfusion were mediated independently of the

RISK pathway [147, 148]. They subsequently discovered,

that TNF-a administered at the onset of myocardial

reperfusion recruited an alternative signalling cascade,

termed the SAFE pathway [142, 145, 146, 148], by binding

to TNF receptor type 2 and activating Janus Kinase (JAK)

and Signal transducer and activator of transcription 3

(STAT3) via mechanisms which are still unclear but may

involve sphingosine kinase [61]. A number of experimental

studies have demonstrated that pharmacological condi-

tioning mimetics which limit myocardial reperfusion injury
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do so via the activation of the SAFE pathway, including

high density lipoproteins [62], melatonin [144], glyceryl-

trinitrate, and cariporide [140]. In IPC studies, the activa-

tion of the SAFE pathway was demonstrated to occur at

two time-points, following the IPC protocol and at the

onset of reperfusion [148, 236]. The activation of the SAFE

pathway by ischaemic conditioning has been confirmed

both in small and large animals of AMI [227], whereas in

humans, the STAT-5 isoform appears to be preferentially

activated [109].

It has been demonstrated that there exists crosstalk

between the Akt and Erk1/2 components of the RISK

pathway such that the pharmacological inhibition of one

kinase activated the other kinase to ensure maximal pro-

tection against myocardial reperfusion injury [83]. Inter-

estingly, a crosstalk also exists between the RISK and the

SAFE pathways [232]. Both signaling pathways converge

on mitochondria where they appear to mediate their car-

dioprotective effect by inhibiting PTP opening [16, 46].

The mechanism for this is unclear for the RISK pathway,

but for the SAFE pathway, STAT-3 has been shown to be

present in mitochondria, where it modulates mitochondrial

respiration and targets the PTP [16, 108]. TNF-a itself can

also directly target mitochondrial function [141].

Whether targeting the RISK and SAFE pathway can

benefit patients subjected to acute myocardial IRI has not

been directly tested, although pharmacological agents such

as atrial natriuretic peptide, erythropoietin and statins,

which are known to activate components of these two

signaling cascades, have been investigated in the clinical

setting with mixed results [160, 161]. Further studies are

required to test whether using combination therapy to

simultaneous target the RISK, SAFE and other pathways is

a more effective cardioprotective strategy than focusing on

one single signaling cascade.

Mitochondria as targets of cardioprotection

The apparent paradox of IPC, whereby a short period of

ischaemia protects from an otherwise lethal ischaemic

episode, is reflected and likely contributed to, by para-

doxical actions of Ca2? and ROS in mitochondria.

Undoubtedly, a large and prolonged elevation in Ca2? and

ROS levels causes cell death mainly by favoring PTP

opening [13]. However, antioxidants abolish IPC protec-

tion [189], that is mimicked by a mild elevation in ROS or

Ca2? levels [264, 266]. Several processes have been pro-

posed to explain the paradoxical involvement of ROS and

Ca2? in both survival and death of cardiomyocytes. First,

intra-mitochondrial Ca2? is necessary to stimulate oxida-

tive phosphorylation by activating key dehydrogenase

steps, while sub-lethal levels of ROS activate signaling

pathways promoting cell survival [128]. A mild ROS for-

mation has been proposed also to explain the protection

related to the opening of mitochondrial KATP channels

downstream of PKC-e activation and upstream of PTP

inhibition [41].

Besides the elucidation of the molecular nature of PTP,

KATP channels and other potential targets of IPC protec-

tion, a major challenge in the field is to determine the

threshold separating physiological from pathological levels

of ROS and Ca2?. This issue can be addressed by

exploiting technological advances in Ca2? and ROS

imaging that have largely contributed to our understanding

of IRI and IPC protection. Early studies by Michael Piper

using the Ca2?-sensitive, fluorescent dye Fura-2 demon-

strated that the recovery of ATP production in isolated

cardiomyocytes with Ca2? overload during reoxygenation

leads to Ca2? oscillations and hypercontracture [223]. It

was proposed that Ca2? microdomains in the vicinity of the

SR could raise local [Ca2?] to levels sufficient to drive

mitochondrial Ca2? entry. Subsequent experiments using

the mitochondria-targeted, Ca2?-sensitive photoprotein,

aequorin, helped to validate the concept of these Ca2? ‘‘hot

spots’’. Importantly, mitochondrial Ca2? uptake contributes

to the buffering of cytoplasmic Ca2? peaks in cardiomy-

ocytes [53]. However, during reperfusion massive cytosolic

Ca2? oscillations can lead to mitochondrial Ca2? overload

and PTP opening [64]. Oxidative stress during reperfusion

can accentuate SR Ca2? release [45]. These cytosolic and

mitochondrial Ca2? changes also occur in perfused hearts

during IRI, as was initially demonstrated by imaging Ca2?

using fluorescent dyes and microscopy [248], and more

recently with genetically encoded reporters and multipho-

ton microscopy [48]. IPC was shown to attenuate ischae-

mic SR Ca2? overload in the isolated rabbit heart [34].

The elucidation of signalling pathways related to IPC-

induced protection commenced with the seminal discovery

of the involvement of the adenosine receptor in IPC [153].

Several of the described pathways converge on cytosolic

Akt and/or ERK, which lead to the activation of mito-

chondrial PKC-e [177]. Activated mitochondrial PKC-e
induces not only opening of the mKATP channel but also

activation of Akt-GSK3b signalling in mitochondria, both

of which contribute to inhibition of PTP opening [176].

Despite the redundancy of IPC-induced signal pathways in

the cytosol and mitochondria, several diseases have been

shown to significantly impair IPC-induced signalling in the

myocardium. Interestingly, diabetes mellitus attenuates

activation of Akt in response to upstream signals

[116, 173, 244, 245] and also lowers the threshold for PTP

opening by enhanced mitochondrial recruitment of non-

phosphorylated GSK3b [172, 237] and increased ER stress

[127]. Recently, progress has been made in our under-

standing of PTP and mitochondrial Ca2? uniporter.
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However, the intra-mitochondrial localisation of protein

kinases and phosphatases and their relationships with PTP,

ROS and Ca2? regulating machineries remain unclear and

warrant further investigation.

Beyond its participation in signal transduction during

IPC, mitochondria are effectors of cardioprotection. IPC

attenuates IRI-induced mitochondrial respiratory failure

and oxidative damage independently of PTP opening, even

in the absence of cytosolic components [178]. Importantly,

Cx43 translocates to and is predominantly present at sub-

sarcolemmal mitochondria [20] and subsarcolemmal

mitochondria but not interfibrillar mitochondria are the

main targets of IRI damage and IPC protection [20, 206].

Indeed, mitochondria with genetic ablation of Cx43 are

resistant to preconditioning [20, 206, 212]. Mitochondrial

Cx43 regulates complex 1-mediated respiration [18, 175],

ROS production [98] and K? permeability [175], although

its participation in IRI pathophysiology remains unclear in

detail. The role of subsarcolemmal mitochondria in car-

dioprotection is necessarily linked to the function of

interfibrillar mitochondria, as the latter are involved in

cytosolic calcium buffering, energy demand–supply

matching and antioxidant regeneration through privileged

communication with SR [51, 212]. Indeed, partial disrup-

tion of mitochondria-SR interplay appears to aggravate

IRI-induced cytosolic calcium, hypercontracture, PTP

opening and cell death in aged mice [59, 60]. Variations in

mitochondrial Cx43 contents might explain the resistance

against IPC-mediated cardioprotection observed in aged

animals [17, 19, 219].

Pharmacological targeting of myocardial IRI

Elucidation of the signaling pathways underlying ischae-

mic conditioning cardioprotection has identified a large

variety of therapeutic targets for pharmacological cardio-

protection. In this section, we review some of the more

recent pharmacological therapies which have been inves-

tigated in the clinical setting to target myocardial IRI in

reperfused STEMI patients.

GLP-1

Glucagon-like peptide-1 (GLP-1) is an incretin hormone

that regulates plasma glucose, and within the latest

10 years GLP-1 analogues have been introduced for

treatment of type-2 diabetes [89, 112]. In addition, recep-

tors for GLP-1 have been found in the heart [7]. In

experimental studies GLP-1 or its analogues protect against

reperfusion injury-induced cell death [23, 24, 88, 89, 243].

These cardioprotective analogues include exendin-4, a

peptide derived from the saliva of the Gila lizard showing a

GLP-1-like potency and efficacy at GLP-1 receptors

[95, 255]. Exendin-4 was found to be cardioprotective

during reperfusion in isolated rat hearts [233], a finding that

has been confirmed in several species, e.g. pigs [242].

Intravenous (IV) exenatide was found to increase

myocardial salvage by 15 % if administered as a 6 h

infusion initiated 10 min before reperfusion in STEMI

patients [157]. When examining only patients with short

ischaemic times (\132 min) MI size was reduced by 30 %

[156]. This effect of exenatide was confirmed in an Asian

population, since Woo et al. observed an almost 50 %

reduction in MI size when administered subcutaneously

[263]. A recent clinical study has failed to demonstrate a

cardioprotective effect with exenatide in STEMI patients—

it is not clear why this study was neutral, but it may have

been related to the dose used [208]. To date no trials have

sought to challenge the results from the proof-of-concept

studies on a clinical end point.

Cyclosporin-A

Opening of the PTP is a critical signalling hub in the

cascade of myocardial reperfusion injury and preventing it

from opening has been suggested to be an obvious phar-

macological target [82, 85, 185, 186]. CsA is a compound

that preserves PTP closure and in addition, it has been

reported to affect remodelling following MI [170].

In a small proof-of-concept study Piot et al. demonstrated

that CsA can reduce enzyme leakage by 40 % andMI size by

20 % when administered as an IV bolus prior to PPCI

[96, 195]. Both infarcts located in RCA and LAD were

included but only patients with TIMI 0 were eligible. The

more recent CYCLE trial recruited 410 STEMI patients

within 6 h of symptom onset (TIMI flow grade 0–1) and

randomized them to CsA (2.5 mg/kg) or control [187]. The

primary endpoint (ST-segment resolution at 60 min) and

secondary endpoints (high-sensitivity cardiac troponin T

(hs-cTnT) on day 4, left ventricular (LV) remodelling, and

clinical events at 6-months follow-up) were not reduced by

CsA [187]. Finally, in the definite hard endpoints-powered

CIRCUS trial, 970 anterior STEMI patients (TIMI flow 0–1

in the LAD) were randomised to CsA or placebo. The trial

failed to show any effect of IV CsA on a composite endpoint

of death, hospitalization for heart failure and adverse LV

remodelling [195]. The reasons for CsA to improve clinical

outcomes in STEMI patients are not known and have been

discussed in several recent articles [76, 100].

Metoprolol

Early beta-blocker therapy in reperfused STEMI patients is

controversial and had largely been investigated in the pre-

reperfusion era. However, recently it has been shown that
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IV metoprolol administered prior to reperfusion in a por-

cine model reduced MI size [120]. This experimental work

was followed by a clinical trial (METOCARD-CNIC trial)

demonstrating that IV metoprolol administered in the

ambulance prior to PPCI reduced MI size and improved

clinical outcomes (as a secondary endpoint) in anterior

STEMI patients presenting early (\6 h) [119, 197]. More

importantly, in the METOCARD-CNIC trial, patients

receiving pre-reperfusion IV metoprolol had not only

CMR-evaluated smaller infarctions [166], and better long-

term left ventricular ejection fraction (LVEF) [197], but

also the incidence of LV severe systolic dysfunction was

significantly reduced [197]. Very recently, the results of the

EARLY BAMI trial have been reported. This trial recruited

600 STEMI patients (any location) presenting within 12 h

from symptoms onset. Patients were randomized to IV

metoprolol (10 mg) or placebo [207]. Primary endpoint

was MI size assessed by CMR one month after infarction.

The trial was neutral and MI size was not smaller in

patients allocated to IV metoprolol. There were no signs of

adverse effects in patients receiving IV metoprolol, and the

incidence of ventricular fibrillation was significantly lower

in metoprolol-treated patients. These data support the

safety of this strategy in Killip I–II STEMI patients. There

are important differences between the METOCARD-CNIC

and EARLY BAMI trials. Dose and timing of IV meto-

prolol administration were different between trials. In

contrast to the METOCARD-CNIC trial, in the EARLY

BAMI study, patients received only one 5 mg dose at

recruitment, and per protocol the second dose was given in

the catheter laboratory immediately before PCI. In fact, the

first dose of metoprolol did not have any effect on blood

pressure or heart rate, suggesting an underdosing effect. In

this regard, a recent subanalysis from the METOCARD-

CNIC trial demonstrated that the longer the ‘‘onboard’’

metoprolol time at the time of reperfusion, the higher the

infarct-reduction effect [67]. In fact, patients receiving IV

metoprolol close to reperfusion had a very mild protective

effect, while those with a longer time from metoprolol

15 mg bolus to reperfusion were those with the largest

reduction in MI size and improvement in long-term LVEF.

These differences in dose and timing of metoprolol

administration might explain the different conclusions

from both trials. Given the clear safety profile and the low

cost of this therapy, it is worth to continue the clinical

research and perform a definite large hard endpoint-pow-

ered trial. In the near future, the MOVE ON! Trial will be

initiated and more than 1200 anterior STEMI patients will

be recruited and randomized to IV metoprolol (15 mg

immediately after diagnosis is made in the out of hospital

setting) or placebo. The primary endpoint will be the

composite of cardiovascular death, heart failure, ICD

insertion, or severe LV dysfunction.

P2Y12 inhibitors

State of the art anti-thrombotic therapy in STEMI patients

includes the early administration of P2Y12 inhibitors.

Ticagrelor, a potent P2Y12 inhibitor was associated with

reduced mortality in ACS patients when compared to

another P2Y12 inhibitor (clopidogrel) [253]. These benefits

may not be fully explained by a pure antiplatelet effect. In

this regard, ticagrelor has been shown, to increase the

levels of extracellular adenosine [21], a mediator known to

exert a wide range of benefits including vasodilation,

inhibition of platelet aggregation and leukocyte adherence

to the vessel wall. In line with this, cangrelor, a potent and

fast acting IV P2Y12 inhibitor, has been shown to reduce

MI size in mouse [12], rat [267], rabbit [268], and primates

[269]. Interestingly, the protection conferred by cangrelor

is dependent upon the presence of platelets with no evi-

dence of protection ex vivo in crystalloid-perfused Lan-

gendorff heart [267, 268]. This protection is mediated

through pathways typically recruited by ischaemic condi-

tioning, suggesting that P2Y12 inhibition, via a blood

component, leads to conditioning-like protection

[267, 268]. Therefore, IV P2Y12 inhibition may thus have

the dual advantage of optimising both platelet inhibition

and offering cardioprotection.

Combination reperfusion therapy—a novel

therapeutic strategy

As can be seen above, most attempts to reduce MI size in

STEMI patients have relied on using a single agent to

target one single component of myocardial IRI. However,

myocardial IRI is the result of several mechanisms and thus

targeting on individual phenomena will unlikely reduce the

MI size. The possibility of targeting several mechanisms

simultaneously (either with one agent targeting different

pathways or by several agents administered simultane-

ously) is attractive although not widely undertaken. A

recent large animal study [1] showed that the combination

of RIC with glucose-insulin-potassium and exenatide had

an additive benefit in terms of MI size reduction. The

COMBAT-MI trial (NCT02404376) will test the potential

benefits of using RIC with exenatide on MI size reduction

in STEMI patient.

Problems in translation to the clinic
and confounding factors

Although much effort has been taken to translate cardio-

protection into clinical practice, so far translation has not

been successful, as still no drugs are on the market and no

therapeutic interventions are available for routine clinical
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practice that may protect the heart after IRI and thereby

prevent the development of post-ischaemic heart failure

[11, 28, 76, 99, 106, 107, 110, 118]. There are two major

problems of clinical translation to overcome in the future:

(1) target discovery and validation taking into considera-

tion the known confounding factors of cardioprotection;

and (2) better design of clinical development studies.

The putative mechanisms of cardioprotection explored

in the past three decades have so far led to potential drug

targets that were not robust enough for their pharmaco-

logical use as clinical trials targeting them largely showed

no efficacy. Although it has been known from preclinical

studies already in the mid-1990s that major cardiovascular

co-morbidities and risk factors including aging, hyperlipi-

demia, diabetes (see for the first extensive review from

1998 on the effect of risk factors on cardioprotection [58],

as well as some later specific reviews on aging [19],

hyperlipidaemia [55], and diabetes [178, 261]) and also

their medications (see for the first extensive review: [57]

and its updated version: [56]) largely modify the response

of the ischaemic heart to cardioprotective therapies, target

discovery and validation were performed and still continue

to be performed in young and healthy animals in the vast

majority of studies. In the future, at least the major known

co-morbidities and their major classes of pharmacological

treatments should be used to validate the potential drug

target before entering into clinical trials. The second reason

may be a simplified and biased way of target selection so

far. It is already known from transcriptomics data from the

early 2000 years that IRI and cardioprotection trigger

multifactorial mechanisms, moreover, co-morbidities and

co-medications also significantly modify the cardiac gene

expression profile (see for extensive reviews: [249]).

Therefore, targeting a single pathway to protect all IHD

patients is obviously not an approach that may lead to

success. In the future, maybe a multi-omics approach

including transcriptomics, proteomics, and metabolomics

followed by systems biological network analysis may

provide novel targets using this unbiased global approach

(see for extensive reviews: [249]).

Although clinical trials of RIC may show some patient

benefit in acute MI patients with multiple co-morbidities

[104], two recent large clinical studies in patients under-

going cardiovascular surgery (ERICCA, RIPHeart)

[77, 171] revealed no evidence for protection. It must be

mentioned, however, that in both of these trials propofol

was used for anesthesia, although propofol has been shown

before to interfere with the efficacy of conditioning

[105, 106]. Some larger clinical studies of IPost so far

showed no acute cardioprotection [70, 134] nor long-term

benefit up to 1 year follow up [71]. Nevertheless, the

results of these clinical studies showed that both RIC and

IPost have a favorable safety profile [110], so further

studies are encouraged using better design and enough

power to find out the importance of confounding factors of

ischaemic conditioning in clinical reality.

As to the clinical development of cardioprotective

drugs, the results so far have been disappointing. Targeting

mitochondria by PTP inhibitors and other mitochondrial

protective compounds (CIRCUS, CYCLE, Bendavia,

Mitocare, EMBRACE STEMI studies) or replacing NO by

inhaled NO (NOMI trial) or nitrite administration were

ineffective in clinical trials (see for a recent review [76]). It

should be noted that the molecular targets of these drugs

were not validated properly before entering into clinical

trials, i.e. targets were selected by the traditional biased

way and no validations have been attempted in any of the

animal models with the presence of the confounding fac-

tors. In the future, based on careful preclinical validation,

phase 2 studies with careful patient selection based on the

relevant confounding factors for the specific molecular

target(s) may open new perspectives for successful trans-

lation of cardioprotection. Also, given the complexity of

the cardioprotective signal transduction [101], combined

treatment of several targets maybe needed.

Conclusions

In this article we have provided an overview of the major

topics discussed at this special meeting to celebrate

30 years of research in the field of IPC and cardioprotec-

tion. The huge research literature, which has arisen from

the seminal discovery of IPC, has provided important

insights into the mechanisms and elucidation of the sig-

nalling pathways underlying cytoprotection in the heart and

other organs. The evolution of IPC to both IPost and RIC

has helped facilitate the translation of this endogenous

cardioprotective strategy from the laboratory to the clinical

setting. We hope this article provides a worthy account of

the huge importance and impact the discovery of IPC has

made in the field of cardiovascular research over the last

30 years.
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