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ABSTRACT	21	

Gene	expression	differences	between	males	and	females	often	underlie	sexually	dimorphic	22	

phenotypes	and	the	expression	levels	of	genes	that	are	differentially	expressed	between	the	23	

sexes	is	thought	to	respond	to	sexual	selection.	Most	studies	on	the	transcriptomic	response	24	

to	sexual	selection	treat	sexual	selection	as	a	single	force,	but	post-mating	sexual	selection	25	

in	particular	is	expected	to	specifically	target	gonadal	tissue.	The	three	male	morphs	of	the	26	

ocellated	wrasse	(Symphodus	ocellatus)	make	it	possible	to	test	the	role	of	post-mating	27	

sexual	selection	in	shaping	the	gonadal	transcriptome.	Nesting	males	hold	territories	and	28	

have	the	highest	reproductive	success,	yet	we	detected	feminisation	of	their	gonadal	gene	29	

expression	compared	to	satellite	males.	Satellite	males	are	less	brightly	coloured	and	30	

experience	more	intense	sperm	competition	than	nesting	males.	In	line	with	post-mating	31	

sexual	selection	affecting	gonadal	gene	expression,	we	detected	a	more	masculinised	32	

expression	profile	in	satellites.	Sneakers	are	the	lowest	quality	males	and	showed	both	de-33	

masculinisation	and	de-feminisation	of	gene	expression.	We	also	detected	higher	rates	of	34	

gene	sequence	evolution	of	male-biased	genes	compared	to	unbiased	genes,	which	could	at	35	

least	in	part	be	explained	by	positive	selection.	Together,	these	results	reveal	the	potential	36	

for	post-mating	sexual	selection	to	drive	higher	rates	of	gene	sequence	evolution	and	shape	37	

the	gonadal	transcriptome	profile.	38	

	 	39	



	 3	

INTRODUCTION	40	

Males	and	females	within	a	species	share	the	majority	of	the	genome.		Even	in	species	with	41	

sex	chromosomes,	the	sex-limited	Y	or	W	chromosome	(in	XY	or	ZW	sex	determination	42	

systems)	is	typically	small	and	contains	few	genes	(Skaletsky,	et	al.	2003;	Koerich,	et	al.	43	

2008).	Therefore,	many	sexually	dimorphic	traits	are	the	product	of	differences	in	regulation	44	

of	loci	present	in	both	sexes	(Dean	and	Mank	2016).	Accordingly,	just	as	many	phenotypic	45	

traits	differ	substantially	between	the	sexes,	many	genes	show	expression	differences	46	

between	females	and	males	(Parsch	and	Ellegren	2013).	These	sex-biased	genes	are	often	47	

viewed	as	the	link	between	mating	system,	sexual	selection	and	sexual	dimorphism	(Mank	48	

et	al	2013).	49	

Sexually	dimorphic	gene	expression	has	recently	been	shown	to	respond	to	sexual	selection	50	

across	populations	(Moghadam,	et	al.	2012;	Hollis,	et	al.	2014;	Immonen,	et	al.	2014)	and	51	

among	species	(Harrison,	et	al.	2015).	Additionally,	intra-sexual	comparisons	within	species	52	

have	shown	that	transcriptional	dimorphism	scales	with	phenotypic	dimorphism	among	53	

individuals	in	both	invertebrates	(Snell-Rood,	et	al.	2011;	Bailey,	et	al.	2013;	Stuglik,	et	al.	54	

2014)	and	vertebrates	(Small,	et	al.	2009;	Pointer,	et	al.	2013;	Schunter,	et	al.	2014;	Sharma,	55	

et	al.	2014).	These	studies	suggest	that	comparisons	of	transcriptomes	both	within	and	56	

between	the	sexes	can	be	useful	for	understanding	the	transcriptional	architecture	of	sexual	57	

dimorphism,	and	the	loci	responding	to	sexual	selection.		58	

This	previous	work	largely	treats	sexual	selection	as	a	single	evolutionary	force,	focusing	59	

mainly	on	divergence	between	males	and	females.	Pre-mating	and	post-mating	sexual	60	

selection	could,	however,	be	expected	to	act	in	different	ways	and	on	different	genomic	61	

targets.	Pre-mating	selection	might	be	expected	to	largely	target	gene	expression	in	somatic	62	
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tissues	involved	in	competing	for,	attracting,	or	securing	mates	(Emlen,	et	al.	2012;	Khila,	et	63	

al.	2012).	In	contrast,	post-mating	sexual	selection	(also	referred	to	as	post-copulatory	64	

sexual	selection	in	species	with	internal	fertilisation),	a	major	component	of	sexual	selection	65	

in	polyandrous	species,	has	the	potential	to	shape	the	transcriptional	profile	of	the	testes	66	

(Mank,	et	al.	2013;	Harrison,	et	al.	2015).		Focusing	on	these	effects	makes	it	possible	to	ask	67	

how	specific	components	of	sexual	selection	have	shaped	variation	within	and	between	the	68	

sexes,	linking	genomic	changes	to	the	phenotypic	response.						69	

Isolating	the	effects	of	post-mating	sexual	selection	on	gene	expression	requires	analyzing	70	

the	gonad	transcriptome	separately	from	the	soma.	In	addition	to	comparing	the	gonad	71	

transcriptome	between	males	and	females,	comparisons	between	multiple	reproductive	72	

males	experiencing	differing	levels	of	post-mating	sexual	selection	is	also	required.	As	well	73	

as	identifying	the	effects	and	targets	of	post-mating	sexual	selection,	comparing	gonadal	74	

transcriptomes	can	also	improve	understanding	of	relative	transcriptional	investment	and	75	

potential	costs	associated	with	pre-	and	post-mating	sexual	selection.	For	example,	76	

comparing	the	transcriptional	profiles	of	the	testes	in	males	from	the	same	species	with	77	

differing	investment	in	somatic	pre-mating	sexually	selected	traits	may	reveal	the	78	

transcriptional	tradeoffs	males	make	in	pre-mating	versus	post-mating	sexually	selected	79	

traits.	This	shift	in	transcriptional	investment	in	response	to	sperm	competition	could	be	80	

manifested	in	the	testes,	particularly	for	the	genes	that	are	involved	in	sperm	production.		81	

The	ocellated	wrasse,	Symphodus	ocellatus,	(Fig.	1)	allows	for	a	full	dissection	of	the	82	

relationship	between	different	aspects	of	sexual	selection	in	shaping	transcriptional	83	

dimorphism.	S.	ocellatus	males	exhibit	three	morphs	(Taborsky,	et	al.	1987).	Nesting	males	84	

court	females,	build	and	defend	nests	and	provide	parental	care.	Sneaker	males	do	not	85	
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court	females,	defend	nests	or	provide	care	(Taborsky,	et	al.	1987;	Alonzo,	et	al.	2000).		86	

Instead,	they	surreptitiously	join	a	female	and	nesting	male	when	they	are	spawning	and	87	

release	sperm.		Satellite	males	do	not	build	nests	or	provide	care	but	they	do	associate	with	88	

a	nesting	male	and	attempt	to	bring	females	to	and	chase	sneaker	males	away	from	this	89	

male’s	nest.	Females	strongly	prefer	nesting	males	(Alonzo	and	Warner	2000b;	Alonzo	90	

2008).	This	preference	may	be	adaptive	as	nesting	males	are	older	and/or	exhibit	faster	91	

growth	than	both	sneakers	and	satellites	(Alonzo,	et	al.	2000).		92	

The	high	prevalence	of	multiple	males	at	S.	ocellatus	nest	sites,	and	multiple	paternity	93	

within	nests,	indicates	that	sperm	competition	in	this	species	is	intense,	and	the	intensity	94	

varies	across	male	morphs	(Alonzo	and	Warner	1999,	2000a,	b;	Alonzo	and	Heckman	2010).	95	

The	risk	and	intensity	of	sperm	competition	is	lowest	for	nesting	males	and	highest	for	96	

sneakers	(Alonzo	and	Warner	2000b).	Nesting	males	invest	in	traits	favoured	in	pre-mating	97	

sexual	selection	(Alonzo	2008;	Alonzo	and	Heckman	2010),	as	evidenced	by	the	significant	98	

differences	in	somatic	transcription	among	morphs	(Alonzo	and	Warner	2000a;	Stiver,	et	al.	99	

2015).	In	contrast,	sneaker	males	achieve	fertilization	success	solely	through	post-mating	100	

sexual	selection.	Satellites	are	in	many	ways	intermediate,	investing	in	pre-mating	behaviors	101	

as	well	as	post-mating	competitive	traits	(Stiver	and	Alonzo	2013;	Stiver,	et	al.	2015).		The	102	

three	male	types	in	this	species	therefore	represent	a	continuum	of	pre-	and	post-mating	103	

sexual	selection.		104	

The	particularly	intense	levels	of	sperm	competition	in	S.	ocellatus	make	it	an	ideal	system	105	

to	test	whether	sperm	competition	can	drive	elevated	rates	of	evolution	of	male-biased	106	

genes	(Ellegren	and	Parsch	2007).	Higher	rates	of	evolution	of	male-biased	genes	have	been	107	

detected	in	many	species	(Ranz,	et	al.	2003;	Zhang,	et	al.	2004;	Cutter	and	Ward	2005;	108	
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Khaitovich,	et	al.	2005;	Harrison,	et	al.	2015)	and	is	generally	thought	to	be	the	result	of	109	

more	intense	sexual	selection	acting	on	males	(Andersson	1994),	which	drives	the	evolution	110	

of	male-biased	genes.	In	a	similar	way,	male	traits	subject	to	intense	sexual	selection	are	111	

also	rapidly	evolving	(Lande	1981).	However,	rapid	rates	of	evolution	could	alternatively	be	112	

non-adaptive,	resulting	from	relaxed	constraint	or	increased	drift.		Although	positive	113	

selection	has	been	shown	to	drive	the	elevated	rate	of	male-biased	gene	evolution	in	114	

Drosophila	(Pröschel,	et	al.	2006),	recent	work	in	humans	and	birds	(Gershoni	and	115	

Pietrokovski	2014;	Harrison,	et	al.	2015)	suggests	drift	is	the	primary	cause.	However,	these	116	

species	may	lack	sufficient	level	of	sperm	competition	to	drive	rapid	rates	of	male-biased	117	

gene	evolution.	If	sperm	competition	is	important	in	explaining	the	rapid	rates	of	male-118	

biased	gene	evolution,	it	should	be	evident	in	S.	ocellatus,	given	the	intense	sperm	119	

competition	present	in	this	species.	120	

The	three	male	morphs	in	S.	ocellatus	make	it	possible	to	test	several	aspects	of	how	post-121	

mating	sexual	selection	affects	expression	and	sequence	evolution.	First,	because	territorial	122	

males	invest	in	costly	somatic	pre-mating	sexually	selected	traits,	it	may	be	possible	to	123	

identify	the	signature	of	this	trade-off	in	the	gonadal	transcriptome	related	to	post-mating	124	

sexual	selection.	Second,	we	can	use	this	system	to	test	whether	sneaker	males,	which	could	125	

be	viewed	as	low	quality,	invest	less	in	testes	transcription	compared	to	satellite	males,	126	

which	likely	represent	males	of	higher	quality.	Finally,	the	risk	and	intensity	of	sperm	127	

competition	present	across	the	three	male	morphs	make	it	possible	to	test	the	power	of	128	

sperm	competition	to	shape	coding	sequence	evolution	of	male-biased	genes.	Taken	129	

together,	these	analyses	allow	us	to	ask	how	post-mating	sexual	selection	has	shaped	130	

expression	and	sequence	evolution	in	the	ocellated	wrasse	with	the	potential	to	yield	131	
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general	insights	into	how	sexual	dimorphism,	intersexual	variation	and	sexual	selection	are	132	

encoded	in	the	genome.		133	

	134	

MATERIALS	&	METHODS			135	

Sample	collection	and	preparation	136	

The	samples	were	netted	using	25.4	x	20.3	cm	hand	nets	in	the	Baie	de	Revellata	of	the	137	

Mediterranean	Sea	near	the	University	of	Liege	Marine	Station	(STARESO)	Calvi,	Corsica	138	

using	SCUBA.	We	collected	gonad	samples	from	wild	individuals,	totalling	7	females,	4	139	

nesting	males,	5	satellite	males	and	4	sneaker	males	during	the	breeding	season	of	the	140	

ocellated	wrasse	(May	and	June	2014).		All	individuals	were	caught	from	a	total	of	6	141	

different	nests	known	to	be	in	the	spawning	phase	of	the	nest	cycle	(Lejeune	1985;	142	

Taborsky,	et	al.	1987;	Alonzo	2004)	meaning	that	males	were	courting	females	and	143	

spawning	with	these	females	in	their	nest.	Behavioural	observations	were	made	for	ten	144	

minutes	prior	to	capture	to	verify	individual	phenotype	(nesting	male,	satellite,	sneaker	or	145	

female)	and	that	all	individuals	captured	were	actively	involved	in	reproduction.		All	146	

individuals	were	caught	within	minutes	of	being	observed.		Both	males	and	females	spawn	147	

repeatedly	when	at	an	actively	spawning	nest	in	this	species	and	only	individuals	observed	148	

to	be	reproductively	active	were	collected.		We	aimed	to	catch	one	of	each	type	from	each	149	

nest	sampled,	though	in	a	few	cases	this	was	not	possible.		Individuals	were	brought	to	the	150	

surface,	euthanized	with	an	overdose	of	MS-222	and	their	gonads	removed	within	10-50	151	

min	(mean=27	min)	of	capture.	Collection	was	authorized	by	a	permit	to	the	field	research	152	

station	STARESO	by	the	French	government	(Arrêté	no.	188	en	date	du	07	Avril	2014).	153	
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Samples	were	cut	into	small	pieces	after	dissection	(to	allow	for	better	preservation)	and	154	

immediately	stored	in	RNAlater	(Ambion).	RNA	extraction	was	done	under	standardised	155	

conditions	using	a	Qiagen	RNeasy	kit	(see	Table	S1	for	RNA	quality	scores).	The	Wellcome	156	

Trust	Centre	for	Human	Genetics	prepared	mRNA	libraries	(TruSeq	RNA	Library	Prep	Kit	v2),	157	

and	each	sample	was	individually	barcoded	and	run	across	each	of	four	lanes	of	Illumina	158	

HiSeq	2000	in	order	to	eliminate	technical	variance.	On	average,	we	recovered	31	million	159	

100	bp	paired-end	reads	per	sample	before	quality	control	(Table	S1).		160	

Read	quality	was	assessed	with	FastQC	v0.10.1	161	

(http://www.bioinformatics.babraham.ac.uk/projects/download.html),	and	reads	quality	162	

trimmed	with	Trimmomatic	v0.32	(Lohse,	et	al.	2012).	Specifically,	reads	were	trimmed	if	163	

the	sliding	window	average	Phred	score	over	four	bases	was	<	15	or	if	the	leading/trailing	164	

bases	had	a	Phred	score	<	3.	Reads	were	removed	post	filtering	if	either	read	pair	was	<	36	165	

bases	in	length.	After	trimming	there	were	on	average	29	million	paired	ends	reads	per	166	

sample	totalling	199	million	reads	for	females,	116	million	reads	for	nesting	males,	149	167	

million	reads	for	satellites	and	119	million	reads	for	sneaker	males.		168	

	169	

De	novo	transcriptome	assembly,	mapping	and	normalisation	170	

We	used	the	default	parameters	in	Trinity	v2.0.2	(Grabherr,	et	al.	2011)	to	construct	a	de	171	

novo	transcriptome	assembly	on	the	combined	pool	of	583	million	paired	sequences.	Each	172	

individual	sample	was	mapped	to	the	Trinity	reference	genome	and	RSEM	v1.2.19	(Li	and	173	

Dewey	2011)	and	Bowtie2	v2.2.4	used	to	obtain	expression	levels	for	the	567,384	contigs.	174	

De	novo	transcriptome	assemblies	generate	many	non-coding,	chimeric	or	otherwise	175	
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spurious	contigs,	and	we	have	previously	developed	and	applied	a	series	of	filters	to	reduce	176	

the	number	of	erroneous	contigs	(Harrison,	et	al.	2012;	Moghadam,	et	al.	2013;	Chen,	et	al.	177	

2015;	Harrison,	et	al.	2015)	when	genome	annotations	are	unavailable	(see	Fig	S1	for	178	

overview).	Firstly,	we	selected	the	best	isoform	for	each	Trinity	contig	cluster,	based	upon	179	

expression	level	and,	in	the	case	of	ties,	isoform	length	(Harrison,	et	al.	2015).	These	180	

sequences	were	subsequently	used	for	analyses	of	coding	sequence	divergence.	RSEM	181	

v1.2.19	was	then	used	to	re-map	expression	to	the	set	of	best	isoforms	to	facilitate	accurate	182	

comparisons	between	expression	and	coding	sequence	evolution.	Secondly,	non-coding	183	

RNA	was	filtered	using	a	BLASTn	with	an	E-value	cut-off	of	1	×	10-10	between	the	set	of	best	184	

isoform	and	Gasterosteus	aculeatus	(stickleback)	non-coding	RNA	(Ensembl	v81)	(Flicek,	et	185	

al.	2013).	Finally,	we	removed	all	contigs	with	<	2	FPKM	in	¾	of	the	samples	per	morph.	This	186	

allowed	morph-specific	contigs	to	be	retained	with	reasonable	confidence	(i.e.	expressed	in	187	

at	least	3	out	of	all	the	samples)	and	resulted	in	39,453	contigs.	188	

Orthology	between	G.	aculeatus	and	S.	symphodus	sequences	was	assessed	using	BLAST	189	

(Altschul	etal.	1990).	Specifically,	the	longest	transcript	for	each	gene	was	obtained	for	G.	190	

aculeatus	(Ensembl	v81)	(Flicek,	et	al.	2013)	and	a	reciprocal	BLASTn	with	an	E-value	cut-off	191	

of	1	x10-10	and	minimum	percentage	identity	of	30%	was	used	to	identify	orthology.	192	

Reciprocal	orthologs	between	G.	aculeatus	and	S.	symphodus	were	identified	using	the	193	

highest	BLAST	score.	Open	reading	frames	were	obtained	using	BLASTx	with	E-value	cut-off	194	

of	1x	10-10	and	contigs	with	invalid	open	reading	frames	were	removed.	This	resulted	in	195	

8,928	orthologous	contigs	with	an	average	length	of	2,951	bp	(N50	=	3,575,	N90	=	1,656).	196	

Normalisation	was	performed	using	the	TMM	function	in	edgeR	(Robinson,	et	al.	2010)	and	197	

RPKM	values	generated.	We	used	hierarchical	clustering,	factor	analysis	and	pairwise	198	
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correlations	(Spearman’s	ρ)	to	identify	any	potential	outliers.	One	satellite	male	sample	199	

showed	significant	deviations	from	the	male	distribution	(Wilcoxon	rank	sum	test	p-value	=	200	

0.0003,	mean	pairwise	correlations	among	males	ρ	=	0.966,	mean	pairwise	correlations	201	

between	excluded	sample	and	the	remaining	satellite	samples	ρ	=	0.953)	and	was	removed,	202	

and	the	normalisation	was	re-run.		Pairwise	correlations	across	samples	within	each	morph	203	

were	high	(median	(min-max),	nesting	males	=	0.982	(0.980-0.983);	satellites	=	0.983	(0.981-204	

0.984);	sneakers	=	0.980	(0.978-0.982);	females	=	0.977	(0.970-0.981).	Post-normalisation	205	

expression	filtering	resulted	in	the	removal	of	genes	that	had	expression	<	2	RPKM	in	¾	of	206	

the	samples	per	morph,	leaving	8,906	contigs	for	the	expression	analysis.	Average	207	

expression	for	males,	females	and	for	each	male	morph	was	calculated	as	the	logged	mean	208	

expression	of	the	normalised	data	plus	1	(to	avoid	infinite	values	resulting	from	log	0).	Males	209	

and	females	had	similar	average	log2	expression	across	all	genes	(female	median	=	4.05,	210	

male	median	=	4.01,	Wilcoxon	rank	sum	test	p-value	=	0.555).		211	

	212	

Sex-biased	and	morph-biased	expression	213	

Differential	expression	between	the	sexes	was	quantified	using	edgeR	(Robinson,	et	al.	214	

2010),	using	both	a	fold-change	threshold	of	2	(Moghadam,	et	al.	2012;	Harrison,	et	al.	215	

2015;	Grath	and	Parsch	2016)	across	all	3	male	morphs	vs	females	and	padj	<	0.05,	with	an	216	

FDR	correction	for	multiple	testing.	This	resulted	in	5,448	sex-biased	contigs,	classified	as	217	

those	contigs	with	at	least	twice	the	expression	in	one	sex	compared	to	the	other,	as	well	as	218	

padj	<	0.05.	We	also	identified	sex-biased	contigs	by	comparing	each	male	morph	to	females	219	

(i.e.	nesting	males	vs	females,	sneakers	vs	females	and	satellites	vs	females).	These	220	

approaches	identified	consistent	patterns	of	sex-bias,	with	an	overlap	of	94%	between	the	221	
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two	methods	when	using	nesting	males	as	the	reference,	96%	when	using	sneakers	and	99%	222	

when	using	satellite	males	as	the	reference.	We	also	used	DESeq	(v1.18.0)	(Anders	and	223	

Huber	2010)	to	calculate	differential	expression	between	males	and	females,	specifying	the	224	

same	parameters	to	identify	sex-bias	as	used	in	the	edgeR	method.	Of	the	sex-biased	genes	225	

identified	using	the	edgeR	method,	97.4%	were	also	identified	as	sex-biased	using	DESeq	226	

using	the	same	fold-change	thresholds.	227	

Sex-biased	contigs	were	then	divided	into	male-biased	genes,	those	with	at	least	twice	the	228	

expression	in	males	compared	to	females	and	padj	<	0.05,	and	female-biased	genes,	those	229	

with	at	least	twice	the	expression	in	females	compared	to	males	and	padj	<	0.05.	Because	the	230	

strength	of	selection	has	been	shown	to	correlate	with	expression	level	(Krylov,	et	al.	2003;	231	

Nuzhdin,	et	al.	2004),	male-biased	(n	=	2,590)	and	female-biased	(n	=	2,858)	contigs	were	232	

divided	into	quartiles	based	on	average	expression	level	in	females	for	female-biased	233	

contigs	and	average	expression	level	in	males	(across	the	three	morphs)	for	male-biased	234	

contigs.	235	

Morph-biased	genes	are	expressed	more	highly	in	one	morph	compared	to	the	other	two	236	

morphs.	They	can	be	expressed	in	multiple	morphs,	but	at	significantly	different	levels	in	237	

one	morph	compared	to	the	other	two.	Morph-biased	contigs	were	identified	using	edgeR,	238	

comparing	differences	between	the	focal	morph	and	the	other	two	morphs	(i.e.	nesting	239	

males	vs	sneaker	and	satellite	males;	satellite	males	vs	sneaker	and	nesting	males;	sneaker	240	

males	vs	nesting	and	satellite	males),	using	an	FDR	adjustment	for	false	discovery	rate	at	padj	241	

<	0.05.	Because	we	expect	few	contigs	to	exhibit	large	expression	changes	across	morphs	242	

(Pointer,	et	al.	2013;	Hollis,	et	al.	2014),	we	report	morph-biased	contigs	both	with	and	243	

without	2-fold	expression	thresholds.		244	
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Hierarchical	clustering	for	the	average	for	each	morph	was	performed	using	Euclidean	245	

clustering	in	the	R	package	pvclust	v1.3-2	(Suzuki	and	Shimodaira	2006)	with	bootstrap	246	

resampling	(1000	replicates)	for	female-biased	and	male-biased	genes.	Heatmaps	were	247	

generated	using	log2	average	expression	for	each	gene	in	each	morph	using	the	R	package	248	

pheatmap	v1.0.2.	Factor	analysis	was	conducted	in	R	(using	Factanal)	with	varimax	rotation.	249	

Gene	Ontology	functional	enrichment	was	assessed	for	sex-biased	genes	in	each	expression	250	

quartile	using	Gene	Ontology	Enrichment	Analysis	and	Visualization	tool	(Eden,	et	al.	2009)	251	

using	two	unranked	lists	of	genes	and	function	ontology	specified	with	a	p-value	threshold	<	252	

0.001.	Biomart	(Ensembl	Genes	86)	was	used	to	assign	orthology	between	G.	aculeatus	and	253	

Danio	rerio.	Sex-biased	genes	for	each	quartile	were	specified	as	the	target	gene	set	with	all	254	

other	genes	as	the	background.	Significant	GO	terms	(pfdr	<	0.05)	are	listed	in	Table	S2.	255	

	256	

Sequence	divergence	257	

Coding	sequences	for	Xiphophorus	maculatus	(platyfish)	and	G.	aculeatus	(stickleback)	were	258	

obtained	from	Ensembl	v81	and	the	longest	transcript	for	each	gene	identified	(Flicek,	et	al.	259	

2013).	A	reciprocal	BLASTn	with	an	E-value	cut-off	of	1	x10-10	and	minimum	percentage	260	

identity	of	30%	was	used	to	identify	reciprocal	1:1:1	orthologs,	resulting	in	5,366	261	

orthogroups	(Fig.	S1).		Open	reading	frames	were	obtained	using	BLASTx	and	G.	aculeatus	262	

protein	sequences	as	the	BLAST	database.		263	

Orthologs	were	aligned	with	PRANK	v140603	in	codon	mode	(Löytynoja	and	Goldman	2008)	264	

specifying	the	tree	((X.	maculatus,	G.	aculeatus),	S.	ocellatus).	Alignments	were	quality	265	

filtered	using	SWAMP	v.09	(Harrison	et	al	2014)	to	remove	poorly	aligned	regions	that	might	266	



	 13	

give	false	signals	of	position	selection.	Specifically,	codons	were	masked	if	there	were	more	267	

than	seven	non-synonymous	mutations	in	a	sliding	window	scan	of	15	codons.	Gaps	and	268	

masked	codons	were	removed	from	the	alignment	and	orthogroups	discarded	if	the	length	269	

<	300bp.	270	

We	obtained	divergence	estimates	for	each	orthogroup	using	the	branch	model	(model=2,	271	

nssites=0)	in	the	CODEML	package	in	PAML	v4.8	(Yang	2007)	using	the	tree	(X.	maculatus,	G.	272	

aculeatus,	S.	ocellatus#1).	The	branch	model	was	used	to	calculate	dN/dS	for	the	wrasse-273	

specific	branch.	Contigs	were	excluded	if	tree	length	dS	>	2	in	order	to	remove	sequences	274	

which	have	reached	mutational	saturation	(Axelsson,	et	al.	2008).	This	resulted	in	4,912	275	

orthogroups	remaining	out	of	a	total	of	5366.	276	

For	each	expression	class,	we	calculated	mean	dN	and	mean	dS	from	the	PAML	outputs	as	277	

the	sum	of	the	number	of	substitutions	across	all	contigs	in	a	given	category	divided	by	the	278	

number	of	sites	(dN	=DN/N;	dS	=DS/S;	where	DN	=	number	of	non-synonymous	substitutions,	279	

N	=	number	of	non-synonymous	sites,	DS	=	number	of	synonymous	substitutions,	S	=	280	

number	of	synonymous	sites).	This	approach	avoids	the	problems	of	infinitely	high	dN/dS	281	

estimates	arising	from	contigs	with	extremely	low	dS	(Harrison,	et	al.	2015;	Wright,	et	al.	282	

2015)	and	prevents	disproportionate	weighting	and	skew	from	shorter	contigs.	1000	283	

bootstrap	replicates	were	generated	to	estimate	95%	confidence	intervals	and	284	

permutations	tests	were	used	to	test	for	significant	differences	between	pairwise	285	

comparisons.	286	

	287	

Polymorphism	analysis	288	
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Polymorphism	data	was	obtained	by	first	mapping	RNA-seq	reads	to	the	best	isoform	Trinity	289	

assembly	using	the	two-pass	alignment	method	of	the	STAR	aligner	v2.4.2a	with	default	290	

parameters	(Dobin,	et	al.	2013).	Only	uniquely	mapping	reads	were	retained.	SAMTOOLS	291	

mpileup	v0.1.19	(Li,	et	al.	2009)	and	VARSCAN2	v2.3.9	mpileup2snp	(Koboldt,	et	al.	2009;	292	

Koboldt,	et	al.	2012)	were	used	to	call	SNPs.	SAMTOOLS	mpileup	was	run	with	the	293	

probabilistic	alignment	disabled,	a	max	read	depth	of	10,000,000	and	default	minimum	base	294	

quality	of	13.	VARSCAN2	mpileup2snp	was	run	with	a	minimum	frequency	for	homozygote	295	

of	0.85,	minimum	coverage	of	2,	minimum	average	quality	of	20,	strand-filter	on	and	p-296	

value	=	1.	Valid	SNPs	were	required	to	have	a	minimum	coverage	of	20	in	at	least	four	297	

individuals	and	a	minor	allele	frequency	>	0.15,	resulting	in	218,913	SNPs.	SNPs	were	298	

matched	to	the	reading	frame	to	determine	whether	they	were	synonymous	or	299	

nonsynonymous.		300	

In	order	to	ensure	the	divergence	and	polymorphism	data	was	comparable	for	subsequent	301	

analyses,	similar	criteria	were	used	to	filter	both	analyses.	Specifically,	codons	that	(i)	were	302	

masked	by	SWAMP	(ii)	failed	the	minimum	coverage	threshold	of	20	in	at	least	four	303	

individuals	or	(iii)	were	excluded	from	PAML	due	to	alignment	gaps	and	the	clean	filter	304	

function,	were	filtered	from	both	the	polymorphism	and	divergence	analyses.		305	

The	McDonald–Kreitman	test	(McDonald	and	Kreitman	1991)	was	used	to	estimate	the	306	

number	of	contigs	evolving	under	adaptive	and	neutral	evolution	by	contrasting	the	number	307	

of	nonsynonymous	and	synonymous	substitutions	(DN	and	DS)	with	polymorphisms	(PN	and	308	

PS).		Fisher’s	Exact	tests	were	run	for	each	contig	using	DN,	DS,	PN	and	PS.	Contigs	were	309	

removed	if	the	total	observations	across	rows	and	columns	in	the	2x2	contingency	table	was	310	

<	6	(Begun,	et	al.	2007;	Andolfatto	2008).		For	those	contigs	with	significant	deviations	in	DN,	311	



	 15	

DS,	PN	and	PS,	positive	selection	was	indicated	by	DN/DS	>	PN/PS	(McDonald	and	Kreitman	312	

1991).		313	

To	examine	expression	levels	of	genes	under	positive	selection	we	expanded	our	group	of	314	

genes	under	putative	positive	selection	by	using	the	Direction	of	Selection	(DoS)	test	315	

(Stoletzki	and	Eyre-Walker	2011).	DoS	(DoS	=	Dn/(Dn	+	Ds)	−	Pn/(Pn	+	Ps))	was	calculated	as	316	

the	difference	in	the	proportion	of	fixed	non-synonymous	sites	and	the	proportion	of	317	

polymorphic	non-synonymous	sites	(Stoletzki	and	Eyre-Walker	2011).		An	excess	of	non-318	

synonymous	substitutions	compared	to	polymorphisms	(i.e.	DoS	>	0)	indicates	putative	319	

positive	selection.	320	

Lastly,	we	tested	morph-biased	genes	(identified	within	the	expression	analysis)	for	standing	321	

variation	using	polymorphism	data	to	test	for	an	excess	or	under-representation	of	322	

nonsynonymous	polymorphisms	across	morph-biased	genes.	Excess	or	underrepresentation	323	

is	indicative	of	relaxed	purifying	selection	or	positive	selection,	respectively.	For	this	324	

analysis,	we	separately	concatenated	PN	and	PS	for	each	gene	class	and	used	Fisher’s	Exact	325	

tests	(in	R	v3.1.3)	to	test	for	significant	differences	in	PN/PS	between	pairwise	comparisons	326	

between	morph-biased	genes	and	male-biased	genes.	327	

Commands	are	included	in	the	supplementary	material.	328	

	329	

RESULTS	330	

We	had	a	total	of	583	million	paired-end	reads	across	all	samples	after	trimming,	which	we	331	

used	for	de	novo	transcriptome	assembly.	After	filtering	our	assembly,	we	recovered	8,928	332	
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reciprocal	orthologs	with	Gasterosteus	aculeatus	(stickleback),	representing	coding	333	

sequence	used	for	all	downstream	analysis.		334	

	335	

Sex-biased	expression	across	male	morphs	336	

We	estimated	expression	for	each	sample,	based	on	an	average	of	29	million	paired-end	337	

reads	after	trimming.	We	identified	greater	inter-sexual	expression	variation,	with	5,448	sex	338	

biased	genes	(log2	M:F	>	1	or	<	-1,	padj	<	0.05)	compared	to	intra-sexual	expression	variation,	339	

with	34	morph-biased	genes	(24	nesting	male-biased,	2	satellite	male-biased,	8	sneaker	340	

male-biased,	log2	fold	change	between	morph	comparisons	>	1	or	<	-1,	padj	<	0.05).	Of	the	341	

nesting	male-biased	contigs,	1	contig	was	also	male-biased	and	2	were	female-biased,	the	342	

satellite	male-biased	contigs	1	was	also	male-biased	and	1	female-biased,	and	the	sneaker	343	

male-biased	contigs	3	were	male-biased	and	3	female-biased.		Previous	work	has	indicated	344	

few	contigs	have	large	expression	changes	among	morphs	(Pointer,	et	al.	2013;	Hollis,	et	al.	345	

2014),	therefore	we	also	assessed	morph-bias	without	expression	thresholds,	and	only	346	

based	on	statistical	thresholds	(padj	<	0.05).	Using	this	more	relaxed	threshold,	we	recovered	347	

41	nesting	male-biased	contigs,	11	satellite	male-biased	contigs,	and	9	sneaker	male-biased	348	

contigs.	349	

We	first	used	these	expression	estimates	for	hierarchical	clustering,	which	can	be	used	to	350	

assess	overall	transcriptional	similarity	across	morphs	and	sexes.	For	male-	and	female-351	

biased	genes,	male	morphs	cluster	more	closely	to	each	other	than	to	females	(Fig	2).	Our	352	

clustering	also	indicates	some	intra-sexual	variation	among	male	morphs,	as	sneaker	and	353	

satellite	males	show	greater	transcriptional	similarity	to	each	other	than	to	nesting	males	354	
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for	female-biased	genes	expressed	in	the	gonad.	All	three	male	morphs	were	statistically	355	

indistinguishable	via	bootstrapping	in	the	hierarchical	clustering	across	male-biased	genes.	356	

Intra-sexual	variation	in	expression	was	also	evident	with	factor	analysis	based	on	all	357	

expressed	genes,	which	indicated	greater	transcriptional	difference	between	nesting	males	358	

and	satellite	males	(Fig.	3).	However,	sneaker	males	showed	substantial	variation	across	359	

both	factors,	and	overlap	with	both	nesting	males	and	satellites	(Fig.	3).			360	

In	order	to	test	for	differences	in	transcriptional	investment	among	the	three	morphs	we	361	

next	tested	for	masculinization	and	feminization	of	gonadal	expression	(Jaquiery,	et	al.	362	

2013;	Pointer,	et	al.	2013;	Hollis,	et	al.	2014)	in	each	of	the	male	morphs,	and	combined	that	363	

with	estimates	of	expression	variance.	Masculinization	and	feminization	of	gene	expression	364	

is	the	increase	in	expression	of	male-biased	or	female-biased	genes,	respectively.	Similarly	365	

demasculinization	and	defeminisation	of	gene	expression	is	the	reduction	in	expression	of	366	

male-biased	and	female-biased	genes,	respectively.	Gene	expression	variance	estimates	are	367	

increasingly	used	to	infer	selection	acting	on	expression	level	under	assumptions	that	368	

selection	on	expression	will	decrease	expression	variance	across	replicates	(Moghadam,	et	369	

al.	2012;	Romero,	et	al.	2012;	Dean,	et	al.	2015).	Nesting	males	express	female-biased	genes	370	

at	significantly	higher	levels	compared	to	the	other	male	morphs	at	the	lower	expression	371	

levels	(Fig.	4A).	Although	initially	surprising	given	recent	studies	in	birds	and	Drosophila	372	

(Pointer,	et	al.	2013;	Hollis,	et	al.	2014),	our	results	indicate	that	nesting	males	also	exhibit	373	

higher	variance	in	expression	for	female-biased	genes	at	the	lower	expression	levels	(Fig.	374	

5A)	compared	to	the	other	morphs,	suggesting	that	although	they	show	some	feminization,	375	

it	is	unlikely	to	be	due	to	selection	acting	to	increase	expression.	In	contrast,	satellite	males	376	

had	higher	expression	(Fig.	4B)	and	lower	variance	(Fig.	5B)	for	male-biased	genes,	377	
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particularly	for	highly	expressed	male-biased	genes,	suggesting	that	the	gonadal	378	

masculinization	is	the	response	to	selection	for	higher	expression	in	this	morph.	These	379	

results	do	not	qualitatively	change	if	we	increase	the	sex-biased	threshold	to	four-fold	380	

expression	differences	between	the	sexes	(Figure	S2,	S3),	suggesting	these	results	are	robust	381	

to	comparisons	between	samples	that	potentially	vary	in	tissue	composition	(Harrison,	et	al.	382	

2015;	Montgomery	and	Mank	2016).	Gene	Ontology	terms	for	sex-biased	genes	in	the	383	

different	expression	level	quartiles	are	presented	in	Table	S2.	384	

	385	

Rates	of	evolution	386	

In	order	to	test	the	power	of	sperm	competition	to	shape	gene	sequence	evolution	we	387	

compared	rates	of	evolution	and	population-level	polymorphism	across	sex-biased	and	388	

unbiased	genes.	As	observed	in	many	other	animals	(Ellegren	and	Parsch	2007),	male-biased	389	

gonadal	genes	showed	higher	rates	of	gene	sequence	evolution	than	unbiased	genes,	driven	390	

by	both	an	increase	in	dN	and	a	decrease	in	dS	(Table	1).	Interestingly,	female-biased	genes	391	

in	our	wrasse	data	also	showed	significantly	higher	rates	of	sequence	evolution,	again	driven	392	

by	both	an	increase	in	dN	and	a	decrease	in	dS	(Table	1).		McDonald-Kreitman	(MK)	tests	393	

(McDonald	and	Kreitman	1991)	revealed	a	higher	proportion	of	male-biased	genes	with	394	

signatures	of	positive	selection	than	unbiased	genes	(Table	2),	indicating	adaptive	evolution	395	

explains	at	least	some	of	the	elevated	rate	of	evolution	for	male-biased	genes.	However,	396	

only	five	female-biased	genes	showed	significant	evidence	of	positive	selection	with	397	

McDonald-Kreitman	tests,	which	was	not	significantly	different	from	the	level	observed	for	398	

unbiased	genes.	We	also	tested	morph-biased	genes	for	differences	in	rates	of	evolution	399	

and	standing	variation.	Although	the	small	number	of	morph-biased	genes	results	in	low	400	
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statistical	power	(Tables	S3	and	S4),	nesting-male	biased	genes	do	show	a	marginally	401	

significant	elevated	rate	of	evolution	compared	to	male-biased	genes	(Table	S3),	consistent	402	

with	previous	work	in	the	bulb	mite	and	pea	aphid	(Stuglik	et	al	2014,	Purandare	et	al	2014).	403	

Our	analysis	of	standing	polymorphism	suggests	that	this	fast	rate	of	evolution	may	be	due	404	

in	part	to	drift	(Table	S4).	405	

To	test	whether	male-biased	genes	under	positive	selection	have	highest	expression	in	406	

morphs	subject	to	strong	post-mating	sexual	selection,	we	expanded	our	group	of	genes	407	

under	putative	positive	selection	by	using	the	Direction	of	Selection	(DoS)	test	(Stoletzki	and	408	

Eyre-Walker	2011),	which	is	more	permissive	than	the	MK	test.	Satellite	males	express	male-409	

biased	genes	with	DoS	>	0	(indicative	of	putative	positive	selection)	at	higher	levels	than	410	

nesting	males	(Fig.	6).	Male-biased	genes	under	putative	positive	selection	also	tend	to	be	411	

more	highly	expressed	(Fig.	S4A)	but	tend	to	be	less	male-biased	in	their	expression	(Fig.	412	

S4B)	than	genes	under	relaxed	constraint.	413	

	414	

DISCUSSION		415	

Here	we	report	patterns	of	regulatory	and	sequence	evolution	in	the	gonad	transcriptome	416	

of	wild	caught	ocellated	wrasse,	a	species	with	three	male	morphs	which	experiences	417	

particularly	high	levels	of	sperm	competition	and	a	continuum	of	pre-	and	post-mating	418	

sexual	selection	(Alonzo	and	Warner	2000b;	Alonzo	and	Heckman	2010).	Previous	work	in	419	

this	system	has	revealed	somatic	variation	in	gene	expression	among	the	male	morphs	that	420	

may	be	important	in	pre-mating	sexual	selection	(Stiver,	et	al.	2015).	Here	we	focus	on	the	421	

consequences	of	post-mating	sexual	selection	on	transcriptome	evolution	in	the	gonads.	422	
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	423	

Gene	expression	and	sexual	selection	424	

The	design	of	our	study	makes	it	possible	to	compare	both	inter	and	intra-sexual	425	

transcriptional	variation	to	explore	how	post-mating	sexual	selection	shapes	the	gonadal	426	

transcriptome	and	drives	gene	sequence	evolution.	Previous	work	on	somatic	tissues	427	

showed	equal	or	greater	intra-sexual	than	inter-sexual	differences	in	transcription	(Snell-428	

Rood,	et	al.	2011;	Schunter,	et	al.	2014).	This	is	in	clear	contrast	to	our	results	here	(Fig.	1)	429	

and	our	previous	work	on	male	morphs	in	wild	turkeys	(Pointer,	et	al.	2013),	which	show	the	430	

greatest	difference	is	first	by	sex,	then	within	sex	by	morph.		This	may	reflect	fundamental	431	

differences	between	somatic	and	gonad	transcriptional	variation,	as	somatic	tissues	in	432	

general	tend	to	show	far	less	inter-sexual	variation	than	the	gonad	(Pointer,	et	al.	2013;	433	

Harrison,	et	al.	2015),	in	the	latter	case	resulting	from	the	profound	functional	and	434	

physiological	differences	in	producing	and	delivering	male	versus	female	gametes.	435	

Relatively	few	genes	showed	significant	expression	differences	among	male	morphs,	436	

however	average	expression	across	male-	and	female-biased	gene	categories	was	similar	to	437	

previous	studies	in	birds	(Pointer,	et	al.	2013),	and	mites	(Stuglik,	et	al.	2014).	Previous	work	438	

has	suggested	that	sex-biased	genes	shift	expression	in	response	to	sexual	selection	(Hollis,	439	

et	al.	2014;	Immonen,	et	al.	2014)	and	are	correlated	with	the	magnitude	of	male	sexually	440	

selected	traits	(Pointer,	et	al.	2013).	Based	on	this,	we	might	expect	territorial	males	in	S.	441	

ocellatus	to	show	greater	male-biased	expression.	However,	we	observed	the	opposite,	and	442	

territorial	males	instead	exhibit	significant	feminization	of	expression	for	female-biased	443	

genes.	Although	models	of	gene	expression	evolution	have	yet	to	be	validated,	the	high	444	

variance	exhibited	across	replicates	suggests	that	expression	of	female-biased	genes	is	445	
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unlikely	to	be	the	result	of	positive	selection	in	territorial	males.	High	expression	variance	in	446	

female-biased	genes,	coupled	with	the	high	investment	nesting	males	make	in	somatic	traits	447	

(Alonzo	2008;	Alonzo	and	Heckman	2010;	Alonzo	and	Warner	2000a;	Stiver	et	al	2015),	is	448	

consistent	with	a	trade-off	between	maintaining	costly	pre-mating	sexually	selected	traits	449	

and	the	constraints	of	post-mating	sexual	selection	shaping	gene	expression	in	the	gonad.			450	

In	contrast	to	territorial	males,	satellite	males	showed	the	highest	expression	level	for	male-451	

biased	genes,	consistent	with	the	greater	transcriptional	investment	in	genes	likely	to	be	452	

important	in	post-mating	sexual	selection	compared	to	nesting	males.	Satellites	also	showed	453	

significantly	less	variation	in	expression	for	both	male-	and	female-biased	genes,	consistent	454	

with	positive	selection	under	recent	models	of	gene	expression	evolution	(Moghadam,	et	al.	455	

2012;	Romero,	et	al.	2012;	Dean,	et	al.	2015).	Satellite	males	also	have	the	largest	absolute	456	

gonad	mass	out	of	the	three	morphs	(Alonzo	&	Stiver	unpublished	data),	illustrating	457	

concordance	between	male-biased	gene	expression	and	absolute	gonadal	mass.	These	458	

results	are	consistent	with	the	possibility	that,	freed	from	the	costs	of	pre-mating	somatic	459	

sexually	selected	traits,	satellite	males	are	able	to	invest	more	in	post-mating	sexually	460	

selected	gene	expression	patterns	that	may	aid	them	in	sperm	competition.	This	is	461	

somewhat	at	odds	with	results	from	the	wild	turkey,	where	subordinate	males,	which	are	462	

analogous	in	many	ways	to	satellite	males	in	the	wrasse,	show	reduced	expression	of	male-463	

biased	genes	(Pointer,	et	al.	2013).	However,	it	is	worth	noting	that	subordinate	male	464	

turkeys	are	effectively	non-reproductive	(Krakauer	2005,	2008),	and	therefore	do	not	465	

experience	sperm	competition.		466	

Sneaker	males	show	defeminization	of	female-biased	genes	demasculinization	of	male-467	

biased	expression	and	high	variance,	indicating	no	directional	selection	and	suggesting	that	468	
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they	are	simply	lower	quality	on	average	than	the	other	morphs.	This	is	consistent	with	the	469	

life	history	trajectory	of	sneaker	males,	which	tend	to	be	the	males	with	slowest	early	470	

growth	rate	(Alonzo,	et	al.	2000).	Small	males	typically	breed	as	1	year	old	sneaker	males,	471	

then	go	on	to	become	2	year	old	satellite	males,	never	becoming	nesting	males,	while	larger	472	

males	become	satellites	as	1	year	olds	then	nesting	males	as	2	year	olds	(Alonzo	et	al.	2000).	473	

Though,	sneaker	males	release	the	most	sperm	per	spawn	out	of	all	three	morphs	(Alonzo	474	

and	Warner	2000a),	they	also	generate	the	least	total	sperm	(across	successive	mating	475	

attempts)	and	have	the	lowest	average	individual	mating	success	and	paternity	of	all	three	476	

morphs	(Alonzo	and	Warner	2000b;	Alonzo	et	al.	in	prep).	Therefore,	demasculinization	and	477	

high	variance	of	male-biased	gene	expression	may	reflect	the	low	overall	male	quality	of	478	

sneaker	males.	479	

Alternative	mating	tactics	are	common	in	fish,	and	appear	to	have	evolved	many	times	480	

independently	(Mank	and	Avise	2006).	Given	the	repeated	origin	of	these	phenotypes,	it	will	481	

be	interesting	for	future	studies	to	determine	whether	our	observed	patterns	of	gonadal	482	

gene	expression	differentiation	among	morphs	are	conserved	among	systems	with	similar	483	

mating	systems.		484	

Sperm	competition	and	sequence	evolution	485	

Our	results	are	somewhat	unusual	compared	to	previous	studies	in	animals	in	that	both	486	

male-	and	female-biased	genes	show	elevated	rates	of	sequence	evolution.	This	was	due	to	487	

elevated	dN	and	a	reduced	dS	in	both	male-	and	female-biased	genes,	and	suggests	that	488	

sexual	selection	alone,	which	in	this	species	would	act	more	forcefully	on	males,	cannot	489	

explain	elevated	rates	of	evolution	observed	in	both	sexes.	Although	female-biased	genes	490	

have	been	observed	to	evolve	more	rapidly	in	a	yeast	(Whittle	and	Johannesson	2013),	and	491	
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both	male-	and	female-biased	genes	exhibit	faster	rates	of	evolution	in	an	alga	(Lipinska,	et	492	

al.	2015),	expression	studies	in	adult	animals	have	tended	to	show	faster	rates	of	evolution	493	

primarily	in	male-biased	genes	(Ellegren	and	Parsch	2007).	It	is	not	clear	at	this	point	494	

whether	our	results	represent	a	species-specific	pattern,	or	are	exhibited	by	other	species	495	

with	similar	mating	systems.	We	also	note	that	the	contigs	we	removed	from	the	dN/dS	496	

analysis	due	to	mutational	saturation	could	also	have	been	the	most	rapidly	evolving	genes,	497	

causing	an	overall	underestimation	of	divergence.	498	

	499	

Interestingly,	recent	work	in	birds	(Harrison,	et	al.	2015)	and	humans	(Gershoni	and	500	

Pietrokovski	2014)	have	suggested	that	fast	rates	of	evolution	for	male-biased	genes	might	501	

be	due	to	relaxed	constraint	rather	than	positive	selection,	and	this	is	consistent	with	502	

studies	in	insects	showing	relaxed	constraint	characterizes	caste-biased	genes	(Hunt,	et	al.	503	

2011).	In	contrast,	our	results	show	that	male-biased	genes	have	a	higher	proportion	of	loci	504	

showing	evidence	of	positive	selection,	suggesting	that	at	least	some	of	the	acceleration	in	505	

rates	of	evolution	for	male-biased	genes	is	due	to	adaptive	evolution.	This	may	be	due	to	506	

the	intense	level	of	sperm	competition	experienced	by	males	of	these	species	(Alonzo	and	507	

Heckman	2010)	and	the	resulting	strength	of	post-mating	sexual	selection	among	508	

alternative	male	types.	Extended	haploid	selection	due	to	external	fertilization	may	also	509	

explain	our	results.		510	

In	summary,	the	alternative	mating	strategies	of	S.	ocellatus	make	it	possible	to	isolate	the	511	

complex	effects	of	post-mating	sexual	selection	on	gonadal	genome	evolution.	Our	results	512	

reveal	the	potential	for	post-mating	sexual	selection	to	masculinize	the	transcriptome	and	513	

drive	adaptive	evolution	of	male-biased	genes.		514	
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TABLES	707	

Table	1.	Rates	of	evolution	(dN/dS)	for	sex	biased	genes.	Values	for	sex-biased	gene	708	
categories	that	are	significantly	different	from	unbiased	genes	are	in	bold.	709	

Expression	
class	

Total	
contigs	

Orthologsa	 Filter
b	

dN	
(95%	CI)	

significancec	

dS	
(95%	CI)	

significancec	

dN/dS	
(95%	CI)	

significancec	
Male-
biased	
	

2590	 1567	 1435	 0.022	
(0.021-0.023)	
P	<	0.0001	

0.344	
(0.337-0.351)	
P	<	0.0001		

0.064	
(0.061-0.067)	
P	<	0.0001	

		
Female-
biased	
	

2858	 1603	 1481	 0.023	
(0.022-0.024)	
P	<	0.0001	

0.347	
(0.342-0.353)	
P	=	0.024	

0.066	
(0.063-0.068)	
P	<	0.0001	

	
Unbiased	 3458	 2175	 1996	 0.021	

(0.020-0.021)	
0.351	

(0.345-0.356)	
0.059	

(0.057-0.061)	
aNumber	of	contigs	that	are	1:1:1	orthologs	with	X.	maculatus	and	G.	aculeatus.	710	
bNumber	of	1:1:1	orthologs	after	filtering.	711	
cSignificance	based	on	2-tailed	permutations	tests	(1000	replicates),	compared	to	unbiased	712	
genes	713	
	714	
	715	

	716	

Table	2.	McDonald-Kreitman	tests	for	selection	717	

Expression	class	 Contigsa		 Positive	selectionb	

(significance)	
Male-biased	
	

425	 19	

(P	=	0.0056)	
	

Female-biased	
	

231	 5	
n.s	
	

Unbiased	 623	 9	
aNumber	of	1:1:1	orthologs	after	filtering.	718	
bNumber	of	contigs	with	significant	positive	selection	(significant	deviations	in	DN,	DS,	PN	and	719	
PS,	and	DN/DS	>	PN/PS).	P	values	from	Fisher’s	Exact	test	compare	sex-biased	to	unbiased	720	
genes.	721	
	722	

	723	

	 	724	
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FIGURES	725	

726	
Figure	1.	The	ocellated	wrasse	(Symphodus	ocellatus)	has	three	male	morphs.	Brightly	727	
coloured	nesting	males	(top	left)	hold	territories	and	females	(bottom	left)	prefer	to	mate	728	
with	nesting	males.	Satellites	associate	(bottom	right)	with	nesting	males	and	help	defend	729	
the	nest	by	chasing	away	sneakers	(top	right).	Illustration	credit:	Clara	Lacy.	 	730	
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	731	

	732	

	733	

Figure	2.	Hierarchical	clustering	and	heat	maps	based	on	average	within-morph	expression	734	
for	females	(FEM),	nesting	males	(NM),	satellite	males	(SAT)	and	sneaker	males	(SN)	for	(A)	735	
female-biased	genes	(n	=	2,858)	and	(B)	male-biased	genes	(n	=	2,590).	Confidence	intervals	736	
for	hierarchical	clustering	are	based	on	1000	bootstrap	replicates,	and	branches	with	<80%	737	
support	have	been	collapsed.	738	

	 	739	



	 32	

	740	

	741	

Figure	3.	Factor	analysis	of	three	male	morphs	based	on	normalized	RPKM	values	for	all	742	
expressed	contigs.		Nesting	males	are	identified	with	circles	and	a	black	ellipse,	satellite	743	
males	with	triangles	and	a	dark	grey	ellipse,	and	sneaker	males	with	squares	and	a	light	grey	744	
ellipse.	745	

	746	

	747	

	748	
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	749	

Figure	4.	Gene	expression	for	each	of	the	morphs	for	(A)	female-biased	genes	and	(B)	male-750	
biased	genes.	Data	is	divided	into	quartiles	based	upon	expression	level	in	females	for	panel	751	
(A)	and	males	for	panel	(B).	Red	=	females	(FEM),	dark	blue	=	nesting	males	(NM),	light	blue	752	
=	satellite	males	(SAT)	and	white	=	sneaker	males	(SN).		Significance	is	indicated	based	on	753	
Wilcoxon	rank	sum	tests	(*	=	p	<	0.05,	**	=	p	<	0.01,	***	=	p	<	0.001).	754	

	755	

	756	

	757	

	758	
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	759	

Figure	5.	Gene	expression	variance	for	each	of	the	morphs	for	(A)	female-biased	genes	and	760	
(B)	male-biased	genes.	Data	is	divided	into	quartiles	based	upon	expression	level	in	females	761	
for	panel	(A)	and	males	for	panel	(B).	Red	=	females,	dark	blue	=	nesting	males,	light	blue	=	762	
satellite	males	and	white	=	sneaker	males.		Significance	is	indicated	based	on	Wilcoxon	rank	763	
sum	tests	(*	=	p	<	0.05,	**	=	p	<	0.01,	***	=	p	<	0.001).	764	

	765	

	766	

	767	

	768	

	769	
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	770	

Figure	6.	Male-biased	gene	expression	for	genes	under	putative	positive	selection	for	each	771	
of	the	morphs.	Red	=	females,	dark	blue	=	nesting	males,	light	blue	=	satellite	males	and	772	
white	=	sneaker	males.	Significance	is	indicated	based	on	Wilcoxon	rank	sum	tests	(*	=	p	<	773	
0.05,	**	=	p	<	0.01,	***	=	p	<	0.001).	774	
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Table	S1.	RNA	quality	scores	and	raw	and	post-trimming	read	counts	per	sample	

	 	 RNA	quality	 Read	number	 	
Morph	 Sample	 260/280		 260/230	 Raw	paired	

reads	
Paired	reads	
after	trimming	

%	retained	

Female	 14003	 2.09	 2.32	 32,912,641	 30,062,449	 91.4	
	 14007	 2.11	 1.70	 26,425,448	 24,203,325	 91.6	
	 14012	 2.09	 2.28	 28,318,371	 26,370,307	 93.1	
	 14013	 2.10	 2.30	 26,683,758	 25,049,998	 93.9	
	 14016	 2.10	 2.30	 36,207,483	 33,893,881	 93.6	
	 14018	 2.12	 2.33	 29,186,747	 27,638,121	 94.7	
	 14019	 2.09	 2.32	 33,958,247	 31,701,901	 93.4	
Nesting	male	 14004	 2.08	 2.24	 32,343,023	 30,122,757	 93.1	
	 14008	 2.13	 2.26	 32,060,846	 29,487,537	 92.0	
	 14011	 2.10	 2.21	 27,493,908	 25,817,118	 93.9	
	 14021	 2.11	 1.69	 32,753,374	 30,686,654	 93.7	
Satellite	 14002	 2.10	 2.26	 31,681,769	 29,615,187	 93.5	
	 14006	 2.09	 2.28	 31,704,381	 29,925,131	 94.4	
	 14009	 2.09	 1.96	 30,237,815	 28,125,718	 93.0	
	 14015	 2.10	 2.26	 33,690,970	 31,635,100	 93.9	
	 14022	 2.07	 1.67	 31,521,712	 29,784,095	 94.5	
Sneaker	 14001	 2.10	 2.10	 31,262,426	 29,109,185	 93.1	
	 14005	 2.14	 2.06	 30,852,163	 28,750,108	 93.2	
	 14010	 2.10	 2.28	 31,366,093	 29,394,148	 93.7	
	 14014	 2.11	 1.95	 33,214,909	 31,279,877	 94.2	
	

	

	
	 	



Table	S2.	Functionally	enriched	Gene	ontology	terms	for	sex-biased	genes	in	each	
expression	quartile	compared	to	background	all	genes	(FDR	<	0.05)	

GO	term	 Description	 Sex	bias	 Expression	
quartile	

p-value	
(FDR)	

0004872	 Receptor	activity	 Female-biased	 1st	 0.0002	

0060089	 Molecular	transducer	
activity	

Female-biased	 1st	 0.0001	

0005102	 Receptor	binding	 Female-biased	 1st	 0.002	

0038023	 Signalling	receptor	activity	 Female-biased	 1st	 0.002	

0004888	 Transmembrane	signalling	
receptor	activity	

Female-biased	 1st	 0.001	

0099600	 Transmembrane	receptor	
activity	

Female-biased	 1st	 0.001	

0004871	 Signal	transducer	activity	 Female-biased	 1st	 0.006	

0043565	 Sequence-specific	DNA	
binding	

Female-biased	 1st	 0.018	

0005506	 Iron	ion	binding	 Female-biased	 4th	 0.008	

0003777	 Microtubule	motor	activity	 Male-biased	 4th	 0.08	

	

	

	 	



Table	S3.	Rates	of	evolution	(dN/dS)	for	morph-biased	contigs.		

Expression		
class	

Total	
contigs	

Orthologs
a	

Filterb	 dN	

(95%	CI)	
significancec	

dS	

(95%	CI)	
significancec	

dN/dS	
(95%	CI)	

significancec	

Nesting	
male-biased	

	

41	 18	 17	 0.031	
(0.025-0.038)	

n.s.	

0.332	
(0.296-0.374)	

n.s.		

0.094	
(0.074-0.117)	
P	=	0.044	

	
Satellite	

male-biased	
	

11	 3	 2	 0.007	
(0.003-0.008)	

n.s	

0.287	
(0.278-0.292)	

n.s.	

0.023	
(0.012-0.029)	

n.s	
	

Sneaker	
male-biased	

	

9	 6	 6	 0.036	
(0.023-0.041)	

n.s	

0.330	
(0.244-0.413)	

	n.s	

0.110	
(0.082-0.137)	

n.s	
aNumber	of	contigs	that	are	1:1:1	orthologs	with	X.	maculatus	and	G.	aculeatus.	
bNumber	of	1:1:1	orthologs	after	filtering	
cP-values	from	permutations	tests,	1,000	replicates,	comparing	morph-biased	genes	
to	male-biased	genes	
	

	

Table	S4.	Polymorphism	(pN/pS)	for	morph-biased	contigs.		

Expression	class	 Contigs	SNPsa	 pN	 pS	 pN/pS	
Nesting	male-

biased	
	

15	 12	 24	 0.5	
P	=	0.0008	

	
Satellite	male-

biased	
	

2	 0	 17	 0	
P	=	0.2525	

	
Sneaker	male-

biased	
	

5	 7	 14	 0.5	
P	=	0.0097	

	
Male-biased	

	
1326	 901	 6530	 0.14	

	
P	values	from	Fisher’s	exact	tests	between	morph-biased	genes	and	male-biased	
genes.	

	

	 	



	

Figure	S1.	Flowchart	of	the	number	of	contigs	present	at	each	stage	of	the	filtering	to	
produce	a	dataset	for	the	expression	analysis,	a	dataset	for	the	PAML	analysis	and	a	
dataset	for	the	McDonald-Kreitman	(MK)	test.	
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Figure	S2.	Gene	expression	for	each	of	the	morphs	for	(A)	female-biased	genes	
and	(B)	male-biased	genes	using	a	4-fold	threshold	difference	in	expression	
between	males	and	females.	Data	is	divided	into	quartiles	based	upon	expression	
level	in	females	for	panel	(A)	and	males	for	panel	(B).	Red	=	females,	dark	blue	=	
nesting	males,	light	blue	=	satellite	males	and	white	=	sneaker	males.	Significance	
is	indicated	based	on	Wilcoxon	tests	(*	=	p	<	0.05,	**	=	p	<	0.01,	***	=	p	<	0.001).	
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Figure	S3.	Gene	expression	variance	for	each	of	the	morphs	for	(A)	female-biased	
genes	and	(B)	male-biased	genes	using	a	4-fold	threshold	difference	in	
expression	between	males	and	females.	Data	is	divided	into	quartiles	based	upon	
expression	level	in	females	for	panel	(A)	and	males	for	panel	(B).	Red	=	females,	
dark	blue	=	nesting	males,	light	blue	=	satellite	males	and	white	=	sneaker	males.		
Significance	is	indicated	based	on	Wilcoxon	tests	(*	=	p	<	0.05,	**	=	p	<	0.01,	***	=	
p	<	0.001).	
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Figure	S4	(A)	Gene	expression	level	and	(B)	sex-biased	expression	of	male-biased	
genes	under	putative	positive	selection	(DoS	>	0,	light	grey)	and	under	relaxed	
constraint	(DoS	<	0,	dark	grey).	Boxes	represent	medians	and	first	and	third	quartiles	
and	notches	represent	approximate	95%	confidence	intervals.	Wilcoxon	tests	
comparing	the	two	gene	classes	*	P	<	0.05,	***P	<	0.001.	
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Supplementary	methods	

Trim	RNA-seq	data	
Trimmomatic	v0.32	
	
java	-jar	trimmomatic-0.32.jar	PE	-phred	33	forward.fastq	reverse.fastq	
forward_paired.fastq.gz	forward_unpaired.fastq.gz	reverse_paired.fastq.gz	
reverse_unpaired.fastq.gz	ILLUMINACLIP:adaptors.fa:2:30:10	LEADING:3	TRAILING:3	
SLIDINGWINDOW:4:15	MINLEN:36	

De	novo	transcriptome	assembly	
Trinity	v2.0.2	
	
Trinity	--seqType	fq	--max_memory	10G	--left	forward.fastq	--right	reverse.fastq	--
CPU	12	--normalize_reads	--output	trinity_output_directory	--bflyHeapSpaceMax	
16G	

Map	RNA-seq	data	and	quantify	expression	for	expression	analysis	
RSEM	v1.2.19	and	Bowtie2	v2.2.4	
	
extract-transcript-to-gene-map-from-trinity	reference.fa	
Trinity_transcript_gene_map	

rsem-prepare-reference	--bowtie2	--transcript-to-gene-map	
Trinity_transcript_gene_map	reference.fa	Trinity_reference	

For	each	sample:	

rsem-calculate-expression	-p	12	--bowtie2	--paired-end	Sample1_forward.fastq	
Sample1_reverse.fastq	Trinity_reference	Sample1	

These	exact	steps	were	repeated	on	the	final	set	of	best	isoforms	chosen	on	the	
basis	of	contig	expression	and	length.	

Map	RNA-seq	data	for	polymorphism	analysis	
STAR	v2.4.2a	
	
STAR	--runMode	genomeGenerate	--genomeDir	indexdirectory1	--genomeFastaFiles	
reference.fa	--runThreadN	--limitGenomeGenerateRAM	

For	each	sample:	

STAR	--genomeDir	indexdirectory1	--readFilesIn	forward.fastq	reverse.fastq	--
runThreadN	--outFilterMultimapNmax	1	

Run	second	index,	include	SJ.out.tab.Pass1.sjdb	for	samples	1	to	n:	

	



STAR	--runMode	genomeGenerate	--genomeDir	indexdirectory2/	--genomeFastaFiles	
reference.fa	--sjdbFileChrStartEnd	Sample1/SJ.out.tab.Pass1.sjdb	
Sample2/SJ.out.tab.Pass1.sjdb	/Sample-n/SJ.out.tab.Pass1.sjdb	--sjdbOverhang	99	--
runThreadN	4	--limitGenomeGenerateRAM	800000000000	

STAR	--genomeDir	indexdirectory2	--readFilesIn	forward.fastq	reverse.fastq	--
runThreadN	--outFilterMultimapNmax	1	

Identify	SNPs	
SAMTOOLS	v0.1.19	and	VARSCAN2	v2.3.9	
	
samtools	faidx	reference.fa	

For	each	sample:	

samtools	view	-bS	file.sam	|	samtools	sort	-	file_sorted	

samtools	mpileup	-Bd	10000000	-f	reference.fa	sample1_sorted.bam	
sample2_sorted.bam	...	>	allsamples.mpileup	

varscan	mpileup2snp	allsamples.mpileup.vcf	--min-coverage	2	--min-reads2	2	--min-
avg-qual	20	--min-var-freq	0.01	--min-freq-for-hom	0.85	--p-value	1	--strand-filter	1	--
output-vcf	1	--vcf-sample-list	vcf-sample-list.txt	>	allsamples.mpileup2snp.vcf	

Sequence	divergence	analysis	
PRANK	v140603	and	SWAMP	v.09	and	PAML	v4.8	
	
python	SWAMP.py	-i	input_folder	-	branchcodes_all.txt	-m	100	-t	7	-w	15	>	
swampoutput	

	

	


	Dean et al 2016 Final
	Dean et al 2016 Supporting Info-Final

