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Abstract 

The process of drug discovery and development over the last 30 years has been 
increasingly shaped by formulaic approaches and natural products – integral to 
the drug discovery process and widely recognized as the most successful class of 
drug leads – have significantly been deprioritized by a struggling worldwide 
pharmaceutical industry. Alkaloids - historically the most important superclass of 
medically important secondary metabolites - have been used worldwide as a 
source of remedies to treat a wide variety of illnesses yet, there exists a wide 
discrepancy between their historical and modern significances.  
 
To understand these trends from an insider‘s perspective, 52 senior-stakeholders 
in industry and academia were engaged to provide insights on a series of 
qualitative and quantitative aspects related to developments in the process of 
drug discovery from natural products. Stakeholders highlighted the dissonance 
between the perceived high potential of natural products as drug leads and overall 
industry and company level strategies. Many industry contacts were highly critical 
to prevalent company and industry-wide drug discovery strategies indicating a 
high level of dissatisfaction within the industry. One promising strategy which 
respondents highlighted was virtual screening which, to a large extent has not 
been explored in natural products research strategies. 
 
Furthermore, the physicochemical features of 27,783 alkaloids from the Dictionary 
of Natural Products were cross-referenced to pharmacologically significant and 
other metrics from various databases including the European Bioinformatics 
Institute‘s ChEMBL and Global Biodiversity Information Facility‘s GBIF biodiversity 
data. The combined dataset revealed that a compound's likelihood of medicinal 
use can be linked to its host species‘ abundance and was input into target-
independent machine learning algorithms to predict likelihood of pharmaceutical 
use. The neural network model demonstrated an accuracy of >57% for all 
pharmaceutical alkaloids and 98% of all alkaloids.  
 
This study is the first to incorporate the biodiversity of host organisms in a 
machine learning scheme characterizing druglikeness and thus demonstrates the 
link between host species‘ abundance and druglikeness. These findings yield new 
insights into cost-effective, real-world indicators of drug development potential 
across the diverse field of natural products. 
 
 
 
 
 
 
 



 4 

Acknowledgements 

This doctoral thesis would not have been possible without the support of many 
people.  

Firstly, I wish to express my gratitude to my primary supervisor Professor Michael 
Heinrich, who was generously, abundantly, and consistently encouraging and 
offered irreplaceable guidance throughout the course of this research. There is no 
doubt that this research could not be completed without his constant and wise 
encouragement (often in the form gentle nudges to stretch my intellectual 
capacities each of the many times we encountered awkward pauses during our 
discussions). I also wish to express my gratitude to my secondary supervisor Dr 
Jose M. Prieto whose scientific proficiency and high standard of excellence has 
propelled this research forward in an invaluable way; he is a rising star in the field 
of pharmacognosy. 

Furthermore, I wish to thank my classmates and colleagues at UCL which have 
provided a highly enriching experience during my studies and upheld the UCL 
value of ‗collegiality and community-building‘ throughout the years. Outside the 
UCL community, I must acknowledge the encouragement from a wide range of 
acquaintances over the years; many of which are scattered across the globe 
working to enrich the collective life of society.  

Moreover, I am deeply appreciative of the loyal support from a smaller circle of 
true friends who have stood shoulder-to-shoulder with me throughout various 
developments and exemplified excellence in various aspects of life. 

Lastly, I would like to thank my parents whom been unconditionally supportive and 
infinitely trusting throughout the successive stages of my life. The profound 
friendship and deep spiritual bond we have nurtured, has, and will continue to 
guide my life. This research could not be possible if my father did not enable me 
‗to receive training at school and to be instructed in such arts and sciences as are 
deemed useful and necessary‘ and my mother had not always strived create 
‗conditions as would be most conducive to both [my] material and spiritual welfare 
and advancement‘.  

 

 



 5 

Publications Resulting from the Thesis 

Journal articles: 

1. Amirkia, V., & Heinrich, M. (2014). Alkaloids as drug leads– A predictive 
structural and biodiversity-based analysis. Phytochemistry Letters, 10, 
xlviii-liii. 
 

2. Amirkia, V., & Heinrich, M. (2015). Natural products and drug discovery: a 
survey of stakeholders in industry and academia. Frontiers in 
Pharmacology, 6. 
 

3. Amirkia, V., & Heinrich, M. (2016). Machine learning ‗drug-likeness‘ in pure 
alkaloids (Unpublished Manuscript) 

 

Conference proceedings: 

1. Amirkia, V., & Heinrich, M. (2014) Alakaloids as drug leads- A predictive 
structural and biodiversity-based analysis. Poster presentation. 13th 
Meeting of Consortium for Globalization of Chinese Medicine (CGCM). 27-
29 August 2014, Beijing, China. 
 

2. Amirkia, V., & Heinrich, M. (2014) Alakaloids as drug leads- A predictive 
structural and biodiversity-based analysis. Poster presentation. 62nd 
International Congress and Annual Meeting of the Society for Medicinal 
Plant and Natural Product Research (GA). 31 August–4 September 2014, 
Guimaraes, Portugal. 
 

3. Amirkia, V., & Heinrich, M. (2015) Natural product development: current 
industry and academia insights. Oral presentation. APS PharmSci 2015 – 
The Science of Medicines.  7–9 September 2015, Nottingham, UK. 

 

 

 

 

 

 

 



 6 

Table of Contents 

Abstract ......................................................................................................... 3 

Acknowledgements ...................................................................................... 4 

Publications Resulting from the Thesis ...................................................... 5 

Table of Figures ............................................................................................ 8 

Table of Tables ............................................................................................ 10 

List of Abbreviations .................................................................................. 12 

1. General introduction ................................................................................ 15 

1.1. Defining the field of natural products ...................................................15 

1.1.1. Humans, nature, and natural products ................................................. 15 

1.1.2. Classifying natural products ................................................................. 18 

1.2. Significance in modern pharmaceutics ................................................20 

1.3. Evolving attitudes towards their use as drugs ......................................23 

1.4. Objectives ...........................................................................................28 

2. Strategies, challenges and perceptions in modern drug discovery ..... 30 

2.1. Prevalent trends – a review of the literature.........................................30 

2.1.1. Macro trends: Industry ......................................................................... 30 

2.1.2. Micro trends: Industry and academia ................................................... 38 

2.1.3. Rise and fall of interest/funding/etc. of natural products ....................... 46 

2.2. A study into perceptions of natural products: industry and academia ..54 

2.2.1. Results from insider perspectives ........................................................ 54 

2.2.2. Perceived ‗hit rates‘ by compound class .............................................. 63 

2.3. Insights derived from the survey: .........................................................66 

2.3.1. Can cost-effectiveness and natural products research coexist? ........... 66 

2.3.2. Efforts to augment supply of natural products ...................................... 69 

3. Alkaloids as a historical and modern source of medicines .................. 75 

3.1. History of alkaloids ..............................................................................75 

3.1.1. Discovery and isolation ........................................................................ 75 

3.1.2. Definition and distribution ..................................................................... 76 

3.1.3. Use as non-medicines ......................................................................... 78 

3.2. Alkaloids in modern medicine ..............................................................80 

3.3. Methods and datasets used ................................................................83 



 7 

3.3.1. Dictionary of Natural Products ............................................................. 83 

3.3.2. Chemical and physical data inputs - EMBL-EBI ................................... 84 

3.3.3. Dataset combination ............................................................................ 86 

3.4. Alkaloid specific rules of thumb ...........................................................95 

3.5. Alkaloids which have failed to enter modern medicine ....................... 102 

4. Machine learning and drug discovery processes ................................ 106 

4.1. Machine learning efforts in drug discovery efforts – an overview ....... 106 

4.1.1. Virtual screening paradigms in drug discovery ................................... 106 

4.1.2. Examples of machine learning efforts in drug discovery ..................... 107 

4.2. Incorporating biodiversity as a data input .......................................... 111 

4.3. Datasets used and methods .............................................................. 121 

4.3.1. GBIF .................................................................................................. 121 

4.4. Biodiversity as a key criterion of druglikeness ................................... 123 

4.5. Predictive modelling with physical, chemical and biodiversity data .... 125 

4.5.1. Dataset and methods ......................................................................... 125 

4.5.2. Discussion of algorithm outputs ......................................................... 127 

5. Looking ahead to the future of natural products ................................. 138 

5.1. Application to modern drug discovery and screening paradigms ....... 138 

5.2. Future work ....................................................................................... 139 

References ................................................................................................. 142 

Appendix .................................................................................................... 155 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 8 

Table of Figures 

Figure 1: Commonly agreed upon classes and sub classes of natural products (Ji 
et al., 2009) .......................................................................................................... 20 

Figure 2: All small-molecule approved drugs by source/year (Newman and Cragg, 
2014). ................................................................................................................... 22 

Figure 3: Percent of approved small-molecule natural product, natural botanical, 
and natural products derived by year, 1981−2014 (Newman and Cragg, 2014). . 22 

Figure 4: R&D spending representative of 37 global pharmaceutical companies 
(PhRMA) .............................................................................................................. 32 

Figure 5: Tufts Center for the Study of Drug Development cost estimates for 
developing a new drug. Estimates in 2016 range from 2.6-2.8 billion USD for the 
full discovery and development of a new molecular entity (NME). ....................... 32 

Figure 6: % Difference in averages of physiochemical properties between 
pharmaceutically significant and insignificant alkaloids ........................................ 89 

Figure 7: Molecular weight (g/mol) and partition coefficient distribution (ACDlog P) 
for pharmaceutical/non-pharmaceutical alkaloids (n=2,015) ................................ 91 

Figure 8: Molecular weight (g/mol) and PSA (Å2) for pharmaceutical/non-
pharmaceutical alkaloids (n=2,015) ..................................................................... 92 

Figure 9: Molecular weight (g/mol) and HBD for pharmaceutical/non-
pharmaceutical alkaloids (n=2,015) ..................................................................... 93 

Figure 10: Lutz and Kenakin‘s histograms of HBD (x-axis), Log P (x-axis), MWT 
(y-axis) for the World Drug Index (Lutz and Kenakin, 1999). ............................... 94 

Figure 11: Total alkaloids that pass/fail the Ro3/Ro5 on MWT alone (DNP) and 
pass/fail the Ro3/Ro5 (ChEMBL) ......................................................................... 96 

Figure 12: Molecular weight (g/mol) and HBA for pharmaceutical/non-
pharmaceutical alkaloids (n=2,015) ..................................................................... 97 

Figure 13: Molecular weight (g/mol) and BpKa for pharmaceutical/non-
pharmaceutical alkaloids (n=2,015) ..................................................................... 98 

Figure 14: Molecular weight (g/mol) and logP for pharmaceutical/non-
pharmaceutical alkaloids (n=2,015) ..................................................................... 99 

Figure 15: Ratio of molecular weight (g/mol) and heavy atom count for 
pharmaceutical/non-pharmaceutical alkaloids (n=2,015) ................................... 100 

Figure 16: Number of total alkaloids (ChEMBL) and number filtered through each 
proposed rule ..................................................................................................... 101 

Figure 17: Overview of commonly used screening strategies in modern drug 
discovery programs with the addition of this thesis‘ proposed ‗biodiversity based 
screening‘ (Guiguemde et al., 2012; Bleicher et al., 2003). ................................ 106 

Figure 18: Schematic of a simple artificial neural network showing three inputs 
feeding into a hidden layer and producing two outputs ...................................... 108 



 9 

Figure 19: Maximum-margin hyper plane and margins for an SVM trained with 
samples from two classes. Samples on the margin are called the support vectors.
 ........................................................................................................................... 109 

Figure 20: Molecular weight (g/mol) and GBIF occurrences .............................. 124 

Figure 21: Summary of correct predictions of pharmaceutical alkaloids vs. relative 
absolute error (RAE) for each algorithm and training method (each dot of the 
same colour represents one training scheme within one algorithm)................... 129 

Figure 22: Summary of correct overall predictions of all alkaloids vs. RAE for each 
algorithm and training method (each dot of the same colour represents one 
training scheme within one algorithm) ................................................................ 130 

Figure 23: Simplified schematic of the random tree model with pharmaceutical 
alkaloids represented in green and non-pharmaceutical alkaloids in red. .......... 131 

Figure 24: The difference in average of each input between correctly and 
incorrectly predicted pharmaceutical alkaloids ................................................... 135 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 10 

Table of Tables 

Table 1: Selection of representative publications on the outlook of natural 
products as drug leads in modern drug discovery programs and their overall levels 
of optimism (based on this author‘s assessment) ................................................ 26 

Table 2: Perceived inherent advantages in natural product development (Knight et 
al., 2003) .............................................................................................................. 27 

Table 3 Perceived inherent challenges in natural product development (Knight et 
al., 2003) .............................................................................................................. 28 

Table 4: Summary of Demirbag‘s findings on the effect of M&A on research 
productivity, ROI and profit margin as compared with existing literature. shows 
that commonly perceived value generation in M&A such as increased research 
productivity, increased ROI, and increased profit margin are not as obvious as 
many perceive (Demirbag et al., 2007) ................................................................ 37 

Table 5: Overview of rules of thumb for druglikeness/lead-likeness ..................... 41 

Table 6: Big/medium pharma companies which ceased bioprospecting between 
2000 and 2013 or were still bioprospecting in 2014 (David, 2014). ...................... 47 

Table 7: Summary of prospecting strategies in natural products and alkaloid 
research (Artuso, 1997) ....................................................................................... 50 

Table 8: Profile of selected respondents (46 of the total 52 respondents) sorted in 
order of received response .................................................................................. 57 

Table 9: Results of the survey including selected close ended and profile 
questions .............................................................................................................. 60 

Table 10: Respondent‘s estimates of how many agents researched commercial 
R&D facilities make it to market as pharmaceutical products (commonly referred 
to as ‗hit rate‘)....................................................................................................... 65 

Table 11 – Dry plant biomass required to perform initial efficacy testing of a 
natural product ..................................................................................................... 67 

Table 12 – Dry plant biomass required to perform initial efficacy testing of a 
natural product and secondary biological assays (toxicology and in vivo 
evaluations) .......................................................................................................... 67 

Table 13 – Dry plant biomass required to perform initial efficacy testing of a 
natural product, secondary biological assays (toxicology and in vivo evaluations), 
and clinical environment testing (clinical trials)..................................................... 68 

Table 14 – Dry plant biomass required to treat an acute condition for 10,000 
patients/year ........................................................................................................ 68 

Table 15: All total syntheses of morphine and morphine derivatives between 1952 
and 2010 (Rinner and Hudlicky, 2011). ................................................................ 70 

Table 16: The biological evaluation of alkaloids from higher plants in NAPRALERT 
(Cordell et al., 2001) ............................................................................................. 81 

Table 17: Some poorly evaluated alkaloid-containing families by genus in 
NAPRALERT (Cordell et al., 2001) ...................................................................... 82 

Table 18: Data types extracted from the DNP ...................................................... 84 



 11 

Table 19: Data Types Extracted from ChEMBL (Ghose et al., 1998; Ertl et al., 
2000) .................................................................................................................... 85 

Table 20: Example of a ‗complete entry‘ in the combined spread sheet .............. 87 

Table 21: Comparison of average of physiochemical properties between 
pharmacologically significant and insignificant alkaloids ...................................... 89 

Table 22: Examples of alkaloids which have failed in the drug development 
pipeline (Fattorusso and Taglialatela-Scafati, 2008; Newman and Cragg, 2004)
 ........................................................................................................................... 103 

Table 23: Selection of representative drug discovery machine learning efforts 
published throughout the years .......................................................................... 111 

Table 24: Commercial and freely available software for prediction of biological 
activity, docking, generation of descriptors and QSAR modelling. Adapted from 
(Lagunin et al., 2014) ......................................................................................... 115 

Table 25: Correct and incorrect predictions of pharmaceutical and non-
pharmaceutical alkaloids using the artificial neural network model .................... 132 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 12 

List of Abbreviations 

 

AA – Amino Acid 

ADME – Absorption, Distribution, Metabolism, and Excretion 

ANN – Artificial Neural Network 

API – Active Pharmaceutical Ingredient 

BBB – Blood–brain Barrier 

CLogP – Calculated Log P  

CNS – Central Nervous System 

DNP – Dictionary of Natural Products 

EBI – European Bioinformatics Institute 

EMBL – European Molecular Biology Laboratory 

GBIF – Global Biodiversity Information Facility 

GI – Gastrointestinal  

HBA – Hydrogen Bond Acceptor 

HBD – Hydrogen Bond Donor 

HTS – High Throughput Screening 

IP – Intellectual Property 

LogD – Distribution Coefficient 

LogP – Partition Coefficient 

M&A – Mergers and Acquisitions 

MWT – Molecular Weight 

NP – Natural Products 

OECD - Organization for Economic Co-operation and Development 

pKa – Acid Disassociation Constant 

PSA – Polar Surface Area 

QSAR - Quantitative Structure Activity Relationship 

RAE – Relative Absolute Error 

R&D – Research and Development 

Ro3 – Rule of Three 

Ro5 – Lipinski Rule of Five 

ROI – Return on Investment 

SAR – Structure-activity Relationships 



 13 

SD – Standard Deviation  

SVM – Support Vector Machine 

TCM – Traditional Chinese Medicine 

Tox – Toxicity 

VS – Virtual Screening 

WoK - Web of Knowledge  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 14 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 15 

1. General introduction 

1.1. Defining the field of natural products 

1.1.1. Humans, nature, and natural products 
 
 

Human relationship with nature has been long and complicated. From the 

beginning of the historical record, geography, time, and culture, have not stopped 

humans from continuously probing and exploring the wide range of natural 

phenomena. The earliest records of human activity often reveal impressive and 

ingenious ‗responses‘ to these natural phenomena and to this day, human life is 

inseparable from the rich tapestry nature offers human existence. Yet, concurrent 

to humans becoming more adept at tapping into the resources inherent to their 

surroundings, they have also, in many cases, come closer to recognizing their 

own limitations in fully understanding scientific phenomena as well as 

understanding the consequences of human activity on nature. 

 

Overwhelming evidence from the historical record suggest that essentially all 

aspects of human life have greatly benefitted through an ever-evolving, ever-

penetrating understanding of the natural world. It very well may be this 

demonstrable, derived benefit across essentially all facets of humanity‘s collective 

life that has fuelled an insatiable thirst for more and what some characterize as 

the ‗pillaging‘ of the world‘s resources with no regard for consequence. 

Nevertheless, many would agree that humans relationship with natural resources 

over the years has not only reaffirmed their value, but have also led to a greater 

collective consciousness on how to more effectively tap into these vast arrays of 

resources to further human civilization. 

 

It could be argued that every knowledge system in existence today is somehow 

connected to or has sought inspiration from products of the natural world; 

collectively and in the broadest sense referred to as ‗natural products‘. 

Contemporary knowledge systems related to industry, commerce and healthcare 

have been intimately and remain connected with the natural world. In the cases of 

healthcare and medically-related scientific advances, nature has served as an 

indispensible platform in facilitating advances in the field. Consistently relied on 
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over thousands of years, healing systems such as Ayurveda and Traditional 

Chinese Medicine (TCM) are a testimony to human‘s salutary dependency on 

nature. These ancient healing systems have not only provided an inestimable 

increase in the standard of life for large populations throughout the centuries, but 

also provided impetus to contemporary research efforts to focus on the vast 

reservoir of natural products.  

 

In the modern day, some researchers studying natural products through a 

Darwinian lens are of the conviction that natural products carry an intrinsic 

superiority to man-made alternatives in the modern world of pharmacology. These 

researchers assert that these products must have added to a plant or organism‘s 

fitness in order to remain as metabolic product after thousands of years of 

selection. Firn and Jones capture this school of thought: 

 
The simplest evolutionary model accounting for natural product diversity 
thus demands that each natural product retained in a population must have 
a value to the producers. Organisms might retain for a short time some 
‗redundant‘ natural products in their chemistry (products whose production 
once enhanced fitness but which no longer do so), but natural selection 
would be expected to continuously prune such dead wood from the thicket. 
Redundant molecules could, of course, take on a new role as precursors of 
new generations of compounds that do enhance fitness (Firn and Jones, 
2003). 

 

 

And thus, if the development of natural products fits an evolutionary model, how 

specifically can their evolution be linked to an organism‘s fitness? In a subsequent 

publication, Firn and Jones (2009) identify five potential outcomes of one or more 

metabolic mutations on a natural product in this evolutionary process:  

 

1. Possess properties that are new and enhance the functioning of 
the cell and hence the organism 

 
2. Possess properties that are new and adversely affect the cell and 

hence the organism 
 
3. Possess properties that are new but have no impact on the 

functioning of the cell or the organism other than the imposed 
metabolic cost of production  
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4. Possess properties that can substitute for an existing, necessary 
property with no impact on the functioning of the cell or the 
organism other than the imposed metabolic cost of production, 
but with the accrual of potential functional redundancy  

 
5. Possess properties that can substitute for an existing, necessary 

property with a negative impact on the functioning of the cell 
hence the organism (via, for example, diversion of substrates) 

 

 

Ji et al. (2009) extend this commentary by linking evolved, inherent ‗advantage‘ 

(referred to as enhanced ‗fitness‘ by Firn and Jones) of a natural product within a 

host species, with potential medicinal or biological advantages in human 

applications: 

 
As these compounds proved to be advantageous, they became a trait on 
which natural selection could act, and were retained and improved 
throughout the course of evolution. Given the similarities between aspects of 
human physiology and that of other animals, it is not surprising that such 
molecules can also exert biological effects in humans. For example, many 
chemicals that plants evolved to defend themselves against herbivores are 
now used as laxatives, emetics, cardiotonics or muscle relaxants in humans. 
In addition, humans have taken advantage of some of the discovered 
properties of natural compounds: those that are able to interact with or 
suppress the growth of bacteria, for example, are now used as antimicrobial 
drugs in medicine. 

 
 
Lastly, it must be noted that increased human involvement with and proficiency in 

tapping into the reservoir of nature‘s resources has, in many cases blurred the line 

between what is truly ‗natural‘ product and what has been synthetically modified 

by chemical and genetic processes or by other selective human interference. This 

point will be explored in subsequent sections of this chapter. At this point, 

recognizing that natural products are seen as a source of latent potential for the 

advancement of various human endeavours and defining them as naturally 

occurring compounds is sufficient. 
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1.1.2. Classifying natural products 
 
 
Classification schemes in any scientific field are complex and the classification of 

natural products is certainly no exception. In the case of biological taxonomy - 

referred to as ‗the world‘s oldest‘ profession - organisms are grouped together 

taxonomically by identifying shared characteristics such as physical/genetic traits 

(often referred to as phylogeny) or by evolutionary relationships (Knapp, 2010). 

These classifications schemes have been and continue to remain hotly debated. 

Typically, these schemes receive impetus and are adjusted concurrent to 

technological advances such as genetic screening or advances in bioinformatics. 

 

Various schemes have been put forth with respect to the classification ofnatural 

products and this thesis will not fully explore the details of all such schemes. Yet, 

one of the earliest and most influential with respect to natural products produced 

by plants, referred to as primary and secondary metabolites, was put forth by a 

German physiological chemist named Albrecht Kössel. Kössel, who as Finn and 

Jones (2009) characterized it, ‗unknowingly initiated a schism when he proposed 

that plants had two distinct types of metabolism, ‗primary‘ and ‗secondary‘‘. 

Primary metabolites at the time were characterized by their commonality among 

all organisms and their role in the basic cellular processes. Before Kössel‘s 

proposition in 1891, these primary metabolites were studied intensely by a wide 

number of chemists and were considered to be of primary importance for the 

survivability of an organism, such as cell division and growth, respiration, storage, 

and reproduction. Kössel proposed that in addition to these basic compounds, 

there exist another group of metabolic products called secondary metabolites. 

These natural compounds were expounded upon in a significant way about 30 

years after Kössel‘s proposition through the work of Czapek in 1921 ‗who 

dedicated an entire volume of his ‗plant biochemistry‘ series to what he named 

‗Endproduckt’. Bourgaud continues that ‗according to him [Czapek], these 

products could well derive from nitrogen metabolism by what he called ‗secondary 

modifications‘ such as deamination. Compared to the main, ‗primary‘ molecules 

found in plants, these secondary metabolites were soon defined by their low 

abundance, often less than 1% of the total carbon, or a storage usually occurring 

in dedicated cells or organs‖ (Czapek, 1921).  
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From its beginnings in 1891, this simple classification scheme of primary and 

secondary metabolites has inevitably evolved through a series of challenges and 

refutations. Not all such developments will be stated in this thesis but it is 

important to note that modifications to these schemes have also been punctuated 

by a few voices highlighting the artificiality of all such labels, and suggestions to 

do away with these artificial labels altogether. In their textbook Natural Products 
from Plants, Kaufman et al. (1999) summarize the inaccuracies of the 

primary/secondary metabolite labels and why they have decided to exclude them 

within their text: 

Regarding terminology pertaining to plant metabolites, we shall refrain from 
using the terms ―primary and secondary metabolites‖. These labels have 
caused a lot of confusion in the literature and their continued use certainly 
cannot be defended on chemical grounds. So-called ―primary metabolites‖ 
have referred to those compounds that produce energy, such as adenosine 
triphosphate. So called ―secondary metabolites‖ have referred to those 
compounds synthesized by plants that do not produce energy. These ideas, 
in our view, are obsolete and not useful. Why? Because many of the 
compounds/metabolites considered to be ―secondary‖ are really essential 
for carbon fixation and reduction through photosynthesis, glycolysis, 
fermentation, and the tricarboxylic acid cycle. Also, many of the metabolites 
that have been classified as ―secondary‖ are really essential to the survival 
of the plant at particular times in its developmental life cycle. So, we shall 
abandon the older terminology of ―primary and secondary metabolites‖ and 
simply use the terms metabolite and product for any of the compounds that 
plants synthesize because, as far as we can ascertain, all have some 
survival value to the plant in both time and space (Kaufman et al., 1999). 

 
 
Although the debate surrounding terminology continues to this day, the purpose of 

the aforementioned details is to convey an understanding that these terms are to 

a large extent fluid and dynamic. Schemes can vary so widely that there are no 

hard and fast rules to defining what a natural product is (particularly with an every-

increasing involvement by humans into the natural world). For the purposes of this 

thesis the following scheme (Fig. 1) will be utilized which to a large extent is 

widely accepted as a sufficiently representative classification scheme of natural 

products across all living organisms. Differing from Kaufman et al., this scheme 

divides natural products into primary and secondary metabolites and specifically 

identifies polyketides, fatty acids, terpenoids, steroids, phenylpropanoids, 

alkaloids, specialized amino acids (AA) and peptides, and specialized 
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carbohydrates as secondary metabolites. It must be noted that what chemical and 

physical properties constitute compounds belonging to the aforementioned 

classes of compounds is also a point of debate. In the case of the alkaloids, a 

more specific definition will be explored in subsequent chapters of this thesis. 

 
 

 
 
Figure 1: Commonly agreed upon classes and sub classes of natural products (Ji et al., 

2009) 
 
 

1.2. Significance in modern pharmaceutics 
 
 
One would imagine that following millennia of use as traditional remedies and 

centuries of increasingly effective isolation and purification, natural products would 

be an integral part of modern pharmaceutical science. Indeed, they are. Natural 

products do play a critical role in the discovery and development of modern 

medicines and are widely regarded as the most successful class of compounds as 

drug leads. Their sheer diversity alone is unparalleled by any other class of 

compounds. 

 

Beginning in 1997, Newman and Cragg began a series of highly acclaimed 

reviews looking at ‗Natural Products as Sources of New Drugs‘ in which they 

traced what percentage of newly approved molecular entities (NMEs) were split 

across the following major categories of compound classes (with abbreviations): 

 
 
Natural 
products 

Primary 
metabolites 

Secondary 
metabolites 

Polyketides and fatty acids 

Terpenoids and steriods 

Phenylpropanoids 

Alkaloids 

Specialized AA and peptides 

Specialized carbohydrates 
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x ―B‖ Biological; usually a large (>45 residues) peptide or protein either 
isolated from an organism/cell line or produced by biotechnological means 
in a surrogate host.  
 

x ―N‖ Natural product.  
 

x ―NB‖ Natural product ―Botanical‖ (in general these have been recently 
approved). 
 

x ―ND‖ Derived from a natural product and is usually a semisynthetic 
modification.  
 

x ―S‖ Totally synthetic drug, often found by random screening/modification of 
an existing agent. 
 

x ―S*‖ Made by total synthesis, but the pharmacophore is/ was from a natural 
product.  
 

x ―V‖ Vaccine.  
 

x ―/NM‖ Mimic of natural product  

 

Cragg and Newman‘s five highly cited reviews in 1997, 2003, 2007, 2012, and 

2014 have essentially become the ‗gold-standard‘ in highlighting the role natural 

products research in the drug discovery world. Their reviews consistently show 

two major trends. The first (Fig. 2) is that there has been no upward surge or 

downward fall in the rate at which NMEs are approved by regulatory authorities, 

implying that either regulators are more strictly regulating the approval of new 

drugs, the industry is just not growing to be more innovative, or a combination of 

the two. A more detailed analysis of these macro trends are covered in 

subsequent sections of this thesis as well as in the published observations of a 

large number of industry stakeholders. The second trend (Fig. 3) relates 

specifically to natural products and shows that natural products, depending on the 

year, have occupied anywhere between 12% and 47% of all new small-molecule 

approvals. From 1981 to 2014, there have only been two years when this 

percentage has decreased below 20% (1997 and 2013) and on average this 

percentage is greater than 30% which is the highest percentage of any single 

class of compounds. 
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Figure 2: All small-molecule approved drugs by source/year (Newman and Cragg, 2014). 
 
 
 

 

Figure 3: Percent of approved small-molecule natural product, natural botanical, and 
natural products derived by year, 1981−2014 (Newman and Cragg, 2014). 

 

Cragg and Newman‘s analysis and their accompanying commentary have been 

echoed by many others throughout the years. A more detailed analysis of other 
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views on the current and future potential of natural products in pharmaceutics is 

presented in subsequent sections of this thesis. 

 
In their 2012 review, Cragg and Newman summarize their findings covering 

several of their previous publications and link these findings to the vast potential 

they judge, is still latent within the natural products arena: 

In this review, as we stated in 2003 and 2007, we have yet again 
demonstrated that natural products play a dominant role in the discovery of 
leads for the development of drugs for the treatment of human diseases. As 
we mentioned in earlier articles, some of our colleagues argued (though not 
in press, only in personal conversations at various forums) that the 
introduction of categories such as ―S/NM‖ and ―S*/NM‖ is an overstatement 
of the role played by natural products in the drug discovery process. On the 
contrary, we would still argue that these further serve to illustrate the 
inspiration provided by Nature to receptive organic chemists in devising 
ingenious syntheses of structural mimics to compete with Mother Nature‘s 
longstanding substrates.  

Even if we discount these categories, the continuing and overwhelming 
contribution of natural products to the expansion of the chemotherapeutic 
armamentarium is clearly evident…and as we stated in our earlier papers, 
much of Nature‘s ―treasure trove of small molecules‖ remains to be 
explored, particularly from the marine and microbial environments.  

 

1.3. Evolving attitudes towards their use as drugs 
 
 
A wider selection of natural product development and drug discovery-related 

opinion, review, and primary literature published over the last two decades shows 

a range of varied, often contrasting viewpoints on the potential of natural products 

as drug leads/candidates (Table 1). The majority of published literature hails the 

potential of natural products as sources of structurally novel, highly diverse 

compounds and cites examples of how natural products comprise a high 

proportion of successfully marketed new drugs over the last 20 years. The voice 

of optimism is loud and clear and has generally overshadowed a number of 

critical voices which have pointed out major challenges in natural product drug 

development such as extraction and supply issues (McChesney, 2007). Most of 

these publications focus on plants-derived natural products but some also touch 
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on compounds isolated from marine, fungal, or bacterial hosts. Many have added 

additional perspectives  to this exploration into the potential of natural products 

development through focusing on academia-industry partnership initiatives, inter-

disciplinary approaches such as virtual screening methods and genomics efforts; 

one example being Shen‘s paper in 2003 which outlined three main advantages 

of virtual screening of natural products. Shen argued that virtual screening 

provides higher hit rates as compared with typical HTS assays thus saving 

time/cost and considers it to be a more effective strategy in investigating the 90% 

of ‗natural diversity‘ which so far has not been explored (defined as species which 

have yet to be studied systematically in research settings), and lastly more 

effective in increased prediction of ADME/Tox and other drug like properties 

which may show promise in diminishing missed/failed hits (Shen, 2003; Bohlin, 

2010). 

 

Title Author & Year 
of publication 

General 
outlook/tone 

Recent Natural Products Based 
Drug Development: A 

Pharmaceutical Industry 
Perspective 

Shu, 1998 Optimistic 

Natural Product Drug Discovery in 
the Next Millennium 

Cragg and 
Newman, 2001 Optimistic 

Natural Products in the Process of 
Finding New Drug Candidates  

Vuorela et al., 
2004 Optimistic 

The Role of Natural Product 
Chemistry in Drug Discovery Butler, 2004 Neutral 

The Renaissance of Natural 
Products as Drug Candidates 

Paterson and 
Anderson, 

2005 
Optimistic 

Drug Discovery from Medicinal 
Plants 

Balunas and 
Kinghorn, 2005 Optimistic 
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The Evolving Role of Natural 
Products in Drug Discovery 

Koehn and 
Carter, 2005 Optimistic 

Drug Discovery from Natural 
Products 

Gullo et al., 
2006 Optimistic 

Drug Discovery from Natural 
Sources 

Chin et al., 
2006 Optimistic 

Plant natural products: Back to the 
future or into extinction? 

McChesney et 
al., 2007 Pessimistic 

Challenges and Opportunities in 
Drug Discovery from Plants 

Jachak and 
Saklani, 2007 Optimistic 

A Review of High Throughput 
Technology for the Screening of 

Natural Products 

Mishra et al., 
2007 Neutral 

New Aspects of Natural Products 
in Drug Discovery Lam, 2007 Neutral 

The Value of Natural Products to 
Future Pharmaceutical Discovery 

Baker et al., 
2007 

Neutral/ 
Pessimistic 

Molecular understanding and 
modern application of traditional 
medicines: triumphs and trials 

Corson and 
Crews, 2007 

Neutral/ 
Optimistic 

Natural Products in Drug 
Discovery Harvey, 2008 Optimistic 

Natural Products as a Robust 
Source of New Drugs and Drug 

Leads: Past Successes and 
Present Day Issues 

Rishton, 2008 Neutral 

Drug Discovery and Natural 
Products: End of an Era or an 

Endless Frontier? 

Li and Vederas, 
2009 Neutral 

Modern Natural Products Drug 
Discovery and Its Relevance to 

Biodiversity Conservation 
Kingston, 2010 Optimistic 
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The impact of the United Nations 
Convention on Biological Diversity 

on natural products research 

Cragg et al., 
2012 Neutral 

The Pharmaceutical Industry and 
Natural Products: Historical Status 

and New Trends 

David et al., 
2014 Neutral 

The Re-emergence of Natural 
Products for Drug Discovery in the 

Genomics Era 

Harvey et al., 
2015 Optimistic 

   
Table 1: Selection of representative publications on the outlook of natural products as 

drug leads in modern drug discovery programs and their overall levels of optimism (based 
on this author‘s assessment) 

 
 
Overviews of merits in  natural product development are characterized by 

Harvey‘s assertion in 1999 that ‗the major advantage of natural products for 

random screening is the structural diversity provided by natural products, which is 

greater than provided by most available combinatorial approaches based on 

heterocyclic compounds‘. An increasing number of statements such as these 

indicate that the debate of whether or not natural products may serve as drug 

leads has evolved into a debate of how best tap into the potential latent in such a 

diverse and rich class of compounds. These observations also dovetail with 

Knight‘s summary in 2003 of the advantages and challenges of natural product 

development. It is important to note that although Knight‘s, and many others‘, 

research primarily focused on seeking solutions to rising microorganism 

resistances towards traditional antibiotics through diversifying microbe genomes 

in order to diversify natural products their analysis is very much related to primary 

as well as sub-classes of secondary metabolites. While the generalized 

advantages listed below (Table 2) have been elucidated upon by many, less 

attention has been given to understanding multi-disciplinary yet specific 

challenges (Table 3) associated with natural product development.  

 
 
With these observations in mind, one of the key aims of this thesis is to 

investigate to what extent challenges such as ‗characterization and isolation of the 

active compounds from natural product extracts are extremely labour intensive 
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and time consuming‘ or ‗the lack of systematic exploitation of ecosystems for the 

discovery of novel microbial compounds had resulted in random sampling and has 

missed the true potential of many regions‘ hold true. 

 

Advantages in natural product development programs 

Natural products offer unmatched chemical diversity with structural 
complexity and biological potency (Verdine, 1996). 

Natural products have been selected by nature for specific biological 
interactions. They have evolved to bind to proteins and have drug-like 

properties (Nisbet and Moore, 1997). 

Natural product resources are largely unexplored and novel discovery 
strategies will lead to novel bioactive compounds. Natural product 

extracts are complementary to synthetic and combinatorial libraries. 
About 40% of the natural product diversity is not represented in 

synthetic compounds libraries (Henkel et al., 1999). 

Research on natural products has led to the discovery of novel 
mechanisms of action, for example, the discovery of the role of 

guggulsterone (Urizal et al., 2002) 

Natural products are powerful biochemical tools, serving as 
―pathfinders‖ for molecular biology and chemistry and in the 

investigation of cellular functions (Hung et al., 1996). 

Natural products can guide the design of synthetic compounds 
(Breinbauer et al., 2002). 

 
Table 2: Perceived inherent advantages in natural product development (Knight et al., 

2003) 

 
 

Challenges in natural product development programs 

The lack of systematic exploitation of ecosystems for the discovery of 
novel microbial compounds had resulted in random sampling and has 

missed the true potential of many regions (Czárán et al., 2002). 
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Table 3 

Perceived inherent challenges in natural product development (Knight et al., 2003) 

 

One limitation of many, if not all, of the aforementioned studies evaluating natural 

products is that in essence they are opinion papers not based on empirical data 

from relevant stakeholders. The authors normally had not engaged with any or a 

substantial number of stakeholders from within the pharmaceutical industry; most 

importantly those who currently work in the industry. Understandably so, not only 

is it challenging to track down a meaningful number of industry decision makers 

with experience in natural product drug development, but perhaps the larger 

challenge is eliciting their views (which can be critical of their superiors) pertaining 

to their company‘s strategy and/or industry trends. This internal lens, through 

angles such as commercial operations, strategic planning, research and 

development, and senior management is essential in gaining a clearer 

understanding of the role of natural product discovery and development as it 

contributes to drug development in general, as well as the gaps, and potential 

advances in academic-industry partnerships to advance drug discovery efforts. 

 

1.4. Objectives 
 
Thus, in light of the historical and modern importance of natural products in 

pharmaceutics, optimism among academics that natural products can continue to 

contribute significantly to the advancement of drug discovery and the declining 

productivity of the drug discovery process within industry, the following steps will 

be taken to assess how natural products can continue to drive drug discovery. 

Firstly, assumptions about advantages and challenges must be validated in light 

of stakeholder experience within the pharmaceutical industry. Subsequently, 

these findings allow for a fuller understanding of what factors are serve as 

‗bottlenecks‘ in the development of natural products and lastly, help understand 

The characterization and isolation of the active compounds from 
natural product extracts are extremely labor intensive and time 

consuming (Monaghan et al., 1995) 

The production of adequate quantities of the active compound needed 
for drug profiling may require extensive media optimization and scale-

up (Strobel, 2002). 



 29 

how such factors can be aptly characterized and practically alleviated. This 

approach is explored in the subsequent chapters of this thesis. 
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2. Strategies, challenges and perceptions in modern drug discovery 

2.1. Prevalent trends – a review of the literature 

2.1.1. Macro trends: Industry 

2.1.1.1. Rising costs and lessening productivity 
 
 
The origins of the modern pharmaceutical industry have been debated over the 

years with some arguing that that the modern pharmaceutical industry traces its 

earliest roots back to ‗apothecaries and pharmacies‘ which can be dated to the 

Middle Ages (Walsh, 2010) and focusing on earlier times associated with crude 

traditional remedies. Whatever the ‗origin story‘, it is clearly evident that the 

modern pharmaceutical industry, as it is recognized today, was heavily shaped by 

events in the 18th and 19th centuries. Summarizing the narrative surrounding these 

early breakthroughs in the context of widely recognized modern pharmaceutical 

companies, Walsh writes: 

 
Whilst the scientific revolution of the 17th century had spread ideas of 
rationalism and experimentation, and the industrial revolution had 
transformed the production of goods in the late 18th century, the marrying of 
the two concepts for the benefit of human health was a comparatively late 
development. 
 
Merck in Germany was possibly the earliest company to move in this 
direction. Originating as a pharmacy founded in Darmstadt in 1668, it was in 
1827 that Heinrich Emanuel Merck began the transition towards an 
industrial and scientific concern, by manufacturing and selling alkaloids. 
Similarly, whilst GlaxoSmithKline‘s origins can be traced back as far as 1715, 
it was only in the middle of the 19th century that Beecham became involved 
in the industrial production of medicine, producing patented medicine from 
1842, and the world‘s first factory for producing only medicines in 1859 
 
Meanwhile, in the USA, Pfizer was founded in 1849, by two German 
immigrants, initially as a fine chemicals business. They expanded rapidly 
during the American civil war as demand for painkillers and antiseptics 
rocketed. Whilst Pfizer was providing the medicines needed for the Union 
war effort, a young cavalry commander named Colonel Eli Lilly was serving 
in their army. A trained pharmaceutical chemist, Lilly was an archetype of 
the dynamic and multi-talented 19th century American industrialist, who 
after his military career, and trying his hand at farming, set up a 
pharmaceutical business in 1876. He was a pioneer of new methods in the 
industry, being one of the first to focus on R&D as well as manufacturing. 
Another military man in the drugs business was Edward Robinson Squibb, 
who as a naval doctor during the Mexican-American war of 1846–1848 
threw the drugs he was supplied with overboard due to their low quality. He 
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set up a laboratory in 1858, like Pfizer supplying Union armies in the civil 
war, and laying the basis for today‘s BMS. 
 
Switzerland also rapidly developed a home-grown pharmaceutical industry 
in the second half of the 19th century. Previously a center of the trade in 
textiles and dyes, Swiss manufacturers gradually began to realise their 
dyestuffs had antiseptic and other properties and began to market them as 
pharmaceuticals, in contrast to the origin in pharmacies of other enterprises. 
Switzerland‘s total lack of patent laws led to it being accused of being a 
―pirate state‖ in the German Reichstag. Sandoz, CIBA-Geigy, Roche and the 
Basel hub of the pharmaceutical industry all have their roots in this boom. 
 
It wasn‘t just Swiss companies had their roots in the dye trade. Bayer was 
founded in 1863 as a dye maker in Wuppertal, the hometown of Karl Marx‘s 
collaborator Friedrich Engels. It later moved into medicines, commercialising 
aspirin around the turn of the 20th century, one of the most successful 
pharmaceuticals ever at that point. 

 

 

Walsh continues his narrative by describing how ‗national rivalries and conflicts‘ 

as well as the first and second world wars accelerated the need for medicines 

(particularly insulin and penicillin) and thrust the industry into a globalized setting. 

Furthermore, the emergence of social healthcare systems and other healthcare 

infrastructure helped structure industry growth and soon the industry welcomed 

‗blockbuster‘ drugs with record sales. After tracing the further growth of the 

industry through the Second World War, Walsh continues by highlighting how 

pharmaceutics have grown from their aforementioned humble beginnings to one 

of the largest, most powerful industries in the world.  

 

Yet, this growth has been met in recent years by tremendous challenges with 

respect to highly prohibitive research spending, rising regulatory costs, and 

stagnant, if not decreasing ‗productivity‘ at the level of the marketability of new 

molecular entities. Pharmaceutical research and development spending clearly 

rose exponentially from the 1980s to the mid-2000s and that rise was 

subsequently followed by a consistent plateau in spending in the last decade (Fig. 

4). Additionally, when this trend in spending is correlated to newly approved drugs, 

no major trend can be observed which in essence indicates that the industry‘s 

higher budgets - as compared with previous decades - do not have any noticeable 

impact on the ‗productivity‘ in discovering new drugs. According to Tufts Center 

for the Study of Drug Development, the cost of developing a new drug, both in the 
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pre-clinical and clinical stages is skyrocketing (Fig. 5) and is now estimated to be 

close to 2.5 billion USD. It is important to note that throughout the 1970‘s and 80‘s 

preclinical costs outweighed clinical costs but this trend was reversed in the 90‘s 

and 00‘s. This trend may indicate that the regulatory environment tightening 

requirements towards safety or efficacy requirements. 

 

 

Figure 4: R&D spending representative of 37 global pharmaceutical companies (PhRMA) 
 

 

Figure 5: Tufts Center for the Study of Drug Development cost estimates for developing a 
new drug. Estimates in 2016 range from 2.6-2.8 billion USD for the full discovery and 

development of a new molecular entity (NME). 
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A more specific question that merits one‘s attention is where specifically in the 

drug discovery and development pipeline are costs greatest and therefore most 

prohibitive? In 2010, Paul et al. developed a model to estimate R&D costs at 

differing stages along the drug discovery and development process. Their model 

was based on a set of industry-appropriate R&D assumptions (industry 

benchmarks and data from Eli Lilly and Company) and sought to define 

‗performance‘ of the R&D process at each stage of development. In total, they 

estimated that to launch a new molecular entity (NME) in 2010 costs more than 

1.7 million USD with the largest portion of capitalized cost/launch (an estimated 

23%) coming from ‗lead optimization‘ (Paul et al., 2010). 23% represents the 

largest percentage of total cost among the eight stages (target-to-hit, hit-to-lead, 

lead optimization, preclinical, phase I, phase II, phase III, and submission to 

launch) Paul identifies. With such a sharp increase in costs, does it mean natural 

products research should be downscaled? Cragg and Newman, two highly 

respected figures in the world of natural product development believe this heavy 

investment into leads can be mitigated by ―…expanding, not decreasing, the 

exploration of Nature as a source of novel active agents which may serve as the 

leads and scaffolds for elaboration into desperately needed efficacious drugs for a 

multitude of disease indications‖ (Cragg and Newman, 2012). 

 

2.1.1.2. Outsourcing research and development risk through mergers 
and acquisitions 
 
 
Another separate yet related trend of the pharmaceutical industry emerging in 

recent decades has been that of accelerating mergers and acquisitions (M&A). 

One could assume that if cost is a risk, as drug discovery and development costs 

rise, cost-associated risk rises as well. In fact, this trend between rising cost and 

risk, in the context of M&A, has become a key research area by researchers such 

as Danzon et al. (2004) and Higgins and Rodriguez (2006) which focus on M&A 

effectiveness and the role of M&A in driving R&D productivity respectively. 

 

The effectiveness of these increasingly common M&As are regularly challenged 

and generally doubted by industry observers. Patent expirations, gaps in a 
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company‘s product pipeline, and financial struggles are all reasons common 

reasons for M&A activity. Interestingly, reasons such as these have collectively 

been labelled as a ‗desperation index‘ by a number of industry observers. One 

does not have to look far to see the never-ending challenge to sustain and grow in 

a tightly regulated, fiercely competitive operating environment and it is precisely 

for this reason that ‗effectiveness‘ of such activity is scrutinized so closely. For 

example, do larger corporations with more resources at their disposal typically 

drive innovation or generate value in ways more beneficial to some or all aspects 

of the drug discovery process? To what extent does M&A activity adequately 

respond to the issues it seeks to address? 

 

Before addressing the ‗creating value‘ proposition often put forth to justify 

pharmaceutical industry M&A activity, Higgens and Rodriguez (2006) summarize 

a few theories surrounding value creation in general: 

 
A significant quantity of research has been dedicated to understanding for 
whom and how value is created through acquisitions. Many theories have 
emerged, for example, the monopoly theory of mergers (Mueller, 1985; 
Eckbo, 1992; and Ravenscraft and Scherer, 1987); the synergies approach 
(Bradley et al., 1989); economies of scale (Ravenscraft and Scherer, 1989; 
Houston et al., 2001); to gain market power (Anand and Singh, 1997; Baker 
and Bresnehan, 1985; Barton and Sherman, 1984); redeployment of assets 
(Capron, 1999); and, diversification (Berger and Ofek, 1995).  
 
The conclusion one draws from the bulk of the research focusing on 
whether value is ―created‖ or ―destroyed‖ is that the return to acquiring firm 
shareholders, on average, is essentially zero. The majority of the value 
flows to the target firm shareholders (Jensen and Ruback, 1983; Brickley 
and Netter, 1988; Bruner, 2002). Relatively few studies have been able to 
demonstrate meaningful value gains on behalf of acquiring firms in non-
tender offer acquisitions. Relatively few studies have been able to 
demonstrate meaningful value gains on behalf of acquiring firms in non-
tender offer acquisitions. Andrade et al (2001) suggests that the underlying 
strategic motivation for a particular transaction may provide a fruitful avenue 
for identifying how value is created through acquisitions for acquirer 
shareholders. 
 

 
 
Furthermore, Higgens and Rodriguez focus their analysis on one of the primary 

motivations of M&A in the pharmaceutical industry; namely that of M&A as a 

method for outsourcing R&D. Within their sample of 60 public firms that formed at 

least one strategic alliance between 1994 and 2001, they identify examples of 
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M&A as a facilitator in fueling R&D activity in cases such as Gilead Sciences‘ 

acquisition of Triangle Pharmaceuticals and Merck‘s acquisition of Aton 

Pharmaceuticals Inc.. They conclude that ‗on average…companies experiencing 

a deterioration of their research pipeline and product sales were more likely to 

engage in an acquisition. Moreover, these firms were either able to stabilize or to 

reverse the pipeline declines that they were experiencing‘ which affirms that M&A 

is an effective strategy in specifically boost R&D activity. It is important to note 

that Higgens and Rodriguez‘s analysis does not take into the account other 

aspects of companies such as the financial performance of the companies 

involved; nevertheless, other researchers have focused their research on such 

gaps. 

 

In 2007, the Merck Company Foundation funded three prominent economists at 

the University of Pennsylvania, Yale University, and Cornell University (Danzon et 
al.) to perform a thorough analysis of this wider angle of overall firm performance. 

Their unprecedented research sampled ‗383 firms in the pharma–biotech industry 

and 165 ‗transforming mergers‘, defined as transactions that are sufficiently large 

that post-merger integration will require reorganization and potentially have an 

observable impact on accounting measures of performance‘. The specificity of 

their analysis: ‗distinguishes between small biotech firms and large 

pharmaceutical firms, because small firms, which account for almost half the firms 

in our sample, face very different production and cost functions‘. In essence, their 

study established several competing hypotheses to ‗explain firm-specific merger 

activity and to generate a measure of each firm‘s propensity to… [merge]‘ and 

then ‗[measure] the effects of mergers on a range of performance measures‘ their 

one key finding was ‗although merger in the pharma–biotech industry is a 

response to being in trouble for both large and small firms, there is no evidence 

that it is a solution’ for the issues it seeks to address. 

 
 
In 2007, another group of researchers from the University of Sheffield and 

Bahcesehir University also assessed the overall effectiveness of the M&A activity 

in the pharmaceutical industry (Demirbag et al., 2007). The difference between 

this group‘s analysis by the aforementioned analysis from Danzon et al. was that it 
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not only includes Danzon et al.‘s financial performance analysis (in the form of 

profit analyses), but also augments it with research productivity and return on 

investment (ROI) metrics. Table 4 summarizes their key findings and compares 

them with previously published research. Their findings with respect to research 

productivity, ROI, and profit margins largely support previously published (both 

pharmaceutical industry and other industry) data and show that commonly 

perceived value generation in M&A such as increased research productivity, 

increased ROI, and increased profit margin are not as obvious as many perceive. 

 

Findings from Demirbag et al. Existing literature 

Research Productivity 

M&As exhibited poorer results 
than their pre-M&A firms and 
non-M&A rivals 

Supports the work of Hitt et al. 
(1991) that M&As have negative 
effects on firm innovation and lack  

No value creation from M&A 

Supports James‘ (2002) argument 
about synergy creation. 
 
Supports Bergren‘s (2003) 
proposition that integration and 
harmonization issues will affect R&D 
productivity. 
 
Supports Sudarsanam (2003) that 
decline in innovation output is due to 
provision of improper technology 
inputs and poor integration 
management. 
 
Supports Gaughan (2001) that M&A 
might not be the ideal alternative to 
access the necessary resources. 
 
Contradicts the findings the finding of 
Higgins and Rodriguez (2004) that 
the pursuit of M&A pipeline helps 
stabilize or reverse pipeline decline. 

ROI 

M&As exhibited poorer results 
that their pre-M&A firms 

Supports the finding of Heracleous 
and Murray (2001) that ROI of M&As 
appears to be lower than their pre-
M&A firms. 
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M&As fared better than their 
non-M&A rivals 

Supports Dickerson et al. (1997), 
James (2002), King et al. (2004) that 
M&As do not have a net beneficial 
effect on company profitability. 

M&As were not better than 
their pre-M&A firms but better 
than their non-M&A rivals 

Supports Healy et al. (1992) that 
M&As experience improvements in 
asset productivity as compared with 
non-M&A rivals. 
 
Contradicts the findings of Gaughan 
(2001), Capron (1999), Chatterjee 
(1986) that synergy in terms of 
economies of scale and scope. 

Profit Margin 

M&As performed better than 
their pre-M&A firms and 
almost on par with non-M&A 
rivals 

Supports the work of Singh and 
Montgomery (1987) that value 
creation occurs after M&A activity. 
 
Contradicts the findings of Danzon et 
al. (2004), Heracleous and Murray 
(2001), and Dickerson et al. (1997) 
that M&As experienced slower 
operating profit growth, no change in 
enterprise value or turnover 

  
Table 4: Summary of Demirbag‘s findings on the effect of M&A on research productivity, 

ROI and profit margin as compared with existing literature. shows that commonly 
perceived value generation in M&A such as increased research productivity, increased 
ROI, and increased profit margin are not as obvious as many perceive (Demirbag et al., 

2007) 

 

Thus, examining Danzon, Higgens and, Dermirbag‘s findings in a more cohesive 

manner suggests that there is general dissatisfaction with M&A activity creating 

substantial and enduring value or innovation within the pharmaceutical industry. 

Rather, M&A is perceived as a measure taken to decrease risk and as Demirbag‘s 

research shows actually can decrease research productivity (defined as number 

of NMEs developed in relation to total R&D expenditure). This reported decrease 

in research productivity both pre- and post-M&A activity is not only of concern at 

an industry-level but negatively impacts specific research areas such as natural 

products research. As reported by Bruno et al. in 2014, these programs are 

already seeing sharp decreases in funding, and likely as a symptom of the 

aforementioned trends, have virtually been abandoned by all major global 
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pharmaceutical companies (this point will be covered later in this chapter). This 

point is ironic considering natural products are historically the most consistent 

source of pre-cursors and leads for modern drugs. This point between the 

dissonance between current prevalent strategies and perceptions of usefulness of 

these strategies by stakeholders will be explored in sections to come.  

 

2.1.2. Micro trends: Industry and academia 

2.1.2.1. Druglikeness: emerging in the last two decades 
 
 
Advances made in the field of human drug discovery over the last century have 

been unprecedented. It is difficult to doubt the significance of advances in 

approaches to the development of drugs and medicines as a whole. High-

throughput screening and other technological advances have only worked to add 

momentum to the field‘s development. Yet, what is interesting is that many 

observers agree that this spur in momentum, specifically in terms of launching 

new drugs to market, has in a large sense plateaued out. Often citing reasons 

related to costs and regulations associated with of discovery and development of 

drugs, many analysts have a bleak outlook when it comes to the future of drug 

discovery. A direct result of this ‗drying up‘ of the drug pipeline was a shift towards 

high-throughput screening and in essence, a scramble to screen as many 

products through molecular, ligand-based or other popular bioassays (such as a 

cytotoxicity MTT assay). The torrent of data and published papers that followed 

allowed researchers to view drug development through an unprecedented lens. 

Now that thousands of compounds were being screened weekly (and eventually 

daily) one could theoretically see an increased correlation between screened 

compounds and drugs successfully making it to market. With all of this new data 

how was ‗market potential‘ characterized? 

 
 
Much of the debate in drug development in the last 15 years has revolved around 

these trends, particularly with respect to modelling ‗druglike‘ properties (commonly 

referred to as ‗druglikeness‘). As one explores the literature, it is very clear that 

what exactly druglikeness entails really depends on the intended application of the 

compound. Properties appropriate for successful metabolism of an orally 
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administered drug differ greatly from for example, transdermal injections. This is 

precisely why popular rules, such as Lipinski‘s Rule of Five (Ro5), have been 

fiercely debated (Kenny and Montanari, 2013). Before exploring some of these 

rules, it is important to also understand that there is a significant counter voice to 

these rules and the presentation of them does not imply that all those interested in 

discovering new drugs abide by them. Despite the wide popularity of these rules, 

there are many who cite exceptions and trends which clearly go against it (i.e. the 

number of new chemical entities reaching the market has remained constant or 

continued on a downward trend) (Brown and Superti-Furga, 2003). For example, 

Abad-Zapatero‘s following viewpoint illustrates the doubt and scepticism by many 

with regards a magic formula with regards to drug discovery: 

 
 

Rules, commandments or absolute certainties are dangerous. Even if they 
can be found to be approximately true at the beginning, they are eventually 
superseded by a deeper understanding of the problem. They might provide 
an initial guidance of our decisions or actions but not a solid compass for 
long and tortuous journeys, because if we follow them strictly they might 
obscure our way to discovery. Navigating through reality is much more 
suitable and requires a delicate balance between rules and insight (Abad-
Zapatero, 2007). 

 
 
 Nevertheless, in understanding what role natural products have played and will 

continue play in their development as drugs it is helpful to analyze current 

prominent trends with relation to these rules (and permutations of such rules) in 

modern drug development (Table 5). 
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Rule/Publication Year 
Proposed Summary Application/Scope # of 

Citations1 

Lipinski‘s Rule of 
Five (Lipinski et 

al., 1997) 
1997 

≤5 HBD 
≤10 HBA 
≤500 
MWT 
≤5 

CLogP 

Orally active drugs 
in humans 7,462 

A Knowledge-
Based Approach 

in Designing 
Combinatorial or 

Medicinal 
Chemistry 

Libraries for Drug 
Discovery. A 

Qualitative and 
Quantitative 

Characterization 
of Known Drug 

Databases 
(Ghose et al., 

1998) 

1998 

40-130 
molar 

refractivity 
20-70 
total 

atoms 
160-480 

MWT 
-0.4-5.6 
CLogP 

Central nervous 
system, 

cardiovascular, 
cancer, 

inflammation, and 
infection disease 

drugs 

526 

Molecular 
Properties That 
Influence the 

Oral 
Bioavailability of 
Drug Candidates 

(Veber et al., 
2002) 

2002 

<10 
rotatable 

bonds 
<140 Å2 

PSA (or 
<12 HBA 
+HBD) 

Oral bioavailability 
in rats 1,291 

Computational 
approaches to 

the prediction of 
the blood–brain 

distribution 
(Norinder and 
Haeberlein, 

2002) 

2002 

≤5 N+O 
atoms 

>0 log P - 
(N+O 

atoms) 

CNS-active 
substances 
(penetration 

through the BBB) 

187 

                                                        
1 # of citations as searched on http://scholar.google.com in March 2014 



 41 

A 'Rule of Three' 
for Fragment-
based Lead 
Discovery 

(Congreve, 2003) 

2003 

≤3 
rotatable 

bonds 
≤3 HBD 
≤3 HBA 
≤300 
MWT 
≤3 

CLogP 

Fragments leading 
to drug candidates 435 

A Comparison of 
Physiochemical 
Property Profiles 
of Development 
and Marketed 

Oral Drugs 
(Wenlock, 2003) 

2003 

≤4 HBD 
≤7 HBA 
≤473 
MWT 
≤5.5 

CLogP 
≤4.3 

CLog D7.4 

Marketed orally 
active drugs in 

humans 
342 

In silico ADMET 
Traffic Lights as 

a Tool for the 
Prioritization of 
HTS hits (Lobell 

et al., 2006) 

2006 

≤7 
rotatable 

bonds 
<140 Å2 

PSA 
>50 mg L-

1 solubility 
≤400 
MWT 
≤3 

CLogP 

Small-molecule 
oral drugs 33 

The Rule of Five 
Revisited: 

Applying Log D 
in Place of 

Log P in Drug-
Likeness Filters 

(Bhal et al., 
2007) 

2007 

<5 HBD 
<10 HBA 

<500 
MWT 

<5 CLogD 

Orally active drugs 
in humans 57 

 
Table 5: Overview of rules of thumb for druglikeness/lead-likeness 

 
 
 
As already alluded to, another aspect of such an analysis of modern rules of 

thumb is their general non-applicability to natural products. The discrepancy 

between the latent potential of natural products as drug leads and the proliferation 
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of druglikeness rules which are for the most not applicable to natural products is 

increasingly apparent. As Zhang and Wilkinson bluntly state:  

 
A major class of drug molecules that are excluded from the original analysis 
which generated the ‗rule-of-five‘ are natural products. This is a serious 
defect as it is known that a large percentage of marketed drugs are natural 
products and their semisynthetic derivatives (Zhang and Wilkinson, 2007). 

 
 
 
Parallel to this process of searching for physiochemical factors indicative of 

druglikeness in synthetic and semi-synthetic compounds was a consistent 

conviction, by a number of researchers, of the potential of natural products as 

drug leads. In foreseeing limitations in traditional approaches to developing 

synthetic and semi-synthetic compounds, some earlier than others, turned their 

attention to natural products development hoping that this vast, diverse source of 

compounds could meet the needs of an ever-growing global pharmaceutical 

industry. One of the earlier studies in 1998 showed that of the 520 new drugs 

approved between 1983 and 1994, 39% were natural products or derived from 

natural products and 60–80% of antibacterials and anti-cancer drugs were derived 

from natural products (Cragg et al., 1997). Another study from 2000 estimated 

that less than 10% of the world‘s biodiversity has been tested for biological activity, 

thus outlining the vast potential that natural products hold (Harvey, 2000). 

Artemisinin, triptolide, celastrol, capsaicin, and curcumin were singled out by 

Corson and Crews (2007) to highlight the vast potential of traditional medicines in 

driving the modern drug discovery process through ‗traditional knowledge‘. Fewer 

studies have limited their focus primarily to the alkaloids but nevertheless the 

developmental potential of alkaloids has been a part of the debate on natural 

product development as a whole. In recent years, the outlook of natural product 

development remained generally optimistic among the academic community. As 

one scholar noted in 2008, ‗natural products have been the single most productive 

source of leads for the development of drugs‘ and that to accelerate their 

development ‗approaches are being developed to improve the ease with which 

natural products can be used in drug discovery campaigns, and data mining and 

virtual screening techniques are also being applied to databases of natural 

products‘ (Harvey, 2008). 
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Yet, interestingly such calls for an increased emphasis on tapping into the latent 

biodiversity by Harvey and others have largely remained unanswered. In the last 

five years, some such as Backlund, have begun probing into the data mining 

approach through chemical space or cross-database referencing exploration 

(Rosen et al., 2009; Wolf and Siems, 2007). This being the case, data mining and 

database studies specifically focusing on secondary metabolites remain virtually 

absent from this debate.  

 

When one widens this specific exploration into data mining approaches of 

alkaloids into that of an exploration of natural products in general, one can then 

begin to see that data mining/database approaches are abundant. Like Lipinski 

and the aforementioned others who proposed rules of thumb for specific 

pharmaceutical applications (i.e. oral drug candidates) there have been, albeit to a 

significantly lesser extent, some explorations into identifying trends and patterns 

in ‗drugs‘ from natural sources. Unlike Lipinski and the aforementioned others, 

these natural product druglike propositions are non-specific. Lipinski‘s initial 

dataset was comprised of Pfizer and Merck orally administered drug candidates. 

Trends in natural product development are quite non-specific. Reasons for a lack 

of specific ‗rules of thumb‘ could include the extreme diversity of compounds in 

the natural product world, the challenges associated with sourcing them and thus 

a lack of comparable data across classes/sub-classes, or even a more 

fundamental challenge such as the one outlined by Jürg Gertsch in his paper 

―How scientific is the science in ethnopharmacology? Historical perspectives and 

epistemological problems‖. In essence, Gertsch asserts that it is highly unlikely to 

be able to reproduce bioassay results in natural products research. He argues 

that there are simply too many variables particular to specific 

ethnopharmacological and natural product research settings which do not lend 

themselves to reproducibility. Therefore, how does one then equate or apply 

these findings to propel progress into the development of other natural products at 

large? Also, how do the potential of natural products fit into the current drug 

development paradigm which is heavily focused on ‗druglikeness‘?  
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However premature these efforts, some have ventured to highlight trends with the 

intention of streamlining this drug discovery process. For example Zhang and 

Wilkinson outline the following trend related to drug discovery productivity in 

natural products: 

 
The high productivity of natural product-based drug discovery may be 
related to the fact that their chemical structures have been biologically 
prevalidated by evolutionary selection which defines structural prerequisites 
for binding to proteins. For example, an analysis of over 154,000 natural 
products showed that the majority of them have molecular volumes ranging 
from 100 to 500 Å3 (Koch et al., 2005). In the meantime, the volumes found 
in over 18,000 binding cavities of protein targets range from 300 to 800 Å3. 
Therefore, the average volumes of natural products correlate with the 
average dimensions of protein cavities (note that protein ligands often do 
not fill the entire volume of a given protein cavity (Zhang and Wilkinson, 
2007). 

 
 
 
They continue with a more specific physiochemical analysis of properties leading 

to druglikeness and also include observations derived from Grabowski and 

Schneider‘s computer-based analysis of chemotype/molecular properties. 

 
For example, when analysed by either a size-independent ‗chemistry space 
filter‘ or ‗support-vector-machine‘ approach, natural products exhibit better 
scores of ‗druglikeness‘ than synthetic compounds. Further, natural products 
contain on average twice as many oxygen atoms and three times fewer 
nitrogen atoms than synthetic drug molecules. They also contain a slightly 
higher number of hydrogen-bond donors than do synthetic drugs. Natural 
products contain approximately four times more chiral centers and far fewer 
aromatic rings, a fact which may engender upon natural products better 
selectivity when binding to stereo-defined sites (Grabowski and Schneider, 
2007). 

 
 

It is important to note that observations such as these are limited in that they are 

modelling relatively small datasets filled with compounds from all natural product 

classes. A small or large scale analysis, of how these or other patterns may apply 

to the development of secondary metabolites such as alkaloids, or a subclass of 

alkaloids has never been proposed.  
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2.1.2.2. Risky simplistic paradigms 
 
 
Unsurprisingly, simplistic rules (such as those cited previously) are closely related 

to simplistic drug discovery paradigms. Few who have disagreed with the whole 

notion of strict rules and concepts aiming to hone in on druglikeness or lead-like 

compounds have proposed other viable, specific alternatives. For example, one 

general call to action by Abad-Zapatero (2007) is: ‗We have to look deeper into 

the underlying principles that govern the interactions between drugs and targets‘. 

This vague suggestion does not contain any information related to methods 

and/or techniques and is not particularly helpful in advancing the debate of the 

usefulness of druglikeness rules. He continues: ‗I would argue that we have to 

look for more subtle variables and concepts than simple ‗quinarian‘ or ‗ternarian‘ 

rules in order to guide our efforts to discover better drugs more effectively…. We 

need to combine and reduce the multitude of variables spreading through the 

myriad of columns of our spreadsheets‘ (Abad-Zapatero, 2007). 

 

This issue of simplistic, single-target paradigms which reduce the drug discovery 

process to a mere game of ligand ‗hit or miss‘ is widely recognized as a problem 

and many have commented on its prevalence. In 2005, Samms-Dodd stated 

―there has been a tendency to focus narrowly on the target and to underestimate 

the complexity of the physiological role of the target in the intact organism. As a 

consequence the validity of the target was not questioned sufficiently, and this 

meant that programs have continued beyond the point where they could and 

should have been terminated – and this reduces the productivity of the industry‖ 

(Samms-Dodd, 2005). Overington et al. in 2006 and Medina-Franco in 2013 are a 

few of the many voices which share a similar conviction to those views espoused 

through Samms-Dodd‘s critique (Overington et al., 2006; Medina-Franco, 2013).  

 

The suggestion of looking for more subtle variables in natural products research 

and consolidating, without oversimplifying, large datasets is a primary aim of this 

thesis. Some have proposed other paradigms in drug discovery with more 

comprehensively look at additional determinate variables. One example is 

Hopkin‘s proposed ‗network pharmacology‘ model proposed in 2008 which 

integrates ‗network biology and polypharmacology‘ in order to ‗validate target 
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combinations and optimize multiple structure-activity relationships while 

maintaining druglike properties‘ for drug leads (Hopkins, 2008). To build on such 

propositions and incorporate the aforementioned reservoir of potential in natural 

products research, a novel-screening paradigm involving a specific, robust 

biodiversity based screening paradigm for natural products is presented in a 

subsequent chapter of this thesis. 

 
 

2.1.3. Rise and fall of interest/funding/etc. of natural products  
 
 
Historically, natural products (natural product) development has been a field of 

immense interest to medical, commercial and scientific communities worldwide. 

As isolation and purification techniques advanced, natural products increasingly 

became prime candidates for drug leads and drug discovery efforts (Cragg and 

Newman, 1997). Their diversity and abundance characterized them as a virtually 

limitless source of novel lead compounds. Yet in the last decade, the majority of 

multinational pharmaceutical companies have reduced natural product Research 

and Development (R&D) expenditures (David, 2014).  

 

Arrested prospecting 
programs 

Continued prospecting 
programs 

Abbott Dabur 

Astellas Eisai 

Bayer Novartis 

Boehringer Ingelheim Otsuka 

Bristol-Myers Squibb Pierre Fabre 

Daiichi Sankyo Piramal 

Eli Lilly 

 
GlaxoSmithKline 

Johnson and Johnson 

Kyowa Hakko 



 47 

Merck Sharp and Dohme 

Novo Nordisk 

Pfizer 

Roche 

Sanofi 

Servier 

Takeda 
 

Table 6: Big/medium pharma companies which ceased bioprospecting between 2000 and 
2013 or were still bioprospecting in 2014 (David, 2014). 

 

What are elements behind this trend and where are these reallocated efforts 

ending up? What are the common drivers and barriers in natural product 

development? How can efforts to understand such drivers and barriers (Amirkia 

and Heinrich, 2014) enhance the ability to further leverage the potential of natural 

products? If natural products have historically been such an important source of 

new drugs, what insights can one gain into the heavily academia-driven natural 

product drug development process as compared with the widely recognized 

slowdown of industry efforts? This research seeks to gain insight into these 

questions by directly soliciting the views of an unprecedentedly large panel of 

pharmaceutical industry experts who currently serve in senior positions in 

academic and or commercial organizations. Yet before such results are presented, 

it is important to further understand previous efforts in the context of natural 

development drug discovery within the pharmaceutical industry. 

 

2.1.3.1. Bioprospecting and Shaman pharmaceuticals 
 
 
Within the last few decades, there is no doubt that natural products research 

aimed to drive discovery and development of novel pharmaceutical products has, 

at times, sharply trended upwards. This increased effort has, without surprise, 

also been met with a considerable amount of critical analysis. One example of this 

critical critique of natural product development can be found in Valuing Diversity of 
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Medicinal Plants by Principe. It is important to remember that this analysis was 

put forth in 1991, a time when natural products research was beginning to gain 

momentum and not yet integrated at a large scale into the strategies of 

multinational pharmaceutical companies. Principe outlines three ‗traditional factors 

that have influenced pharmaceutical research in the Western countries away from 

the direction of medicinal plants‘. These being: 

1. The screening-type of research required to identify a plant of 
interest and isolate the pharmacologically-active ingredient(s) is 
tedious, difficult, very costly, and often unrewarding, both for 
researchers and the company; 

 
2. Once the ingredient(s) have been isolated, if it (they) cannot be 

wholly synthesized, the company then has to be concerned about 
securing its supply of raw plant material. This has become a 
considerable concern given that most plants of interest are 
usually indigenous only to developing countries, and dealing with 
these countries has become increasingly more complicated (and 
expensive); and 

 
3. In some cases, especially where the active ingredient cannot be 

identified or isolated (an increasingly rare occurrence), the patent 
laws of most OECD counties, which do not permit the patenting of 
natural products, can present a barrier to marketing the new 
product. The pharmaceutical firm must either try to create a 
proprietary drug or modify the active mixture so that it can be 
patented, otherwise it would not be able to recover the cost of 
bringing a new product to market, through all of the laboratory and 
clinical testing and government regulation, which now costs about 
$100 million in the United States (Anon., 1985). 
 

 

Principe reinforces this outlook on natural product development potential by citing 

the following comment by an executive in the pharmaceutical industry: in drug 

development from natural products, only between 1 in 10,000 to 1 in 40,000 

compounds screened is likely to yield a marketable product (Principe, 1991). 

Homing in on a specific class of natural products, if this ratio can be agreed upon 

and it is assumed that there are about 27,000 alkaloids of which are randomly 

being selected from, one should expect an output between 0.6 and 2.7 alkaloids. 

This range is much lower than what one sees in reality. Though it must be 

understood that such an estimate was provided in the 90‘s when HTS and 

database modelling approaches were not as effective as they are now. Principe 
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continues by stating: In the drug development business, failure is the rule rather 

than the exception. In contrast, a 2002 study of the ‗new drug discovery paradigm‘ 

estimates that 1 in 1 million compounds go from HTS hit to marketed drug (Oprea, 

2002). Merck chief executive P. R. Vagelos (1991) noted, ‗the odds against 

success, whether statistical or financial, are daunting. Most research projects fail‘, 

as do many, if not most, start-up firms‘. 

 

Most of the critical analysis surrounding natural products development can be 

directly related to the following four motifs and concepts: ‗bioprospecting‘, 

‗indigenous rights (often referred to as ‗access rights‘), ‗ethnopharmacology‘, and 

‗sustainability‘ among others (Cox, 2008; Gertsch; 2009; Brito and Nunes, 1997).  

Interestingly, all these correlate closely to the rise and fall of Shaman 

Pharmaceuticals, once regarded as the poster boy for revolutionizing the 

capitalization of ethnomedicine. Shaman spent over $90 million dollars in 

commercialization of natural products identified through bioprospecting programs 

and never was able to put forth convincing enough evidence to the FDA in 

commercializing its medicines (Clapp and Crook, 2002). The example of Shaman 

Pharmaceuticals has been studied in detail and is not included at a detailed level 

in this thesis. Rather this thesis aims to generate those new models which Clapp 

and Crook call for: 

This analysis of Shaman‘s history suggests that risks inherent in drug 
development, company risk associated with Shaman‘s drug development 
strategy, and technological change in the industry all contributed to its 
failure. The authors examine the opportunities and constraints encountered 
in bioprospecting and ethnobotanical searches and argue that natural 
products will remain important to drug development. Technological change, 
however, means that new models and new institutional structures are 
required for drug development based on natural products (Clapp and Crook, 
2002). 

 

One of the most fundamental challenges in natural product research is that of 

finding or ‗prospecting‘ material of interest. Various strategies have been argued 

to be superior. Artuso encapsulates prospecting strategies used by 

pharmaceutical companies interested in natural product development into the 
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following four methods: random, biomedical, ethnobotanical, and ecological 

(Artuso, 1997). His findings are summarized in Table 7: 

 

Prospecting 
strategy Pros Cons 

Random Search 

-Effective when few 
leads exist 

 
-Can potentially 

uncover previously 
unknown and 

structurally unique 
families of compounds 

-Low success rate per 
extract tested 

 
-Slow and time 

consuming (although 
HTS is changing this) 

Taxonomic and 
Biomedical 

Information Search 

-Relatively rapid and 
less expensive 

 
-Focused and targeted 

search 

-Need clues and 
characteristics of a 
potentially effective 

compound 
 

-Often yields 
compounds similar to 
those already known 

Ethnobiological 
Search 

-Compounds have 
known therapeutic or 
toxicological effects 

-Specific therapeutic 
objectives difficult to 
correlate to active 

compounds 

Ecologically 
Informed Search 

-Reduction in number 
of species and tests in 
the screening process 

-Collection of material 
 

-Cost and time of 
gathering ecological 

information 

 
Table 7: Summary of prospecting strategies in natural products and alkaloid research 

(Artuso, 1997) 

 

 

The aim of this thesis is not to test the validity or effectiveness of each 

prospecting strategy in the larger context of natural product research, but rather 
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gain a deeper insight into which of these prospecting strategies can potentially be 

most relevant to the development of classes of natural products such as alkaloids, 

which have been regarded as a highly productive class of natural products.  

 

After all, the use of one or more of the aforementioned strategies depends on the 

specific application or goal of the screen at hand. The results of such an analysis 

may support the notion that a specific alkaloid, regardless of how it was 

‗bioprospected‘, has more or less an equal chance of being commercialized in the 

pharmaceutical arena. That is, that there is no significant correlation between 

prospecting strategy and development status of any given alkaloid; particularly 

with those which have made it to the marketed drug phase. By focusing on the 

alkaloids as a sub-class of natural products, rather than the several hundred 

thousand known natural products, it is hoped that one could better understand this 

challenging question. 

 
 
Another concept which has proven a challenge in natural product research is that 

of indigenous rights. To what extend this hinders or enriches natural product 

research is highly debated. Some debate that intellectual property or ethical 

considerations only serve hinder the development process while others argue that 

ethnobotanical strategies serve to benefit indigenous populations. Clapp and 

Crook aptly summarize various aspects of this challenge by stating: 

 

 
Drawing on the ethnobotanical knowledge of indigenous peoples adds 
another layer of complications. Although there is no legal requirement under 
the Convention on Biological Diversity to gain the consent of indigenous 
people, the Convention strongly encourages it. Likewise, the 1989 
Convention Concerning Indigenous and Tribal Peoples in Independent 
Countries and the UN Draft Declaration on the Rights of Indigenous People 
both support the principle of gaining the prior informed consent of 
indigenous people for the use of their resources and traditional knowledge 
(ILO, 1989; WIPG, 1993). Gaining the consent of indigenous people 
involves identifying appropriate indigenous communities with which to work, 
gaining their approval to share knowledge and resources, and negotiating 
appropriate contracts and compensation packages. This can be a very time-
consuming undertaking. In the International Cooperative Biodiversity Group 
bioprospecting program operating in Peru, it took well over 2 years of 
negotiating to reach a final agreement with the indigenous partners (Crook, 
2001). Perhaps the most problematic aspect of the Philippines‘ access 
legislation, at least from the point of view of companies seeking to gain 
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access, is the requirement to gain the prior informed consent of local and 
indigenous communities to work in their territories (Reid et al., 1995). 
 
 

 
Thus, one must ask to what extent has this challenge above been or is relevant to 

the development of natural products? Are intellectual property issues relevant to 

the development of a few isolated natural products (ex. P57 in Hoodia) or do such 

considerations affect a significant portion of compounds of interest? Insights into 

these questions may very determine the extent and focus of future screens of 

natural products for drug discovery purposes. In the context of alkaloids, judging 

from the 51 alkaloids (listed in Appendix 3) which have made it into the 

pharmaceutical arena, nearly all are non-patented or patents have expired (which 

is expected since these products have been on the market for decades). 

 

Most such alkaloids have no ties with indigenous populations and have become 

commodities which are freely manufactured and traded across worldwide markets. 

How does one quantify such indigenous rights considerations on a larger scale 

across widely differing contexts? One simple categorization scheme is to 

categorize each alkaloid into the following IP (intellectual property) statuses: 1. No 

registered IP belonging to a specific party, 2. Registered/claimed IP associated an 

indigenous or another group in a single country, 3. Registered/claimed IP 

associated groups in more than one country. Data for such a query would then 

come from one of the numerous patent search databases such as the World 

Intellectual Property Organization‘s PATENTSCOPE or Google Patents. Such a 

scheme, although simple, when applied to non-essential/essential groups of 

alkaloids may shed insights into whether or not alkaloids adhere to the trends 

described above in natural product development. This is a research area of 

interest which is not covered by the methods used in this research. 

 

Another major challenge in drug discovery from natural products relates to the 

relationship between traditional medicines and marketed pharmaceutical products. 

The crux of this challenge lies in the following question: To what extent can 

naturally occurring plant preparations that have been used by ethnic groups be 

effectively developed into marketed pharmaceutical products, and how does the 
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exponential rise of reported pharmacological activity of alkaloids 

contribute/counteract the development process of natural products? 

A brief historical overview of what is debated ‗science‘ by some may prove helpful 

in an initial exploration of these questions. In the 80s and 90s, some such as 

Farnsworth and others drew attention to the vast potential they believed 

ethnomedicine held for the future of drug development. The database he 

championed, NAPRALERT, is one tool to assist in identifying plants for inclusion 

into drug discovery programs. He explained that in North America there are two 

major reasons for studying ethnopharmacology: First, to utilize the information as 

a guide to drug development under the assumption that if a plant has been used 

by indigenous cultures over a long period of time, there should be a valid drug 

potential in the plant and second to validate scientifically their effects and side 

effects to a point where they can recommended for use in developing countries 

where they would be culturally acceptable and allow such countries to conserve 

hard currency and reduce health care costs (Farnsworth, 1993). This viewpoint 

was supported by many, including Tulp who lists plant species with traditional 

uses at the top of his list of unconventional natural sources which show the 

highest potential (Tulp and Bohlin, 2004). 

It is important to note that both of these assertions are primarily based on data 

published in natural products related journals. Some such as Gertsch challenge 

this literature based approach and believe that ‗in ethnopharmacology and 

pharmacognosy literature we find thousands of claims of bioactive natural 

products and extracts with potential therapeutic applications. But hopes and 

promises are rarely tested on a rational basis‘, and further state that ‗drug 

discovery lacks mathematical precision and ethnopharmacology is certainly not an 

exact science and interpretations are often ambiguous‘ (Gertsch, 2009). Thus any 

serious data-driven analysis of natural products would acknowledge that such 

biases exist and try to mitigate them through a statistically significant volume of 

carefully collected data. 

When one looks specifically at the alkaloids which have made it to the market as 

pharmaceuticals (Appendix 3) one sees that few have been strong 

ethnopharmacological leads, that is, many have emerged as a result of screening 
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random or targeted physiochemical screening programs. Lastly, this debate is not 

simply divided into supporters and non-supporters of ethnomedical lead 

approaches, there are others like Cox who weigh strengths and limitations of such 

methods (Cox, 1994). 

The concept of sustainability, as viewed in the context of extraction and cultivation 

of plant material, is another obvious challenge in natural product development 

(Cordell and Colvard, 2005). Similar to the other challenges mentioned earlier in 

this thesis, the specific task at hand is understanding, on a large scale, to what 

extent availability or extraction methods of a plant correlate with its ability to be 

developed and marketed as a drug. Again, similar to aspects mentioned earlier, 

the crux of such an issue lies in its ability to be quantified. What tools exist to 

quantify availability or biomass of plant species of every plant which is known to 

produce alkaloids? A large scale data-based approach is described in a 

subsequent chapter of this thesis which proposes a novel method which allows for 

a better understanding of this relationship.  

 

In conclusion, Newman and Cragg state the direction they would like to see the 

natural products field develop in:  

 
To us, a multidisciplinary approach to drug discovery, involving the 
generation of truly novel molecular diversity from natural product sources, 
combined with total and combinatorial synthetic methodologies, and 
including the manipulation of biosynthetic pathways, will continue to provide 
the best solution to the current productivity crisis facing the scientific 
community engaged in drug discovery and development (Newman and 
Cragg, 2012). 

 
 
 
This ‗multidisciplinary approach‘ is proposed in subsequent sections of this thesis. 

 
 
 

2.2. A study into perceptions of natural products: industry and academia 

2.2.1. Results from insider perspectives 
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To validate the aforementioned assumptions regarding the advantages and 

challenges of natural product drug discovery, one needs to elicit feedback from 

stakeholders within industry. Furthermore, such insider perspectives will indicate 

current prevalent strategies within drug discovery processes as well as identify 

gaps which can begin to be addressed through various disciplines. 

 

In order to begin gleaning such insights, a panel of industry and academic 

contacts (some of which are personal contacts) were personally invited through 

email and phone correspondence to participate and submit insights to a natural 

products development survey which was hosted online (Google Forms – 

http://forms.google.com). The participants were informed that results from the 

survey are to be used non-commercially, anonymously, and for the purposes of 

doctoral research. A screenshot of the survey can be found in Appendix 1. 

 

A snowballing strategy was used to increase the number of contacts (Table 8). 

Industry contacts represented many of the major multinational pharmaceutical 

companies such as Merck, Novartis, GSK, Pfizer, AZ and Bayer among others. 

Seniority of each respondent varied with respect to his or her organization. Titles 

of respondents included: Chief Scientific Officer (CSO), President, Vice President 

(VP), Group Leader, Senior Analytical Chemist, and Senior Principal Scientist 

among others. 

 

Academic contacts originated from eight different countries including, Brazil, 

Oman, New Zealand, UK, and USA. The majority of academic respondents were 

full-time academics, five of which also hold senior roles in pharmaceutical-

company related organizations (consultancy, clinical research and/or 

pharmaceutical entities). It must be mentioned that the panel is clearly limited in 

its geographical coverage of smaller pharmaceutical markets such as Asia, 

Japan, and Latin America; markets which represented approximately 11%, 9% 

and 5% of 2014 total worldwide pharmaceutical sales respectively (IMS Health, 

2014). Nevertheless, barring the extreme of labelling the panel as strictly 

representative of ‗the industry‘, it is felt that the panel of contacts is generally 

representative of trends of interest within the industry (Amirkia and Heinrich, 

2015). 
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There were four primary goals which were considered in designing the 
questionnaire:  
 

1. To understand drivers and barriers in natural product drug discovery 
efforts  

2. To understand what respondents identify as ‗current preferred 
strategies’ for discovering new drugs in industry today 

3. As HTS stands as a prevalent tool in in drug discovery today, the 
goal is to elicit perceptions of the efficacy of natural products as 
compared with other classes of compounds in screens  

4. To understand the respondent‘s general outlook on future drug 
discovery as a whole. This approach would allow the authors to 
better understand the perceived effectiveness of past, present, and 
future natural product drug discovery efforts and more importantly 
compare any potential similarities and differences in insights 
between academic and industry respondents. 
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Age Highest Educational Degree Years of pharma 
industry exp. Country Size of current institution Title Natural product expertise comes from: 

65 PhD / MD / PharmD / Doctorate 35 USA 11-100 CSO Industry (Research) 
58 PhD / MD / PharmD / Doctorate 25 USA 1-10 President Industry (Research) 
67 PhD / MD / PharmD / Doctorate 40 UK 1-10 Director Industry (Management) 
57 PhD / MD / PharmD / Doctorate 25 UK 999-10,000 Professor Academia 
67 PhD / MD / PharmD / Doctorate 40 UK 1-10 Director Industry (Management) 
52 PhD / MD / PharmD / Doctorate 26 UK 1-10 Project Manager Industry (Management) 
54 PhD / MD / PharmD / Doctorate 16 UK 10,000+ Doctor Academia 
45 PhD / MD / PharmD / Doctorate 9 USA 10,000+ Principal Scientist Academia 
72 PhD / MD / PharmD / Doctorate 40 USA 10,000+ Retired CSO Industry (Research) 
75 PhD / MD / PharmD / Doctorate 37 USA 10,000+ Retired Industry (Research) 
70 PhD / MD / PharmD / Doctorate 42 USA 1-10 Ph.D. Industry (Research) 
59 PhD / MD / PharmD / Doctorate 35 USA 10,000+ Research Fellow Industry (Research) 
49 PhD / MD / PharmD / Doctorate 22 Belgium 10,000+ Scientific Affairs Industry (Management) 
42 PhD / MD / PharmD / Doctorate 13 Switzerland 10,000+ Senior investigator Industry (Research) 
76 PhD / MD / PharmD / Doctorate 0 USA 999-10,000 Professor Academia 
59 PhD / MD / PharmD / Doctorate 30 Italy 11-100 Professor Academia 
62 Bachelors 15 USA 1-10 VP Analytical Chemistry Academia 
56 PhD / MD / PharmD / Doctorate 30 USA 101-999 Professor and Director Academia 
75 PhD / MD / PharmD / Doctorate 25 USA 10,000+ Retired Chief Industry and Government 
39 PhD / MD / PharmD / Doctorate 0 UK 101-999 Reader Academia 
58 PhD / MD / PharmD / Doctorate 30 Germany 10,000+ CVP Industry (Research) 
53 PhD / MD / PharmD / Doctorate 21 USA 11-100 Senior Scientist Industry (Research) 
51 PhD / MD / PharmD / Doctorate 22 USA 10,000+ Executive Director Academia 
47 PhD / MD / PharmD / Doctorate 0 USA 11-100 Sr. Research Scientist Academia 
54 PhD / MD / PharmD / Doctorate 28 USA 10,000+ Professor and Director Industry (Research) 
34 PhD / MD / PharmD / Doctorate 10 USA 10,000+ Managing Director Industry (Research) 
46 PhD / MD / PharmD / Doctorate 15 Germany 10,000+ Dr. Industry (Research) 
40 PhD / MD / PharmD / Doctorate 12 UK 11-100 Asso. Dir. of Discovery Industry (Research) 
57 PhD / MD / PharmD / Doctorate 27 USA 10,000+ Director Industry (Management) 
55 PhD / MD / PharmD / Doctorate 25 France 999-10,000 Dir. of Bot. and R&D Sourcing Industry (Management) 
29 PhD / MD / PharmD / Doctorate 1 USA 999-10,000 Research Scholar Academia 
42 PhD / MD / PharmD / Doctorate 13 Switzerland 10,000+ Director Industry (Research) 
42 PhD / MD / PharmD / Doctorate 13 Switzerland 10,000+ Senior Investigator Industry (Regulatory) 
35 PhD / MD / PharmD / Doctorate 5 USA 999-10,000 Research Scientist Academia 
45 PhD / MD / PharmD / Doctorate 20 India 101-999 Senior Manager Industry (Research) 
39 PhD / MD / PharmD / Doctorate 0 Oman 11-100 Associate professor Academia 
50 PhD / MD / PharmD / Doctorate 10 USA 101-999 Professor Academia 
38 PhD / MD / PharmD / Doctorate 0 New Zealand 10,000+ Senior Lecturer Academia 
60 PhD / MD / PharmD / Doctorate 10 USA 10,000+ CSO Academia 
52 PhD / MD / PharmD / Doctorate 20 Spain 10,000+ Director Industry (Research) 
52 PhD / MD / PharmD / Doctorate 25 UK 10,000+ Group Leader Industry (Research) 
60 PhD / MD / PharmD / Doctorate 29 USA 10,000+ Senior Principal Scientist Industry (Research) 
40 PhD / MD / PharmD / Doctorate 10 USA 10,000+ Chief Scientist Industry (Research) 
62 PhD / MD / PharmD / Doctorate 40 UK 1-10 CEO Development 
40 Masters 18 UK 999-10,000 Chief Industry (Management) 
60 PhD / MD / PharmD / Doctorate 37 Germany 999-10,000 VP Industry (Management) 

53.8 Avg. age 20.6 Avg. years of 
pharma exp.    

Table 8: Profile of selected respondents (46 of the total 52 respondents) sorted in order of received respons
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The survey consisted of a series of six quantitative and qualitative close-ended 

questions followed by ten profile and background related questions. Close-ended 

questions with several choices had an ‗other‘ box for the respondent to fill in 

his/her response. Multiple choice selections were displayed in randomized order 

for each survey so as to control for position bias in responses.  

 

Close-ended questions were comprised of the following: 

 
1. In your opinion, what are the top 2 current preferred strategies for 

drug discovery? 

2. Based on your experience or on your assessment, approximately 
how many agents based on natural products and alkaloids 
researched in commercial R&D facilities make it to market as 
pharmaceutical products? 

3. From your experience, what have been the major drivers to 
natural product development in industry? 

4. From your experience, what have been the major barriers to 
natural product development in industry? 

5. Drug Discovery is a history of triumphs and failures. Compared to 
last decades how successful is the industry today in discovering 
new medicines? 

6. What is your outlook on the future viability (rate at which 
pharmaceuticals are developed and launched to market) of 
natural products, serving either as final pharmaceutical products 
or as leads to the development of the final pharmaceutical 
products? 

 
 
The six close-ended questions each had an open field for participants to provide 

additional thoughts. Total completions of the survey ended at 52 responses after 

14 weeks spanning from January and May 2015.  

 

One major, consistent theme across respondents was the dissonance between 

the perceived potential of natural product development among individuals in 

industry and overall industry and/or company level strategies. Large scale, 

structural modification processes (i.e. HTS) have become Big Pharma‘s ‗go-to-
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strategy‘ for honing in on successful leads. HTS typically avoids the need to 

continuously source and verify new natural product material, which matches the 

highest citied barrier from industry contacts in the survey (i.e. a secure supply). 

 

Additionally, large HTS screening programs are argued by many (Macarron, 2011) 

to be more cost-effective in the long run which is also in line with the third largest 

barrier cited by the industry contacts (i.e. cost/funding/budget). General results 

are summarized below (Table 9): 

 
 

 Industry 
Respondents (n=33) 

Academia 
Respondents (n=19) 

Average Age 53 48 
Average years of 
experience in the 
pharmaceutical 

industry 

25 10 

Male/Female 82% Male, 18% 
Female 

89% Male, 11% 
Female 

Drug Discovery is a 
history of triumphs 

and failures. 
Compared to last 

decades how 
successful is the 
industry today in 
discovering new 

medicines? 

Avg. of all responses (1=Full of Triumph, 7= 
Full of Failure) 

3.9 (SD:1.22) 4.3 (SD:1.37) 

In your opinion, 
what are the top 
current preferred 

strategies for drug 
discovery? 

1. High throughput 
screening (HTS) – 

31% 
2. Physiochemical – 

modifications to 
existing leads – 25% 

3. 
Virtual/Computational 
prospecting/modelling 

- 19% 

1. High throughput 
screening (HTS) – 

34% 
2. Physiochemical – 

modifications to 
existing leads – 24% 

3. 
Virtual/Computational 
prospecting/modelling 

-18% 
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Top Drivers to 
natural product 
development in 

industry2 

1. Structural Novelty 
and Bioactivity – 47% 

2. Efficacy and/or 
chemical viability 

(solubility, stability, 
toxicity, etc.) – 18% 

3. Supply - 11% 

1. Structural Novelty 
and Bioactivity – 42% 

2. Efficacy and/or 
chemical viability 

(solubility, stability, 
toxicity, etc.) – 24% 

3. 
Cost/Funding/Budget 

– 15% 

Top Barriers to 
natural product 
development in 

industry2 

1. Supply – 26% 
2. Structural 

Complexity – 20% 
3. 

Cost/Funding/Budget - 
19% 

1. 
Cost/Funding/Budget 

– 25% 
2. Structural 

Complexity – 23% 
3. Supply – 25% 

What is your outlook 
on the future 

viability (rate at 
which 

pharmaceuticals are 
developed and 

launched to market) 
of natural products, 

serving either as 
final pharmaceutical 
products or as leads 
to the development 

of the final 
pharmaceutical 

products? 3 

Optimistic - 52% 
Unsure/‘Hard to say‘ – 

21% 
Pessimistic – 27% 

Optimistic – 63% 
Unsure/‘Hard to say‘ - 

26% 
Pessimistic – 11% 

 
Table 9: Results of the survey including selected close ended and profile questions 

 
 
Two other major themes emerged from participants writing insights in the open 

space provided after each close-ended question and are illustrated with a 

selection of verbatim statements pertinent to each theme: 

 
                                                        
2 Respondents could select or list more than one response. All responses were added together 
and a ‘response rate’ was calculated by taking the percentage of a particular response as a total of 
all responses. 
3 Respondents selected one response. All responses were added together and a ‘response rate’ 
was calculated by taking the percentage of a particular response as a total of all responses. 
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Ineffectiveness of current HTS drug discovery programs (industry efforts 

which boast large libraries and cutting edge screening technologies have gained 

momentum which in turn has overshadowed smaller, more unique and fruitful 

discovery efforts): 

 
 
x “The industry focus on numbers (quantity vs. quality) has counted against 
natural products discovery - and the belief that supply of material on a suitable 
scale might be difficult (which may be a misconception).” 
 
x “Industry is driven by numbers and processes; HTS, you could include 
fragment screening in this too – or even billions of compounds on encoded 
libraries (as we have at [X] company). I am part of a group who strongly advocate 
the huge impact of proper attention to physical properties and efficiency as 
existing leads are optimized (sadly mostly derived from the numbers generated 
above). HTS yet is the adopted strategy; in my opinion is probably isn't the most 
preferred!” 
 
x “These approaches [High throughput screening (HTS), Combinatorial 
Chemistry] are favored by many pharmaceutical companies, even though they 
have not been notably successful.” 
 
x “HTS depends on large libraries, most of which have been so thoroughly 
studied that their utility going forward must be considered modest.” 
 
x “My understanding is that physicochemical modifications of existing leads 
represents the vast majority of drug discovery, and there are few places which are 
supporting anything beyond HTS or medicinal chemistry cycles.” 
 
x “Based on our internal track record, the outcome of HTS or VS is heavily 
dependent on the quality (control) of the actives and their ligand efficiency and the 
access to orthogonal assays to confirm the activity. These methods also 
complement each other and can be supported by additional methods, e.g. 
fragment-based. They are also generally easier to strip to the 'core' and obtain 
initial SAR. With natural products, you need to be lucky with the minor metabolites 
yielding some useful SAR. 
 
Nevertheless, our experience at X University…screening endogenous X species 
was successfully generating leads that were NOT pursued as chemists perceived 
the SAR work to have low feasibility.” 
 
x “In industry, modification of existing structures whether already in-house 
identified compounds or to bypass other structures with patent protection is much 
more common. This allows for the creation of "me too" therapeutic agents. 
Bioprospecting is much more common in academia, but natural product 
identification seems to be decreasing on the whole. Whether this is purely due to 
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funding issues or a broader shift in the field is not certain. Similarly, 
virtual/computation approaches are used in refining structure in industry but are 
essentially never used to de novo identify a drug. 
 
Many academic labs have used such strategies as well, but with few successes. 
HTS is still fairly common place in industry and is gaining greater traction in 
academic settings with more and more universities creating screening facilities. 
Serendipity is certainly an important part of drug discovery, especially in areas 
such as neurology, but no one would bet on winning the lottery to fund their lab.” 
 
x “HTS has been an abject failure in terms of discovery, due in most cases to not 
thinking about transfer across membrane issues when trying to go from a hit to an 
active in cells/animals. 
 
If one uses phenotypic screening (a dirty term amongst screeners in Pharma!), 
then if you see a valid effect, you will be well ahead of any HTS assay in vitro.” 
 
x “In Pharma, HTS is the buzzword. I know of screens where over 1 million 
synthetic compounds have produced nothing, many times. Natural products in 
phenotypic screens are between 10,000 and 100,000 depending upon what is 
known about potential mechanisms etc.” 
 
 
 
The second key theme that emerged centers around the lack of 
support/interest in organization for natural product drug development 
efforts (industry strategy over the last few decades has taken its form against a 

natural product-centric strategy and is unlikely to change) 

 
 
x “Don't fit company strategy.” 
 
x “Executive management fiat. Senior and executive scientific management at 
most Big Pharma wrote off natural products in the late '80s and early '90s with the 
advent of HTS, believing that HTS would have all of the answers.” 
 
x “Hostility; No support” 
  
x “Lack of will to study them.” 
 
x “Natural product discovery tends to require a group to champion the approach. 
In my experience med chemists don't switch between synthetic chemistry and 
natural product chemistry. The latter requires an infrastructure and senior 
champions who believe in the potential of the approach. The novelty of the 
structures that result often go beyond anything that a med chemist might consider 
synthesizing as such this can take you to places you wouldn't have got to by any 
other route.” 
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x “Screening of synthetic chemicals in massive libraries is cheap and most often 
results in hits that can be optimized as leads effective against sign targets. This 
process discounts any deep understanding of the biological processes involved in 
a disease state, other than the role played by an individual target biomolecule 
(kinases, etc.). And, the chemistry involved in elaborating these often simple 
structures is easy and high throughput - so from the chemists standpoint - why 
knock yourself out with natural product modifications which are often more difficult? 
Regrettably in industry little credit is given for the extra effort and overall 
productivity will appear low.” 
 
x “The major driver to natural product development in industry is to eliminate it, 
which is what most of the large pharma companies have in fact done.” 
 
x “From my perspective, today, natural products make only sense as starting 
materials for further optimization. I am convinced that we will see less and less 
original natural products that make it to the market in human pharma (animal 
health may be a different story). Also TCM et al may be a different story.” 
 
x “natural products are currently not the "flavor of the month or decade" but now 
days, chemists are looking for structural leads that may well have activity, due to 
the failure of combi-chem as a discovery tool.” 
 
 
 
 It is interesting to note that such an open question in fact only elucidated two 

key reasons why natural products are poorly represented in such drug discovery 

processes. Open questions are often used to elicit a wider set of views (Heinrich 

et al., 2009) and here a clear focus on two concerns emerged.  
 
 

2.2.2. Perceived ‘hit rates’ by compound class 
 
 
Gaining insights into perceptions of the drivers and barriers of natural product 

drug discovery is a helpful yet limited step in providing insights into the drug 

development process. This data does not convincingly indicate the ‗effectiveness‘ 

of natural products in drug discovery as compared to other commonly researched 

classes of compounds. Thus, respondents were asked to provide an approximate 

ratio of ‗success rates‘ for several classes of compounds in the following way:  

 
Based on your experience or on your assessment, approximately how many 
synthetic [or Biologics, Natural Products, Alkaloids] agents researched in 
commercial R&D facilities make it to market as pharmaceutical products?  
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Interestingly, all perceived ‗hit rates‘ for industry respondents are higher than 

those academia respondents reported (Table 10). Industry respondent ‗hit rates‘ 

were higher at a rate ranging between 1.8-3.1-times. This may reaffirm the other 

finding that in general, senior stakeholders in industry typically do support natural 

product centric discovery strategies, and hence the more frequent ‗hits‘. 

Conversely, this indicates that screening programs related to academic efforts, 

particularly with respect to HTS, are not perceived as being as useful as 

widespread industrial efforts. Does this mean that industry is more ‗productive‘ 

than academia in screening for natural products? Not necessarily, as this question 

does not attempt to equalize all screening methods but rather gain a general 

indication of respondent‘s perceptions towards screening efforts in the most 

general sense possible. Additionally, it is also surprising to note that there is a 

larger gap between ‗hit rates‘ reported between natural products and synthetics 

for industry versus academia respondents; 8-times vs. 5-times, respectively. This 

also indicates a reaffirmation of the previous observation that many working in 

industry - regardless of their role and their level of dissatisfaction with the strategic 

direction of their organization, still perceive strong relative potential in natural 

product drug development as compared with currently prevalent synthetic-centric 

strategies. 

 
 
Furthermore, the goal in asking this question is twofold; to gain a general indicator 

of perceived ‗success/hit rates‘ of natural products against other compound 

classes as well as compare the perception of ‗success rates‘ against previous 

claims published over the years by industry observers (Shen, 2003). Yet, there 

are two limitations to this question. The first is that each respondent may define 

‗researched‘ in a completely differing way. To one respondent a compound is not 

‗researched‘ until it perhaps enters a HTS program, while to another, a compound 

merely existing in a company compound library may count as being ‗researched‘. 

The second is the definition of the compound class (ex. Where does a natural 

product which has been structurally modified fit?). It goes without saying that there 

are numerous variables in any screen (compound library itself, target/ligands, 
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parameters for defining a successful ‗hit‘, purpose of screen, etc…) which make a 

particular screen entirely unique and incomparable to another. 

 
 

Compound class 
Industry respondents 

(n=33) (logarithmic 
value4) 

Academia 
respondents (n=19) 
(logarithmic value) 

All natural products5 4.03 (1 in 10,723) 4.53 (1 in 33,598) 

Alkaloids 4.27 (1 in 18,738) 4.53 (1 in 33,598) 

Synthetic compounds 4.97 (1 in 93,260) 5.26 (1 in 183,298) 

Biologics 3.67 (1 in 4,642) 4.11 (1 in 12,743) 

Overall average 4.24 (1 in 17,179) 4.61 (1 in 40,504) 

 
Table 10: Respondent‘s estimates of how many agents researched commercial R&D 

facilities make it to market as pharmaceutical products (commonly referred to as ‗hit rate‘)  

 
 
35 of the 52 respondents (35 of all 105 individual answers to this open ended 

question) listed HTS as a ‗top preferred current strategy‘; it is natural that this be a 

focal point of analysis.  

 

Many publications have cited barriers to natural product drug development. In 

2004 Jean-Yves Ortholand, who at the time worked at Merck in France, listed six 

major drawbacks in programs screening natural products: expense, time, novelty, 

tractability, scale-up and intellectual property (Ortholand, 2004). In looking to the 

industry feedback, each of Ortholand‘s ‗drawbacks‘ are corroborated to some 

extent with a particular focus on supply and cost/funding. It is noteworthy that 

these two highly cited barriers do not directly involve the actual screen itself but 

rather affect the feasibility of pre/post-screen efforts. The most frequently cited 

barriers seem to be those which prevent a screen from happening in the first 

                                                        
4 Respondents selected from a range of six responses beginning at ‘1 in 100’ and ending at ‘1 in 
1,000,000+’. Averages were calculated by assigning a value between 2 and 7 to each response 
and extrapolating through a logarithmic calculation (ex. 102=100, 106=1,000,000) 
5 All natural products includes alkaloids 
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place (i.e. cost or company strategy) or from moving from early stage screening to 

pre-clinical development (i.e. supply, scale-up). Therefore, besides proposing the 

obvious that costs should be reduced and/or funding increased for natural product 

drug discovery efforts, are there potential cost-sensitive resolutions to the 

supply/scale-up barrier? 

 

2.3. Insights derived from the survey: 
 

2.3.1. Can cost-effectiveness and natural products research coexist? 
 
 
Supply as an unmet need has been mentioned not only by industry outsiders, but 

confirmed by industry and academic expert interviews presented earlier in this 

thesis. Yet, one question which deserves additional analysis is to what extent is 

the industry missing the target of cost effective natural product development. Is 

this a lofty goal, only to be attained is in the distant future? How do current efforts 

size up against sustainable natural products research and how actually 

‗sustainable‘ are current efforts? 

 
 
McChesney et al. provide a number of highly pertinent insights into these 

questions through a presentation of two sets of in-depth analyses. The first titled 

‗the utilization of the world‘s plants‘, evaluates how much of the world‘s 

biodiversity are humans currently tapping into in the fields of food and medicine, 

and the second being a scenario analysis of biomass required for use of natural 

products in the treatment of acute and chronic conditions. 

 

McChesney et al. begin with the assumption that ‗it is generally estimated that 

there are approximately 300,000 species of higher plants‘. This assumption is 

based on previous research by systemic botanists (Lawrence, 1951), and it is 

important to note that there is variability between estimates ranging from 250,000 

to 500,000 species (Lawrence, 1951). Of these 300,000 species, only 1% has 

been utilized in food and 5% of that 1% has been utilized for food. Furthermore 

they state: the vast majority of caloric intake derives from about 20 species of 

plants. These plants represent the basis upon which the world‘s population is fed, 
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representing a very narrow foundation supporting the world‘s human population. 

This first analysis continues with a comparison of food sources to sources of 

medicines. They state that 10,000 of the world‘s plants have documented 

medicinal use; more than three times more than what constitute main sources of 

human caloric intake but furthermore, only 150-200 species have produced 

agents used in western medicines. This is a highly significant indicator that shows 

the colossal potential yet uncovered by recent drug discovery efforts. So how 

cost-effective is it to tap into this reservoir? 

 

McChesney continues with a second set of analyses looking at how much 

biomass of source plant material is required to carry forward initial assessments, 

verifications, clinical work, and eventual treatment of a relatively small patient 

population suffering from an acute condition. These estimates are summarized as 

follows (order of presentation is reversed from McChesney‘s original publication 

for ease of readability): 

 

 

Step/Assumption Quantity of material 

Starting material – dry plant biomass 5 kg 

Isolation yield from biomass 0.001% 

Active substance 50 mg 
 

Table 11 – Dry plant biomass required to perform initial efficacy testing of a natural 
product 

 
Step/Assumption Quantity of material 

Starting material – dry plant biomass 100 kg 

Isolation yield from biomass 0.001% 

Active substance 1 g 
 

Table 12 – Dry plant biomass required to perform initial efficacy testing of a natural 
product and secondary biological assays (toxicology and in vivo evaluations) 
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Step/Assumption Quantity of material 

Starting material – dry plant biomass 200,000 kg 

Isolation yield from biomass 0.001% 

Active substance 2 kg 
 

Table 13 – Dry plant biomass required to perform initial efficacy testing of a natural 
product, secondary biological assays (toxicology and in vivo evaluations), and clinical 

environment testing (clinical trials) 

 

Step/Assumption Quantity of material 

Starting material – dry plant biomass 2,000,000 kg (2,220 tons) 

Isolation yield from biomass 0.001% 

Active substance/year 20 kg 
Patient population/year (acute 

condition) 10,000 patients 

Grams/needed for course of therapy 2 g 
 

Table 14 – Dry plant biomass required to treat an acute condition for 10,000 patients/year 

 

This analysis continues with an additional assumption; a ten times larger patient 

population of 100,000 patients suffering from a chronic condition for which a 

patient would consume 50 mg/day for the course of the year. A ten times larger 

patient population would increase the requirement of starting material by two 

orders of magnitude to 200,000,000 kg of dry plant biomass! The authors argue 

that a required biomass of this magnitude is entirely feasible if one compares 

these volumes to the production of large scale commodities such as wheat, corn, 

or soybeans which hold the status of heavily developed mega-crops. The authors 

also state that the isolation yield assumption of 0.001% of dry plant biomass is the 

‗worst-case‘ and that this percentage may be up to a thousand times higher in 

certain species. 

 

Compounding these three barriers - low penetration of the world‘s biodiversity, low 

rates of extraction, and low hit rates - reveals a large gap between current efforts 

in natural products development and what will actually sustain the field of 

pharmaceutics moving forward. Yet, the argument put forth in this thesis is that it 

would be incorrect to dismiss the potential of natural products development based 
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on the current deficiencies in approaches used. As shown earlier, HTS is 

recognized by industry insiders as the preferred strategy but is widely believed to 

be inefficient in the face of supply issues. It is for this reason that some who have 

recognized these deficiencies have sought out efforts to devise novel methods of 

natural product synthesis which break away from the ‗harvesting raw biomass‘ 

model. 

 

2.3.2. Efforts to augment supply of natural products 
 
A look at the historical record shows that before being isolated and identified as 

specific sources of active compounds, natural products were often used in 

relatively crude ways. As natural products were increasingly isolated, researched 

both in in vitro and in vivo settings and their effects gradually pinpointed, certain 

natural products became indispensible to the modern pharmaceutical environment. 

Alkaloids have been no exception and have many a time been at the forefront of 

new isolations, discoveries, and applications over the past two centuries and it is 

precisely such alkaloids that issues of supply (cited by industry insiders and 

observers) relate to the most. An illustrative example of this dynamic is the widely 

used pharmaceutical alkaloid morphine. 

 

With use documented as early as the Byzantine Empire and isolated in 1804 

(Hodgson, 2001), morphine represents one of the most studied and familiar 

alkaloids in the world (Hodgson, 2001). The role, usefulness and merits of 

morphine are not a focus of this thesis and thus will not be examined in depth, yet, 

because of a wide use over a long-period of recorded history, there is an 

abundance of data related to its supply and procurement. Both the natural supply 

and, more recently, synthetic sources of morphine deserve closer consideration if 

one is to understand the effectiveness of efforts to augment the supply of natural 

products, and more specifically that of alkaloids. Morphine can serve as an 

effective case study of such efforts. 

 

 
The first total synthesis of morphine was published by Gates in 1952. Although this was 

an incredible breakthrough, this initial effort reported a very small overall yield of 0.06% 
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(Gates and Tschudi, 1952). No less than 25 additional unique total syntheses of morphine 

and/or its derivatives were published following Gates‘ initial publication (Table 15).  
 

Principle 
author Year Target Steps 

Overall yield 
(as 

reported) 

Gates 1952 Morphine 31 0.06% 
Ginsburg 1954 rac-Dihydrothebainone 21 8.9% 
Grewe 1967 rac-Dihydrothebainone 9 0.81% 
Rice 1980 Dihydrocodeinone 14 29.7% 

Evans 1982 rac-O-Me-thebainone A 12 16.7% 
White 1983 Codeine 8 1.8% 

Rapoport 1983 rac-Codeine 26 1.2% 
Fuchs 1987 rac-Codeine 23 1.3% 
Tius 1992 rac-Thebainone-A 24 1.1% 

Parker 1992 rac-Dihydrocodeinone 11 11.1% 
Overman 1993 Dihydrocodeinone 14 1.9% 
Mulzer 1996 Dihydrocodeinone 15 9.1% 

Parsons 1996 Morphine 5 1.8% 
White 1997 ent-Morphine 28 3% 
Mulzer 1997 Dihydrocodeinone 18 5.7% 

Ogasawara 2001 Dihydrocodeineone ethylene 
ketal 21 1.5% 

Taber 2002 Morphine 27 0.51% 
Trost 2002 Codeine 15 6.8% 

Fukuyama 2006 rac-Morphine 25 6.7% 
Hudlicky 2007 ent-Codeine 15 0.23% 

Iorga/Guillou 2008 rac-Codeine 17 0.64% 
Chida 2008 rac-Dihydroisocodeine 24 3.8% 

Hudlicky 2009 Codeine 18 0.19% 
Magnus 2009 rac-Codeine 13 20.1% 

Stork 2009 rac-Codeine 22 2% 
Fukuyama 2010 Morphine 18 4.8% 

 
Table 15: All total syntheses of morphine and morphine derivatives between 1952 and 

2010 (Rinner and Hudlicky, 2011). 

 

One key aim of this thesis is to understand the strengths and limitations of such 

approaches. In this respect, the analysis which follows will focus on two aspects 
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related to the synthesis of morphine, namely time/complexity constraints and low 

yield. 

 

148 years passed between the isolation of morphine from opium by Serteurner in 

1804 its synthesis by Gates. Following isolation, it took nearly a century to 

elucidate the full structure of the compound. Today, technological innovations 

have ensured that isolation and structural elucidation of alkaloids are no longer 

major hurdles, but, simply looking at the large volume of discovered alkaloids and 

the time it would take identify chemical syntheses for each of the 51 

pharmaceutical alkaloids (let alone the pool of 27,000+ alkaloids altogether) 

indicates that this is no small task. Granted, many alkaloids are structurally related, 

differ merely by one or two atoms, and can serve precursors to one another 

during these synthesis; for example, codeine and morphine. Yet, if one assumes 

that on average seven alkaloids are linked to one total synthesis process, that still 

leaves well over 3,000 chemical syntheses processes which have to be elucidated 

for all alkaloids to be covered. This number would likely be reduced to several 

hundred if only the ‗essential‘ alkaloids used in industry, medicine and other fields 

were to be focused. Additionally this task is even appears more daunting when 

one considers the complexity of each synthesis. The list of syntheses in Rinner‘s 

review average 18 steps for each process; these are not simple or short 

syntheses, even though morphine is not considered a highly ‗complex‘ alkaloid. 

Morphine has a molecular weight of 285 g/mol which is smaller and therefore 

assumed less complex than the average molecular weight of across all alkaloids 

in the Dictionary of Natural Products (DNP) which is 485 g/mol. This indicates that 

to develop additional chemical syntheses for the average alkaloid would be a 

considerably tougher task. 

 

Another, and possibly even more straightforward, analysis into the effectiveness 

of these efforts is one which scrutinizes overall yield. An average of all overall 

yields for morphine and morphine derivatives in Rinner‘s review is a mere 5.44%. 

This average decreases to 1.79% when only the morphine syntheses are 

considered. Such a low-yield inevitably is cost prohibitive and as Rinner points out, 

is out computed by low wages for workers: 

 



 72 

To date there is no practical source of morphine, either by chemical 
synthesis or through fermentation, that would compete with the cost of 
isolation. Of course, part of the reason that natural morphine is so 
inexpensive is the low-wage investment in harvesting it, mostly in 
Afghanistan, Turkey, and India. Were the workers there paid ―western‖ 
wages, the price could never be as low as it is today (~$400–700/kg). 

 

 

It is important to also note that standards for reporting yields in syntheses such as 

these are not fully agreed on by chemists and thus each synthesis is not fully 

comparable (Wernerova and Hudlicky, 2010). Nevertheless, these reported yields 

are a good indicator which can benchmark overall effectiveness of such efforts 

and with an estimated global consumption of 474 tons in 2012; chemical synthesis 

of morphine at a yield in the range of 5% is simply not feasible (INCB 2013). 

 

Rinner continues by summarizing efforts to augment supply of morphine through 

chemical and bio-synthesis by stating: 

 
Eight total syntheses of morphine or congeners have been reported in the 
last 5 years, attesting to no shortage of new ideas or strategies. The interest 
in this fascinating molecule will no doubt continue, yet a truly practical 
synthesis of the title alkaloid [morphine] still remains a distant dream. In 
order even to approach the current price per kilogram, a synthesis would 
have to be five to six steps long starting with commodity chemicals. A 
potential for a practical synthesis may exist in the realm of fermentation 
provided the biosynthetic pathway could be coded into a single plasmid and 
used to over-express the required enzymes in a robust bacterial carrier. A 
proof of principle has been attained through the work of Kutchan with the 
cloning and expression of codeinone reductase in E. coli. 
 
Another possibility for practical synthesis could come from the combination 
of fermentation for attaining specific steps with semi synthesis to complete 
the preparation. Currently, we are fully dependent on natural sources of 
morphine and all medicinally useful derivatives are made by semi synthesis. 
Perhaps more important goals for the future generations of chemists would 
be to focus on the de novo total synthesis of the derivatives themselves 
rather than morphine or codeine. Perhaps we will see some effort devoted 
to this most worthwhile task in the near future (Rinner and Hudlicky, 2011). 
 
 

Efforts to boost secondary metabolite production through genetic modification 

have generally fallen short in putting forth viable solutions. Facchini et al. propose 

gene sequencing and combinational chemistry in their model based on genetically 

modified yeast producing secondary metabolites, such as alkaloids, but little is 
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proposed beyond a theoretical approach and no experimental data is presented 

(Facchini et al., 2012). Nakagawa et al. propose a novel scheme to leverage an E. 

coli. fermentation system which begins with simple carbon sources such as L-

tyrosine and ends at (S)-reticuline, a branch point intermediate in the biosynthesis 

of many types of benzylisoquinoline alkaloids (Nakagawa et al., 2011). 

 

In their conclusion, Nakagawa comment on the viability of such an approach and 

challenges involved: 

 
Although the overall yield of (S)-reticuline in this system was low, we 
estimate that the production cost of (S)-reticuline using this method would 
be much lower than that of previous microbial systems in terms of substrate 
costs. In addition to reduced production costs, another advantage of this 
system is the simple and effective purification procedure, which results in 
(S)-reticuline with little contamination by other undesired BIAs. (S)-
Reticuline was purified from the culture medium using solid-phase extraction 
and high-performance liquid chromatography. This procedure recovered 
more than 90% of purified (S)-reticuline in two steps. A simple purification 
procedure resulting in high yields makes this production system 
economically viable (Nakagawa et al., 2011). 

 

 

Thus, although this proposes a novel approach which builds on previous low-

yielding set-ups through innovations during purification, overall yields remain 

prohibitively low. There is no doubt that such efforts are improving in effectiveness 

with time, but regardless, the practice of sourcing raw material from nature and 

isolating an alkaloid continues to showcase itself as the most economically viable 

sourcing strategy.  
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3. Alkaloids as a historical and modern source of medicines 
 

3.1. History of alkaloids  

3.1.1. Discovery and isolation 
 
The subsequent chapters of this thesis focus on the alkaloids, a class of highly 

diverse and widely distributed natural products. This methodology culminates in 

alkaloid specific insights that are believed to be applicable to natural product drug 

discovery at-large.  

 

The archaeological and historical record shows that peoples across Asia, Europe, 

and Africa used alkaloid-containing plants as early as 2000 BCE (Aniszewski, 

2007). Specific applications included empirical medicines for animals and humans, 

sources of poison for hunting expeditions or executions (Wink, 1998), and a 

variety of other dietary uses which Cordell elucidates:  

 
‗we are aware that the use of alkaloid-containing beverages as stimulants 
(e.g. tea and coffee) is very old. Cultivation of tea, for example, probably 
dates back to the 12th century B.C.E. in Sichuan Province in China, where 
cultivation continues today. The legend of coffee, ‗Qahwah‘, begins in 
Ethiopia, or may be derived from indigenous groups in Central Africa who 
used the stimulant properties of coffee beans during long treks (Quimme, 
1976). Other alkaloid-based stimulants (khat, betel nut, etc.) may date back 
much further in time (Cordell et al., 2001). 

 
 
 
Following this rich historical record, alkaloids reached a turning point in the early 

19th century with breakthroughs in their isolation, and structural elucidation 

purified compounds. In the early years of the 19th century, Friedrich Sertürner 

isolated what is now known as morphine. This catalysed a cascade of highly 

important isolations and discoveries by several European scientists including the 

isolation of xanthine (1817), strychnine (1818), atropine (1819), quinine (1820), 

and caffeine (1820) (Heinrich et al., 2012). This burst of single compound isolation 

has been characterized by many, including Sneader, as ‗the greatest advance in 

the process of drug discovery‘ (Sneader, 2005). 

It would be a mischaracterization to merely associate the isolation and discovery 

of alkaloids with events belonging to the early 19th century. As overviewed in 
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chapter 2, the vast majority of discovered alkaloids have not been studied in depth 

and alkaloid containing genera are abundantly under neglected. Thus, when one 

begins looking at efforts to isolate and discover new alkaloids following that initial 

burst of discovery, one can clearly see a steady stream of discoveries up through 

the early 21st century. 

 
In 2008, Clement et al. discovered three completely new alkaloids from the tropical 

ascidian Lissoclinum cf. badium - isolissoclinotoxin B, diplamine B, and lissoclinidine B – 

which, in their tests, stabilized the tumor suppressor p53 (Clement et al., 2008). In 2013, 

Wang et al. discovered and elucidated structures of nine new alkaloids isolated from the 

club moss Lycopodium japonicum Thunb. They found that although these nine alkaloids 

were completely novel, they shared structural elements related to lycopodine (Wang et al., 
2013). This discovery was followed most recently in 2016 by Zhang et al.‘s discovery of 
two new monoterpenoid indole alkaloids, named 14,15-dihydro-14β,15β-epoxy-10-

hydroxyscandine and 15α-hydroxy-meloscandonine (Zhang et al., 2015). Both were 

isolated from isolated from the aerial parts of Melodinus hemsleyanus Diels and were 

tested for PTP1B inhibitory activity in the hopes of applications related to type-2 diabetes 

therapies. These recent discoveries attest to the fact that the natural products and 

alkaloids ‗well‘ is certainly not dry. 
 

3.1.2. Definition and distribution 
 
As mentioned earlier, there is considerable variation in definitions of alkaloids as a 

subclass of natural products. For the purposes of this thesis, alkaloids are defined 

as: ―a large group of nitrogen-containing secondary metabolites of plant, microbial 

or animal origin. These include the majority of nitrogen-containing natural 

products with the exception of the simple amino acids, proteins and nitrogen-

containing substances of polyketide origin such as the aminoglycoside antibiotics‖ 

(Buckingham, 2000). Such a definition is relatively broad and thus, one has to 

reference specific natural product datasets to specify concrete numbers as to how 

many alkaloids actually have been ‗discovered‘.  

Much of the uncertainty of how many alkaloids actually exist stems from various 

issues including: poor chemical identification or structure elucidation, lack of 

dereplication, chemical ambiguities, and the varying definitions of what exactly 
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constitutes an alkaloid (Rates, 2001). As with natural products as a whole, many 

have proposed differing classificatory schemes for alkaloids. One popular scheme 

divides the whole class of compounds into three categories:  

 

x True alkaloids (compounds which derive from amino acid and a 
heterocyclic ring with nitrogen),  
 
x Protoalkaloids (compounds, in which the N atom derived from an 
amino acid is not a part of the heterocycle), and  
 
x Pseudoalkaloids (compounds, the basic carbon skeletons of which 
are not derived from amino acids). 

 

One of the largest compilations of discovered and recorded alkaloids yields 

27,783 compounds. This collection is housed in the (DNP) and it is important to 

note that the DNP‘s categorization scheme differs from many others in that it 

categorizes based on biogenetic origin rather than purely on the basis of structural 

features. This could explain why the raw number of alkaloids in the DNP is 

significantly more than other datasets. A full breakdown of the dictionary‘s specific 

categorization scheme can be found in Appendix 2. 

The scope of this thesis encompasses all such variations in definitions by taking 

the widest categorization of alkaloids as a class of compounds; the 27,783 found 

in the DNP (as of April 2014). 

 

Alkaloids are not ubiquitously distributed in plants but rather represent a class of 

richly diverse compounds which are found far and wide. For example, Cordell et al. 
(2001) performed an in-depth taxonomical distribution analysis of all alkaloids 

contained in NAPRALERT (which at the time of Cordell‘s study contained 26,900 

alkaloids in total). This analysis revealed that 67 of 83 of higher plant orders 

contain alkaloids and that ‗alkaloids are distributed in 7,231 species of higher 

plants in 1,730 genera (approx. 14.2%) within 186 plant families‘. 
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3.1.3. Use as non-medicines 
 
 
Alkaloids may best be known throughout history for their medicinal properties and 

more modernly as excellent drug leads. Their medicinal applications will explored 

in subsequent sections of this thesis. Yet, what is often overlooked is the use of 

alkaloids in various other non-medicinal applications. As a highly diverse and 

widespread class of compounds, alkaloids are increasingly and used for, as one 

scholar encapsulates it, ‗murder, magic and medicine‘ (Mann, 1992).  

 

For example, the highly potent toxicity of some alkaloids have lent them to be 

used as very useful poisons in ancient times and more recently as pesticides 

when applied in lower concentrations to agricultural settings. 

Benzophenanthridine alkaloids, which belong to the larger group of isoquinoline 

alkaloids, are a class of alkaloids which have shown promise with regards to 

controlling fungal diseases of garden and ornamental crops (Howell et al., 1973). 

Sanguinarine and chelerythrine are two commonly used ingredients in a number 

of pesticides which demonstrate strong antifungal activity (Newman et al., 1999). 

Some have also cited related insect-repellent activity of various alkaloids from the 

diterpenoid and norditerpenoid alkaloid families (Isman, 2006; Ulubelen et al., 
2001). 

 

Alkaloids have also commonly been used as tranquilizers (in animal husbandry 

and more recently clinical settings) and one of the most notable is the curare 

alkaloid d-tubocurarine. Initial descriptions of this strange substance by explorers 

were surrounded in a shroud of mystery: 

 
The exact origin of this "flying death" is still veiled in mystery. Its actual 
preparation is surrounded by all the esoteric magic and superstition of 
these strange people descended from the Aztecs, and very little more is 
known about it now than was discovered by Charles Waterton, a traveller 
of Lancashire origin, in his journey to the wilds of Demerara in 1812-a 
journey undertaken with the special object of investigating the origin and 
preparation of the Wourali poison (Gray et al., 1946) 

 

And its isolation summarized by Mahfouz: 
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The need for isolating a purified active principle from crude curare started 
at an early date in South America, when Boussingault and Roulin (1828) 
succeeded in obtaining a bitter principle which they differentiated from 
strychnine, isolated eight years previously. Although the problem was 
somewhat clarified by the work of Preyer (1865) and Boehm (1886, 1897), 
it was not until 1935 that the active alkaloidal salt, dextro-tubocurarine 
chloride, was isolated in a pure crystalline state by King from a sample of 
native tube-curare. The same alkaloid was obtained in a good yield by 
Wintersteiner and Dutcher (1943) from a single plant species, 
chondrodendron tomentosum, which is probably its chief botanical source 
(Mahfouz, 1949). 

 

And its uses and mechanism of action, expounded on by Sobell: 

 
[it] has been used for centuries by South American Indians to prepare 
poison arrows for hunting wild animals for food. Death results from 
respiratory paralysis and subsequent asphyxiation. Its major action is the 
interruption of transmission of a nerve impulse at the neuromuscular 
junction. This is thought to reflect complex formation between the drug 
and cholinergic receptors located at the postjunctional membrane, 
competitively blocking the transmitter action of acetylcholine (Sobell et 
al., 1972) 
 

 

With such a wide array of diverse and abundant alkaloids, many of which have 

minimally been researched in formal settings, it is certain that additional 

applications will emerge over time. 

 
The process of drug discovery as it stands today differs greatly from the ones 

prominent throughout most of the 20th century decades. Highly popular, yet 

debated empirical rules aiming to enhance the selectivity of drug candidates have 

for many years been in the spotlight. As mentioned previously, popular terms such 

as ‗lead-like‘ and ‗druglike‘ have gained prominence though the work of Lipinski 

and Congreve (Lipinski, 2000; Rees et al., 2004). As one explores the literature, it 

is quite clear that what exactly druglikeness entails really depends on the intended 

application of the compound. Properties appropriate for successful metabolism of 

an orally administered drug differ greatly from, for example, transdermal injections. 

The applicability and application of such rules to other research areas is an active 

debate in drug research and development. 

One conspicuously lacking class of compounds in this debate about druglikeness 

and associated rules has been natural products, which, however, are well known 
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to be of major importance as drugs (Cragg and Newman, 2005; Newman and 

Cragg, 2007). It could be argued that the sheer diversity of natural products does 

not allow for adherence to such rules, yet nevertheless the importance of natural 

products (and specifically alkaloids) in modern drug discovery cannot be 

overestimated as their use has been linked closely the history of human use of 

such resources (Heinrich, 2013). 

 

3.2. Alkaloids in modern medicine 
 
 
One would assume that with a 4,000+ year history of use, often acting as 

remedies for a variety of illnesses, alkaloids and alkaloid containing taxa would 

play an important and visible role in modern drug development (Bruhn, 1973). Or 

in the words of Cordell focusing on local and traditional uses: ‗For thousands of 

years, indigenous groups around the world discovered, through self-

experimentation with locally available plant extracts, that they could provide 

materials for hunting prey, culinary enhancement, amelioration from disease, relief 

of pain, and healing…in this [last] 200-year period, many alkaloids became critical 

components of the global pharmaceutical armamentarium, and tremendous 

healing has resulted from their clinical application‘ (Cordell et al., 2001). The 

search using the Dictionary of Alkaloids (Buckingham 2010) and other sources 

identified a total of 51 pure, naturally occurring alkaloids used currently or within 

the last 50 years for regulated pharmaceutical uses (Appendix 3). This means that 

to date less than 0.002% (51/27,783) of alkaloids or alkaloid-based drugs are 

marketed for such uses internationally. It is not surprising that such a diverse set 

of natural products and their derivatives yield drugs which are used in a variety of 

applications ranging from cough-suppressants to antimalarial agents. However, in 

the last 25 years only galanthamine and Taxol™ were newly introduced into 

biomedicine, and the former in essence through an extension of the therapeutic 

claims (i.e. from poliomyelitis to Alzheimer‘s disease, Heinrich and Teoh, 2004). 

There are only less than 200 others which are commonly used in industrial 

processes and the manufacturing of commercial goods (for example: N,N‘-

dioctadecanoylethanediamine is an antifoaming agent used in the polymer 
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industry and methylamine hydrochloride is used in the tanning industry). 

Cordell et al.(2001) performed highly insightful analyses which highlight the vast 

potential of alkaloids in drug discovery in the context of two major points; the 

number of alkaloids scrutinized under ‗biological evaluations‘ and ‗some poorly 

evaluated alkaloid-containing families by genus‘. 

The first point highlights the fact that although alkaloids represent about 15.6% of 

all natural products, they constitute 50% of natural products significant to modern 

pharmaceutics. NAPRALERT also contains in vitro and in vivo biological test data 

and when this data is extracted for the alkaloids, 76.3% of all alkaloids have never 

been tested in a biological assay. Only 0.79% of all alkaloids have been examined 

biologically in 20+ assays. This is highly significant indicator which further points 

to the vast untapped potential alkaloids hold. 

Number of ‘biological tests’ Number of alkaloids % 

0 16,132 76.38% 

1 2,291 10.85% 

2-5 1,995 9.45% 

6-10 366 1.73% 

11-15 119 0.56% 

16-20 50 0.24% 

20+ 167 0.79% 

Total6 21,120  
 

Table 16: The biological evaluation of alkaloids from higher plants in NAPRALERT 
(Cordell et al., 2001) 

 

Cordell‘s second analysis again highlights the high level of potential associated 

with the structurally diverse alkaloids. While 21,120 alkaloids can be found in 

higher plants, there are a very high number of plant genera, all rich in alkaloids, 

which have yet to be studied. Important families, which contain many genera not 

yet studied well for alkaloids are listed in Table 17. From this list, it is seen that 

there are several large families such as the Orchidaceae, Asteraceae, and 

                                                        
6 Not all alkaloids originate from plants therefore this table only covers about 81% of all alkaloids. 
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Poaceae which contain at least 500 genera each, which contain dozens if not 

hundreds of alkaloids, and which have not reached the 10% threshold of being 

‗studied‘. This noteworthy finding has the potential to further highlight discovery 

efforts to explore ‗high potential families and genera. 

 

Family 
Genera 

studied/total 
genera 

% Studied 
Number of 
alkaloids 
isolated 

Orchidaceae 18/1,000 1.8% 53 

Theaceae 1/40 2.5% 54 

Malpighiaceae 2/60 3.3% 22 

Arecaceae 7/200 3.5% 21 

Crassulaceae 2/25 4.0% 47 

Flacourtiaceae 4/85 4.7% 21 

Poaceae 36/500 7.2% 256 

Asclepiadaceae 19/250 7.6% 180 

Bignoniaceae 8/110 8.0% 53 

Malvaceae 6/75 8.0% 48 

Proteaceae 6/75 8.0% 61 

Verbenaceae 8/100 8.0% 24 

Asteraceae 92/1,100 8.4% 705 

Acanthaceae 22/250 8.8% 92 

Gentianaceae 7/75 9.3% 25 

Araliaceae 7/70 10.0% 55 

Campanulaceae 7/70 10.0% 53 

Icacinaceae 5/50 10.0% 26 

Loranthaceae 7/70 10.0% 20 

Nyctaginaceae 3/30 10.0% 22 

 Total 1,838 
 

Table 17: Some poorly evaluated alkaloid-containing families by genus in NAPRALERT 
(Cordell et al., 2001) 

 

It is important to note that Cordell‘s dataset is dated to over a decade ago. 
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Nevertheless, when one considers the decreased attention of industrial players in 

the natural products arena over the last ten years and surveys published literature, 

it is apparent that there has not been an unprecedented breakthrough in alkaloid 

or natural product drug discovery since this data has been published, and thus 

such data is deemed to be relevant. 

With these points in mind, this chapter seeks extend the aforementioned findings 

by: 

1. Performing a comprehensive analysis to identify what alkaloids 
have made it through the drug discovery process as modern 
medicines. 

2. Investigating physiochemical indicators between these 
medicinally important (‗pharmaceutical‘) alkaloids as compared to 
(‗non-pharmaceutical‘) alkaloids 

3. Understanding how such indicators relate to prevalent rules of 
thumb in drug discovery and how alkaloid-specific indicators can 
be leveraged to enhance natural product drug development at 
large. 

 

3.3. Methods and datasets used 
 

3.3.1. Dictionary of Natural Products 
 
 
A maximum of 33 data types, both qualitative and qualitative, were exported for 

each of the 27,783 alkaloids (Table 18). Modifications were made to the format of 

some data to ensure consistency. 

 

Alkaloid Name Hazard and Toxicity Solubility 

Accurate Mass Melting Point Source/Synthesis 

Biological Source Molecular Formula Structure Drawing 

Biological 
Use/Importance Molecular Weight Supplier 

Boiling Point Optical Rotation Synonym 
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CAS No. Partition Coefficient Type of Compound 

CRC Registry No. Percent Composition Type of Organism 

Density Physical Description Use/Importance 

Development Status Refractive Index UV Maxima 

Dissociation 
Constant Rotation Conditions  

General Statement RTECS  
 

Table 18: Data types extracted from the DNP 
 

 

Additionally, of these 33 data types, some nonessential columns of data such as 

CAS No., CRC Registration No., and Structure Drawing were deemed relevant to 

the aims of this thesis and thus not analysed. The most critical and complete data 

types included: Name, Synonym, Accurate Mass, Biological Source, Melting Point, 

and Optical Rotation. These six variables served as the foundation to which all of 

the other data in subsequent analyses was built on (i.e. >95% of all alkaloids 

contained this data). 

 

3.3.2. Chemical and physical data inputs - EMBL-EBI 
 
 
The next dataset linked to the DNP was extracted from ChEMBL. ChEMBL is an 

open-data database containing binding, functional and ADMET information for a 

large number of druglike bioactive compounds. In 2012, the database contained 

over 1 million compounds with data that is manually abstracted from the primary 

published literature on a regular basis, then further curated and standardized to 

maximize their quality and utility across a wide range of chemical biology and drug 

discovery research problems (Gaulton et al., 2012). ChEMBL can be accessed 

freely at https://www.ebi.ac.uk/chembl/. The database was established by the 

European Molecular Biology Laboratory - European Bioinformatics Institute that 

describes itself as a non-profit, intergovernmental organization funded by EMBL 

member states (http://www.ebi.ac.uk/about).  
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There are four types of search queries in ChEMBL; compounds, targets, assays, 

and documents. Only queries for compounds were included in this analysis. When 

querying a compound there are a maximum of 20 quantitative/qualitative data 

types (Table 19). 

 

ACD 
BpKa ACD LogP ACD LogD #Rotatable 

Bonds7  
Heavy 
Atoms 

Num 
Alerts 

QED 
Weighted 

HBA8 HBD9 #Ro5 
Violations10 

Aromatic 
Rings 

Passes 
Rules of 
Three 

Med 
Chem 

Friendly 

ACD 
ApKa 

Mol 
reg 
no. 

Compound Synonyms Max 
Phase 

Parent 
Molecular 

Weight 
ALogP PSA 

 

Table 19: Data Types Extracted from ChEMBL (Ghose et al., 1998; Ertl et al., 2000) 

 

 

Through its web interface, ChEMBL was manually queried for each of the 

compounds listed in the initial DNP extract (synonyms from each of the two 

datasets also included). Due to the wide variance between keywords and formats 

between the two datasets, automating this process would not yield many ‗hits‘. 

Therefore this initial ‗bridging‘ of datasets was performed manually in the form of 

each query and subsequent data import being performed manually. This initial 

effort yielded 2,015 ‗hits‘ (approximately 7%) and it is estimated that there are 

<500 potential remaining compounds that exist in both datasets. Similar to the 

                                                        
7 Number of rotatable bonds in the molecule. Rotatable bonds are defined as single bonds 
between heavy atoms. Doesn't include ring bonds, those connected to a heavy atom that is 
attached to only hydrogen atoms or amide bonds (Goujon et al., 2010). 
8 Where a hydrogen bond acceptor is defined as oxygen, nitrogen, sulphur, or phosphorus with 
one or more lone pairs. The following are excluded: atoms with positive formal charges, amide 
nitrogens, pyrrole-type nitrogens, aromatic oxygen and aromatic sulphur atoms. 
9 Where a hydrogen bond donor is defined as oxygen, nitrogen, sulphur, or phosphorus with one 
or more attached hydrogen atoms. 
10 Number of properties defined in Lipinski's Rule of 5 (Ro5) that the compound fails. 
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DNP, not all data types, for example Mol reg no., Max Phase, and Med Chem 

Friendly were deemed relevant and analysed. 

3.3.3. Dataset combination 
 
Data extracts from the two aforementioned datasets were combined into one 

Microsoft Excel spread sheet. Table 20 shows a ‗complete‘ set of data for a 

particular alkaloid: 

 

Data 
source Variable Value 

DNP 

Name 2-Amino-1-phenyl-1-propanol; 
(1R,2R)-form 

Synonym(s) 
D-threo-form, Nor-ψ-ephedrine, 

Norpseudoephedrine, 
Norisoephedrine, Cathine 

Molecular 
formula C9H13NO 

Accurate mass 151.099714 

Biological source 
Found in ―Ma Huang‖ and Catha 

edulis (Celastraceae) (Khat), used as 
a stimulant in Arab countries, 

CAS no. 37577-07-4 

CRC registry No. BCM24 

Melting point 77o C 

Molecular weight 151.208 

Optical rotation 33.14 

Percent 
composition 

C=071.49 H=008.67 N=009.26 
O=010.58 

Physical 
description Plates (MeOH) 

Rotation 
conditions EtOH 

Type of 
compound ZQ1400 VX2010 

Type of organism ZQ1400 

ChEMBL 
Max phase 0 
Parent mol 

weight 151.21 
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ALogP 0.8 

PSA 46.25 

HBA 2 

HBD 2 

# Ro5 violations 0 
# Rotatable 

bonds 2 

Passes Ro3 Y 
Med chem 

friendly Y 

ACD ApKa 12.07 

ACD BpKa 8.47 

ACD LogP 0.36 

ACD LogD -1.52 

Aromatic rings 1 

Heavy atoms 11 

Num alerts 0 

QED weighted 0.66 
 

Table 20: Example of a ‗complete entry‘ in the combined spread sheet 

 
 
A disproportionately small number of alkaloids have been developed into 

marketed pharmaceutical products. To begin to understand how best to prioritize 

the 27,000+ alkaloids for bioassay screening, HTS or other methods, one has to 

begin to systematically look at what has made it through the drug pipeline. Those 

alkaloids which have reached this stage have been listed earlier in this thesis. At 

the most basic level, an initial analysis (Table 21 and Fig. 6) of 13 basic 

physiochemical properties of two sets of alkaloids (those used in marketed 

pharmaceutical products and those which are not) shows averages of variables 

ranging from -56 to +34% ((Pharma Avg./Total Avg.) – 1). The variable which 

exhibits the largest difference between the two sets is the distribution coefficient 

(log D)11 followed by hydrogen bond donors (HBD), the partition coefficient (log 

                                                        
11 The distribution coefficient is the ratio of the sum of the concentrations of all forms of the 
compound (ionized plus un-ionized) in each of the two phases 
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P)12, and polar surface area (PSA) respectively. The log D, HBD, log P, and PSA 

of marketed pharmaceutical products is on average, ranging 31-55% lower than 

that of other alkaloids. These observations do not completely deviate from those 

general rules of thumb outlined in the literature review section of this thesis but 

rather indicate that adjustments to purely computational screening methods must 

be made to enhance alkaloid based drug discovery. 

 

 

 Pharmaceuticals/Drugs in 
ChEMBL (n=47) 

Other Alkaloids in 
ChEMBL (n=1,968) % 

Difference 
in Avg. 

(Pharma 
Avg./Total 
Avg. ) – 1) 

Variable 
Range 90% of 

Values Fall 
Within (SD) 

Average 
Range 90% 
of Values 

Fall Within 
(SD) 

Average 

MWT 
162.23 - 
809.41 

(164.78) 
375.88 

219.23 - 
840.70 

(178.70) 
446.26 -15.7% 

ALogP -0.02 – 4.89 
(1.46) 1.46 -0.92 - 7.2 

(2.42) 2.97 -14.3% 

PSA 
32.78 – 
153.45 
(42.24) 

65.91 
28.23 – 
243.51 
(61.11) 

96.29 -31.5% 

HBA 2 – 12 
(2.93) 5.17 2 - 13 

(3.40) 5.76 -10.2% 

HBD 0 – 3 (1.02) 1.19 0 – 6 
(1.90) 2.27 -47.3% 

#Rotata
ble 

Bonds 

0 – 10 
(3.33) 4 0 – 16 

(5.10) 4.87 -17.9% 

ApKa 8.60 – 13.93 
(2.44) 11.44 

3.41 – 
13.71 
(3.54) 

10.12 13.0% 

BpKa 5.90 - 9.98 
(1.54) 7.91 

1.01 - 
10.56 
(3.31) 

6.41 23.3% 

ACDLog
P 

-0.65 – 5.75 
(2.03) 1.84 

-1.21 – 
7.72 

(2.85) 
3.11 -40.6% 

                                                        
12 The partition coefficient is a ratio of concentrations of un-ionized compound between the two 
solutions. 
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LogD -1.09 – 5.2 
(2.06) 0.98 

-2.52 - 
7.33 

(2.89) 
2.22 -55.7% 

Aromatic 
Rings 1 – 4 (0.99) 1.89 0 – 4 

(1.32) 1.61 17.4% 

Heavy 
Atoms 

13 – 46 
(11.92) 27.60 16 – 59 

(12.54) 31.62 -12.6% 

QED 
Weighte

d 

0.25- 0.88 
(0.22) 0.66 

0.11 – 
0.85 

(0.23) 
0.49 35.2% 

#Ro5 
Violation

s 
0 – 2 (0.65) 0.28 0 – 2 

(0.90) 0.64 -56.0% 

 
Table 21: Comparison of average of physiochemical properties between 

pharmacologically significant and insignificant alkaloids 

 
 
 
 

 
Figure 6: % Difference in averages of physiochemical properties between 

pharmaceutically significant and insignificant alkaloids 
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Average log D values for pharmaceutical alkaloids are less than half as compared 

to other non-pharmaceutical alkaloids and average log P values for 

pharmaceutical alkaloids are less than 40% as compared to other non-

pharmaceutical alkaloids. This suggests that ionization, acidity (log D is 

decreased as a function of increased pH), and ultimately solubility are potentially 

the most weighty factors in alkaloid development. These observations are 

somewhat confirmed by the aforementioned Ro5/Ro3 in that they state that log P 

values should be <5.0 and <5.6 respectively. The greatest concentration (Fig. 7) 

of medicinal alkaloid hits lies between a log P value of -1 and 4. 

 

Another variable which shows considerable variation between the two sets of data 

is PSA. Average PSA values for pharmaceutical alkaloids are less than 35% as 

compared to other non-pharmaceutical alkaloids. PSA is regarded as a key 

determinate in intestinal absorption, BBB penetration and several other drug 

characteristics (Kubinyi and Folkers, 2008). Ertl and Stenberg both independently 

verified the correlation between PSA and intestinal absorption. Their work 

suggested that PSA values of <60 Å2 lead to significantly higher absorption and 

values >140 Å2 indicate less than 10% absorption (Stenberg et al., 1999; Ertl et al., 
2000). This general rule follows quite closely what one observes in the 

pharmaceutical alkaloids set (Fig. 8). 

 

Lastly, the average HBD for pharmaceutical alkaloids is 47% less as compared to 

other non-pharmaceutical alkaloids. The effect of increased hydrogen bond 

donors on decreasing permeability across lipid bilayers and thus general solubility 

has been demonstrated by many (Abraham et al., 1994; and Paterson et al., 

1994). Thus, it is no surprise that only one of the pharmaceutical alkaloids has 

more than 3 hydrogen bond donors (Fig. 9). The vast majority have less than two 

HBD with the category average being close to one. These results reaffirm 

Lipinski‘s key findings as proposed in his Rule of Five work. 
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Figure 7: Molecular weight (g/mol) and partition coefficient distribution (ACDlog P) for pharmaceutical/non-pharmaceutical alkaloids 

(n=2,015) 

-15

-10

-5

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

AC
D

lo
gP

 

MWT 

Non-Pharmaceutical Pharmaceutical Alkaloids



 92 

 
 

Figure 8: Molecular weight (g/mol) and PSA (Å2) for pharmaceutical/non-pharmaceutical alkaloids (n=2,015) 
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Figure 9: Molecular weight (g/mol) and HBD for pharmaceutical/non-pharmaceutical alkaloids (n=2,015)
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In addition to these three chemical descriptors, other chemical descriptors such as 

MWT, heavy atoms13, and rotatable bonds are on average less, although not as 

significantly as log P, log D, PSA and HBD, for the pharmaceutical alkaloids 

dataset. This confirms and extends many of the observations made by those 

working in the field of drug discovery. These results are logical and fit into the 

prevalent debate in modern pharmacology i.e. it is expected that among all 

alkaloids, those which are developed into drugs are not large molecules with poor 

aqueous solubility. This leads to another important related question which arises 

is how these averages fit into other ‗non-alkaloid‘ drugs. How do these results 

relate to other studies of this nature?  

 

There have been a few studies which have looked at larger drug indices such as 

an analysis of the World Drug Index (Lutz and Kenakin, 1999). Although at the 

time of their study in 1999 they cited the World Drug Index as having over 43,000 

compounds, their analysis (Fig. 10) of calculated properties shows much fewer 

compounds. Nevertheless their analysis shows that average log P values hover 

around 3 and HBD values around 1-2 which is similar to the medicinal alkaloid 

dataset used in this thesis. 

 

  
Figure 10: Lutz and Kenakin‘s histograms of HBD (x-axis), Log P (x-axis), MWT (y-axis) 

for the World Drug Index (Lutz and Kenakin, 1999). 

                                                        
13 The number of non-hydrogen atoms in the molecule is the number of ‘heavy’ atoms (Goujon et 
al., 2010). 
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3.4. Alkaloid specific rules of thumb 
 
 
As mentioned earlier rules such as the Ro3 and Ro5 were not designed with pure 

natural products in mind. 

 

It is important to note that the key area of inquiry of this thesis is not to merely 

propose an additional, albeit more specific, rule of thumb to more accurately 

characterize druglike natural products. The main object of inquiry is to what extent 

chemical and physical properties play a role in the overall development of a 

natural product, and more specifically, of an alkaloid. Some researchers have set 

to devise increasingly accurate virtual filters based on such rules and the 

proposed scheme may contribute to further such efforts, yet this is not a key aim 

of this thesis. 

 

It can be seen that the pharmaceutical alkaloids have 56% less Ro5 violations 

when compared with alkaloids at large, thus suggesting that such rules of thumb 

are relatively effective indicators in alkaloid development processes. In looking 

strictly at MWT values in the DNP for 27,783 alkaloids its seen that 27% pass the 

Ro3 while 77% pass the Ro5 (Fig. 11).  
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Figure 11: Total alkaloids that pass/fail the Ro3/Ro5 on MWT alone (DNP) and pass/fail 

the Ro3/Ro5 (ChEMBL) 
 

 
Thus, in working towards the objective in this thesis of investigating the 

applicability and enhancing the effective of such approaches, a few modifications 

to such rules of thumb, based on the current dataset, are proposed.  

 

For example, the following proposed scheme correctly filters over 90% of the 

pharmaceutical alkaloids: 
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Figure 12: Molecular weight (g/mol) and HBA for pharmaceutical/non-pharmaceutical alkaloids (n=2,015) 
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Figure 13: Molecular weight (g/mol) and BpKa for pharmaceutical/non-pharmaceutical alkaloids (n=2,015)  
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Figure 14: Molecular weight (g/mol) and logP for pharmaceutical/non-pharmaceutical alkaloids (n=2,015) 
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Figure 15: Ratio of molecular weight (g/mol) and heavy atom count for pharmaceutical/non-pharmaceutical alkaloids (n=2,015) 
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When such rules are used to filter the ChEMBL dataset the total alkaloids go from 

2,015 down to 672 (Fig. 16). Rule 3 (pKa 6-10) is the most selective in that it 

filters out 25% of the total alkaloids. The 672 alkaloids represent exactly one third 

of the total dataset. If this number is 100% accurate and assuming that there are 

no supply, commercial, and/or identification issues that leaves over 600 alkaloid 

candidates which have the chemical profile to serve in some commercial 

pharmaceutical capacity. Extrapolating this liberal estimate to the larger DNP 

dataset (which includes a total of 27,000+ alkaloids) suggests, that there may be 

upwards of 6,000-7,000 alkaloids which carry this ‗development potential‘. 

 

 
Figure 16: Number of total alkaloids (ChEMBL) and number filtered through each 

proposed rule 
 

 

With this in mind, it is important to reiterate that the purpose of this thesis is not 

merely to put forth one or more rules which extend those rules previously outlined 

by others. Rather, the central challenge at the center of this thesis is to 

understand what other metrics are at play in alkaloid development. How are other 

such metrics weighted? Such an understanding may very well give credence to 
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the possibility that non-chemical characteristics trump chemical properties when 

considering the totality of natural product drug development process. 

 

3.5. Alkaloids which have failed to enter modern medicine 
 
 
An equally, if not more important, question relates to understanding compounds 

discovered, investigated and eventually rejected for end-use. By being able to 

examine a large sample of such compounds one would theoretically be able to 

gain a more comprehensive picture of common stumbling blocks in the 

development process. For example, to what extent do solubility, toxicity, and/or 

stability issues influence the stages to which a potential alkaloid-based drug 

reaches? Is solubility or compound availability more selective in such endeavours? 

Insights into these questions could highlight and prioritize specific bioassays or 

bioprospecting strategies which could more effectively screen compounds of 

interest, which in turn would lead to more compounds entering the R&D pipeline.  

 

These are much more challenging questions for two reasons; such data is 

extremely fragmented and is typically proprietary in nature. Manufacturing, 

consumer goods, and pharmaceutical companies, which actively research and 

develop such compounds, have no incentive to share such data publically and in 

fact sharing this data may potentially be damaging. Nevertheless one can begin to 

piece together data leading to insights into this question by looking at other 

sources such as the Dictionary of Alkaloids (Roberts et al., 2010), books such as 

Modern Alkaloids (Berlinck et al., 2007), and other published literature. The 

identification and tracking of those compounds is more straightforward due to 

tighter regulations, for example by the FDA, which clearly stipulates why certain 

compounds are banned or limited in their use. Many of these can be accessed on 

the United States‘ FDA‘s website (http://www.FDA.gov) as well as other open-

access regulatory websites. Results for a select number of pharmaceutical 

products are summarized in Table 22. 
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Alkaloid name Stage 
reached Reason for failure 

Acronycine Phase I 

Moderate potency and poor 
solubility in aqueous solutions, 

dose-limiting GI toxicity after oral 
administration 

Camptothecin Phase II Caused unpredictable and severe 
side effects 

Curacin A Preclinical Solubility issues 

Dolastatin 10 Phase I Discontinued due to hypertension 
side-effects 

Ellipticine Preclinical Cardiovascular toxicity and 
hemolysis 

Trabectedin 
(Ecteinascidin 743) 

Phase 
II/III Licensed to Ortho Biotech (J&J) 

 
Table 22: Examples of alkaloids which have failed in the drug development pipeline 

(Fattorusso and Taglialatela-Scafati, 2008; Newman and Cragg, 2004) 

 

 
This brief examination into ‗failed‘ alkaloids indicates that toxicity is crucial in the 

drug discovery process (similar to other types of compounds used in drug 

discovery and development) (Cook et al., 2014; Roberts et al., 2014). Unlike the 

relatively simple physical and chemical properties identified and analysed earlier 

in this chapter, toxicity presents a more significant challenge in that its 

characterization is much more ambiguous. There are accepted consensuses on 

conventions relating to the measurement of solubility, acidity, or weight of an 

alkaloid. But these consensuses and standards are much harder to specify with 

toxicity data. Assays, and the data they produce, vary considerably depending on 

targets which can be organisms, organs, tissues or cells. This has proved to be an 
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enduring and costly challenge in drug discovery. Some, such as Vedani et al. 
(2012) have modeled toxicity computationally in the context of natural products. 

These efforts are novel and hold promise, yet remain in preliminary stages and 

require more effort to determine their impact to modern drug discovery processes. 
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4. Machine learning and drug discovery processes 
 

4.1. Machine learning efforts in drug discovery efforts – an overview 

4.1.1. Virtual screening paradigms in drug discovery 
 
 
Screening efforts in the drug discovery world are wide and varied in their 

objectives. A scan of published literature reveals that typically, screens can be 

traced back to a few overarching general screening paradigms. Previous research 

by Guiguemde et al. (2012) and Bleicher et al. (2003) has categorized these as 

virtual, target based, and phenotypic (Fig. 17). Natural product screens for the 

most part fall into the virtual filtering and profiling categories. These computational 

exercises seldom incorporate pure natural products or targets such as specific 

ligands. In this context, this thesis proposes a predictive screening model that 

incorporates additional non-target based metadata in the form of biodiversity data 

and hereafter referred to as ‗biodiversity based screening‘. 

 

 
 

 
 

Figure 17: Overview of commonly used screening strategies in modern drug discovery 
programs with the addition of this thesis‘ proposed ‗biodiversity based screening‘ 

(Guiguemde et al., 2012; Bleicher et al., 2003). 
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Compounds subject to screening programs in modern drug discovery efforts 

overwhelmingly undergo synthetic modifications (size, lipophilicity, etc.). Most 

often, these compounds are subsequently filtered by well-known rules such as the 

Ro5 or Ro3 to quickly screen for fragments, leads, or compounds of ‗interest‘ 

(Lipinski, 2004). This thesis argues that there are two major limitations to the 

usefulness of this popular method. The first being that these rules have proven to 

be accurate in a number of settings, most notably in the published internal data of 

drug candidates from a few pharmaceutical companies (i.e. Pfizer), but are widely 

recognized as not being good fits for natural products (Owens, 2003). In fact, very 

few screens focus solely on natural product sub-classes such as alkaloids or even 

natural products as a whole (possibly because natural products are an immensely 

large, diverse, and unwieldy ‗superclass‘ of compounds). The second limitation 

relates to the debate surrounding the real-world applicability of single ligand 

based screening in the context of drug discovery (Sams-Dodd, 2005; Morphy et 
al., 2004; Sams-Dodd, 2013). Many have commented on this approach in industry 

(i.e. solutions to complex medical conditions can be discovered through the 

isolation of single key biological targets) and believe it to be a major contributor to 

the stagnant level of innovation within the pharmaceutical landscape. The industry 

has obviously invested heavily in single target/ligand based screening as its 

primary discovery strategy. Are there real-world indicators or descriptors, which, 

when integrated into screening efforts, can enhance efforts in approaching the 

vast reservoir of yet-to-be researched natural products? 

 

4.1.2. Examples of machine learning efforts in drug discovery 
 
 
A scan of literature in the areas of machine learning and drug discovery over the 

years shows a wide range of approaches and methods. Due to their robustness 

and effectiveness across various applications, two models have received 

considerable attention: artificial neural network (ANN) and support vector machine 

(SVM) based models. A typical ANN is represented in figure 7 and shows the 

process of inputs eventually feeding an output through a hidden network while a 

typical SVM is shown in figure 8. Artificial neural networks can be represented by 
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supervised or unsupervised learning algorithms while support vector machines 

only represent supervised learning schemes.  

 

 
Figure 18: Schematic of a simple artificial neural network showing three inputs feeding 

into a hidden layer and producing two outputs 
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Figure 19: Maximum-margin hyper plane and margins for an SVM trained with samples 

from two classes. Samples on the margin are called the support vectors. 
 

 

The value of these models is that they seek to enhance discovery efforts, typically 

in earlier stages of the drug discovery process. Objectives of these models can 

range from ‗specific‘, such as testing a ligand or receptor against a library of 

100,000 semi-synthetic fragments and leads, to ‗wide‘, such as filtering structural 

features of a library of drug/druglike molecules against a set of simple rules. As 

previously mentioned, there are a subset of publications which extend these 

exercises to the level of measuring the ability or potential of a compound in acting 

as a drug. ‗Druglikeness‘ has become the de facto term used to encapsulate this 

concept. One aim of this thesis is to model real-life applicability in the natural 

product drug discovery process rather than simply characterize ‗hits‘ through the 

computation of physical and chemical data. 

 

In terms of overall accuracy of ‗hits‘, the majority of predictive druglikeness 

models published over the last 15 years fall between 60-80% (Table 23). This 
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level of accuracy is impressive when one considers how prohibitively expensive 

drug discovery has become.  
 

Model 
type Metric 

Overall 
accuracy/‘Hit 

rate’ of 
model 

Reference 

ANN Druglike/non-
druglike 61-84% 

Can we learn to 
distinguish between 

―drug-like‖ and ―nondrug-
like‖ molecules? (Walters 

and Murcko, 1998) 

ANN Drug/nondrug 72-95% 
Prediction of ‗drug-

likeness‘ (Walters and 
Murcko, 2002) 

Decision 
trees, 
SVM, 

SAR models 
for 

Salmonella 
mutagenicity 

63-79% 

Data Mining and Machine 
Learning Techniques for 

the Identification of 
Mutagenicity Inducing 

Substructures and 
Structure Activity 
Relationships of 
Noncongeneric 

Compounds (Helma et 
al., 2004) 

ANN, 
SVM Drug/nondrug 72-82% 

Comparison of Support 
Vector Machine and 

Artificial Neural Network 
Systems for 

Drug/Nondrug 
Classification (Byvatov et 

al., 2003) 

ANN, 
Ro5, 
SVM 

Drug/nondrug 68-75% 

Drug Discovery Using 
Support Vector Machines. 

The Case Studies of 
Drug-likeness, 

Agrochemical-likeness, 
and Enzyme Inhibition 

Predictions (Zernov et al., 
2003) 
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SVM 

Active 
compounds 

(HIV-1 
protease 
inhibitors, 
dopamine 
receptor 

antagonists, 
etc.) 

2-95% 

A support vector 
machines approach for 

virtual screening of active 
compounds of single and 

multiple mechanisms 
from large libraries at an 

improved hit-rate and 
enrichment factor (Han et 

al., 2008) 

 
Table 23: Selection of representative drug discovery machine learning efforts published 

throughout the years 
 
 

4.2. Incorporating biodiversity as a data input 
 
 
The quest to model more accurately biological, chemical, docking activity and 

QSAR through virtual screening efforts has growth with considerable strength 

over the last two decades. Such approaches have developed in parallel with a 

large number of both freely available open-source and commercial datasets 

containing various sets of metadata. A closer look at a selection of freely available 

datasets (Table 24) reveals no shortage of chemical, biological, physical 

descriptors covering hundreds of thousands of compounds. This data typically 

feeds into the screening, profiling and filtering schemes already elucidated on 

earlier in this chapter. It is important to note that the data contained in these 

databases is usually a mixture of experimental or empirical and computational or 

predicted data. 
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Database name Description 

1-Click Docking Docking to 9,871 targets or user targets: 
https://mcule.com/apps/1-click-docking 

ACD/Percepta 
Prediction of ADME/T and physico-chemical 

properties: 
http://www.acdlabs.com/products/percept 

ADMET Predictor™ Prediction of ADME/T and physico-chemical 
properties: http://www.simulations-plus.com 

Chembench 

Chemoinformatics research support by 
integrating robust model builders, generators of 

descriptors, property and activity predictors, 
virtual libraries of available chemicals with 

predicted biological and drug-like properties, 
and special tools for chemical library design: 

http://chembench.mml.unc.edu 

Chemistry 
Development Kit 

(CDK) 

The CDK is a Java library for structural chemo- 
and bioinformatics applications. It includes the 

generation of 260 types of descriptors: 
http://cdk.sourceforge.net 

DIGEP-Pred 

Prediction of drug-induced changes in the gene 
expression profile based on the structural 

formulae of drug-like compounds: 
http://www.way2drug.com/GE 

Discovery Studio 

QSAR modelling and pharmacophore 
generation, for data analysis and structure 

optimisation: http:// 
accelrys.com/products/discovery-studio 

GUSAR 

QSAR modelling, antitarget interactions and 
LD50 value prediction based on atom-centric 
Quantitative Neighbourhoods of Atoms (QNA) 

and Multilevel Neighbourhoods of Atoms (MNA) 
descriptors: http:// www.way2drug.com/GUSAR 

GUSAR (web-
service) 

Prediction of acute rodent toxicity (LD50 
values), interaction with antitargets and 

ecotoxicity endpoints: 
http://www.way2drug.com/GUSAR 
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INVDOCK 

Automatically searches a protein and nucleic 
acid 3D structure database (this database 

currently covers 9,000 protein and nucleic acid 
entries) to identify the protein, RNA or DNA 

molecule that the small molecule can bind to: 
http://bidd.nus.edu.sg/group/softwares/invdock.

htm 

KNIME 

Graphical workbench for the entire analysis 
process, including plug-ins for descriptor 

generation, creation of QSAR models, and work 
with SD files: http://www.knime.org 

Molecular 
Operating 

Environment (MOE) 

Calculates over 600 molecular descriptors 
including topological indices, structural keys, E-

state indices, physical properties, topological 
polar surface area (TPSA) and the Chemical 
Computing Group's (CCG's) van der Waals 

surface area (VSA) descriptors. MOE includes 
tools for the creation of QSAR/QSPR models 

using probabilistic methods and decision trees, 
PCR and PLS methods: 

http://www.chemcomp.com/ software-chem.htm 

Molinspiration 

Cheminformatics software with tools supporting 
molecule manipulation and processing, 

including SMILES and SDfile conversion, 
normalisation of molecules, generation of 
tautomers, molecule fragmentation, and 

calculation of various molecular properties 
needed in QSAR, molecular modelling and drug 

design: http://www.molinspiration.com 

OpenTox 

Interoperable, standards-based framework for 
the support of predictive toxicology including 
APIs and services for compounds, datasets, 

features, algorithms, models, ontologies, tasks, 
validation, and reporting which may be 

combined into multiple applications satisfying a 
variety of different user needs: 

http://www.opentox.org 

OSIRIS 

Guides the performance of risk assessment and 
integrated testing strategies on skin 
sensitisation, repeated dose toxicity, 

mutagenicity, carcinogenicity, bioconcentration 
factors, and aquatic toxicity: 

http://osiris.simpple.com/OSIRIS-ITS/itstool.do 
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PASS Online 

Prediction of several thousand types of 
biological activity, including pharmacological 

effects, mechanisms of action, toxic and 
adverse effects, interaction with metabolic 

enzymes and transporters, influence on gene 
expression based on the structural formula of 

the chemical: http:// 
www.way2drug.com/PASSOnline 

PreADMET 

Calculates more than 2000 2D and 3D 
descriptors, with prediction of ADME/T and 

drug-likeness properties: 
http://preadmet.bmdrc.org 

PredictFX™ 

QSAR modelling and simulation suite that 
provides prediction of off-target pharmacology, 

associated side effect profile and affinity profiles 
on 4,790 targets for drug lead compounds: 

http:// 
www.certara.com/products/molmod/predictfx 

Prediction of 
Activity Spectra for 
Substances (PASS) 

PASS is software for the creation of SAR 
models based on MNA descriptors and 

modified Bayesian algorithm. It predicts several 
thousand types of biological activity, including 

pharmacological effects, mechanisms of action, 
toxic and adverse effects, interaction with 
metabolic enzymes and transporters, and 

influence on gene expression: 
http://www.way2drug.com 

QSARpro® 

QSAR modelling including calculation of over 
1000 molecular descriptors of various classes: 

http:// 
www.vlifesciences.com/products/QSARPro/Pro

duct_QSARpro.php 

RS-WebPredictor 
Prediction of cytochrome P450-mediated sites 
of metabolism on drug-like molecules: http:// 

reccr.chem.rpi.edu/Software/RS-WebPredictor 

Scigress Explorer, 
SCIGRESS 

Molecular and QSAR modelling including 
generation of physico-chemical descriptors for 
small organic molecules, inorganics, polymers, 

materials systems and whole proteins: 
http://www.fqs.pl/ 

chemistry_materials_life_science/products/scigr
ess_explorer 
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Selnergy™ 

Combination of docking software to predict 
interaction energies of a ligand with a protein, 

database of 7000 protein structures with 
annotated biological properties and 

Greenpharma Core Database: http:// 
www.greenpharma.com/services/selnergy-tm 

Small-molecule 
drug discovery suite 

2D/3D QSAR with a large selection of 
fingerprint options, shape-based screening, with 

or without atom properties, ligand-based 
pharmacophore modelling, docking, and R-

group analysis: http:// 
www.schrodinger.com/productsuite/1 

SMARTCyp 
Prediction of the sites in molecules that are 
most liable to cytochrome P450-mediated 

metabolism: http://www.farma.ku.dk/smartcyp 

StarDrop™ 
QSAR modelling, data analysis and structures 
optimisation, R-group analysis and ADME/T 

prediction: http://www.optibrium.com 

SYBYL®-X Suite6 

QSAR modelling, pharmacophore hypothesis 
generation, molecular alignment, 

conformational searching, ADME prediction, 
docking and virtual screening: 

http://www.tripos.com 

Target Fishing Dock 
(TarFisDock)6 

Identification of drug targets from the Potential 
Drug Target Database with a docking approach: 

http:// www.dddc.ac.cn/tarfisdock 

Toxicity Estimation 
Software Tool 

(T.E.S.T.) 

Estimation of toxicity values and physical 
properties of organic chemicals based on the 
molecular structure of the organic chemical 

entered by the user: 
http://www.epa.gov/nrmrl/std/qsar/qsar.html 

 
Table 24: Commercial and freely available software for prediction of biological activity, 
docking, generation of descriptors and QSAR modelling. Adapted from (Lagunin et al., 

2014) 

 

 

One limitation of these datasets is that they are primarily oriented towards strong 

coverage of synthetic, semi-synthetic, and other non-naturally occurring natural 

product derivatives; coverage of pure natural products is highly incomplete. 

Nevertheless, this source of data is important in that it can and will continue to 

serve as a valuable resource in narrowing the search for druglike compounds. 
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With regards to data sources specifically focusing on natural products, there are a 

significant number – albeit fewer – databases which compile biological (including 

ethnobiological) and phytochemical information used in virtual screening efforts 

(Table 25). These databases typically contain lists of plant species relevant to a 

particular geography (i.e. plant species found in the Amazon) therapeutic area (i.e. 

medicinal plant species used to treat diabetes). At the time of Lagunin‘s 

publication in 2014, the GBIF dataset is was the largest in terms of covering the 

most plant species at over 1.4 million species. 

 

 

Source Description and URL # of 
species 

A Guide to 
Medicinal and 

Aromatic Plants 

Information about medicinal, spice and 
aromatic plants: http:// 

www.hort.purdue.edu/newcrop/med-aro/ 
toc.html 

510 

AGRIS 

International information system for 
agricultural sciences and technology. 
Bibliographic data: http://agris.fao.org/ 

agris-search/index.do 

Not 
defined 

Ayurvedic 
Medicinal Plants 

of Sri Lanka 

Medicinal plants used in all of the 
traditional medicine systems in Sri 
Lanka and Ayurveda: http://www. 

ayurvedicmedicinalplantssrilanka.org/ 

1,635 

 

Botanical 
Dermatology 

Database 
(BoDD) 

Description of plants used in the 
treatment of dermatological diseases, 

medicinal use and adverse effects: 
http:// www.botanical-dermatology- 

database.info/ 

300 

Botanical.com 

The electronic version of ―A Modern 
Herbal‖ by Maud Grieve, published in 

1931: http://www.botanical.com/ 
botanical/mgmh/comindx.html 

800 

Chemical 
Abstracts 

Service (CAS) 

The collection and organization of all 
publicly disclosed chemical substance 

information including plant components: 
http://www.cas.org 

Not 
defined 

Chinese Herbal 
Medicine 
Dictionary 

Includes also examples of recipes and 
dosages of plants: http:// 
alternativehealing.org/ 

~900 
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chinese_herbs_dictionary.htm 

ClinicalTrials.gov 

Database of publicly and privately 
supported clinical studies of human 

participants including studies of plant 
extracts: http://clinicaltrials.gov/ 

Not 
defined 

Customary 
Medicinal 

Knowledgebase 
(CMKb) 

Medicinal plants used by Australian 
Aborigines: http://biolinfo.org/cmkb 456 

Cardiovascular 
Disease Herbal 

Database 
(CVDHD) 

Provides docking results between 
phytocomponents and 2398 target 

proteins, cardiovascular-related 
diseases, pathways and clinical 

biomarkers: http:// 
pkuxxj.pku.edu.cn/CVDHD/index.php 

3,518 

Database on 
Ethno- Medicinal 

Plants 

Medicinal plants and their active 
components that can be used for the 

development of new drugs: http:// 
www.assamphytocure.org/scien.php 

80 

Dictionary of 
Natural Products 

(DNP) 

Major commercial source of chemical 
information on natural products: http:// 

dnp.chemnetbase.com 
Not 

defined 

Dr Duke's 
Phytochemical 

and 
Ethnobotanical 

Databases 

Provides search tools for plant selection 
and information on ethnobotanical use, 

phytochemicals and activities: http:// 
www.ars-grin.gov/duke 

1000 

ethnoBotany 
DataBase 
(eBDB) 

International ethnobotany patabase that 
provides multilingual data on plants 

from Ecuador, Peru, Kenya and Hawai‗i: 
http://ebdb.org 

Not 
defined 

EcoPort 
Wiki-like database including 

ethnobotanical data: 
http://ecoport.org/ep 88,291 

Ethnobotany of 
the Peruvian 

Amazon 

Medicinal and useful plants in the 
Amazonian region of Peru  : http:// 

www.biopark.org/Plants-Amazon.html 16 

EXTRACT 
database 

An expert-based knowledge system on 
medicinal plants: http://www.plant- 

medicine.com/index.asp 24 

FDA Poisonous 
Plant Database 

References in the literature describing 
studies of the toxic effects of plants: 

http://www.accessdata.fda.gov/scripts/ 

Not 
defined 
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plantox/index.cfm 

FRLHT Indian 
Medicinal Plants 

Database 

Covers natural resources used in the 
Indian system of medicine, geo- 

distribution data, propagation and trade 
information: http://envis.frlht.org/ 

6,198 

Global 
Biodiversity 
Information 

Facility (GBIF) 

GBIF database also includes data on 
medicinal plants: http://www.gbif.org/ 1,454,695 

GlobinMed 

Data on medicinal herbs and plants 
from different countries including 

dosage and interactions with drugs and 
herbs: http:// www.globinmed.com 

 

Not 
defined 

HerbalThink-
TCM 

Interactive software to learn aspects of 
Traditional Chinese Medicine: http:// 

www.rmhiherbal.org/herbalthink/ 
index.html 

430 

Herbalist 

Description of the principles of the 
therapeutic use of medicinal plants and 

data on medicinal plants: http:// 
www.hoptechno.com/herbmm.htm 

161 

HerbMed 

Categorised, evidence-based resource 
for herbal information, with hyperlinks to 

clinical and scientific publications: 
http://herbmed.org/ 

242 

MedlinePlus: 
Herbs and 

Supplements 

Dietary supplements and herbal 
remedies, their effectiveness, dosage, 

and drug interactions: http:// 
www.nlm.nih.gov/medlineplus/druginfo/ 

herb_All.html 

80 

Herbs & 
Ayurveda 

Ayurveda plants: http:// 
herbsandayurveda.wordpress.com 20 

Indian–Russian 
Traditional 

Indian Medicine 
Database 

Plants used in Traditional Indian 
Medicine, including pharmacological 

activities of plants and their 
phytoconstituents (experimental and 
predicted by PASS software): http:// 

ayurveda.pharmaexpert.ru/ 

50 

InterBioScreen 
(IBS) natural 

products library 

Information on natural compounds and 
their derivatives, with samples available 
for biological activity screening: http:// 

www.ibscreen.com/ 

Not 
defined 

KNApSAcK Core Metabolites related to plants, medicinal/ 1,432 
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DB edible plants that are related to 
geographic zones: 

http://kanaya.naist.jp/ 
KNApSAcK_Family/ 

MAROWINA 
FACTS® 

Natural remedies, dietary supplements, 
medicinal plants and herbs of Surinam: 
http://www.tropilab.com/medsupp.html 43 

Myanmar 
Medicinal Plant 

Database 
(MMPD) 

MMPD: http://www.tuninst.net/MMPD/ 
MMPD-indx.htm 

 

100 

Medicinal Plants 
of Bangladesh 

Database 
(MPBD) 

MPBD: http://www.mpbd.info/ 900 

NAPRALERT® 
Database of natural products, extracts 
of organisms, case reports, non-clinical 
and clinical studies: http://napralert.org/ 

Not 
defined 

Native American 
Ethnobotany 

Database 

Plants used as drugs, foods, dyes, and 
more, by native peoples of North 

America with links to plants database: 
http:// herb.umd.umich.edu/ 

4,029 

Natural 
Standard 

Systematic reviews of foods, herbs and 
supplements including drug interactions, 

dosages and clinical trials: 
http://www.naturalstandard.com 

Not 
defined 

National Center 
for 

Complementary 
and Alternative 

Medicine 
(NCCAM), Herbs 

at a Glance 

A series of brief fact sheets that 
provides basic information about 

specific herbs or botanicals: 
http://nccam.nih.gov/health/ 

herbsataglance.htm 

48 

PLANTS 
Database 

Standardised information about the 
vascular plants, mosses, liverworts, 

hornworts, and lichens of the US: http:// 
plants.usda.gov/java/ 

1,049 

Plants For A 
Future (PFAF) 

A resource and information center for 
edible and otherwise useful plants: 

http://www.pfaf.org/user/default.aspx 7,000 

Prelude 
Medicinal Plants 

Database1 

The use of plants in different traditional 
veterinary and human medicines in 
Africa: http://www.africamuseum.be/ 

collections/external/prelude 
2,357 
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PROSEA Plant Resources of South-East Asia: 
http://proseanet.org/prosea/eprosea.php 6,697 

PROTA Plant Resources of Tropical Africa: 
http:// www.prota.org 7,400 

International 
Organization for 

Plant 
Information, 
Provisional 

Global Plant 
Checklist 

Taxonomic records from 6 major floristic 
datasets and 7 specialised plant family 

datasets: http://bgbm3.bgbm.fu- 
berlin.de/IOPI/GPC/query.asp 

201,397 

PubChem 
Substance 
Database 

Samples from a variety of sources 
including medicinal plants, and links to 

biological screening results: http:// 
www.ncbi.nlm.nih.gov/pcsubstance 

Not 
defined 

Raintree 

Phytochemical information, taxonomic, 
ethnobotanical and clinical data for 

plants of the Amazon Rainforest: http:// 
www.rain-tree.com/ 

251 

Richters Catalog 
Description of plants and their parts, 

which are sold: http://www.richters.com/ 
Web_store/web_store.cgi 1,062 

RxList 
Supplements 

Descriptions of herbs, and dietary 
supplements, their mode of action and 

interactions with drugs: http:// 
www.rxlist.com/supplements/article.htm 

Not 
defined 

SuperNatural II 
Database1 

A Database of purchasable natural 
products: http:// 

bioinformatics.charite.de/main/content/ 
databases_and_applications.php 

Not 
defined 

TCMID 

Traditional Chinese Medicine 
Information Database: http:// 

tcm.cz3.nus.edu.sg/group/tcm-id/ 
tcmid.asp 

1,098 

The Plant List 

The accepted Latin names with links to 
all synonyms by which that species has 
been known in other databases: http:// 

www.theplantlist.org/ 

1,244,871 

TIPdb 

Database of anti-cancer, anti-platelet, 
and anti-tuberculosis phytochemicals 

from indigenous plants in Taiwan: http:// 
cwtung.kmu.edu.tw/tipdb/ 

Not 
defined 

TradiMed Commercial database of plants with 
symptom(s), efficacy, target organ(s), 502 
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property, safety measures: http:// 
www.tradimed.com/ 

TRAMEDIII 
South African Traditional Medicines 

Database: 
http://www.mrc.ac.za/Tramed3 

Not 
defined 

TRAMIL Traditional Medicines in the Islands 
(Carribean): http://www.tramil.net/ 365 

Tropicos® 

The nomenclatural, bibliographic, and 
specimen data collected for the past 25 

years: http://www.tropicos.org/ 
Home.aspx 

1,200,000 

 
Table 25: Commercial available data sources used in screens linked to biological activity 
and QSAR modelling in medicinal plants (Lagunin et al., 2014). Langunin‘s list excludes 
commonly used universal databases such as Web of Knowledge (WoK), Medline, and 

Index Medicus, GBIF represents one of the most comprehensive plant species databases 
with over 1.4 million species. 

 
 
 
In light of the heavy emphasis on filtering, profiling, and screening for druglikeness 

through the use of chemical and physical properties, critical variables linked to 

‗success‘ in the natural product drug discovery processes such as supply have 

historically been excluded. In this thesis, this gap is addressed through the 

incorporation of one of the most comprehensively available biodiversity datasets 

in order to screen for druglikeness. 

 

4.3. Datasets used and methods 

4.3.1. GBIF 
 
 
Principe and others have cited supply constraints as a key obstacle in the 

development of natural products. For example, Harvey states that natural 

products are unattractive to many drug discovery companies because of 

perceived difficulties relating to the complexities of natural product chemistry and 

to the access and supply of natural products and thus the technical difficulties 

relating to isolation and structural elucidation of bioactive natural products are 

being solved by contributions from many different natural product researchers. 

The prime challenge of quantification of this issue was detailed in the literature 
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review of this thesis. Comprehensive tools in quantifying abundance and/or 

distribution of plant species on a large scale are essentially non-existent. One 

effort which shows much promise was put forth by the Global Biodiversity 

Information Facility (GBIF), which is self-described as operating ‗through a 

network of nodes, coordinating the biodiversity information facilities of participant 

countries and organizations, collaborating with each other and the Secretariat to 

share skills, experiences and technical capacity‘.14 Biodiversity data in GBIF is 

served through four ‗portals‘; occurrences (records that document evidence of a 

named organism in nature), datasets (smaller datasets endorsed and 

subsequently published by GBIF through partnering institutions, for example: a 

dataset from a project by the Taiwan Endemic Species Research Institute 

enabling Facebook users to upload images of moths, along with dates, locations 

and species identification), species, and countries/territories. The database can 

be accessed freely at http://www.gbif.org/. 

 
 
One approach in gaining insights into the relationship between the prevalence of a 

host plant/organism and the ‗development status‘ of the alkaloids it produces, is to 

plot out occurrences in a dataset, such as GBIF, against drug/non-drug status of 

such compounds and observe the presence or lack of any significant trends. The 

accuracy of this method is, of course, founded upon two points: the assumption 

that GBIF occurrences are sufficiently representative and correlate to the actual 

biodiversity of a host/plant species worldwide, and the accuracy of listed host 

species the natural product (i.e. alkaloid) originates from. Table 25 shows that 

GBIF is one of the most comprehensive datasets currently available. As of March 

2014, GBIF contained 424,254,844 occurrences of organisms in nature including 

117,909,945 (27.8%) records from the kingdom Plantae. 1,360,782 species of 

plants are covered in the database. Occurrences include collected and 

documented specimens, citations, and records in nature. For example: the DNP 

reports that the alkaloid monocrotaline was recorded in five species of plants: 

Crotalaria retusa L., C. spectabilis Roth, C.aegyptiaca Benth., C. burhia Benth, 
and Lindelofia spectabilis (Fabaceae, Boraginaceae). Occurrences in GBIF for 

these five plant species total to 3,222 (2,575, 440, 144, 27, and 36 respectively). 
                                                        
14 http://www.gbif.org/whatisgbif 
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A preliminary calculation of this nature has been made for 14% of all the alkaloids 

listed in the DNP (4,061/27,783) and an initial analysis of the results of this 

approach are shared in the following section of this thesis. 

 

4.4. Biodiversity as a key criterion of druglikeness 
 
 
The more challenging question regarding the quantification of alkaloid biodiversity 

has already been outlined in previous sections. The utility and limitations of the 

GBIF database have also been outlined in previous sections. It is important to 

note that data was extracted for 4,062 of the total alkaloid set (dataset is 14.6% 

complete) and preliminary results are shown in figure 21. Stripes of horizontal 

data points refer to families of alkaloids all derived from the same natural sources. 

It can be seen that 80% of all pharmaceutical alkaloids have more than 100 

occurrences and less than two alkaloids have less than two occurrences. 

 

When averaging the two data sets, the average of the pharmaceutical alkaloids 

set is 15,192 (SD=26,164) occurrences while the non-pharmaceutical set 

averages at 4,925 occurrences (SD=17,880). The standard deviation of the non-

pharmaceutical set is significantly higher when calculated as a percent of the 

category average. This is logical considering the wide variation of abundances of 

alkaloid producing plants around the globe. These observations support those 

who argue that supply issues overshadow over research and development of 

natural products.  
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Figure 20: Molecular weight (g/mol) and GBIF occurrences
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4.5. Predictive modelling with physical, chemical and biodiversity data  

4.5.1. Dataset and methods 
 
 
Over the years fewer drug discovery screening programs have focused on strictly 

screening pure natural products. Most libraries are boosted with large additions of 

semi-synthetic derivatives or even fully synthetic leads which often are related to 

natural product originators in some way. Thus, knowing that commonly used drug 

discovery rules of thumb were not designed for, and do not perform strongly with 

natural products, the following question arises: To what extent can a simple 

combination of structural data and biodiversity species abundance data predict 

the likeliness of a natural product to be identified as a drug?  

 

Previous research as part of this thesis (Amirkia and Heinrich, 2014) supports that 

there is a highly significant discrepancy not only related to physico-chemical 

properties, but also relating to a species‘ abundance as exemplified for one class 

(i.e. the alkaloids) of drug and non-drug natural products. As a next step it is 

essential to understand how can such insights apply to the continued discovery of 

pharmaceutically relevant natural products in the form of druglikeness? This 

research argues that druglikeness in alkaloids can not only be modelled using 

commonly used modelling schemes, but also predicted accurately by leveraging 

GBIF host species‘ abundance data. 

 

A series of machine learning tools was used to develop predictive models. WEKA 

has been used in previous SAR machine learning studies to model compound 

ligand activity. All predictive models were executed in WEKA version 3.6.12 (Hall 

et al., 2009). WEKA allows for a wide range of data inputs as well as predictive 

models yet, the following algorithms were deemed most useful for this study due 

to their use across drug discovery efforts as well as high accuracy. In this thesis, 

the following four algorithms were used in the predictive model (Hall et al., 2009):  
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Algorithm/Model WEKA Definition 

RandomTree 
Class for constructing a tree that considers K 

randomly chosen attributes at each node. 
Performs no pruning 

RandomForest Class for constructing a forest of random 
trees 

BayesNet 
Bayes Network learning using various 

search algorithms and quality measures. 
Base class for a Bayes Network classifier 

NaiveBayes Class for a Naive Bayes classifier using 
estimator classes 

J48 (decision tree) Class for generating a pruned or unpruned 
C4.5 decision tree 

MultilayerPerceptron 
(ANN) 

A Classifier that uses back propagation to 
classify instances 

 
 
 
Each algorithm was trained with the following four WEKA training settings (Hall et 
al., 2009):  
 
 

1. Use training set: The classifier is evaluated on how well it predicts the class of 
the instances it was trained on 

 
2. Percentage split 30%: randomly splits a dataset according to the given 

percentage (30%) into a train and a test file 
 
3. Percentage split 50%: randomly splits a dataset according to the given 

percentage (50%) into a train and a test file 
 
4. Cross validation (10 folds): splits dataset into 10 pieces and performs 

stratified cross-validation with each of the 10 folds 
 

 
Alkaloids, as classified in the DNP, and thus input in this thesis‘ dataset, number 

27,783. Following this initial import, extended physical property data was imported 

from the European Bioinformatics Institute's ChEMBL database and cross 

referenced against the DNP import. Only 2,015 (7.5%) of the 27,783 alkaloids had 

a full-set of complete entries for both the DNP and ChEMBL databases. Following 

these imports, GBIF host species‘ abundance data (www.gbif.org/occurrence) 

was manually queried and added as an additional data point for each of the 2,015 

alkaloids, thus the final dataset for each alkaloid included the following 17 metrics: 

Accurate Mass, Max Phase, ALogP, PSA, HBA, HBD, #Ro5 Violations, 

#Rotatable Bonds, ACD ApKa, ACD BpKa, ACD LogP, ACD LogD, Aromatic 
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Rings, Heavy Atoms, Num Alerts, QED Weighted, and GBIF occurrences. For the 

sake of comparison, another dataset was also constructed which contained all 

27,783 alkaloids with zeros for missing data. Modelling of this larger dataset 

proved significantly less accurate, and was discarded for use in the models. 

 

To best ensure that the accuracy of each model could be measured in a 

meaningful manner, two types of error calculations were chosen, both which are 

presented in the results below. The first indicator of accuracy is the raw 

percentage correct pharmaceutical or non-pharmaceutical predictions of the 

model. Only 2% of the alkaloids in the dataset are labelled as pharmaceutical 

alkaloids so it is important to look at both true positives and negatives. Looking at 

true negatives (i.e. non-pharmaceutical alkaloids) alone can falsely portray 

accuracy (which is in fact the practice among many machine learning 

druglikeness related publications). This is a quicker approach, analogous to the 

‗hit rate‘ of the virtual screen. The second indicator is a more sophisticated 

statistical analysis of the data which essentially calculates the summation in error 

for predicted/actual values as a proportion of the summation of mean/actual 

values. This indicator is referred to as relative absolute error (RAE) and indicates 

accuracy not only for the individual predicted outcomes but also the algorithm as a 

whole. RAE values >100% indicate that the model is performing worse than just 

predicting the mean of the dataset. 

 

 

 

4.5.2. Discussion of algorithm outputs 
 

Of the six algorithms RandomTree yielded the highest percentage of correctly 

predicted pharmaceutical alkaloids (100%) and lowest overall RAE (0%) (Fig. 21). 

RandomForest also produced a model with nearly 100% correct pharmaceutical 

alkaloid predictions with less than 25% RAE. The next accurate model is the 
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MultilayerPerceptron (ANN), which can predict pharmaceutical alkaloids up to an 

accuracy of 57%. Dissimilar to the ‗yes/no‘ decision-making tree models, the 

nodes and weights this model uses allow for increased flexibility and applicability 

to other potential relevant datasets. 

 

The level of accuracy is significantly increased when accuracy of pharmaceutical 

alkaloids is substituted by overall accuracy of the model (Fig. 22). Due the 

disproportionate number non-pharmaceutical alkaloids in the dataset (98%), by 

including them in the accuracy calculation of each model, accuracy of all models 

jumps to >96%. This indicates that the models do much better (almost 2-times 

better) at predicting non-pharmaceutical alkaloids than they do pharmaceutical 

alkaloids. It is argued that with a larger more complete set of data the accuracy of 

all the models would reach >99%. As the dataset stands now, the high level of 

accuracy achieved comes from a model which merely represents inputs from only 

7.5% of all alkaloids. 

 
A closer look at the decision tree models, RandomTree and RandomForest, 

reveals that their construction is more of a ‗one-time use‘ model which in essence, 

‗over-fits‘ the provided dataset. Publications over the years are rife with over fitted, 

‗one-time use‘ models which are intolerant to other data sources. Applicability to 

other datasets is typically limited and previously published decision trees 

successfully have acted as a ‗proof-of-concepts‘, but have not significantly been 

applied in real-world situations as documented in the published literature (Ehrman 

et al., 2007; Burbridge et al., 2001; Weston et al., 2002). This research argues 

that the use of biodiversity and host species‘ abundance data in natural product 

screens can help move purely computational machine learning efforts towards 

real life applicability. Figure 24 shows a simplified schematic of the random tree 

model for the alkaloid dataset. In order to maximize the number of correct 

predictions, the model generates a tree with dozens of exceptions which cannot 

be used to accurately predict druglikeness in other datasets. 
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Figure 21: Summary of correct predictions of pharmaceutical alkaloids vs. relative absolute error (RAE) for each algorithm and training method 
(each dot of the same colour represents one training scheme within one algorithm) 
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Figure 22: Summary of correct overall predictions of all alkaloids vs. RAE for each algorithm and training method (each dot of the same colour 
represents one training scheme within one algorithm) 
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Figure 23: Simplified schematic of the random tree model with pharmaceutical alkaloids 
represented in green and non-pharmaceutical alkaloids in red. 

 

 

The ANN output in this thesis is in line with previous target or ligand machine 

learning studies but is the first non-target, species abundance-based modelling 

strategy which demonstrates the potential of non-traditional alternative data 

sources in virtual screening and drug discovery processes (Warmuth et al., 2003). 

Although this effort solely focuses on the alkaloid class of secondary metabolites, 

it is believed to be applicable to other classes of natural products such as 

terpenoids. Undergoing similar analyses with other natural product classes or sub-

classes may very well demonstrate that other classes of natural products as 

inputs can predict even higher degrees of accuracy in predicting drugs or druglike 

compounds. The determining factor in accurately modelling natural products is the 

high level of completeness and accuracy of the ‗drugs‘ (or druglike compounds) 

which the models are initially trained with (Table 25): 
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 Pharmaceutical 
Alkaloids 

Non-Pharmaceutical 
Alkaloids 

Correctly 
Predicted 
(n=1,992) 

 
1. Ajmalicine 
2. Berberine 
3. Chelerythrine 
4. Chondocurine 
5. Cinchonidine 
6. Cinchonine 
7. Codeine 
8. Colchicine 
9. Deserpidine 
10. Emetine 
11. Ephedrine 
12. Ergotamine 
13. Galanthamine 
14. Harringtonine 
15. Narceine 
16. Nicotine 
17. Pilocarpine 
18. Quinine 
19. Reserpine 
20. Sanguinarine 
21. Scopolamine 
22. Sparteine 
23. Taxol 
24. Theophylline 
25. Tropine tropate 
26. Vincristin 
 

 
1. Acivicin 
2. Agelongine 
3. Arginine 
4. Betaine 
5. Calcimycin 
6. Canavanine 
7. Chromophenazine B 
8. Cordifoline 
9. Cordifoline 
10. Discorhabdin K 
11. Domoic acid 
12. Dysidine 
13. Dysiherbaine 
14. Dysinosin C 
15. Fasciospongine A 
16. Flazine 
17. Lonijaposide C 
18. Melodinine C 
19. Montipyridine 
20. Platencin 
21. Platensimycin A5 
22. Pulchellamine F 
23. Pyranonigrin B 
 
+1,943 others 
 

Incorrectly 
Predicted 

(n=22) 

1. Aconitine 
2. Ajmaline 
3. Argemonine 
4. Boldine 
5. Cathine 
6. Cocaine 
7. Hydrastine 
8. Lobeline 
9. Lysergic acid 
10. Monocrotaline 
11. Palmatine 
12. Papaverine 
13. Physostigmine 
14. Quinidine 
15. Strychnine 
16. Tetrahydropalmatine 
17. Tropine tropate 
18. Vinblastine 
19. Vincamine 
20. Yohimbine 

1. Lupanine 
2. Quinicine 

 
Table 25: Correct and incorrect predictions of pharmaceutical and non-pharmaceutical 

alkaloids using the artificial neural network model 
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Although the results show an impressive level of overall accuracy, it is important 

to look closely at the 20 incorrectly predicted pharmaceutical alkaloids with hopes 

of better understanding the why the proportion of incorrectly pharmaceutical 

alkaloids (false negatives) is significantly higher than incorrectly predicted non-

pharmaceutical alkaloids (also false negatives). One meaningful way to 

understand which metrics the neural network is weighting most heavily (and thus 

using to judge between a drug/non-drug), is to average values of inputs across 

the two groups of false negatives and to see if there are any significant 

differences. When this calculation is made, it can be seen (Fig. 24) that correctly 

predicted pharmaceutical alkaloids on average have 8.9 times more GBIF 

occurrences than incorrectly predicted pharmaceuticals alkaloids. This not only 

reaffirms findings in previous research that species abundance is highly correlated 

to druglikeness of alkaloids, but additionally indicates that species abundance 

(that as a data source within this model) is a statistically significant factor in 

machine learning efforts in predicting of pharmaceutical alkaloids. 

  
A closer look at the pharmaceutical alkaloids reveals that there are a few pairs or 

closely related pharmaceuticals which have been split by the model into 

pharmaceutical and non-pharmaceutical predictions. In the case of codeine and 

papaverine, both are derived from Papaver somniferum L. and therefore are 

reported as being equally abundant, Yet, codeine is a slightly smaller molecule 

with a lower partition coefficient while papaverine has a five times larger 

distribution coefficient. Another pair is vincristine and vinblastine first isolated from 

Catharanthus roseus (L.) G.Don, which are even more alike as compared with 

papaverine and codeine. This pair presents an exception to the model because 

the DNP lists vinblastine as originating from three species while there are only two 

species for the correctly predicted vincristine. This result indicates that the nature 

of this modelling work is limited in its specificity of predictions with regards to 

closely linked compounds. This exception can also possibly be traced back to the 

quality of the DNP species lists for each alkaloid. Not all host species are listed 

and/or specified. Another possible explanation for this result is that the model is 

trained to output a binary yes/no result. It is highly likely that outputs for two 

similar compounds are just on either side of the >1 (druglike) and <1 (non-druglike) 
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threshold. Placing predictions on a spectrum of druglike and non-drug-like would 

help to alleviate this limitation. Lastly, it must be noted that the pharmaceutical set 

of alkaloids is miniscule with a total of 46 compounds. Given a full set of physical 

and chemical properties, there are at least 11 additional pharmaceutical alkaloids 

which could better train the model; morphine is one notable omission. Additional 

omissions are: pseudoephedrine, hemsleyadine, granatonine, belladonnine, 

dregamine, eschscholtzine, lauroscholtzine, pelletierine, protopine, protoverine, 

and synephrine. 

  

Examining the incorrectly predicted non-pharmaceutical alkaloids suggests that 

there are commonalities among them, the first being that both lupanine and 

quinicine are highly toxic and poisonous alkaloids. This result seems to be in line 

with what is expected from a dataset that does not contain any metrics directly 

representing or correlating to compound toxicity. Secondly, host species (as listed 

in the DNP) for both compounds are diverse. Lupanine is listed as originating from 

Lupinus albus L., Lupinus termis Forssk. [a taxon also recorded as a synonym of 

L. albus (www.theplantlist.org)], Podalyria buxifolia Willd, and Virgilia capensis (L.) 

Lam. [also considered to be a subspecies of Virgilia oroboides (P.J.Bergius) 

T.M.Salter ssp. Oroboides (www.theplantlist.org)] while quinicine originates from 

‗many Cinchona species‘. Since in the model species abundance of host species 

is a key criterion this wider abundance in combination with strong pharmacological 

(albeit toxic) effects is involved in the incorrect prediction of these two being 

pharmaceutical alkaloid. 
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Figure 24: The difference in average of each input between correctly and incorrectly 
predicted pharmaceutical alkaloids 

 

 

GBIF species abundance data has continuously and plans to continually be 

updated with additional novel species as well as occurrence data for pre-existing 

species. These additions will only increase the quality and robustness of the data, 

which in turn can help drive more complex modelling efforts. One possible source 

of bias is that the GBIF dataset is generated from species which are most 

commonly researched and published. A bias of this kind could possibly self-fulfil 

one‘s hypothesis that species abundance is highly correlated to druglikeness. 

Looking more closely at the generation of the GBIF dataset shows that as of 

January 2016, 983 institutions have submitted 12,760 databases containing 

species occurrence data. In 2007, Yesson studied the comprehensiveness of the 

GBIF dataset in the context of Legume species abundance and found that 84% of 

occurrences passed their own internal ‗geographical validation‘ and 3.6% of listed 

Legume species could not be validated according to any of their listed criteria 

(Yesson et al., 2007). At the time of the Yesson study, only 199 institutions were 

providing occurrence data to GBIF, now there are close to 1000. Certainly, this 

sharp rise in data volume (169 million plant occurrences alone) paired with the 
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frequency of newly generated data is sufficiently ‗random‘ enough to avoid any 

significant bias.  

 

It is widely accepted that there is a great challenge in the drug discovery world 

today in both in terms of approach (ex. HTS and single target focus screening 

paradigm, incremental structural modification paradigm) and climate (ex. 

astronomical costs, regulatory pressures). Alkaloids remain vital to drug discovery 

efforts and best estimates today cite that humans have only systematically 

explored about 10% of all natural product host species. How can the research 

community potentially refine its approach to maximize this historically proven 

wealth of potential? How can current cutting-edge approaches be paired with 

bygone experiences in the commercialization of natural products (ex. Shaman 

Pharmaceuticals) be utilized to advance the collective ability to advance drug 

discovery efforts worldwide (King and Carlson, 1995; Clapp and Cook, 2002)? 

 

Machine learning efforts have without a doubt enhanced the collective ability to 

successfully discover myriads of new and highly diverse fragments and leads and 

can reduce the gap between technological advances and innovation in drug 

discovery. Fragments and leads are disproportionally representative of 

compounds derived from natural products yet researchers rarely use pure natural 

product compounds in machine learning efforts. This research argues that natural 

products (i.e. alkaloids) can be screened in a highly impactful way if real-world 

indicators, such as species abundance, are incorporated in predictive models. 

Additionally, it is demonstrated that novel machine learning efforts focusing 

specifically on alkaloids have the potential to accurately predict a high number of 

marketed drugs and even a higher number of correctly non-pharmaceutical 

natural products.  
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5. Looking ahead to the future of natural products 
 

5.1. Application to modern drug discovery and screening paradigms 
 
 
The perceived failure of current drug discovery paradigms to adequately tap into 

the vast reservoir latent in natural products calls for more efficient and impactful 

approaches to be devised. Both previous published research as well as insights 

from industry stakeholders reaffirm this latent potential. Supply is undoubtedly a 

key challenge in natural products research and thus, any bioprospecting, machine 

learning, or other strategy cannot overlook it. 

 

The thesis examined the problems of supply in the context of host species‘ 

abundance data of pharmaceutical alkaloids and it was shown that source species 

of pharmaceutical alkaloids are on average 4.3 times more ‗abundant‘ (GBIF) 

species abundance dataset) than a randomly picked non-pharmaceutical alkaloid 

(Amirkia and Heinrich, 2014). Alkaloid containing species yielding medicines are 

thus much more widely distributed than species which yield alkaloids not used 

pharmaceutically. This suggests that such a dataset is sufficiently significant for 

modelling supply constraints which are so often cited in natural product related 

literature. 

 

This unique and ‗real-world‘ data point can be further leveraged by the myriad 

machine learning schemes prevalent in the modern drug paradigm. Machine 

learning efforts have been integral to drug discovery programs yet their 

contribution to drug discovery strategies is limited. The preceding insights 

demonstrate how target-independent machine learning efforts can more 

effectively capture the potential of natural products and help prioritize efforts. The 

demonstrated predictive model shows overall accuracy comparable to previously 

published target-based machine learning efforts of synthetic and semi-synthetic 

centric studies. The model incorporates species abundance data and can 

consistently predict >50% of all pharmaceutical alkaloids and 98% of all alkaloids, 

which are regarded as a highly important class of natural products in historical as 

well as modern drug discovery. 
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5.2. Future work 
 
 
Methods described in the preceding chapters provide novel insight into how 

traditionally used data inputs and empirical rules seeking to model druglikeness 

can be augmented by non-traditional data sources, such as host species 

biodiversity data, to accelerate innovation and efficiency in modern drug discovery. 

 

However it must be realized that the preceding insights, although novel, are based 

on a few simple metrics which have potential to be deepened. With respect to the 

GBIF database and as mentioned previously, its data volume and accuracy is 

making tremendous strides forward. Yet, the extracted dataset and accompanying 

modelling work was merely based on one metric within the GBIF database; GBIF 

occurrences. While this ‗proof of concept‘ is certainly exciting, these insights could 

certainly be extended and applied to more specific sets of circumstances.  

 

The following questions for example would extend these findings into further 

specific geographic, cultural, and industrial applications. 

 

1. Are host species widely spread across one region or densely found 
in smaller areas?  

 
2. How many countries does the species naturally grow in? 
 
3. How are occurrences of the species in the dataset distributed across 

time? Were instances discovered and recorded decades ago or 
have records been relatively consistent? 

 
4. Are there potential indicators between species abundance and 

species biomass? 
 

5. Are such occurrences linked to the weediness and as such the ease 
of access of the source species (Stepp and Moerman, 2001; Stepp, 
2004)?  

 
 
 
A systematic assessment of a species‘ abundance can play a constructive pre-

screening or filtration role in natural product drug discovery programs which 
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addresses one of the key concerns of the stakeholders who contributed to this 

thesis. Costs for such analyses are minimal compared to R&D budgets common 

to pharmaceutical companies today. Additionally such analyses need not 

necessarily be exclusively seen as applicable to screening programs for 

candidates or leads but may prove to be of value in other natural product related 

endeavours. Companies which are heavily invested or interested in TCM, 

Ayurveda, and other traditional medicine centric portfolios may use this approach 

to optimize procurement or investment processes. Compounds which originate 

from host species which are becoming increasingly abundant may hold more 

promise long-term sustainability in production and marketability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 141 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



 142 

References 

 
Abad-Zapatero, C. (2007). A Sorcerer's apprentice and the rule of five: from rule-

of-thumb to commandment and beyond. Drug Discovery Today, 12(23), 
995-997. 

 
Abraham, M. H., Chadha, H. S., Whiting, G. S., & Mitchell, R. C. (1994). Hydrogen 

bonding. 32. An analysis of water‐octanol and water‐alkane partitioning 
and the Δlog p parameter of seiler. Journal of Pharmaceutical Sciences, 
83(8), 1085-1100. 

 
Ajay, A., Walters, W. P., & Murcko, M. A. (1998). Can we learn to distinguish 

between ―drug-like‖ and ―nondrug-like‖ molecules? Journal of Medicinal 
Chemistry, 41(18), 3314-3324. 

 
Amirkia, V., & Heinrich, M. (2014). Alkaloids as drug leads–A predictive structural 

and biodiversity-based analysis. Phytochemistry Letters, 10, xlviii-liii. 
 
Amirkia, V., & Heinrich, M. (2015). Natural products and drug discovery: a survey 

of stakeholders in industry and academia. Frontiers in Pharmacology, 6, 
237 

 
Aniszewski, T. (2007). Biological significance of alkaloids. Alkaloids–Secrets of 

Life: Alkaloid Chemistry, Biological Significance and Ecological Role, 141-
180. 

 
Artuso, A. (1997). Drugs of natural origin: economic and policy aspects of 

discovery, development, and marketing. New York: Pharmaceutical 
Products Press. 

 
Baker, D. D., Chu, M., Oza, U., & Rajgarhia, V. (2007). The value of natural 

products to future pharmaceutical discovery. Natural Product Reports, 
24(6), 1225-1244. 

 
Balunas, M. J., & Kinghorn, A. D. (2005). Drug discovery from medicinal plants. 

Life Sciences, 78(5), 431-441. 
 
Berlinck, R. G. S., Kossuga, M. H., Fattorusso, E., & Taglialatela-Scafati, O. 

(2007). Modern Alkaloids. Modern Alkaloids.  
 
Bhal, S. K., Kassam, K., Peirson, I. G., & Pearl, G. M. (2007). The Rule of Five 

revisited: applying log D in place of log P in drug-likeness filters. Molecular 
Pharmaceutics, 4(4), 556-560. 

 
Bleicher, K. H., Böhm, H. J., Müller, K., & Alanine, A. I. (2003). Hit and lead 

generation: beyond high-throughput screening. Nature Reviews Drug 
Discovery, 2(5), 369-378. 

 



 143 

Bohlin, L., Göransson, U., Alsmark, C., Wedén, C., & Backlund, A. (2010). Natural 
products in modern life science. Phytochemistry Reviews, 9(2), 279-301. 

 
Breinbauer, R., Vetter, I. R., & Waldmann, H. (2002). From protein domains to 

drug candidates—natural products as guiding principles in the design and 
synthesis of compound libraries. Angewandte Chemie International Edition, 
41(16), 2878-2890. 

 
Brito, A. R., & Nunes, D. S. (1997). Ethnopharmacology and the sustainable 

development of new plant-derived drugs. Ciência e Cultura (Säo 
Paulo), 49(5/6), 402-50. 

 
Brown, D., & Superti-Furga, G. (2003). Rediscovering the sweet spot in drug 

discovery. Drug Discovery Today, 8(23), 1067-1077. 
 
Bruckingham, J. (2000). Dictionary of natural products on CD-ROM. New York: 

Champman and Hall. 
 
Burbidge, R., Trotter, M., Buxton, B., & Holden, S. (2001). Drug design by 

machine learning: support vector machines for pharmaceutical data 
analysis. Computers & Chemistry, 26(1), 5-14. 

 
Butler, M. S. (2004). The role of natural product chemistry in drug discovery. 

Journal of Natural Products, 67(12), 2141-2153. 
 
Byvatov, E., Fechner, U., Sadowski, J., & Schneider, G. (2003). Comparison of 

support vector machine and artificial neural network systems for 
drug/nondrug classification. Journal of Chemical Information and Computer 
Sciences, 43(6), 1882-1889. 

 
Chin, Y. W., Balunas, M. J., Chai, H. B., & Kinghorn, A. D. (2006). Drug discovery 

from natural sources. The AAPS journal, 8(2), E239-E253. 
 
Clapp, R. A., & Crook, C. (2002). Drowning in the magic well: Shaman 

Pharmaceuticals and the elusive value of traditional knowledge. The 
Journal of Environment & Development, 11(1), 79-102. 

 
Clement, J. A., Kitagaki, J., Yang, Y., Saucedo, C. J., O‘Keefe, B. R., Weissman, 

& McMahon, J. B. (2008). Discovery of new pyridoacridine alkaloids from 
Lissoclinum cf. badium that inhibit the ubiquitin ligase activity of Hdm2 and 
stabilize p53. Bioorganic & Medicinal Chemistry, 16(23), 10022-10028. 

 
Congreve, M., Carr, R., Murray, C., & Jhoti, H. (2003). A ‗rule of three‘ for 

fragment-based lead discovery? Drug Discovery Today, 8(19), 876-877. 
 
Cook, D., Brown, D., Alexander, R., March, R., Morgan, P., Satterthwaite, G., & 

Pangalos, M. N. (2014). Lessons learned from the fate of AstraZeneca‘s 
drug pipeline: a five-dimensional framework. Nature Reviews Drug 
Discovery, 13(6), 419-431. 

 



 144 

Cordell, G. A., & Colvard, M. D. (2005). Some thoughts on the future of 
ethnopharmacology. Journal of Ethnopharmacology, 100(1), 5-14. 

 
Cordell, G. A., Quinn‐Beattie, M. L., & Farnsworth, N. R. (2001). The potential of 

alkaloids in drug discovery. Phytotherapy Research, 15(3), 183-205. 
 
Corson, T. W., & Crews, C. M. (2007). Molecular understanding and modern 

application of traditional medicines: triumphs and trials. Cell, 130(5), 769-
774. 

 
Cox, P. A. (1990). Ethnopharmacology and the search for new drugs. In Ciba 

Foundation Symposium 154-Bioactive Compounds from plants (pp. 40-55). 
John Wiley & Sons, Ltd.. 

 
Cox, P. A., & Balick, M. J. (1994). The ethnobotanical approach to drug 

discovery. Scientific American (June), 60-65. 
 
Cragg, G. M., & Newman, D. J. (2001). Natural product drug discovery in the next 

millennium. Pharmaceutical Biology, 39(sup1), 8-17. 
 
Cragg, G. M., Newman, D. J., & Rosenthal, J. (2012). The impact of the United 

Nations Convention on Biological Diversity on natural products research. 
Natural Product Reports, 29(12), 1407-1423. 

 
Cragg, G. M., Newman, D. J., & Snader, K. M. (1997). Natural products in drug 

discovery and development. Journal of Natural Products, 60(1), 52-60. 
 
Crook, C. (2001). Biodiversity prospecting agreements, evaluating their economic 

and conservation benefits in Costa Rica and Peru. Unpublished 
dissertation. 

 
Czárán, T. L., Hoekstra, R. F., & Pagie, L. (2002). Chemical warfare between 

microbes promotes biodiversity. Proceedings of the National Academy of 
Sciences, 99(2), 786-790. 

 
Czapek, F., (1921). Spezielle Biochemie, Biochemie der Pflanzen, vol. 3, G. 

Fischer Jena, p. 369. 
 
Danzon, P. M., Epstein, A., & Nicholson, S. (2004). Mergers and acquisitions in 

the pharmaceutical and biotech industries (No. w10536). National Bureau 
of Economic Research. 

 
David, B., Wolfender, J. L., & Dias, D. A. (2014). The pharmaceutical industry and 

natural products: historical status and new trends. Phytochemistry Reviews, 
14(2), 299-315. 

 
Demirbag, M., Ng, C. K., & Tatoglu, E. (2007). Performance of mergers and 

acquisitions in the pharmaceutical industry: a comparative perspective. 
Multinational Business Review, 15(2), 41-62. 

 



 145 

Ehrman, T. M., Barlow, D. J., & Hylands, P. J. (2007). Virtual screening of 
Chinese herbs with random forest. Journal of Chemical Information and 
Modeling, 47(2), 264-278. 

 
Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface 

area as a sum of fragment-based contributions and its application to the 
prediction of drug transport properties. Journal of Medicinal Chemistry, 
43(20), 3714-3717. 

 
Facchini, P. J., Bohlmann, J., Covello, P. S., De Luca, V., Mahadevan, R., Page & 

Martin, V. J. (2012). Synthetic biosystems for the production of high-value 
plant metabolites. Trends in Biotechnology, 30(3), 127-131 

 
Farnsworth, N. R. (1993). Ethnopharmacology and future drug development: the 

North American experience. Journal of Ethnopharmacology, 38(2), 137-143. 
 
Fattorusso, E., & Taglialatela-Scafati, O. (Eds.). (2008). Modern alkaloids: 

structure, isolation, synthesis, and biology. John Wiley & Sons. 
 
Firn, R. D., & Jones, C. G. (2003). Natural products–a simple model to explain 

chemical diversity. Natural Product Reports, 20(4), 382-391. 
 
Firn, R. D., & Jones, C. G. (2009). A Darwinian view of metabolism: molecular 

properties determine fitness. Journal of Experimental Botany, 60(3), 719-
726. 

 
Gates, M., & Tschudi, G. (1956). The synthesis of morphine. Journal of the 

American Chemical Society, 78(7), 1380-1393. 
 
Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey & 

Overington, J. P. (2012). ChEMBL: a large-scale bioactivity database for 
drug discovery. Nucleic Acids Research, 40(D1), D1100-D1107. 

 
Gertsch, J. (2009). How scientific is the science in ethnopharmacology? Historical 

perspectives and epistemological problems. Journal of 
Ethnopharmacology, 122(2), 177-183. 

 
Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1998). Prediction of 

hydrophobic (lipophilic) properties of small organic molecules using 
fragmental methods: an analysis of ALOGP and CLOGP methods. The 
Journal of Physical Chemistry, 102(21), 3762-3772. 

 
Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-

based approach in designing combinatorial or medicinal chemistry libraries 
for drug discovery. 1. A qualitative and quantitative characterization of 
known drug databases. Journal of Combinatorial Chemistry, 1(1), 55-68. 

 
Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., & Lopez, 

R. (2010). A new bioinformatics analysis tools framework at EMBL–EBI. 
Nucleic Acids Research, 38(suppl 2), W695-W699. 



 146 

 
Grabowski, K., & Schneider, G. (2007). Properties and architecture of drugs and 

natural products revisited. Current Chemical Biology, 1(1), 115-127. 
 
Gray, T. C., & Halton, J. (1946). A milestone in anaesthesia?:(d-tubocurarine 

chloride). Proceedings of the Royal Society of Medicine, 39(7), 400. 
 
Guiguemde, W. A., Shelat, A. A., Garcia-Bustos, J. F., Diagana, T. T., Gamo, F. J., 

& Guy, R. K. (2012). Global phenotypic screening for 
antimalarials. Chemistry & Biology, 19(1), 116-129. 

 
Gullo, V. P., McAlpine, J., Lam, K. S., Baker, D., & Petersen, F. (2006). Drug 

discovery from natural products. Journal of Industrial Microbiology and 
Biotechnology, 33(7), 523-531. 

 
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. 

(2009). The WEKA data mining software: an update. ACM SIGKDD 
Explorations Newsletter, 11(1), 10-18. 

 
Han, L. Y., Ma, X. H., Lin, H. H., Jia, J., Zhu, F., Xue, Y. & Chen, Y. Z. (2008). A 

support vector machines approach for virtual screening of active 
compounds of single and multiple mechanisms from large libraries at an 
improved hit-rate and enrichment factor. Journal of Molecular Graphics and 
Modelling, 26(8), 1276-1286. 

 
Hanson, J. R. (2003). Natural products: the secondary metabolites (Vol. 17). 

Royal Society of Chemistry. 
 
Harvey, A. (2000). Strategies for discovering drugs from previously unexplored 

natural products. Drug Discovery Today, 5(7), 294-300. 
 
Harvey, A. L. (1999). Medicines from nature: are natural products still relevant to 

drug discovery? Trends in Pharmacological Sciences, 20(5), 196-198. 
 
Harvey, A. L. (2008). Natural products in drug discovery. Drug Discovery Today, 

13(19), 894-901. 
 
Harvey, A. L., Edrada-Ebel, R., & Quinn, R. J. (2015). The re-emergence of 

natural products for drug discovery in the genomics era. Nature Reviews 
Drug Discovery, 14(2), 111-129. 

 
Heinrich, M. (2013). Ethnopharmacology and drug discovery. Comprehensive 

Natural Products II: Chemistry and Biology, Development & Modification of 
Bioactivity, 3, 351-381. 

 
Heinrich, M., & Gibbons, S. (2001). Ethnopharmacology in drug discovery: an 

analysis of its role and potential contribution. Journal of Pharmacy and 
Pharmacology, 53(4), 425-432. 

 



 147 

Heinrich, M., Edwards, S., Moerman, D. E., & Leonti, M. (2009). 
Ethnopharmacological field studies: a critical assessment of their 
conceptual basis and methods. Journal of Ethnopharmacology, 124(1), 1-
17. 

 
Heinrich, M., & Teoh, H. L. (2004). Galanthamine from snowdrop—the 

development of a modern drug against Alzheimer‘s disease from local 
Caucasian knowledge. Journal of Ethnopharmacology, 92(2), 147-162. 

 
Helma, C., Cramer, T., Kramer, S., & De Raedt, L. (2004). Data mining and 

machine learning techniques for the identification of mutagenicity inducing 
substructures and structure activity relationships of noncongeneric 
compounds. Journal of Chemical Information and Computer 
Sciences, 44(4), 1402-1411. 

 
Henkel, T., Brunne, R. M., Müller, H., & Reichel, F. (1999). Statistical investigation 

into the structural complementarity of natural products and synthetic 
compounds. Angewandte Chemie International Edition, 38(5), 643-647. 

 
Higgins, M. J., & Rodriguez, D. (2006). The outsourcing of R&D through 

acquisitions in the pharmaceutical industry. Journal of Financial Economics, 
80(2), 351-383. 

 
Hodgson, B. (2001). In the arms of morpheus: The tragic history of laudanum, 

morphine, and patent medicines. Firefly Books Limited. 
 
Hopkins, A. L. (2008). Network pharmacology: the next paradigm in drug 

discovery. Nature chemical biology, 4(11), 682-690. 
 
Howell, C. R., Bell, A. A., & Stipanovic, R. D. (1973). Virulence to cotton and 

tolerance to sanguinarine among Verticillium species. Canadian Journal of 
Microbiology, 19(11), 1367-1371. 

 
Hung, D. T., Jamison, T. F., & Schreiber, S. L. (1996). Understanding and 

controlling the cell cycle with natural products. Chemistry & Biology, 3(8), 
623-639. 

 
IMS Health (2014). IMS Health Report - Total Unaudited and Audited Global 

Pharmaceutical Market By Region 
 
International Labour Organization (ILO) (1989). Indigenous and Tribal Peoples 

Convention, [Online]. C169. http://www.refworld.org/docid/3ddb6d514.html 
[Accessed 13 May 2015]. 

 
International Narcotics Control Board (2013). Comments on the reported statistics 

on narcotic drugs [Online]. https://www.incb.org/documents/Narcotic-
Drugs/Technical-Publications/2013/Part_2_Comments_E.pdf. [Accessed 
20 May 2013]. 

 



 148 

Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern 
agriculture and an increasingly regulated world. Annu. Rev. Entomol., 51, 
45-66. 

 
Jachak, S. M., & Saklani, A. (2007). Challenges and opportunities in drug 

discovery from plants. Current Science-Bangalore, 92(9), 1251. 
 
Ji, H. F., Li, X. J., & Zhang, H. Y. (2009). Natural products and drug 

discovery. EMBO Reports, 10(3), 194-200. 
 
Kaufman, P. B., Cseke, L. J., Warber, S., Duke, J. A., & Brielmann, H. L. (1999). 

Natural Products from Plants (No. 581.192 N3). Boca Raton FL: CRC press. 
 
Kenny, P. W., & Montanari, C. A. (2013). Inflation of correlation in the pursuit of 

drug-likeness. Journal of Computer-aided Molecular Design, 1-13. 
 
Khanna, I. (2012). Drug discovery in pharmaceutical industry: productivity 

challenges and trends. Drug Discovery Today, 17(19), 1088-1102. 
 
King, S. R., & Carlson, T. J. (1995). Biocultural diversity, biomedicine and 

ethnobotany: the experience of Shaman Pharmaceuticals. Interciencia 
Caracas, 20, 134-134. 

 
Kingston, D. G. (2010). Modern natural products drug discovery and its relevance 

to biodiversity conservation. Journal of Natural Products, 74(3), 496-511. 
 
Knapp, S. (2010). What's in a name? A history of taxonomy. Natural History 

Museum. http://www.nhm.ac.uk/nature-online/science-of-
naturalhistory/taxonomy-systematics/history-taxonomy/index.html 
[Accessed 31 June 2015]. 

 
Knight, V., Sanglier, J. J., DiTullio, D., Braccili, S., Bonner, P., Waters, J., & Zhang, 

L. (2003). Diversifying microbial natural products for drug discovery. 
Applied Microbiology and Biotechnology, 62(5-6), 446-458. 

 
Koch, M. A., Schuffenhauer, A., Scheck, M., Wetzel, S., Casaulta, M., Odermatt, 

& Waldmann, H. (2005). Charting biologically relevant chemical space: a 
structural classification of natural products (SCONP). Proceedings of the 
National Academy of Sciences of the United States of America, 102(48), 
17272-17277. 

 
Koehn, F. E., & Carter, G. T. (2005). The evolving role of natural products in drug 

discovery. Nature Reviews Drug Discovery, 4(3), 206-220. 
 
Kossel A (1891). "Ueber die chemische Zusammensetzung der Zelle" [The 

chemical composition of the cell]. Archiv für Physiologie (in German): 181–
186. 

 
Kubinyi, H., & Folkers, G. (2008). Molecular Drug Properties. R. Mannhold (Ed.). 

John Wiley & Sons. 111-126 



 149 

 
Lagunin, A. A., Goel, R. K., Gawande, D. Y., Pahwa, P., Gloriozova, T. A., 

Dmitriev, & Druzhilovsky, D. S. (2014). Chemo-and bioinformatics 
resources for in silico drug discovery from medicinal plants beyond their 
traditional use: a critical review. Natural Product Reports, 31(11), 1585-
1611. 

 
Lam, K. S. (2007). New aspects of natural products in drug discovery. Trends in 

Microbiology, 15(6), 279-289. 
 
Lawrence, G.H.M., (1951). The Taxonomy of Vascular Plants. The Macmillan 

Company, New York 
 
Li, J. W. H., & Vederas, J. C. (2009). Drug discovery and natural products: end of 

an era or an endless frontier? Science, 325(5937), 161-165. 
 
Lipinski, C. A. (2004). Lead-and drug-like compounds: the rule-of-five 

revolution. Drug Discovery Today: Technologies, 1(4), 337-341. 
 
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). 

Experimental and computational approaches to estimate solubility and 
permeability in drug discovery and development settings. Advanced Drug 
Delivery Reviews, 23(1), 3-25. 

 
Lobell, M., Hendrix, M., Hinzen, B., Keldenich, J., Meier, H., Schmeck, C., & 

Hillisch, A. (2006). In silico ADMET traffic lights as a tool for the 
prioritization of HTS hits. ChemMedChem, 1(11), 1229-1236. 

 
Lutz, M., & Kenakin, T. (1999). Quantitative molecular pharmacology and 

informatics in drug discovery. John Wiley & Sons. 
 
Macarron, R., Banks, M. N., Bojanic, D., Burns, D. J., Cirovic, D. A., Garyantes & 

Sittampalam, G. S. (2011). Impact of high-throughput screening in 
biomedical research. Nature Reviews Drug Discovery, 10(3), 188-195. 

 
Mahfouz, M. (1949). The fate of tubocurarine in the body. British Journal of 

Pharmacology and Chemotherapy, 4(3), 295-303. 
 
McChesney, J. D., Venkataraman, S. K., & Henri, J. T. (2007). Plant natural 

products: back to the future or into extinction? Phytochemistry, 68(14), 
2015-2022. 

 
Medina-Franco, J. L., Giulianotti, M. A., Welmaker, G. S., & Houghten, R. A. 

(2013). Shifting from the single to the multitarget paradigm in drug 
discovery. Drug Discovery Today, 18(9), 495-501. 

 
Mishra, K. P., Ganju, L., Sairam, M., Banerjee, P. K., & Sawhney, R. C. (2008). A 

review of high throughput technology for the screening of natural products. 
Biomedicine & Pharmacotherapy, 62(2), 94-98. 

 



 150 

Monaghan, R. L., Polishook, J. D., Pecore, V. J., Bills, G. F., Nallin-Omstead, M., 
& Streicher, S. L. (1995). Discovery of novel secondary metabolites from 
fungi-is it really a random walk through a random forest? Canadian Journal 
of Botany, 73(S1), 925-931. 

 
Morphy, R., Kay, C., & Rankovic, Z. (2004). From magic bullets to designed 

multiple ligands. Drug Discovery Today, 9(15), 641-651. 
 
Nakagawa, A., Minami, H., Kim, J. S., Koyanagi, T., Katayama, T., Sato, F., & 

Kumagai, H. (2011). A bacterial platform for fermentative production of 
plant alkaloids. Nature Communications, 2, 326. 

 
Newman, D. J., & Cragg, G. M. (2004). Marine natural products and related 

compounds in clinical and advanced preclinical trials. Journal of Natural 
Products, 67(8), 1216-1238. 

 
Newman, D. J., & Cragg, G. M. (2007). Natural Products as Sources of New 

Drugs over the Last 25 Years. Journal of Natural Products, 70(3), 461-477. 
 
Newman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs 

over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 
311-335. 

 
Newman, D. J., Cragg, G. M., & Snader, K. M. (2000). The influence of natural 

products upon drug discovery. Natural Product Reports, 17(3), 215-234. 
 
Newman, D. J., Cragg, G. M., & Snader, K. M. (2003). Natural products as 

sources of new drugs over the period 1981-2002. Journal of Natural 
Products, 66(7), 1022-1037. 

 
Newman, S. E., Roll, M. J., & Harkrader, R. J. (1999). A naturally occurring 

compound for controlling powdery mildew of greenhouse 
roses. HortScience, 34(4), 686-689. 

 
Niedergassel, B., & Leker, J. (2009). Open innovation: chances and challenges 

for the pharmaceutical industry. Future medicinal chemistry, 1(7), 1197-
1200. 

 
Nisbet, L. J., & Moore, M. (1997). Will natural products remain an important 

source of drug research for the future? Current Opinion in Biotechnology, 
8(6), 708-712. 

 
Norinder, U., & Haeberlein, M. (2002). Computational approaches to the 

prediction of the blood–brain distribution. Advanced Drug Delivery 
Reviews, 54(3), 291-313. 

 
Oprea, T. I. (2002). Current trends in lead discovery: Are we looking for the 

appropriate properties? Journal of Computer-aided Molecular Design, 16(5-
6), 325-334. 

 



 151 

Ortholand, J. Y., & Ganesan, A. (2004). Natural products and combinatorial 
chemistry: back to the future. Current Opinion in Chemical Biology, 8(3), 
271-280. 

 
Overington, J. P., Al-Lazikani, B., & Hopkins, A. L. (2006). How many drug targets 

are there? Nature Reviews Drug Discovery, 5(12), 993-996. 
 
Owens, J. (2003). Chris Lipinski discusses life and chemistry after the Rule of 

Five. Drug Discovery Today, 8(1), 12-16. 
 
Paterson, D. A., Conradi, R. A., Hilgers, A. R., Vidmar, T. J., & Burton, P. S. 

(1994). A Non‐aqueous Partitioning System for Predicting the Oral 
Absorption Potential of Peptides. Quantitative structure‐Activity 
Relationships, 13(1), 4-10. 

 
Paterson, I., & Anderson, E. A. (2005). The renaissance of natural products as 

drug candidates. Science, 310(5747), 451. 
 
Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., 

Lindborg, S. R., & Schacht, A. L. (2010). How to improve R&D productivity: 
the pharmaceutical industry's grand challenge. Nature Reviews Drug 
Discovery, 9(3), 203-214. 

 
Pharmaceutical Research and Manufacturers of America (2015). 

Biopharmaceutical research industry profile. Washington, DC: PhRMA. 
 
Principe, P. P. (1991). Valuing the biodiversity of medicinal plants. Conservation 

of Medicinal Plants, 79-124. 
 
Rates, S. M. K. (2001). Plants as source of drugs. Toxicon, 39(5), 603-613. 
 
Reid, W. V., Barber, C. V., & La Vina, A. (1995). Translating genetic resources 

rights into sustainable development: gene cooperatives, the biotrade and 
lessons from the Philippines. Plant Genetic Resources Newsletter 
(IPGRI/FAO). 

 
Rinner, U., & Hudlicky, T. (2011). Synthesis of morphine alkaloids and derivatives. 

In Alkaloid Synthesis (pp. 33-66). Springer Berlin Heidelberg. 
 
Rishton, G. M. (2008). Natural products as a robust source of new drugs and drug 

leads: past successes and present day issues. The American Journal of 
Cardiology, 101(10), S43-S49. 

 
Roberts, R. A., Kavanagh, S. L., Mellor, H. R., Pollard, C. E., Robinson, S., & 

Platz, S. J. (2014). Reducing attrition in drug development: smart loading 
preclinical safety assessment. Drug Discovery Today, 19(3), 341-347. 

 
Roberts, A. D., Baggaley, K. H., & Buckingham, J. (2010). Dictionary of Alkaloids.  
 



 152 

Rosén, J., Gottfries, J., Muresan, S., Backlund, A., & Oprea, T. I. (2009). Novel 
chemical space exploration via natural products. Journal of Medicinal 
Chemistry, 52(7), 1953-1962. 

 
Sams-Dodd, F. (2005). Target-based drug discovery: is something wrong? Drug 

Discovery Today, 10(2), 139-147. 
 
Sams-Dodd, F. (2013). Is poor research the cause of the declining productivity of 

the pharmaceutical industry? An industry in need of a paradigm shift. Drug 
Discovery Today, 18(5), 211-217. 

 
Shen, J., Xu, X., Cheng, F., Liu, H., Luo, X., Shen, J. & Jiang, H. (2003). Virtual 

screening on natural products for discovering active compounds and target 
information. Current Medicinal Chemistry, 10(21), 2327-2342. 

 
Shu, Y. Z. (1998). Recent natural products based drug development: a 

pharmaceutical industry perspective. Journal of Natural Products, 61(8), 
1053-1071. 

 
Sobell, H. M., Sakore, T. D., Tavale, S. S., Canepa, F. G., Pauling, P., & Petcher, 

T. J. (1972). Stereochemistry of a curare alkaloid: O, O′, N-trimethyl-d-
tubocurarine. Proceedings of the National Academy of Sciences, 69(8), 
2212-2215. 

 
Stenberg, P., Luthman, K., Ellens, H., Lee, C. P., Smith, P. L., Lago, & Artursson, 

P. (1999). Prediction of the intestinal absorption of endothelin receptor 
antagonists using three theoretical methods of increasing complexity. 
Pharmaceutical Research, 16(10), 1520-1526. 

 
Stepp, J. R., & Moerman, D. E. (2001). The importance of weeds in 

ethnopharmacology. Journal of Ethnopharmacology, 75(1), 19-23. 
 
Stepp, J. R. (2004). The role of weeds as sources of pharmaceuticals. Journal of 

Ethnopharmacology, 92(2), 163-166. 
 
Strobel, G. A. (2002). Rainforest endophytes and bioactive products. Critical 

Reviews in Biotechnology, 22(4), 315-333. 
 
Tralau-Stewart, C. J., Wyatt, C. A., Kleyn, D. E., & Ayad, A. (2009). Drug 

discovery: new models for industry–academic partnerships. Drug Discovery 
Today, 14(1), 95-101. 

 
Tulp, M., & Bohlin, L. (2004). Unconventional natural sources for future drug 

discovery. Drug Discovery Today, 9(10), 450-458. 
 
Urizar, N. L., Liverman, A. B., D'Nette, T. D., Silva, F. V., Ordentlich, P., Yan, Y.& 

Moore, D. D. (2002). A natural product that lowers cholesterol as an 
antagonist ligand for FXR. Science, 296(5573), 1703-1706. 

 



 153 

Ulubelen, A., Mericli, A. H., Meriçli, F., Kilinçer, N., Ferizli, A. G., Emekci, M., & 
Pelletier, S. W. (2001). Insect repellent activity of diterpenoid 
alkaloids. Phytotherapy Research, 15(2), 170-171. 

 
Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, 

K. D. (2002). Molecular properties that influence the oral bioavailability of 
drug candidates. Journal of Medicinal Chemistry, 45(12), 2615-2623. 

 
Vedani, A., Dobler, M., & Smieško, M. (2012). VirtualToxLab—a platform for 

estimating the toxic potential of drugs, chemicals and natural 
products.Toxicology and Applied Pharmacology, 261(2), 142-153. 

 
Verdine, G. L. (1996). The combinatorial chemistry of nature. Nature, 384(6604), 

11-13. 
 
Vuorela, P., Leinonen, M., Saikku, P., Tammela, P., Rauha, J. P., Wennberg, T., 

& Vuorela, H. (2004). Natural products in the process of finding new drug 
candidates. Current Medicinal Chemistry, 11(11), 1375-1389. 

 
Walsh, R. (2010). A history of: The pharmaceutical industry. Pharmaphorum 

[Online]. http://pharmaphorum.com/views-and-
analysis/a_history_of_the_pharmaceutical_industry/. [Accessed 13 January 
2016]. 

 
Walters, W. P., & Murcko, M. A. (2002). Prediction of ‗drug-likeness‘. Advanced 

Drug Delivery Reviews, 54(3), 255-271. 
 
Wang, X. J., Li, L., Si, Y. K., Yu, S. S., Ma, S. G., Bao, X. & Li, Y. (2013). Nine 

new lycopodine-type alkaloids from Lycopodium japonicum 
Thunb. Tetrahedron, 69(30), 6234-6240. 

 
Warmuth, M. K., Liao, J., Rätsch, G., Mathieson, M., Putta, S., & Lemmen, C. 

(2003). Active learning with support vector machines in the drug discovery 
process. Journal of Chemical Information and Computer Sciences, 43(2), 
667-673. 

 
Wenlock, M. C., Austin, R. P., Barton, P., Davis, A. M., & Leeson, P. D. (2003). A 

comparison of physiochemical property profiles of development and 
marketed oral drugs. Journal of Medicinal Chemistry, 46(7), 1250-1256. 

 
Wernerova, M., & Hudlicky, T. (2010). On the practical limits of determining 

isolated product yields and ratios of stereoisomers: reflections, analysis, 
and redemption. Synlett, 2010 (18), 2701-2707. 

 
Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., & Schölkopf, 

B. (2002). Feature selection and transduction for prediction of molecular 
bioactivity for drug design. Bioinformatics, 1(1), 1-8. 

 



 154 

Wolf, D., & Siems, K. (2007). Burning the Hay to Find the Needle Data Mining 
Strategies in Natural Product Dereplication. CHIMIA International Journal 
for Chemistry, 61(6), 339-345. 

 
Working Group on Indigenous Populations (WGIP) (1993). UN draft declaration 

on the rights of indigenous peoples [Agreed to at 11th session of WGIP]. 
 
Yesson, C., Brewer, P. W., Sutton, T., Caithness, N., Pahwa, J. S., Burgess, M. & 

Culham, A. (2007). How global is the global biodiversity information facility. 
PLOS ONE, 2(11), e1124. 

 
Zernov, V. V., Balakin, K. V., Ivaschenko, A. A., Savchuk, N. P., & Pletnev, I. V. 

(2003). Drug discovery using support vector machines. The case studies of 
drug-likeness, agrochemical-likeness, and enzyme inhibition 
predictions. Journal of Chemical Information and Computer Sciences, 43(6), 
2048-2056. 

 
Zhang, M. Q., & Wilkinson, B. (2007). Drug discovery beyond the ‗rule-of-five‘. 

Current Opinion in Biotechnology, 18(6), 478-488. 
 
Zhang, P. Z., Zhang, Y. M., Gu, J., & Zhang, G. L. (2016). Two new alkaloids from 

Melodinus hemsleyanus Diels. Natural Product Research, 30(2), 162-167. 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 155 

Appendix 

Appendix 1: Screenshot of online natural product drug development survey for 
stakeholders in industry and academia. Survey hosted by Google Forms. 
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Appendix 2: DNP categorizations of alkaloids (Buckingham, 2000) 
 
 

Major Class Subclass 

Alkaloids derived 
from ornithine 

1. Simple ornithine alkaloids 

2. Chromone alkaloids 

3. Tropane alkaloids 

4. Pyrrolizidine alkaloids 

5. Miscellaneous ornithine-derived alkaloids 

Alkaloids derived 
from lysine 

6. Simple piperidine alkaloids 

7. Lobelia alkaloids 

8. More complex lysine-derived alkaloids 

9. Lycopodium alkaloids 

10. Lythraceae alkaloids 

Alkaloids of 
polyketide origin 

11. Naphthalene-isoquinoline alkaloids 

12. Cytochalasan alkaloids 

Alkaloids derived 
from anthranilic acid 

13. Simple anthranilic acid derivatives 

14. Simple quinoline alkaloids 

15. Quinazoline alkaloids 

16. Acridone alkaloids 

17. Acridone-coumarin alkaloid dimers 

18. 1,4-Benzoxazin-3-one alkaloids 

19. Benzodiazepine alkaloids 

20. Cryptolepine-type alkaloids 

Alkaloids derived 
wholly or in part from 
phenylalanine or 
tyrosine 

21. Simple tyramine alkaloids 

22. Cinnamic acid amides 

23. Securinega alkaloids 

24. Betalain alkaloids 



 160 

Isoquinoline alkaloids 

25. Simple isoquinoline alkaloids 

26. Benzylisoquinoline alkaloids 

27. Pseudobenzylisoquinoline alkaloids 

28. Bisbenzylisoquinoline alkaloids 

29. Secobisbenzylisoquinoline alkaloids 

30. Cularine group alkaloids 

31. Secocularine alkaloids 

32. Cancentrine-type alkaloids 

33. Quettamine alkaloids 

34. Dibenzopyrrocoline alkaloids 

35. Pavine and isopavine alkaloids 

36. Proaporphine alkaloids 

37. Aporphine alkaloids 

38. Morphine alkaloids 

39. Dibenzazecine and Hasubanan alkaloids 

40. Protoberberine alkaloids 

41. Narceine and phthalideisoquinoline 

alkaloids 

42. Protopine alkaloids 

43. Rhoeadine alkaloids 

44. Spirobenzylisoquinoline alkaloids 

45. Benzo[c]phenanthridine alkaloids 

46. Phenethylisoquinoline alkaloids 

47. Homoaporphine alkaloids 

48. Homoerythrina alkaloids 

49. Colchicine-like alkaloids 

50. Dibenzocycloheptylamine alkaloids 

51. Erythrina and cephalotaxus alkaloids 

52. Amaryllidaceae alkaloids 

53. Mesembrenoid alkaloids 

54. Emetine group alkaloids 

55. Phenanthroindolizidine and 

phenanthroquinolizidine alkaloids 
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Alkaloids derived 
from tryptophan 

56. Simple tryptamine alkaloids 

57. Physostigmine-like alkaloids 

58. Carbazole alkaloids 

59. Miscellaneous tryptophan derivatives 

60. β-Carboline alkaloids 

61. Aristotelia alkaloids 

62. Borreria alkaloids 

63. Ergot alkaloids 

Monoterpenoid 
indole alkaloids 

64. Monoterpenoid-derived indole alkaloid 

glycosides 

65. Camptothecin-like alkaloids 

66. Indoloquinolizidine alkaloids 

67. Corynanthe alkaloids 

68. Corynanthe tryptamine alkaloids 

69. Ajmalicine-like alkaloids 

70. Oxindole alkaloids 

71. Gelsemium alkaloids 

72. Yohimbinoid alkaloids 

73. Akuammiline alkaloids 

74. Sarpagine alkaloids 

75. Ajmaline alkaloids 

76. Pleiocarpamine alkaloids 

77. Cinchona alkaloids 

78. Strychnos alkaloids 

79. Condylocarpan alkaloids 

80. Secodine alkaloids 

81. Aspidosperma alkaloids 

82. Kopsane alkaloids 

83. Quebrachamine and pandoline alkaloids 

84. Iboga alkaloids 

85. Pyridocarbazole alkaloids 

86. Uleine-dasycarpidan alkaloids 

87. Eburna alkaloids 

88. Bisindole alkaloids 
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Terpenoid alkaloids 

89. Monoterpenoid alkaloids 

90. Dendrobium alkaloids 

91. Nuphar alkaloids 

92. Macrocyclic sesquiterpene alkaloids 

93. Erythrophleum alkaloids 

94. C
19 and C

20 Diterpenoid alkaloids and 4-

nor analogues 

95. Miscellaneous diterpenoid alkaloids 

96. Olivoretin group 

97. Daphniphylline alkaloids 

Steroidal alkaloids 

98. Steroidal alkaloids (pregnane type) 

99. Steroidal alkaloids (conanine type) 

100. Steroidal alkaloids (spirosolane and 

solanidine type) 

101. Steroidal alkaloids (buxus type) 

102. Steroidal alkaloids (salamandra type) 

103. Miscellaneous steroidal alkaloids 

Imidazole alkaloids 

 

Oxazole alkaloids 

Thiazole alkaloids 

Pyrazine and 
quinoxaline alkaloids 

Pyrrole alkaloids 

Putrescine alkaloids 

Spermine and 
spermidine alkaloids 

Peptide alkaloids 

Purines 

Pteridines and 
analogues 
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Appendix 3: Record of alkaloids used in marketed drugs and clinical environments 
(excluding additive used in extending the storage life of drawn blood) (The Royal 
Society of Chemistry, 1971; Cordell, 1981; Schmeller and Wink, 1998; 
Buckingham, 2010). Derivatives not included. 
 
 

Alkaloid  Synonyms Applications Example 
product 

Aconitine  Rheumatism, 
neuralgia, sciatica 

Aconitysat™, 
Bronpax™, 
Pectovox™, 
Vocadys™ 

Adenine  

Antiviral agent, 
pharmaceutical 

aid used to 
extend storage 

life of whole blood 

Adenosine, 
Ansyr® 

Ajmaline 

Ajimaline, 
Gilurytmal, 
Merabitol, 

Raugalline, 
Rauwolfine, 
Rytmalin, 
Tachmalin 

Antiarrhythmic 
agent 

Aritmina™, 
Gilurytmal™, 
Rauwopur™, 
Ritmos™ 

Atropine Tropine 
tropate 

Antispasmodic, 
anti-parkinson, 

cycloplegic drug 

Abdominol™, 
Espasmo™, 
Protecor™, 
Tonaton™ 

Berberine Berbericine, 
Umbellatine, 

Eye irritations, 
AIDS, hepatitis 

Kollyr™, 
Murine™, 

Sedacollyre™ 

Boldine  
Cholelithiasis, 

vomiting, 
constipation 

Boldoflorine™, 
Boldosal™, 
Oxyboldine™, 
Sambil™ 

Caffeine  Neonatal apnea, 
atopic dermatitis 

Agevis™, 
Anlagen™, 

Thomapyrine™, 
Vomex A™ 

Canescine 

Harmonyl, 
Raunormine, 
Recanescine, 
Reserpidine 

Antihypertensive 
agent 

Deserpidine 
 

Cathine 

Norpseudoep
hedrine, 

Norisoephedri
ne 

Anorectic drug 
Amorphan™, 
Eetless™, 
Recatol™ 
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Cinchonidine Cinchonan-9-
ol 

Increases 
reflexes, 

epileptiform 
convulsions 

Quinimax™, 
Paluject™ 

Cocaine  Local anesthetic 
Used in highly 

regulated clinical 
environments 

Codeine 

Methylmorphi
ne, Codicept, 

Kodein, 
Tussipan 

Antitussive, 
analgesic 

Antituss™, 
Codicaps™, 
Tussipax™ 

Colchicine  
Amyloidosis 

treatment, acute 
gout 

ColBenemid™, 
Colgout™, 
Verban™ 

Diethanolamine 

2,2'-
Dihydroxydiet

hylamine, 
Diolamine 

Base used in 
pharmaceuticals 

etc. 

Menbutone 
Diethanolamine 

Emetine 
Ipecine, 

Methylcephal
eine 

Intestinal 
amoebiasis, 

expectorant drug 

Cophylac™, 
Ipecac™, 

Rectopyrine™ 

Ephedrine  
Nasal 

decongestant, 
bronchodilator 

Amidoyna™, 
Bronchicum™, 
Peripherin™, 
Solamin™ 

Ergometrine 

Ergonovine, 
Ergotrate, 

Ergobasine, 
Ergotocin, 

Ergostetrine 

Postpartum/posta
bortal 

hemorrhage 

Ergometron™, 
Ergotrate 
Maleat™, 

Syntometrine™ 

Ergotamine  Migrane 
treatment 

Ergostat™, 
Lingraine™, 
Migral™, 
Virdex™ 

Eserine Physostigmin
e 

Ophthalmology, 
antidote/poisonin

g 

Anticholium™, 
Antilirium™, 
Piloserine™ 

Galanthamine 

Galantamine, 
Jilkon, 

Karantonin, 
Lycoremine 

Muscle relaxant, 
Alzheimer‘s Nivalina™ 
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Hydrastine  Gastrointestinal 
disorders 

Gine Sedans™, 
Kollyr™ 

Hyoscine Scopolamine Motion sickness, 

Buscopan™, 
Hyospasmol™, 
Lotanal™, 
Transcop™ 

Hyoscyamine Daturine, 
Duboisine 

Antispasmodic, 
anti-parkinson, 

cycloplegic drug 

Bellatard™, 
Cystospaz™, 
Donnatab™, 
Urised™ 

Lobeline  Anti-smoking, 
asthma, cough 

Citotal™, 
Lobatox™, 
Refrane™, 
Stopsmoke™ 

Morphine  Pain relief, 
diarrhea 

Diastat™, 
Duromorph™, 
Oramprph™, 
Spasmofen™ 

N,N -
Diallylbisnortoxin

erine 

Alcuronium 
chloride 

Short acting 
muscular relaxant Alloferin 

Narceine  Cough 
suppressant Peneraj™ 

Nicotine  Anti-smoking 

Nicabate™, 
Nicoderm™, 
Nicorette™, 
Stubit™ 

Noscapine Narcotine Cough 
suppressant 

Bequitusin™, 
Degoran™, 
Tossamine™, 
Tussisedal™ 

Papaverine 
Papaveroline 
tetramethyl 

ether 

Vasodilator, 
gastrointestinal 

disorders 

Acticarbine™, 
Opdensit™, 
Pameion™, 
Vasocalm™ 

Pelletierine  Tenia infestations Pelletierine 
tannate USP 
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Pilocarpine 
Ocucarpine, 
Pilocarpol, 
Syncarpine 

Miotic in 
treatment of 
glaucoma, 

leprosy 

Frikton™, 
Piladren™, 
Salegen, 

Thiloadren™, 
Vistacarpin™ 

Quinidine 
Conquinine, 
Conchinine, 

Pitayine 

Ventricular and 
supraventricular 

arrhythmias, 
malaria, cramping 

Cardioquin™, 
Duraquin™, 
Quindex™, 

Rhythomochin 
1™ 

Quinine 

6'-
Methoxycinch

onan-9-ol, 
Chinin 

Malaria, 
babesiosis, 
myotonic 
disorders 

Adaquin™, 
Biquinate™, 
Quinoctal™, 
Zynedo-B™ 

Raubasine Ajmalicine Vascular 
disorders 

Circolene™, 
Cristanyl™, 
Duxil™, 
Sarpan™ 

Rescinnamine 

Reserpinine, 
Anaprel, 
Apoterin, 
Cinnaloid, 
Rescaloid, 
Moderil, 

Scinnamina 

Hypertension 
Detensitral™, 
Diuraupur™, 
Rauwopur™ 

Reserpine  Hypertension, 
psychoses 

Abicol™, 
Briserin™, 
Sandril™, 
Terbolan™ 

Rotundine 
Argemonine , 
Bisnorargemo

nine, 

Analgesic, 
sedative, hypnotic 

agent 

Rotundin-BVP, 
Transda 

Sanguinarine  Antiplaque agent Toothpastes and 
mouthwashes 

Sparteine  

Uterine 
contractions, 

cardiac 
arrhythmias 

Anxoral™, 
Diffucord™, 
Normotin™, 
Tachynerg™ 
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Strychnine Strychnidin-
10-one Eye disorders 

Dysurgal™, 
Pasuma™ 
Retinovix™, 
Senirakt™ 

Synephrine  

Vasoconstrictor, 
conjunctival 

decongestant, 
weight loss 

Oxedrine, 
Sympatol 

Taxol 

Paclitaxel, 
Taxol A, 
Anzatax, 
Yewtaxan 

Mamma and 
ovary carcinoma Taxol™ 

Theobromine  Asthma, diuretic 
agent 

Atrofed™, 
Circovegetalin™
, Dynamol™, 
Urodonal™ 

Theophylline 

Austyn, Elan, 
Elixophyllin, 
Euphyllin, 

Nuelin 

Asthma, 
bronchospasms 

Adenovasin™, 
Aerobin™, 
Euphyllin™, 
Theochron™ 

Turbocuranine Tubarine Muscle relaxant Jexin™, 
Tubarine™ 

Vinblastine  

Hodgkin‘s 
disease, testicular 

cancer, blood 
disorders 

Periblastine™, 
Velban™, 
Velbe™, 
Velsar™ 

Vincamine  Vasodilator 

Aethroma™, 
Angiopac™, 
Pervin™, 
Vincimax™ 

Vincristine  Burkitt‘s 
lymphoma 

Norcristine™, 
Oncovin™, 
Vincrisul™ 

Vindesine  Chemotherapy DAVA, Eldesine, 
Eldisine 
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Yohimbine 

Aphrodine, 
Corymbin, 
Corynine, 
Yohimex, 

Hydroergotoci
n, 

Quebrachine, 
Yohimvetol 

Aphrodisiac, 
urinary 

incontinence 

Aphrodyne™, 
Pasuma™, 
Prowess™, 
Yohimex™ 
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Appendix 4: CD-ROM containing the following: 
 

x Executable file of WEKA modelling software 
x Instruction guide of WEKA modelling software 
x Full Excel dataset containing all alkaloids and their physical, chemical, and 

biodiversity dataset 
x Excel dataset of the pharmaceutical/non-pharmaceutical data input for ‗full‘ entries 

as used in each predictive modelling algorithm 

 
 
 


