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Abstract

The overriding goal of this thesis was to further refine our understanding of the genetic architecture of car-

diomyopathies, Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) and Hypertrophic Cardiomy-

opathy (HCM). 407 patients with ARVC and 957 with HCM had 41 cardiomyopathy and other putative

candidate genes sequenced. By comparing these cohorts against each other and against ethnicity and phe-

notype matched controls, insights were gained into the role of different types of genetic variants in these

conditions.

This in part involved utilising 4500 Whole Exome Sequences (WES) that are part of the UCL-

exomes consortium, an in-house dataset that aggregates a diverse set of studies. High throughput DNA

sequencing technologies, WES or Whole Genome Sequencing (WGS) are revolutionizing the diagnosis and

novel gene discovery for rare disorders. As the field transitions from the early discovery for Mendelian

and near Mendelian diseases to more complex and oligo-genic diseases, there is substantial benefit in being

able to combine data across studies, performing the type of meta-analysis for cases and controls that have

proven to be so successful for Genome-Wide Association Studies (GWAS). However, WGS and WES are

substantially more affected by sequencing errors and technical artefacts than genome-wide genotyping arrays.

As a consequence, meta-analysis of sequence based association studies are often dominated by spurious

associations, which result in technical limitations. Here, we show that it is possible to take advantage of the

type of mixed models developed initially to control for population structure in GWAS studies, and apply

these ideas to control for technical artefacts.

In an attempt to ascertain the role of CNVs in HCM, these data were examined for the presence
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of rare causative CNVs. 12 CNVs were identified from an initial Read Depth approach. 4 of these were

subsequently validated by CoNIFER, a bioinformatics method, and Array Comparative Genomic Hybridis-

ation (aCGH): one large deletion in MYBPC3, one large deletion in PDLIM3, one duplication of the entire

TNNT2 gene and one large duplication in LMNA. These results show that the role of CNVs in HCM is

small and highlight the efficiency of this two step-strategy.
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Chapter 1

Introduction

1.1 Thesis Overview

This thesis follows a broad theme; that of using High Throughput Sequencing and novel statistical approaches

in order to refine our understanding of three of the most common cardiac phenotypes. The rest of this chapter

serves as an introduction.

Chapter 2 discusses the analysis of a targeted sequencing experiment of genes related (or thought

to be) to HCM and ARVC in two relatively large cohorts of patients with these conditions. I will show how

the architecture of these traits, while broadly consistent with the literature, can also differ from published

work.

Following that, Chapter 3 builds on the work in [Lopes et al., 2013b] by examining the role of Copy

Number Variants (CNVs) in HCM. This is done through a stepwise approach that uses a combination of a

RD based method (ExomeDepth) with a Singular Value Decomposition (CoNIFER) followed by validation

with Array Comparative Genome Hybridisation (aCGH). RD refers to the number of DNA fragments, reads,

that map to a given region during a High Throughput Sequencing (HTS) run.

An in-house consortium of approximately 4500 human whole exome sequences (UCL Exome Consor-

tium) is used as the dataset for Chapter 4. There is substantial benefit in being able to combine data across
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studies, performing the type of meta-analysis for cases and controls that have proven to be so successful

for Genome Wide Association Study (GWAS). The issue of technical artifacts and genotyping batches has

been discussed extensively in the early years of GWAS, and similar concerns are now relevant to Whole

Genome Sequencing (WGS) and Whole Exome Sequencing (WES). These data are substantially more af-

fected by sequencing errors and technical artifacts than genome-wide genotyping arrays. As a consequence,

meta-analysis of sequence based association studies are often dominated by spurious associations, which may

result in false positive signals. These issues are usually dealt with by applying stringent quality control cut-

offs, which can lead to false negative results. Here, we show that it is possible to take advantage of the type

of mixed models developed initially to control for population structure in GWAS studies, and apply these

ideas to control for technical artifacts. I show that substantial reduction in the association statistic inflation

can be achieved by applying these novel analytical techniques, both for single variant and gene based tests,

while preserving the sensitivity of the test. We focus on several cardio-vascular traits (Arrhythmogenic Right

Ventricular Cardiomyopathy and Sudden Cardiac Death) to illustrate the ability of these novel methods to

produce more interpretable results.

1.2 Key Definitions

Throughout this thesis, some key concepts are referred to. In some cases, they are expanded on further, but

here I provide a concise summary for reference.

• MAF - For a given locus, we define Minor Alelle Frequency (MAF) as (the number of minor alleles in

the population) / the total number of alleles in the population.

• Effect size - The magnitude of an effect. Can be calculated by subtracting the mean of group 2

from group 1 and dividing by the pooled standard deviation, where pooled standard deviation is

(SD1 + SD2)0.5/2.

• Population Stratification - Refers to the instance where the population in question is not a homogenous

population and is instead subject to structure which may or may not be known.
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• Missingness - The proportion of missing data. This may be randomly missing or not.

• Genomic Inflation - The genomic inflation factor λ is the ratio of the median of the empirically observed

distribution of the test statistic to the expected median. This quantifies the extent of the bulk inflation

and the excess false positive rate.

• Single variant and gene based tests - Single variant tests work well for variants that are common (here

defined as those with a MAF of ≥ 1%) and/or have a large effect size [Li and Leal, 2008b]. For rare

and/or low effect size variants, these tests are underpowered and thus have lead to region based testing

that assesses the cumulative effect of multiple rare and common variants.

1.3 Structural Variation in the Genome

SNPs are single base pair changes in a DNA sequence and small indels usually refer to variants no greater

than 10-20bp. The majority of known disease causing variants are Single Nucleotide Polymorphisms (SNPs)

or small indels, which partly reflects the easier challenge to characterise this class of variants in large cohorts.

Copy number variants (CNVs) are genetic variants of larger size, either deletion or duplications. CNVs can

range in size from kilobases to megabases and can occur spontaneously or be transmitted stably through

generations [Feuk et al., 2006].

2010 saw the publication of a 19000 person 8 disease study that identified 3432 CNVs, highlighting

the fact they play an important role in many diseases [Craddock et al., 2010]. Before such large scale CNV

studies, these loci may have been indirectly tagged by SNPs. Since then, CNVs have been shown to play a role

in other diseases, including Schizophrenia [Rees et al., 2014], Duchenne Muscular Dystrophy [Pagnamenta

et al., 2011], α-thalassemia [Grimholt et al., 2014] and even short stature [van Duyvenvoorde et al., 2013] as

examples. This includes ARVC, which identified a large segregating 122kb deletion in PKP2 [Li Mura et al.,

2013]. At the larger end of the CNV scale, whole chromosomal duplications can occur, leading to conditions

such as Trisomy 21 or Turner Syndrome. Large scale characterisation of CNVs is a technical challenge, and

therefore much remains to be understood about their role in disease aetiology.
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1.4 Exome Sequencing

It is a well established that the cost of the massively parallel sequencing of DNA has plummeted over the

recent years at a rate that outpaced Moore’s Law [Moore, 1998]. Despite this progress, it is not yet financially

viable for mainstream research to routinely sequence the whole genome, a method known as Whole Genome

Sequencing (WGS). Therefore, an economical and practical solution is to concentrate efforts on the 1-2%

of the genome that are more easily interpretable [Teer and Mullikin, 2010]. This process, Whole Exome

Sequencing (WES), covers the exome which consists of all of the known exons across the genome and spans

∼ 30 ×106 base pairs [Wang et al., 2013]. The basic methodology consists of randomly fragmenting the

sample DNA, enrichment of the target exome, exome hybridisation to an array, amplification and finally

sequencing [Ng et al., 2009] (Figure 1.1)

Despite its small size, the exome is thought to contain 85% of the variants that cause Mendelian

diseases [Wang et al., 2013]. Mendelian refers to genetic phenomena that display complete penetrance

(complete correlation between genotype and phenotype) and are caused by a single gene [Marian, 2012].

WES offers the potential to study SNPs and CNVs. Identification of the latter from short-read sequencing

offers somewhat more of a challenge than SNPs however as aligning reads to a region with a repetitive

sequence can be technically challenging and prone to errors. Three general methods do, however, exist;

those that use split reads e.g. [Karakoc et al., 2012], those that take a paired-end approach e.g. [Zeitouni

et al., 2010] and finally those that adopt a RD analysis method e.g. [Krumm et al., 2012; Plagnol et al.,

2012].
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Figure 1.1: Overview of various DNA capture methods. Replicated from [Teer and Mullikin, 2010]. The
light blue bar is the target Nucleotide sequence. The red bar represents off-target genomic sequence. (A) An
illustration of solid phase hybridisation. Probes (black and light blue) that are complementary to the target
sequence are hybridized to a microarray. The fragmented sample DNA is applied and the target sequence
binds to the bait probe. The probe is then washed and the fragments are sequenced. (B) Liquid-phase
hybridisation. Similar to (A) except the solid substrate (microarray) is replaced with an in-solution reaction
that is assisted by biotinylated probes and streptavidin beads.

1.5 Heart Conditions studied in this thesis

1.5.1 Sudden Cardiac Death

Sudden Cardiac Death (SCD) is defined as unexpected natural death that onsets rapidly and has a cardiac

origin [Zipes and Wellens, 1998]. Epidemiological studies have shown that the incidence of SCD is ∼ 3 to

4 times higher in men than women [Zipes and Wellens, 1998]. While coronary heart disease becomes more

frequent with increasing age, SCD in general is a disease of adolescence or early adulthood. Most notably, its

effects are exacerbated by physical exercise, leading to a 2.8 fold greater incidence in athletes compared to
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non-athletes [Chandra et al., 2013]. SCD is responsible for approximately 500 deaths in England and Wales

per annum [Behr et al., 2007]. Clinical screening alone identifies an inherited cardiac condition in 22-53 %

of families [Nunn and Lambiase, 2011; Nunn et al., 2015].

In this thesis, SCD refers to the inherited cardiac conditions collectively known as Sudden Arrhyth-

mic Death Syndrome. Sudden Arrhythmic Death Syndrome (SADS) is an umbrella term that describes

conditions that fall into two principle categories, structural and electrophysiological. The former consists of

Hypertrophic Cardiomyopathy, Arrhythmogenic Right Ventricular Cardiomyopathy and Dilated Cardiomy-

opathy, the first two of which are examined in detail in this thesis. The latter category includes many

conditions, such as Long QT syndrome, Short QT syndrome, Brugada Syndrome, Catecholaminergic poly-

morphic ventricular tachycardia (CPVT) and Progressive cardiac conduction defect (PCCD) [Millar and

Sharma, 2015]. These conditions are all channelopathies in that they interfere with ion transport (and

therefore electrical conduction) in the heart.

1.5.2 Hypertrophic Cardiomyopathy

HCM is the most common inherited cardiac disease, with a prevalence of 1/500 in the general population

[Efthimiadis et al., 2014]. It is a myocardial form of HCM typified by left ventricular hypertrophy [Ho, 2012]

(Figure 1.2). Such hypertrophy, when otherwise unexplained, and greater than 15mm is regarded as the main

diagnostic criterion for HCM [Hickey and Rezzadeh, 2013]. Treatment of HCM includes recommendations

to reduce the level of physical activity undertaken and may progress to more serious interventions such as

β blockers or pacemakers. 50-60% of HCM cases are inherited in an autosomal dominant fashion [Lopes

et al., 2013b], caused by mutations in cardiac sarcomeric genes. Z-disc and calcium handling genes are also

associated with HCM, but are thought to explain <1% of cases. The sarcomere is the basic unit of muscle

that is comprised of myosin thick filaments and actin thin filaments arranged longitudinally [Rahimov and

Kunkel, 2013]. The Myosin Heavy Chain (MHC) gene on chromosome 14q1 alone counts for ∼ 30 to 50 %

of cases, followed by Myosin Binding Protein Cardiac 3 (MYBPC3 ). HCM is characterised by a variable

phenotype and incomplete penetrance. As a result of this, family screening of patients with HCM is vital
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for effective disease management, while also offering the potential to elucidate the genetic basis.

Figure 1.2: Comparison of a normal heart to one with Hypertrophic Cardiomyopathy. Reproduced from
[Hickey and Rezzadeh, 2013]

1.5.3 Arrhythmogenic Right Ventricular Cardiomyopathy

ARVC is another inherited cardiomyopathy, primarily affecting the right ventricle [Romero et al., 2013].

It is characterized clinically by fibrofatty replacement, myocardial atrophy, fibrosis, chamber dilation and

aneurysm formation [Thiene et al., 1997].ARVC affects men 3 times more than women and has an overall

incidence of about 1:5000 [Corrado and Thiene, 2006]. ARVC cases represent approximately 20% of the cases

of SCD in the United States [Dalal et al., 2005]. The pathological presentation of ARVC is quite variable,

rendering it more difficult to identify its genetic cause than well-defined diseases such as HCM. Nevertheless,

some genes have been implicated. The desmosomal gene Desmoplakin (DSP) was found to be associated

with an autosomal dominant form of ARVC [Rampazzo et al., 2002]. The finding that the genes Junction

Plakoglobin (JUP) and Plakophilin 2 (PKP2 ) frequently contained mutations in ARVC has suggested that

ARVC is a disease of cardiomyocyte junctions [McKoy et al., 2000; Tiso et al., 2001].
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1.6 Problems with data interpretation

1.6.1 Population Stratification

Consider this hypothetical situation. One is interested in disease X and knows little about its epidemiology.

One therefore decides to collect a cohort of disease samples (cases) from the general population. A prevalence

of N% is identified and it is then assumed that this is representative of people as a whole. Furthermore, a

particular variant Y (say a SNP) was flagged as associated with the disease. In general, this occurs when

it is shown that a variant is significantly over-represented in cases compared to control samples that do not

have disease X. There are a number of reasons as to why a variant may indeed have a different frequency

between cases and controls. First, Y is a simple false positive and it in actuality has the same frequency

in both cases and controls. Secondly, Y is truly disease causing, or is in linkage disequilibrium with the

causative allele, and in that case we can mark one more disease off the list of unsolved Mendelian conditions.

Finally, Y is neither of the above and is in fact associated with a subpopulation. If X is more common in

a particular population, then Y could be associated with their ethnicity rather than with X pathogenesis.

These possibilities are summarised in Figure 1.3.

In general, this phenomenon is referred to as Population Stratification (PS). A classic example of

a study that failed to implement an adequate control for PS is that in which it was erroneously claimed

that there was an association between diabetes and a Human Leukocyte Antigen (HLA) haplotype on a

Pima Indian reservation [Knowler et al., 1988]. This association was found because the target population

displayed genetic admixture between people of white European and Pima Indian ancestry. PS is thus a

source of false positives. When the analysis was restricted to the latter only, the association disappeared

[Cardon and Palmer, 2003]. Arguably the easiest solution to PS is to carefully match cases with controls so

that their epidemiological background is as similar as possible, except for disease status. With this approach,

it can therefore be difficult if not impossible to obtain a sufficiently large and accurate control set. It is not

particularly feasible when dealing with rare diseases as the less common the disease of interest is, the larger

the required sample size.
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Figure 1.3: The general method of case control studies. In the top panel a SNP frequency is ascertained
in 1000 heart disease cases and controls. The arrow indicates two possible explanations for the difference
in frequency between cases and controls. A shows how the original finding may be a false positive and the
frequency is in fact the same in cases and controls, seen at a larger sample size. B shows cases where the
finding is still the same but may be due to it being truly disease associated or caused by factors such as
Population Stratification.

An alternative approach is termed Genomic Control (GC). This posits that the χ2 statistic typically

used in case control studies is inflated by some constant factor when there is PS [Devlin and Roeder, 1999;

Cardon and Palmer, 2003]. The GC factor is multiplicative and proportional to the level of stratification.

It is estimated by examining the unlinked markers on a genome wide level and subsequently used to rescale

the χ2 statistic. GC is popular because it is relatively easy to use but it can be conservative and follows the

sometimes unrealistic assumption that all SNPs are affected equally.
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Another method, EIGENSTRAT [Price et al., 2006], employs Principal Component Analysis (PCA).

PCA was first used in genetics to construct a genetic timeline of how early farming spread across Europe

[Menozzi et al., 1978]. PCA calculates the axes that explain the most variation in the data. They are linearly

ordered, so the first PC is the axis that explains the most variation. This is a useful technique as it enables

visualization of the data in terms of its Principal Components (PCs), also known as Eigenvectors, rather

than the traditional X/Y graph approach which is only useful for 2-Dimensional Data. If PS is present

in data, the first/top PCs may have axes that have a geographic interpretation [Price et al., 2006]. After

PCA, EIGENSTRAT controls for association based on the top few PCs (2-10) before finally computing the

ancestry-adjusted association statistics. The top PCs are more likely to reflect large scale differences due to

population, rather than causal variation.

There remains a debate as to whether such PCA approaches or model based clustering methods such

as STRUCTURE or ADMIXTURE are more useful for association studies [Pritchard et al., 2000; Falush

et al., 2003; Patterson et al., 2006; Hoffman, 2013]. Controlling for PS with PCA normally allows you to

retain all samples in the study, while STRUCTURE & ADMIXTURE will identify samples that should be

removed. STRUCTURE works by using multilocus genotype data to infer population structure in an attempt

to probabilistically assign all individuals to one of M (an integer) populations, even where the value of M is

unknown. Indeed, Patterson et al. [2006] suggests that a merged system may be used, whereby PCA is used

to identify an initial likely value for M before running STRUCTURE. ADMIXTURE is a modification of

STRUCTURE; It employs a fast block relaxation scheme using sequential quadratic programming for block

updates that translates into a runtime that is nearly equivalent to the faster EIGENSTRAT [Alexander

et al., 2009]. Because of this runtime reduction, ADMIXTURE is preferred for studies that have larger

sample sizes than that which STRUCTURE could handle.

1.6.2 Other sources of bias

When one considers the potential that massively parallel HTS has to revolutionise population and disease

genetics, it should come as no surprise that there exists multiple technologies in this increasingly competitive
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market. Two of the most common are those provided by Illumina and Complete Genomics (CG). While the

throughput of HTS methods far outpaces that of the traditional Sanger sequencing, their accuracy is less

reliable. A study that sequenced the genome of an individual to a coverage of ∼76x found that just 88.1%

of the ∼3.7 million SNPs and Insertions-Deletions (INDELs) were agreed on between Illumina and CG [Lam

et al., 2012]. Despite millions of years of evolution, eukaryotes still display a spontaneous mutation rate of

10−10 − 10−12 [Hughes et al., 2005]. So it is not surprising that these technologies are not yet perfect. The

confounding that this low concordance could cause is exacerbated by the fact that 1676 genes were found to

have platform-specific SNPs. Naively, an argument could be made to remove this problem by simply using

one technology for all research. However, their methodologies have some unique advantages. For example,

this study found that Illumina reported more errors than CG. Illumina uses a longer read length than that

of CG which enables it to sequence regions that CG cannot, such as those that are rich in sequence repeats.

This may or may not explain the increased error rate, but it shows that it is beneficial to not discard Illumina

nonetheless.

This finding of such discrepancy is far from an isolated incident. The 1000 Genome project (1000G)

established to catalogue as much human variation as possible to improve our ability to deduce genotype

phenotype correlations [Abecasis et al., 2010]. Quality controls differed between the pilot and intermediate

releases and the usage of different technologies led to a false positive rate of 3-17%. This was substantially

improved by generating consensus calls from more than one platform, which led to an error rate of 1-4%

[Nothnagel et al., 2011]. Therefore, the weight of belief in a candidate variant may be bolstered by it being

called by more than one technology. For a lot of researchers however, this is not a practical validation

method because of the expense involved. Ultimately, 1000G sequenced 2,504 individuals from 26 different

populations [Auton et al., 2015] with this improved methodology.

While technologies that utilise longer read lengths offer a larger, more accurate coverage profile, they

do not fully solve these technical biases. The four letters of the DNA alphabet typically pair off in known

A-T and G-C couplets. AT bonds consist of two hydrogen bonds while GC pairs use three hydrogen bonds.

This fact has a noticeable impact on the performance of PCR and HTS systems, resulting in regions that
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contain high numbers of GC pairs (GC rich regions) presenting additional technical difficulties. Illumina has

been shown to struggle sequencing GC rich regions, which causes uneven or even a complete lack of coverage

[Dohm et al., 2008]. More recently, validation studies have shown that most HTS technologies suffer from

some degree of GC bias (Figure 1.4). As this figure shows, when the GC content is close to 50%, then the

four technologies examined here perform comparably well. This changes towards either tail (GC rich or GC

poor) with the Illumina HiSeq coping significantly better than Life Technologies and even CG.

System updates do not always mean that improvements have been gained in output quality. It has

been shown that even more recent versions of the commercially available capture platforms have problems.

For example, the WES platforms Agilent (SureSelect v5+UTR), NimbleGen (SeqCap v3+UTR) and Illumina

(Nextera Expanded Exome) were compared in a recent study [Chilamakuri et al., 2014; Meienberg et al.,

2015]. This showed that Agilent and NimbleGen now perform better than Illumina, despite the latter being

the market leader. The latest Agilent platform in particular is the best performer as Nimblegen has a more

pronounced GC bias.

Artefactual differences between cases and controls can sometimes exhibit a differential bias that

confounds real signal. This was shown in the first phase of the 1958 British birth cohort Diabetes study

[Clayton et al., 2005]. As is the norm with genetic first phase studies, the goal was to identify a subset of

SNPs from the initial panel that could subsequently be further tested for confirmation on a larger sample.

Taqman genotyping was used, which consists of fluorescently ligated PCR primers that target candidate

SNPs. The calls for individual genotypes are performed by examining the cluster of fluorescence from cases

and controls: in an artefact free world you would expect to see three distinct clusters, a heterozygote cluster

flanked by both homozygote pools. However for a range of NS SNPs, the heterozygote clouds for cases and

controls were unexpectedly discrete (Figure 1.5). Without correction, this can readily be misconstrued by

the clustering algorithm as a false positive. This could be avoided by increasing confidence level required

before declaring a call. This is also not ideal as that would both reduce the used variant set and also created

’informative missingness’ where missingness is no longer independent of genotype.

To test 2*K contingency tables, such as those seen in genotype studies, the Cochran Armitage (CA)
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Figure 1.4: GC Bias across four High Throughput Sequencing platforms [Rieber et al., 2013]. Log2 of base
coverage in 1 kilobase windows. Top Left panel is a merged picture of the three other panels. A smoothened
loess curve was fitted per dataset to show the local coverage.

test is typically used. The null being no association, this will be chi-squared with K-1 degree of freedom.

However, Devlin (1999) noticed that substructure in association studies can lead to an overdispersion such

that CA is distributed as CA/λ, chi-squared 1df. λ is a constant greater than one that is estimated from

a large number of loci throughout the genome. Testing a large number of loci, most of which will be

unrelated to the trait of interest, allows one to effectively calculate the background inflation level caused by

substructure. This GC is often used to corrected the observed test values by dividing by the estimation of

13



λ. This method was refined in Clayton (2005) to create a λ that is not constant throughout the genome

but depends on regional markers of genotyping accuracy. If no assay based technical bias is present the

generalised linear model they implemented reverts λ to just GC.

Figure 1.5: Signal intensity plots for the CD44 SNP rs9666607 from the artefact containing phase 1 diabetes
study on the 1958 British birth cohort [Clayton et al., 2005]. The X-axis represents one allele and the Y
axis the other. Each dot represents a sample, with those in red cases and blue controls.

The incidence of melanoma, a type of skin cancer, in the Caucasian population has increased by

1.5% annually from 1950 to 2005 [Wang et al., 2009]. The primary cause is solar radiation, with UVA and

UVB inducing photoproducts of adjacent pyrimidines which if not adequately remedied can lead to base

substitution mutations. The pyrimidines in DNA (Adenine, Thymine and Uracil) would thus be expected

to be altered at an increased frequency in melanoma samples. However, in a deep sequencing study of 221

matched melanoma and healthy samples, researchers at the Broad Institute identified a significantly higher

rate of purine variants. Figure 1.6 shows that the frequency of this variant substantially increased over time.

As this increase was greater than the increase in prevalence, it is suggestive of an altered methodology of
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sample preparation, rather than a merely biological cause. Additionally, these were thought to be artefacts

as they occurred in a strand specific fashion; The G > T errors were in the first read of the Illumina HiSeq

run while the C > A errors were always found in the second read [Costello et al., 2013]. Given that these

variants were present in healthy and tumour samples alike and were perfectly correlated with the instrument

read order, they were confirmed to be artefacts Artefact (ArtQ).

During preparation for HTS, DNA is randomly fragmented by acoustic and restriction enzyme

shearing. The shear force per unit DNA is higher in WES than WGS. This makes it more susceptible to

damage, which can manifest as mutations that are erroneously thought to be real signal. This study further

identified that some types of DNA storage buffer when exposed to WES methods are responsible for inducing

this artefact. To try abrogate this, the best solution would be resequence all samples in ideal buffers and at

lower shear forces for WES. However, this method is often impractical and post sequencing corrections are

often the only solution.

� �

Figure 1.6: A technological ArtQ in a melanoma study. (A) ArtQ prevalence metric by library creation date
for the Broad institute’s Targeted Capture pipeline. (B) ArtQ for Pre- versus Post-targeted capture. For
a set of 370 samples, both the pre- and post-exome enrichment libraries were sequenced. ArtQ was well
correlated, indicating that the artifactual base changes had already been introduced before exome capture.
Adapted from [Costello et al., 2013].

1.7 Linear Mixed Models

Linear Mixed Models (LMMs) extend the standard Linear Model (Equation 1.1) by adding random effects.

They have been used to control for PS alongside methods such as EIGENSTRAT and ADMIXTURE [Zhang
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et al., 2010]. LMMs have the form shown in Equation 1.2.

Y = Zα+Xjβj + e with e ∼ N(0, Iσ2
e) (1.1)

Y = Zα+Xjβj + g + e with g ∼ N(0,Kσ2
g) (1.2)

where

• Y is phenotype

• Z is a matrix of covariates

• α is Z’s fixed effects

• Xj are the SNPs for SNP j

• βj is the effect sizes of SNP j

• I is an identity matrix

• e is environmental noise

• and g is a random effect

As with the standard Linear Model, it is necessary to solve Equation 1.2 for each SNP in turn. LMMs

can control for multiple types of confounders simultaneously. While this strength is an advantage over these

other methods, it has traditionally been such a computationally intensive approach as to be infeasible for

GWASs that studied many thousands of markers across thousands of samples. When applied to genetics,

LMMs control for confounders by introducing a random effect with correlation structure specified by a

”kinship matrix”, which measures the genetic similarity between pairs of individuals. This kinship matrix

has been estimated with different methods, such as the Realized Relationship Matrix (RRM) [Hayes et al.,

2009], an Identity by Descent Approach [de Roos et al., 2009] or by sampling a small set of markers [Lippert

et al., 2011]. The last of these has been implemented in the software FaST-LMM.
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The LMM log likelihood of Y given X (N x d) which includes the covariates, the SNP and a column

of ones as a bias offset can be written as per Equation 1.3. A LMM with a SNP based RRM and without

fixed effects is equivalent to a linear regression of the SNPs on the phenotype, with weights integrated over

independent Normal distributions having the same variance [Hayes et al., 2009; Lippert et al., 2011]. By

replacing K with its spectral decomposition, K = USUT , and by defining δ as σ2
g/σe, one can eventually

view this as the linear regression equation (Equation 1.4).

likelihood(Y |Data) = Normal(Y |Zα, σ2
gK + σ2

eI) (1.3)

where

• Normal(Y|,b) denotes a normal distribution with mean a and covariance matrix b

The key to solving Equation 1.2 is determining δ, that is the ratio of the residual variance to the

genetic variance. Solving δ naively for each SNP is very computationally intensive, so early implementations

such as Efficient Mixed Model Association (EMMA) provided an approximate method which instead solved

δ once under the null model, then used this value when testing each SNP. FaST-LMM improves on the

algorithm EMMA by reducing the required frequency of Spectral Decompositions from once per SNP to just

once [Kang et al., 2008]. It does this with an exact method, by realising that δ can be found rapidly for each

SNP after first performing a decomposition of the kinship matrix. FaST-LMM therefore has a runtime and

memory footprint that is linear in the number of individuals, making it amenable to data the scale of the

UCL-ex consortium.

likelihood(Y |Data) = Normal(UTY |UTZα, σ2
e(δS + I)) (1.4)
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1.8 Bioinformatics - the Genome Analysis Toolkit

1.8.1 Unified Genotyper pipeline with GATK

Raw FASTA files in FASTQ format were aligned to the HG19 reference genome using Novoalign version

2.08.03. Duplicate reads were marked using Picard tools MarkDuplicates.

Until early 2014, and for all the analyses presented in this report, all variants were called using the

Unified Genotyper module of the Genome Analysis Tool Kit https://www.broadinstitute.org/gatk (GATK).

BAM files were reduced using the GATK ReduceReads module and calling was performed jointly for all

samples using GATK version 2.8.1.

1.8.2 Haplotype caller pipeline

Starting in January 2014, calling was performed using the haplotype caller module of GATK, creating gVCF

formatted files for each sample. The individual gVCF files were combined into combined gVCF containing

100 samples each. The final variant calling was performed using the GATK “GenotypegVCFs” module

jointly for all cases and controls. This process is still being tested. However, preliminary results are very

positive. In particular, the computational burden is substantially reduced by the use of this new calling

strategy.

1.8.3 VQSR

Variant filtering is central to the methodology presented in this report. The issue of filtering low quality

variants has been flagged by all variant calling algorithms, including GATK and Samtools. Traditional

methods used to flag variants of low quality examined their context, for example, the number of reads

covering the region, how many reads cover each allele or the proportion of reads in forward and reverse

orientation. Such values were then used to set a threshold and discard variants thus deemed unsatisfactory.

These methods are easy to implement but potentially suffer from their crudeness by being too stringent.

For UCL-ex data analysis, we followed the best practices as described byGATK to apply the VQSR steps.
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Briefly, a set of established summary statistics are computed for at a single variant level. A multi-dimensional

mixture model is then fitted to these summary statistics, which allows the computation of a likelihood score

for each variant. The further away the summary statistics are from the centers of the Gaussian mixture, the

lower the likelihood will be. A training set of established variants is then used, and a likelihood threshold

is then set such that a set fraction (typically about 99%) of these established variants passes the threshold.

This likelihood threshold is then applied to the dataset as a whole, and variants above that threshold receive

a PASS flag. Variants below that threshold are annotated with the “tranche” information that summarizes

how far away the summary statistics are from the acceptance threshold. For this report, PASS variants as

well as SNPs and INDELs in the top likelihood tranche were included for subsequent analyses.

1.9 Motivation and Aims

The overriding goal of this thesis was to further refine our understanding of the genetic architecture of

cardiomyopathies that cause SCD, ARVC and HCM. Several obstacles complicate this aim:

• As discussed already, these conditions display varying levels of penetrance. This makes their analysis

more difficult than simple Mendelian conditions.

• The variable phenotypes of these conditions raises the possibility that they are in fact not single

conditions and may represent overlapping syndromes. This would further complicate matters as it will

weaken any associations found.

• Their relative rarity in the general population means it is not straightforward to establish a cohort

with a large number of samples. This limits the possible statistical power.

• To achieve statistical power more samples are needed when studying rare conditions than common

ones. This led to the creation of UCL-ex, an in-house collaboration pooling some 4500 whole exomes

from cohorts with various rare diseases. This data comes from many different sources with widely

disparate results (e.g. in terms of variant call rates and read depth).
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Theses obstacles were approached in three distinct methods. Chapter 2 looks at a targeted sequenc-

ing approach of these three cohorts. 59 SCD patients are sequenced, using a targeted sequencing approach of

known or putative candidate genes, in an attempt to perform a “molecular autopsy” that has an informative

diagnostic yield. This is followed by a case control analysis on a targeted sequencing panel of both a HCM

and ARVC cohort.

Secondly, Chapter 3 builds on previously published work that examined the role of SNPs in HCM

[Lopes et al., 2013b]. It does so by using a three pronged approach to ascertain the role, if any, of CNVs in

HCM pathogenesis.

As mentioned already, HTS data can suffer from artefacts derived from many sources. These can

be more apparent in a dataset such as UCL-ex where samples from multiple sources are pooled and all have

rare diseases. Chapter 4 is devoted to an attempt to create a novel statistical model that adapts classical

methods from population genetics to try solve this problem. This is developed and then applied to all the

phenotypes in UCL-ex.
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Chapter 2

Elucidating the genetic architecture of

HCM and ARVC

2.1 Introduction

This chapter examines three cardiomyopathies, Sudden Cardiac Death (SCD), Arrhythmogenic Right Ven-

tricular Cardiomyopathy (ARVC) and Hypertrophic Cardiomyopathy (HCM).

59 SCD patients are sequenced, using a targeted sequencing approach of 135 known or putative

candidate genes, in an attempt to perform a “molecular autopsy” that has an informative diagnostic yield.

Non-synonymous, loss-of-function, and splice-site variants with a minor allele frequency ≤ 0.02% in the

NHLBI exome sequencing project and an internal set of control exomes were prioritized for analysis followed

by ≤0.5% frequency threshold secondary analysis. This initial part was done by others, but I performed the

control selection by PCA and the subsequent case control analysis.

This is followed by a case control analysis on a targeted sequencing panel of both a HCM and

ARVC cohort. These cohorts were compared against the population controls of UCL-ex to identify novel

associations. Additionally, they were compared against other in a bit to identify if this approach is useful in

refining our understanding of these somewhat similar conditions. Dr. Pier Lambiase and Dr Petros Syrris
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were involved in the sample collection and Dr. Vincent Plagnol performed the sample genome alignment

and variant calling. I performed the variant QC, and case control analysis.

2.2 Methods & Results

2.2.1 Molecular Autopsy of a Sudden Arrhythmic Death Syndrome cohort

The cohort analysed here consisted of families referred to specialised cardiovascular centres in seven European

centres. Recruited families had a proband who suffered from SADS and was aged between 1-55 with no cause

death identified at post-mortem. This study complied with the Declaration of Helsinki and a joint University

College London and University College London Hospital Research Ethics committee application. As part

of this, the families were offered clinical screening for inherited channelopathies and cardiomyopathies using

a standard protocol [Nunn and Lambiase, 2011]. This included an outpatient consultation and resting

and exercise electrocardiogram and ajmaline challenge if Brugada syndrome was suspected or was how the

proband died or if every other investigation was normal.

90 deceased probands met these initial criteria. 28 were rejected because of DNA quality and/or

quantity issues. The next of kin refused consent in 3 additional cases. In total, the DNA from 59 SADS

victims (mean age 25, range:1-51) was isolated [Nunn et al., 2016]. The clinical characteristics of these

remaining probands are summarised in Figure 2.1. 39/59 patients had structurally normal hearts and 20

had subtle structural abnormalities that were detected post-mortem. Targeted exome sequencing of 135 genes

associated with cardiomyopathy or ion channelopathies was performed on the Illumina HiSeq2000 platform

(The full list of candidate genes is in Tables 1 to 3 in the Appendix). Variants that were non-synonymous,

loss of function or splice site variants with a MAF of ≤ 0.02% in the NHLBI set of 6500 Exomes and the

internal control set were prioritised for analysis. Both of these control datasets were filtered to ethnically

match the Caucasian cases. The secondary analysis examined variants that had a MAF of ≤ 0.5%. Applying

this filter yielded 80 candidate coding variants, a mean of 1.36 variants per proband. The variants deemed

most likely to be causative based on the gene they are located in and the particular affect that had are listed
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in Table 2.1.

Additionally, data from the Exome Aggregation Consortium (ExAC) was used. ExAC is a publically

available collection of 60,706 unrelated individuals sequenced as part of various disease-specific and popula-

tion genetic studies. The large size of this dataset meant that it was deemed the most accurate determinant

of factors such as MAF. One caveat is the fact that it only became available when this thesis was already

at a late stage so it was not possible to retroactively use it in all cases. Despite this, this work gave insight

into the clinical utility of a molecular autopsy of sudden cardiac death.

Figure 2.1: Summary of proband characteristics in the SADS Molecular Autopsy Study. Reproduced with
permission from [Nunn et al., 2016].

23



AgeAtDeath(yrs) Sex CircumstanceDeath Gene(Disease) AminoAcidChange UCLex-MAF(2867ex) NHLBI(6500ex) ExAC(60706ex)
4 F Sleep SCN5A(LQT3/BrS) R1623Q 0 0 0
6 M Sleep SCN5A](LQT3/BrS) V411M 0 0 0

26 F Phone call RyR2 (CPVT) N1551S 0 0 0.034
18 F DailyActivities TTN (DCM/HCM) E23106X 0 0 0.00083
32 M Sleep GJA5 (Familial-AF) Y197X 0 0 0
39 M DailyActivities MYOT (LGMD) Q453X 0 0 0.00165
44 M DailyActivities DSC2 (ARVC) S868F 0 0.0077 0.0058
23 M DailyActivities CACNA1C (BrS) P817S 0.127 0.33 0.0194
1 M DailyActivities LMNA(DCM) R644C 0.1385 0.1 0.121

22 F Sleep RANGRF (BrS) E61X 0.2646 0.42 0.3947
11 M Exercise CACNA2D1 (BrS) S709N 0.22 0.37 0.2677
33 M DailyActivities ANK2 (LQT) E1837K 0.29 0.31 0.267
27 M DailyActivities KCNH2 (LQT) P347S 0.16 0.0496 0.1293
41 M DailyActivities MYPN (HCM) Y20C 0.36 0.092 0.091
28 M Exercise RBM20 (DCM) E1125K 0.34 0.37 0.37
14 M Exercise DSP(ARVC) A2294G 0.12 0.23 0.085
34 M Sleep CACNA1C (BrS) G37R 0.3211 0.23 0.74

Table 2.1: Sudden Cardiac Death Molecular Autopsy variants. The first seven are very rare variants (Minor
Allele Frequency [MAF] of ≤ .02%) in NHLBI and the UCL-exome consortium control set. The last ten are
deemed quite rare, with a MAF of ≥ 0.02% & ≤ 0.5%

2.2.2 ARVC and HCM case control analysis

As described in Section 1.8.2, the best practises guide from the GATK endorses a joint calling procedure as

it has a lower artefact rate than more traditional single sample calling. This method was implemented to

more adequately integrate the 407 ARVC and the 955 HCM samples with the 3587 UCL-ex controls. The

genes sequenced for this analysis are listed in Table 4 in the Appendix. A case control analysis was then

performed, at a single variant and gene level. In total, 9206 variants were tested. The most significantly

associated SNPs for ARVC and HCM are listed in Tables 2.2 and 2.3. Given the population prevalence

of these conditions (1/500 for HCM and 1/5000 for ARVC) and the varying penetrance of the causative

variants, this study was underpowered for rare variants of small effects. For example, if we calculate power

for ARVC as it is the rarer condition, and assume:

• A disease prevalence of 1/5000 (0.0002)

• A risk variant population frequency of 0.0002 (A typical value of the most significant variants)

• A heterozygote relative risk of 5

• A homozygote relative risk of 10
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then we would need 1612 cases for 80% power of detecting a real causal variant at an Alpha of 0.1, or

4454 cases at 0.001. This was calculated with the power calculator at http://pngu.mgh.harvard.edu/ purcell/cgi-

bin/cc2k.cgi. This low power estimate is in agreement with recent literature highlighting the difficulty of

rare variant association studies [Auer et al., 2015].

To increase power, gene-based Fisher, χ2, Sequence Kernel Association Test (SKAT) and Sequence

Kernel Association Test Optimised (SKAT-O) p-values were also calculated (Tables 2.4 and 2.5). The SKAT

is a supervised method that performs regressions for each variant within a given region. It differs from

burden tests in that it does not upweigh rare variants or assume that pathogenicity increases inversely to

variant frequency. The C-Alpha test also allows for varying directions of effects and is essentially a simple

version of SKAT where the outcome is binary and no covariates are included. For a dichotomous phenotype,

such as case control status, consider the logistic model Equation 2.1.

SKAT has more power than burden tests when variants either have variable effect sizes or effects

in different directions, i.e. some SNPs in a gene can be protective and some deleterious [Wu et al., 2011].

However, the inverse is also true; in a scenario where all variants in a set have a unidirectional effect, a

burden test will outperform SKAT. SKAT-Optimal (SKAT-O) retains power in either scenario by using an

adaptive kernel that follows a multivariate distribution with exchangeable correlation structure [Lee et al.,

2012]. For a given set, if the variants effects are uncorrelated, it is effectively a SKAT test, while reducing to

a burden test if the effects are unidirectional. Additionally, SKAT can handle singletons by collapsing those

with the same directionality of effect into a single value and combining this with the other variants in the

region. In general therefore, SKAT-O is more accurate than SKAT as assumptions about variants effects’

based on criteria such as predicted function are less important.

logitP (yi = 1) = α0 + α′Xi + β′Gi + εi (2.1)

where

• y is a binary phenotype vector
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• α0 is an intercept term

• α is the vector of regression coefficients for covariates

• β is a vector of regression coefficients for the p variants in the region.

A lack of statistical power, particularly for ARVC, hindered the ability to identify variants or genes

of weak effect here. Additionally, a targeted gene panel of limited size offers little potential to find real novel

insight. The findings discussed here do support the literature.

2.2.3 Examining the veracity of candidate gene lists

Table 4 lists the genes with the strongest support for involvement in HCM (16 genes) and ARVC (12 genes).

A minority of significantly associated SNPs (here defined as those with a Fisher pvalue of ≤ 0.0001 ) were seen

in candidate genes for HCM (8/53), while 21/28 of the top ARVC SNPs were in candidate genes. HCM Candi-

date genes TNNI3,TNNT2,TPM1,MYL2,MYL3,ACTC1,CSRP3,ACTN2,MYH6,TCAP,TNNC1,PLN,MYOZ2,NEXN

did not contain significant SNPs; similarly in the ARVC analysis CTNNA3,DES,DSC2,DSP,JUP,LMNA,TGFB3,PLN

SNPs failed to reach significance. Loss of function variants were defined as those predicted to be exonic splic-

ing, stopgain/stoploss or frameshift. Tables 2.6 and 2.7 show that MYBPC3 contains 61% of such variants

in HCM while PKP2 contains 27% of the LOF variants seen in the ARVC samples. Figure 2.2 shows the

range of pvalues from the SKAT test for pooled variants and whether or not the fact that the genes are

currently candidate genes is a good indicator of the statistical significance that they reach.

As the gene encoding the largest protein in the human body it is unsurprising that variants within

Titin have been linked to a number of conditions [Brun et al., 2014; Herman et al., 2012; De Cid et al.,

2015]. Because of this clinical importance much work has been done to elucidate its role in these varying

pathologies. In terms of SCD, it has been shown that variants in different protein domains are associated

with particular types of SCD, as seen in Figure 2.3.

In general, the risk allele for qualitative traits is the minor allele [Park et al., 2011]. One possible

definition of effect size is the coefficient ( β ) for a SNP when it is modeled in a logistic regression against the
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Figure 2.2: The predictive ability of known gene status. Boxplots showing pvalues for the SKAT tests on
known and unknown candidate genes (True and False on the X-axis,respectively). Varying filters were used
for determining variants included per gene test: no Functional Filter (’ARVC’ and ’HCM’ plots), Functional
variants (non-synonymous and splicing). and Loss of Function - frameshift and stop-gain or stop loss (LOF)).

outcome, here phenotype. The idea that the effect size might increase as the MAF lowered was examined

(Figure 2.4 ). The distribution of SNP effect sizes and Odds Ratios was also calculated (Figure 2.5) .

This section aimed to gain improve our understanding of ARVC and HCM. While it was not possible

to identify a clear difference in the pattern of SNP effect sizes or Odds Ratios between these conditions, the

trend of increasing effect with decreasing MAF was clear for both.
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Figure 2.3: The distribution of candidate variants across the Titin coding sequence. (A) Variants with a
pvalue of ≤ 1∗10−4 from the case control analysis were plotted in relation to their respective locations across
the TTN gene, where the X-axis is the position of the variant along the Titin sequence and the y axis is
unused. The color of each mutation represents the associated pathology. (B) Reproduced from [Neiva-Sousa
et al., 2015]. Mutations associated with cardiomyopathies distributed along the canonical TTN sequence
(UniProtKB: Q8WZ42-1). The type of domain in TTN is represented by the color of each block in the
sequence. Abbreviations: DCM is dilated cardiomyopathy,HCM hypertrophic cardiomyopathy, ARVC ar-
rhythmogenic right ventricular cardiomyopathy, RCM restrictive cardiomyopathy, Ig immunoglobulin, PEVK
region rich in proline (P), glutamate (E), valine (V) and lysine (K), TK titin Ser/Thr kinase
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Figure 2.4: Characterising variants in ARVC and HCM across the Minor Allele Frequency (MAF) spectrum.
’ARVC’ shows all variants while ’Significant’ indicates those with a pvalue of ≤ 0.0001. Top Panel - X axis:
log10 of control MAF, Y axis: Squared regression coefficients of the model phenotype SNP. Loess regression
and standard error shown as line with grey perimeter. Lower Panel: Y axis represents the log10 of the risk
Odds Ratio.
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gene funcSKAT funcSKATO funcFisher funcChiSq LoFSKAT LoFSKATO LoFFisher LoFChiSq

1 PKP2 1.82E-33 2.73E-43 1.75E-30 3.84E-44 8.70E-34 5.26E-53 5.40E-34 5.35E-48
2 DSG2 1.47E-10 4.57E-13 3.29E-09 2.14E-11 6.45E-02 1.59E-02 2.11E-02 2.39E-02
3 TMEM43 4.53E-04 7.46E-04 3.47E-02 5.23E-02
4 DSP 1.42E-03 8.24E-04 1.01E-02 1.03E-02 4.76E-09 8.05E-16 3.38E-09 1.29E-12
5 TPM1 1.28E-03 1.19E-03 2.36E-03 1.23E-03
6 TTN 2.32E-03 5.12E-03 7.54E-01 7.92E-01 4.56E-01 6.43E-01 6.89E-01 6.90E-01
7 LMNA 3.95E-03 7.58E-03 8.63E-02 1.58E-01
8 KCNE2 9.81E-03 1.36E-02 5.72E-02 8.89E-02
9 ACTC1 1.91E-02 1.91E-02 1.57E-01 3.45E-01

10 PNN 1.85E-02 3.26E-02 2.63E-01 3.67E-01
11 DSC2 4.04E-02 6.73E-02 6.07E-01 6.80E-01 1.64E-01 2.19E-01 5.02E-01 6.15E-01
12 TTN-AS1 6.57E-02 9.82E-02 3.23E-01 7.87E-01
13 SCN5A 1.21E-01 1.35E-01 1.31E-01 1.47E-01
14 CAV3 1.15E-01 1.81E-01 4.09E-01 9.79E-01
15 JUP 2.29E-01 2.07E-01 1.78E-01 2.53E-01
16 DES 2.34E-01 2.18E-01 1.35E-01 2.67E-01
17 RBM20 1.79E-01 3.06E-01 8.11E-01 9.57E-01
18 MYBPC3 1.95E-01 3.36E-01 4.44E-01 6.12E-01 6.26E-01 6.26E-01 1.00E+00 1.00E+00
19 KCNE1 3.89E-01 3.81E-01 2.78E-01 4.20E-01
20 GJA1 2.51E-01 3.82E-01 1.00E+00 1.00E+00
21 KCNQ1 2.60E-01 3.92E-01 3.08E-01 5.24E-01
22 MYL2 3.98E-01 3.98E-01 4.03E-01 9.67E-01
23 LDB3 2.96E-01 4.77E-01 8.02E-01 1.00E+00
24 CSRP3 8.94E-01 4.89E-01 1.00E+00 7.24E-01
25 MYH6 3.55E-01 5.56E-01 6.62E-01 8.38E-01 8.26E-01 6.71E-01 1.00E+00 1.00E+00
26 KCNJ2 3.83E-01 5.65E-01 1.00E+00 1.00E+00
27 PLEC 7.99E-01 5.94E-01 4.93E-01 4.65E-01
28 TNNI3 8.01E-01 6.39E-01 1.00E+00 1.00E+00
29 TCAP 8.79E-01 6.47E-01 7.60E-01 6.46E-01
30 PLN 8.19E-01 6.61E-01 1.00E+00 1.00E+00
31 KCNH2 8.26E-01 6.71E-01 1.00E+00 1.00E+00
32 TGFB3 6.52E-01 7.24E-01 1.00E+00 8.23E-01
33 CASQ2 9.73E-01 7.37E-01 8.57E-01 7.82E-01
34 PDLIM3 5.24E-01 7.39E-01 1.00E+00 9.36E-01
35 TNNT2 6.29E-01 8.27E-01 1.00E+00 1.00E+00
36 ANK2 6.70E-01 8.53E-01 7.82E-01 7.47E-01
37 VCL 6.94E-01 8.81E-01 1.00E+00 9.33E-01
38 MYH7 7.20E-01 9.07E-01 1.00E+00 8.92E-01 8.95E-01 5.95E-01 1.00E+00 1.00E+00
39 RYR2 7.19E-01 9.13E-01 8.87E-01 9.10E-01 7.88E-01 6.23E-01 1.00E+00 1.00E+00
40 PKP4 7.71E-01 1.00E+00 8.45E-01 1.00E+00 1.06E-02 1.39E-02 7.39E-02 1.21E-01
41 MYL3 8.08E-01 1.00E+00 1.00E+00 1.00E+00

Table 2.4: ARVC Gene based Results. Here, each gene has multiple pvalues as the variants included were
varied as was the exact statistical test used. ’func’ refers to variants that were predicted to have any impact
on the transcribed DNA sequence, including synonymous, non-synymous and splicing changes. ’LoF’ refers
to Loss of Function which is frameshift, stopgain, stoploss or conserved splicing. Both of these variant sets
for each gene was then tested with the Fisher, SKAT and SKATO tests. Absent values indicate no variants
remain after filtering.
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gene funcSKAT funcSKATO funcFisher funcChiSq LoFSKAT LoFSKATO LoFFisher LoFChiSq

1 MYBPC3 3.73E-23 1.23E-47 2.12E-31 2.07E-33 9.79E-07 1.07E-15 1.95E-14 4.34E-14
2 MYH7 8.30E-22 8.00E-41 2.32E-25 1.52E-27 4.54E-01 6.30E-01 1.00E+00 1.00E+00
3 TNNI3 4.21E-06 5.31E-09 4.44E-08 4.11E-08
4 TTN 1.50E-04 4.12E-04 1.77E-01 1.86E-01 5.89E-01 7.25E-01 3.67E-01 3.60E-01
5 TPM1 4.19E-02 6.08E-04 2.28E-04 2.50E-04
6 CSRP3 1.37E-03 2.30E-03 2.89E-02 3.27E-02
7 ACTC1 5.37E-02 4.40E-03 8.46E-03 1.29E-02
8 TNNT2 6.21E-03 7.44E-03 2.81E-02 3.48E-02
9 PKP2 1.56E-02 7.55E-03 7.59E-03 7.74E-03 1.43E-02 4.24E-04 8.85E-04 1.31E-03

10 DSP 7.21E-03 1.44E-02 1.00E+00 9.93E-01 4.72E-01 4.72E-01 1.00E+00 1.00E+00
11 PDLIM3 1.07E-02 2.12E-02 1.40E-01 1.70E-01
12 MYL2 1.01E-01 2.87E-02 3.10E-02 5.24E-02
13 ANK2 3.27E-02 6.36E-02 9.22E-01 1.00E+00
14 RBM20 3.97E-02 7.28E-02 1.96E-01 2.04E-01
15 SCN5A 4.28E-01 8.47E-02 4.84E-02 5.91E-02
16 PLN 1.23E-01 9.24E-02 7.86E-02 1.48E-01
17 TTN-AS1 1.08E-01 1.04E-01 1.13E-01 2.20E-01
18 VCL 1.13E-01 1.16E-01 1.01E-01 1.12E-01
19 CASQ2 5.40E-01 1.59E-01 1.37E-01 1.62E-01
20 MYL3 1.26E-01 2.12E-01 1.00E+00 1.00E+00
21 DSG2 1.26E-01 2.22E-01 5.14E-01 6.08E-01 5.03E-01 4.24E-01 5.56E-01 5.42E-01
22 RYR2 3.59E-01 2.42E-01 1.58E-01 1.68E-01 2.62E-01 3.97E-01 6.06E-01 8.68E-01
23 TCAP 1.78E-01 2.86E-01 1.00E+00 1.00E+00
24 DSC2 2.88E-01 3.54E-01 1.43E-01 1.71E-01 3.57E-01 2.91E-01 1.20E-02 3.54E-02
25 MYH6 4.14E-01 3.66E-01 1.84E-01 2.16E-01 2.48E-01 3.77E-01 5.91E-01 7.70E-01
26 TMEM43 5.56E-01 3.84E-01 3.68E-01 3.78E-01
27 KCNH2 2.53E-01 3.85E-01 5.86E-01 7.26E-01
28 KCNE1 4.24E-01 3.85E-01 3.68E-01 3.81E-01
29 GJA1 2.86E-01 4.12E-01 4.45E-01 5.65E-01
30 LDB3 2.55E-01 4.18E-01 3.80E-01 4.32E-01
31 KCNE2 3.80E-01 4.71E-01 3.82E-01 5.73E-01
32 LMNA 4.27E-01 5.02E-01 5.29E-01 4.83E-01
33 PLEC 3.06E-01 5.06E-01 9.17E-01 9.91E-01
34 PKP4 3.36E-01 5.40E-01 4.12E-01 5.15E-01 2.78E-01 3.79E-01 5.36E-01 1.00E+00
35 TGFB3 3.74E-01 5.70E-01 5.92E-01 7.59E-01
36 KCNJ2 6.12E-01 6.46E-01 6.74E-01 7.58E-01
37 DES 6.72E-01 7.23E-01 5.50E-01 7.29E-01
38 KCNQ1 5.33E-01 7.26E-01 1.00E+00 1.00E+00
39 JUP 5.55E-01 7.67E-01 1.00E+00 1.00E+00
40 CAV3 6.56E-01 7.82E-01 1.00E+00 1.00E+00
41 PNN 7.32E-01 8.98E-01 7.87E-01 1.00E+00

Table 2.5: HCM Gene based Results. Here, each gene has multiple pvalues as the variants included were
varied as was the exact statistical test used. ’func’ refers to variants that were predicted to have any impact
on the transcribed DNA sequence, including synonymous, non-synymous and splicing changes. ’LoF’ refers
to Loss of Function which is frameshift, stopgain, stoploss or conserved splicing. Both of these variant sets
for each gene was then tested with the Fisher, SKAT and SKATO tests. Absent values indicate no variants
remain after filtering.
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Gene Nb.variants PercentOfTotal
1 MYBPC3 64 61
2 TTN 22 21
3 MYH7 8 7
4 TPM1 5 4
5 MYH6 2 1
6 PLN 2 1
7 TNNT2 1 1

Table 2.6: Number of LOF variants in HCM Candidate Genes

Gene Nb.variants PercentOfTotal
1 PKP2 28 37
2 DSP 14 18
3 DSC2 11 14
4 TTN 9 12
5 DSG2 4 5
6 PKP4 3 4
7 JUP 2 2
8 LMNA 2 2
9 DES 1 1

Table 2.7: Number of LOF variants in ARVC Candidate Genes
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Figure 2.5: The distribution of effect sizes and odds ratios in ARVC and HCM.
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2.3 Discussion

2.3.1 Molecular autopsy of Sudden Cardiac Death patients

The molecular autopsy of the SCD cohort showed that for a small portion of people who die suddenly

with no identifiable cause, even post-mortem, rare potentially pathogenic DNA variants harboured in genes

associated with SCD may be the answer. Throughout this study, rare variants were thought more likely

candidates because common variants with large enough effects to cause SCD were thought quite unlikely

to exist. Reasonable disease associated ion channel mutations were found in 3 (5%) probands. 2 of these

families had private mutations; mutations that are found in only that respective family. These were R1623Q

and V411M and were concomitant with negative clinical screens. The third family had a RyR2 mutation

with a malignant history but no clear phenotype. A further 6 (10%) had rare ion channel variants which

have previously been associated with Brugada Syndrome and Long QT syndrome. They were not extremely

rare in controls however, at 0.02− 0.5%. Finally, eight (14%) had rare or very rare cardiomyopathy variants

of unknown significance.

The case control tests of these samples against UCL-ex were suggestive of an excess of rare variants

in cases, but not statistically significant. This might be due to the fact that our sample size was relatively

limited. A large number of families refused access to DNA and were therefore not included in the study.

24% of the DNA that was collected was unsuitable for analysis. This highlights the need for improved

consistent guidelines as to how to adequately store tissue samples for further investigations, potentially

years later. Traditional methods of sample storage, such as Formalin Fixed Paraffin Embedded (FFPE),

have been shown to have inadequate DNA preservation [Tournier et al., 2012]. Alternatively, it may be

because our knowledge of the relevant genes and the impact different variants will have is still incomplete.

This is made more difficult because the hearts of SCD probands are structurally normal and typically there

is no associated ante-natal clinical phenotype data.

That being said, for the families that did receive a diagnosis, even if post mortem, some solace can be

gained. It might result in increased participation with proactive family genetic screening, altered reproductive
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choices or simply relief from the resolution of the mystery as to the cause of death. In conclusion, while

the approach of molecular autopsy is undoubtedly useful in SCD, its limited diagnostic yield means it can

augment but is not a viable replacement of traditional clinical testing.

2.3.2 ARVC and HCM case control analysis.

407 ARVC and 955 HCM samples were sequenced for the genes listed in Table 4 in the Appendix. These

genes are known or thought to be associated with either HCM or ARVC. Single variant and gene based case

control tests were then performed against 3587 UCL-ex ethnicity and phenotype matched controls.

Table 2.2 lists the top associations for the targeted sequencing ARVC analysis (Fisher pvalue of

≤ 1 ∗ 10−4) . This is dominated by PKP2 and DSG2, which is in agreement with the literature. The most

significantly associated variant is the previously reported splice site altering rs193922674 SNP [Gerull et al.,

2004]. The role of Titin in ARVC however is less clear. A recent study on 38 ARVC families identified 8

unique TTN variants across 7 families. One of these variants, Thr2896Ile, perfectly segregated the ARVC

phenotype in a large family [Taylor et al., 2011]. This group has gone further and associated that TTN

variant carriers are at greater risk of supraventricular arrhythmias and conduction disease [Brun et al.,

2014]. While intriguing, this has yet to be independently verified so more work needs to be done.

Table 2.3 lists the variants most associated with HCM. As is the case with ARVC, these data largely

agree with the currently understood genetic architecture of HCM; one largely driven by MYBPC3. A manual

examination of the rs1805123 KCNH2 variant showed that in multiple samples, this multiallelic locus is low

RD. This reduces our confidence in this being a true call, but the concordance between our control MAF

(0.25) and that of ExAC (0.19) in comparison to the HCM MAF of 0.38 does make this a candidate worthy

of following up. At the very least, it highlights the importance of a stringent QC process controlling for as

many parameters as possible.

RBM20 was first associated with Dilated Cardiomyopathy in 2009 [Brauch et al., 2009]. Since then,

it has further been found that it is a splicing regulator of TTN [Li et al., 2010]. In December 2015, the first

human induced Pluripotent Stem Cell (hIPSC)model of RBM20 model was published [Wyles et al., 2015].
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This took dermal fibroblasts from two patients carrying the R636S missense variant and transformed them

into hIPSC derived cardiomyocytes. These cell lines exhibited a downregulation of RBM20 concomitant

with a downregulation of the adult isoform of TTN N2B and upregulation of the foetal TTN N2BA isoform.

LDB3, CAMK2D and CACNA1C genes were also affected. The net result of these changes was that

the sarcomeres, when developed, exhibited increased sarcomeric length and decreased width. This makes

RBM20 ’s role in HCM a relatively plausible one. In our data, rs35141404 has a HCM MAF of 0.27 and has

a frequency in our ARVC cohort of 0.17 and our control frequency is 0.18. The ExAC MAF is 0.15, agreeing

with our control frequency. However, the low call rate we observed for this variant is cause for concern; a

concern somewhat lessened by the fact that the ExAC data does report the same issue at this locus. Thus,

this variant is an interesting candidate and will be further assessed with Sanger sequencing and when our

sample size increases.

Figure 2.4 characterises the SNP effect size and the odds ratio across the MAF spectrum for both

ARVC and HCM. Here, the effect size is the coefficient from the logistic regression when phenotype is

modelled as the outcome against each SNP. When all SNPs are examined together, no clear pattern is

visible. However, when one restricts this to those with a significant pvalue, it becomes clear that both the

risk odds ratio and the effect size has an inverse relationship with the MAF in controls.

The single variant tests were accompanied with gene based tests. Functional variants, non-synonymous,

frameshift or stop site altering and those with a MAF ≤ 0.05 were retained. Testing was then performed

in a number of different ways: basic Fisher & χ2 tests that counted all unfiltered variants and SKAT and

SKATO. SKAT aggregates individual SNP test statistics in a given set (here, a gene) and then calculates

the corresponding pvalue. PKP2 was the most associated ARVC gene with a SKAT p-value of 1.82 ∗ 10−33,

followed by DSG2 (1.47 ∗ 10−10) [Table 2.4]. These were the only statistically significant genes found here.

Furthermore, the top HCM genes were found to be MYBPC3 (3.73 ∗ 10−23) and MYH7 (8.3 ∗ 10−22) [Table

2.5]. The SKAT-O Loss of Function (LOF) test differs from SKAT for ARVC in that it indicates that DSP

plays a more important role than DSG2. DSP based ARVC can follow an autosomal dominant or autosomal

recessive model of inheritance and may be associated with palmoplantar keratadoma and Carvajal disease
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[Sen-Chowdhry et al., 2007]. Having access to such patient phenotype data would be informative as it would

enable us to create a more refined picture of the architecture of the subtypes of ARVC.
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Chapter 3

Analysis of Copy Number Variants in

Hypertrophic Cardiomyopathy

3.1 Introduction

Professor Perry Elliott, Dr. Luis Lopes and Dr. Petros Syrris at the Heart Hospital, University College

London, have collected a cohort of 505 patients with HCM [Lopes et al., 2013b]. A targeted panel of 41

genes (Table 5) was chosen based on the knowledge, at the time the array was designed, of the genetic basis

of HCM and ARVC. The average Read Depth across the 2.1Mb region was 120. A variant was included

in the filtered list of potentially disease-causing variants if it was both rare (defined as having a MAF of

≤ 0.5%) and non-synonymous, LOF or a splice site variant. Excluding Titin, 152 candidate variants were

identified, 89 of which were novel.

The role of copy-number variants (CNV) as a cause of hypertrophic cardiomyopathy (HCM) is

poorly studied. The aim of this chapter was to use high-throughput sequence (HTS) data combined with a

read-depth strategy, to screen for CNVs in cardiomyopathy-associated genes in a large consecutive cohort of

HCM patients. Identified CNVs were then validated by Array Comparative Genome Hybridisation (aCGH)

A large portion of this chapter is published in Lopes et al. [2015]. I did all of the CNV analysis: the read
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depth approach with ExomeDepth, designed the probes for the aCGH and employed the SVD approach of

CoNIFER.

3.2 Methods & Materials

3.2.1 Patients and Clinical Evaluation

The study cohort was comprised of 505 patients diagnosed with HCM at the Heart Hospital, University

College London, UK. A 12-lead Electrocardiogram (ECG), echocardiography and exercise testing were used

in the diagnosis. A left ventricular wall thickness on two-dimensional ECG of ≥ 13mm, after correction for

age, sex and size was the diagnostic threshold used.

3.2.2 Targeted gene enrichment and high-throughput sequencing

In total, the 41 target genes spanned a 2.1Mb region of genomic DNA [Lopes et al., 2013b] per patient.

This included exonic, intronic and certain regulatory regions, 20 of which were either associated with HCM,

ARVC or Dilated Cardiomyopathy (DCM), a related phenotype. The remaining genes are implicated in other

cardiomyopathies or arrhythmias. The capture and sequencing methodology used for the first 233 patients

has been reported in detail previously [Lopes et al., 2013b]. From the 234th patient onwards, successive

updated versions of the Agilent sample preparation protocol were used according to the manufacturer’s

instructions. The main changes referred to smaller initial quantities of genomic DNA (200 ng to 3 mg), use of

Agilent enzymes and reagents throughout the protocol, optimisations of hybridisation steps and replacement

of in-solution PCR procedure with an on-bead PCR method. Introduction of additional SureSelect indexes

allowed multiplexing of 16 samples in a single pool. The resulting index-tagged sample pools were sequenced

on the Illumina HiSeq 2000 system. Cluster generation on Illumina cBot was carried out according to the

manufacturer’s protocol. A total of 128 HCM samples (16 multiplexed samples * 8 lanes) were sequenced

(100 bp, paired end) per instrument run, using standard methods (Illumina).

The paired-end reads were then aligned using the Novalign Software V.2.7.19 against the hg19 human
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reference genome. Once duplicated regions were excluded with Picard MarkDuplicate Tool, indels and SNPs

were called with SAMtools [Li et al., 2009]. A minimum genotype quality threshold of Phred score 30 was

implemented to curate the resultant variant list. A Phred value of 30 is equivalent to a 99.9% [Ewing et al.,

1998] base call accuracy rate. Annovar was used for sample annotation [Wang et al., 2010].

3.2.3 ExomeDepth

It is recommended practice to compare a sample against another sample or set of samples to estimate a

normalised measure of RD [Plagnol et al., 2012]. This is more accurate than creating an intra-individual

measure as there is a high degree of exon to exon variability. By comparing the target region/sample against

this null, one can calculate the likelihood of the presence of a Duplication or Deletion. ExomeDepth, the R

based implementation of a RD approach, fits a beta binomial model that builds an optimised reference set

that maximises the CNV detection power [Plagnol et al., 2012]. This can work on even small (1 - 2 exons)

CNVs even in the midst of technical variability.

The samples were sequenced in 22 batches. To minimise the effect of the resultant technical vari-

ability on the CNV calling, and to generate sample sets of a size that maximises the CNV calling algorithm,

the samples were analyzed by these batches (Figure 3.1). A script was written in R that did this using

the ExomeDepth R package (on CRAN) (Figure 3.1). Sorted, indexed BAM files that had duplicate reads

removed with PICARD MarkDuplicate were used. For each sample, all other samples in its set were used as

potential controls. ExomeDepth then identifies the optimum set of sample(s) from this group to compare the

test sample against. This is done by identifying reference samples that are comparable to the test sample.

RD similarity is the main criterion.

3.2.4 CoNIFER

Another widely used bioinformatic approach to call CNVs from targeted sequencing is CoNIFER [Krumm

et al., 2012]. CoNIFER takes as input sample Reads per kilobase per milllion (RPKM) values. This is a

sequence length standardised measure of the number of reads per region. CoNIFER then uses Singular Value
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Figure 3.1: QR Codes.(A) The HCM sample sequencing plate informa-
tion. https://github.com/CianMurphy/Upgrade/blob/master/bamFileList.csv (B)
The ExomeDepth R script used to generate the CNV calls with ExomeDepth.
https://github.com/CianMurphy/Upgrade/blob/master/ExomeDepth.R

Decomposition (SVD) to remove biases in the data. If X is the mean and standard deviation standardised

RPKM values in the form of an exon by sample matrix, then the SVD of X takes the form X = USV T .

SVD is related to PCA in that the singular values S are the square roots of the eigenvectors of the covariance

matrix XXT . One can visualise the proportion of variance explained by each of the components (Singular

Values) as a screeplot (Figure 3.2). Typically, K components are removed based on the inflection point of the

scree plot to eliminate as much as noise as possible. For the screeplot included here, a K of 4 was thus chosen.

CoNIFER can detect CNVs of 3 exons or larger. These data were then exported to R, where the DNAcopy

package was used to implement the Circular Binary Segmentation (CBS) algorithm. This is a more sensitive

segmentation algorithm than the inbuilt one in CONIFER. CBS recursively splits chromosomes into either

two or three subsegments based on a maximum t-statistic. A reference distribution is used to decide whether

or not to split is estimated by permutation.

The different methods to detect CNVs have been rigourously compared against each other. In one

such study, it was found that ExomeDepth had higher sensitivity than CONTRA, XHMM and CoNIFER

[Tan et al., 2014]. Therefore, for a given set of samples, one would expect ExomeDepth to pick up the most

CNVs, albeit with a higher false positive rate. This fact helped guide our experimental design here in that

we used ExomeDepth as a first pass and combined CoNIFER and aCGH to subsequently validate the calls.

3.2.5 Array CGH

Comparative Genome Hybridisation (CGH) is a technique whereby you differentially fluorescently label two

DNA samples [Oostlander et al., 2004]. They may come from different individuals, be a tumour pair or any
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(a) Screeplot of SVD-RPKM values from a plate of 84 HCM samples.

(b) A graphical representation of the procedure for removing K SVDs.

Figure 3.2: CoNIFER analysis: Removing the components of the Singular Value Decomposition that dis-
proportionately contribute to the variance.
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other combination. Classically, the fluorescent dyes Cyanine-3 (Cy3) and Cyanine (Cy5) are used as their

emission spectra are readily distinguishable. Both the test DNA and the reference DNA are then hybridized

to cloned DNA fragments that have been spotted in a gridlike fashion on a glass slide, the ”Array” portion

of array CGH(aCGH). Subsequently, CNVs will be visible by a measurable difference in the emission spectra

of the spots.

An aCGH was designed to validate the CNVs called by ExomeDepth R script and to verify that its al-

gorithm identified all CNVs. This was done via the Agilent eArray server (https://earray.chem.agilent.com/earray/).

This was designed to cover 2.1Mb of sequence across the target genes, with one probe every 100bp (Fig-

ure 3.3). Once the aCGH probe set was designed, it was submitted to Agilent with the 12 samples of interest.

The array was built and once the samples were processed the data was sent back to us.

The data are in the form of probe intensity ratios (typically in the log2 scale). An experiment

without measurement or normalization errors run on a normal CNV null clone would yield a Log2 ratio of 0

because the test and reference sample would be equivalent [Guha, 2008]. The Log2 ratio of a heterozygous

deletion is Log2(1/2) = -1 and a heterozygous gain is Log2(3/2)= 0.58.

To determine if the aCGH called any CNVs in the 12 samples, the log2 ratios were processed in R.

SnapCGH, aCGH and limma were the principal packages used. A brief overview of the process is as follows:

Firstly, the data are read into R and a valid object is created to store it. The data are mined for the array

positional information for the clones. In this aCGH experiment, Cy5 was used to fluoresce the reference

sample, so this results in the addition of a design vector with a value of -1 (Cy3 for reference would be

given +1). The next step is to control for the background intensity for each spot to improve the resolution

later on. The ”minimum” method in snapCGH was used which simply subtracts the background value from

that of the foreground. The data are then normalized, before the segmentation model is fitted. This fits a

homogenous Hidden Markov Model (HMM). Segmentation is vital as it splits the data into probe sets that

share the same DNA copy number [Ben-Yaacov and Eldar, 2008]. Segmentation has a tendency to fit states

that have similar means, which can obfuscate the true copy number state of the sample. One method to

ameliorate this is to merge states that have means within a defined threshold. Once this has completed, the
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data are ready for plotting as identifying CNVs works well from a visualization approach.

Figure 3.3: QR Code for HCM CNV aCGH validation probes.https://github.com/CianMurphy/Upgrade/blob/master/CGH cardio.bed

The 2 colour aCGH was performed by Agilent. Their proprietary Feature Extraction software creates

detailed quality control reports, in addition to the probe intensity ratios. The Spot Finding image in Figure

3.4 allows you to determine whether or not the spots have been correctly located centrally on the array. If

this was not the case, the results would be unreliable. The bottom left table in this figure details population

attributes. If this showed a greater than expected number of non-uniform or population outliers then this

would indicate a hybridization/wash step error. The plots above this table show the spatial distribution

of both the population and non-uniform outliers on the array. This is a useful method to determine if a

given subset of samples are outliers. The panel ’Evaluation Metrics for CGH QCMT Sep09’ describes array

attributes such as background noise and the signal to noise ratio and offers suggestions as to which do or do

not meet their quality thresholds. This is a guide to assist further evaluation. Here, it is noted that the red

background noise is high, but in practise there was no issue in calling CNVs from this sample. The histogram

of Signals Plots the number of points in discrete intensity bins against the log2 of the processed signal to give

the shape and level of signal distribution. Figure 3.5 top plot shows the spatial distribution of the positive

and negative log ratios. A lack of discernible pattern in this is what is expected. Figure 3.5 bottom plot

shows the log of the red background corrected signal against the log of the green background corrected signal

for non-control inlier features. The linearity or curvature of this is a guide for choosing the appropriate

background method choices as this plot should be linear. The intersection of the red horizontal and vertical

lines shows the position of the median signal while the numbers below the plot indicate the number of non

control features that have a background corrected signal less than zero. Overall, these reports show the

aCGH was performed to a high quality, allowing confidence in their data.
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QC Report - Agilent Technologies : 2 Color CGH
Date Wednesday, August 14, 2013 - 17:24 Sample(red/green)

User Name scan FE Version 10.7.3.1

Image 0938_UCL_255024210023_S01 [1_1] BG Method Detrend on (NegC)

Protocol CGH_107_Sep09 (Read Only) Multiplicative Detrend True

Grid 050242_D_F_20130617 Dye Norm Linear

Saturation Value 65526 (r), 65525 (g)

Spot Finding of the Four Corners of the Array

Grid Normal
Outlier Numbers with Spatial Distribution

384 rows x 164 columns

•Red FeaturePopulation •Red Feature NonUniform

•Green FeaturePopulation•Green Feature NonUniform

Feature Red Green Any % Outlier

Non Uniform 9 13 16 0.03

Population 64 59 108 0.17

Evaluation Metrics for CGH_QCMT_Sep09 : 
Excellent (7) ; Good (3) ; Evaluate (1) 

Metric Name Value Excellent Good Evaluate

IsGoodGrid 1.00 >1 NA <1

AnyColorPrcntFeatNonUn... 0.03 <1 1 to 5 >5

DerivativeLR_Spread 0.12 <0.20 0.20 to 0.30 >0.30

gRepro 0.10 0 to 0.05 0.05 to 0.20 <0 or >0.20

g_BGNoise 8.02 <5 5 to 10 >10

g_Signal2Noise 168.67 >100 30 to 100 <30

g_SignalIntensity 1352.55 >150 50 to 150 <50

rRepro 0.09 0 to 0.05 0.05 to 0.20 <0 or >0.20

r_BGNoise 16.20 <5 5 to 10 >10

r_Signal2Noise 128.10 >100 30 to 100 <30

r_SignalIntensity 2074.67 >150 50 to 150 <50

♦ Excellent ♦ Good ♦ Evaluate 

Histogram of Signals Plot (Red)

Histogram of Signals Plot (Green)

Figure 3.4: Quality metrics for sample 0938 UCL 255024210023 S01 CGH 107 Sep09 from the Agilent
aCGH.
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Figure 3.5: Quality metrics for sample 0938 UCL 255024210023 S01 CGH 107 Sep09 from the Agilent
aCGH.
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3.3 Results

3.3.1 ExomeDepth HCM CNVs

ExomeDepth was the first method used to identify CNVs in this cohort [Plagnol et al., 2012]. In brief, the

mean value of the per-sample average RD in the exonic target region across the samples was 348.09±142.59.

Combining all samples and taking the mean value across all samples, 92.41% of the target region was covered

to a RD of 15 or more. A 2010 study generated a 42 million probe tiled microarray that identified 11,700

CNVs, thought to include 80-90% of common CNVs [Conrad et al., 2010]. These data are incorporated into

ExomeDepth and are used as an initial filter to remove common variants on the basis that they are unlikely

to be disease causing. At our selected confidence threshold level after filtering, 12 CNVs in 12 patients (2.4%

of the 505 cohort) were identified using ExomeDepth.

3.3.2 aCGH Validation of the HCM CNVs

The Log2 ratios have been normalised, segmented and quantified. To plot the varying intensities from probe

to probe, a region file was first drawn up demarcating the location of the 41 genes of interest. 4 of the 12

most likely CNVs from ExomeDepth, in 4 patients (0.8% of the cohort) were validated by aCGH:

• one large deletion in MYBPC3 (involving 4 exons) shown in Figure 3.6

• one duplication of the entire TNNT2 gene shown in Figure 3.7

• one large deletion in PDLIM3 (involving the first 4 exons) shown in Figure 3.8

• and one large duplication in LMNA (involving 5 exons) in Figure 3.9

Three of them did not harbour any variant in a potentially causal sarcomere gene and one is a carrier of a

variant of unknown significance in TNNT2.

Eight CNVs were not validated by the aCGH analysis, including three single exon duplications and

one single exon deletion in MYBPC3, two two-exon deletions and one single exon duplication in TNNI3 and
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one single exon duplication in ACTC1 (Figures 3.10 - 3.17). Owing to the high probe density of the aCGH

in these genes, my interpretation is that these 8 CNV calls are false positives. Nevertheless, I cannot exclude

that some of these CNV calls are real but too small to be validated by other techniques. The aCGH did not

identify additional CNV calls in these 12 samples.

Because the accuracy of CNV calling algorithms are limited [Tan et al., 2014] I compared the

ExomeDepth CNV calls with the output of CoNIFER [Krumm et al., 2012]. Using the suggested settings,

CoNIFER identified a much larger number of CNV calls (120 calls overall). CoNIFER called the 4 CNVs

validated by the aCGH experiment but did not call any of the 8 CNVs not validated by the aCGH experiment

(Figures 3.10 - 3.17). Owing to the intuitively excessive number of CNV calls, combined with the fact that a

visual analysis of CoNIFER output plot was largely unconvincing, I assumed that owing to technical factors

specific to this experiment, the false positive rate of CoNIFER was high and did not follow-up these calls.
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(a) Panel (A): ExomeDepth plot. The red crosses indicate the ratio of observed/expected number of reads (RR).
The grey-shaded area is the estimation of the 99% Confidence Interval for the RR in the absence of a CNV call. The
X axis shows the affected gene plotted underneath, with the vertical lines showing the location of the exons.(B)
aCGH plot. The blue line represents the fitting of a homogenous Hidden Markov Model for Segmentation by
snapCGH.

(b) Panel(C): The CNV as called by CoNIFER using Sin-
gular Value Decomposition. The red line is the result
from the Circular Binary Segmentation algorithm applied
to the CoNIFER data.

Figure 3.6: Deletion in MYBPC3 in patient H1.
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(a) Panel (A): ExomeDepth plot. The red crosses indicate the ratio of observed/expected number of reads (RR).
The grey-shaded area is the estimation of the 99% Confidence Interval for the RR in the absence of a CNV call.
The X axis shows the affected gene plotted underneath, with the vertical lines showing the location of the exons.
(B) aCGH plot. The blue line represents the fitting of a homogenous Hidden Markov Model for Segmentation.

(b) Panel(C): The CNV as called by CoNIFER using Sin-
gular Value Decomposition. The red line is the result
from the Circular Binary Segmentation algorithm applied
to the CoNIFER data.

Figure 3.7: Patient H2 Exonic Duplication in TNNT2.
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(a) Panel (A): ExomeDepth plot. The red crosses indicate the ratio of observed/expected number of reads (RR).
The grey-shaded area is the estimation of the 99% Confidence Interval for the RR in the absence of a CNV call.
The X axis shows the affected gene plotted underneath, with the vertical lines showing the location of the exons.
(B) aCGH plot. The blue line represents the fitting of a homogenous Hidden Markov Model for Segmentation.

(b) Panel(C): The CNV as called by CoNIFER using Sin-
gular Value Decomposition. The red line is the result
from the Circular Binary Segmentation algorithm applied
to the CoNIFER data.

Figure 3.8: Patient H3 Exonic Duplication in PDLIM3.
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(a) Panel (A): ExomeDepth plot. The red crosses indicate the ratio of observed/expected number of reads (RR).
The grey-shaded area is the estimation of the 99% Confidence Interval for the RR in the absence of a CNV call.
The X axis shows the affected gene plotted underneath, with the vertical lines showing the location of the exons.
(B) aCGH plot. The blue line represents the fitting of a homogenous Hidden Markov Model for Segmentation.

(b) Panel(C): The CNV as called by CoNIFER using Sin-
gular Value Decomposition. The red line is the result
from the Circular Binary Segmentation algorithm applied
to the CoNIFER data.

Figure 3.9: Patient H4 Exonic Duplication in LMNA.
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Figure 3.10: The first of eight unconfirmed CNVs called by ExomeDepth. Here, it called a duplication
in the gene MYBPC3 of patient H5 (panel A). The red crosses indicate the ratio of observed/expected
number of reads (RR). The grey-shaded area is the estimation of the 99% Confidence Interval for the RR in
the absence of a CNV call. The X axis shows the affected gene plotted underneath, with the vertical lines
showing the location of the exons. (B) The subsequent aCGH/snapCGH (Panel B) plot. The blue horizontal
line represents the fitting of a homogenous Hidden Markov Model for Segmentation. (C) CoNIFER plot.
The red line is the result from the Circular Binary Segmentation algorithm applied to the CoNIFER data.
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Figure 3.11: The second of eight unconfirmed CNVs called by ExomeDepth. Here, it called a duplication
in the gene MYBPC3 of patient H6 (panel A). The red crosses indicate the ratio of observed/expected
number of reads (RR). The grey-shaded area is the estimation of the 99% Confidence Interval for the RR in
the absence of a CNV call. The X axis shows the affected gene plotted underneath, with the vertical lines
showing the location of the exons. (B) The subsequent aCGH/snapCGH (Panel B) plot. The blue horizontal
line represents the fitting of a homogenous Hidden Markov Model for Segmentation. (C) CoNIFER plot.
The red line is the result from the Circular Binary Segmentation algorithm applied to the CoNIFER data.
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Figure 3.12: The third of eight unconfirmed CNVs called by ExomeDepth. Here, it called a duplication
in the gene MYBPC3 of patient H7 (panel A). The red crosses indicate the ratio of observed/expected
number of reads (RR). The grey-shaded area is the estimation of the 99% Confidence Interval for the RR in
the absence of a CNV call. The X axis shows the affected gene plotted underneath, with the vertical lines
showing the location of the exons. (B) The subsequent aCGH/snapCGH (Panel B) plot. The blue horizontal
line represents the fitting of a homogenous Hidden Markov Model for Segmentation. (C) CoNIFER plot.
The red line is the result from the Circular Binary Segmentation algorithm applied to the CoNIFER data.
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Figure 3.13: The fourth of eight unconfirmed CNVs called by ExomeDepth. Here, it called a duplication
in the gene MYBPC3 of patient H8 (panel A). The red crosses indicate the ratio of observed/expected
number of reads (RR). The grey-shaded area is the estimation of the 99% Confidence Interval for the RR in
the absence of a CNV call. The X axis shows the affected gene plotted underneath, with the vertical lines
showing the location of the exons. (B) The subsequent aCGH/snapCGH (Panel B) plot. The blue horizontal
line represents the fitting of a homogenous Hidden Markov Model for Segmentation. (C) CoNIFER plot.
The red line is the result from the Circular Binary Segmentation algorithm applied to the CoNIFER data.
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Figure 3.14: The fifth of eight unconfirmed CNVs called by ExomeDepth. Here, it called a duplication in the
gene TNNI3 of patient H9 (panel A). The red crosses indicate the ratio of observed/expected number of reads
(RR). The grey-shaded area is the estimation of the 99% Confidence Interval for the RR in the absence of a
CNV call. The X axis shows the affected gene plotted underneath, with the vertical lines showing the location
of the exons. (B) The subsequent aCGH/snapCGH (Panel B) plot. The blue horizontal line represents the
fitting of a homogenous Hidden Markov Model for Segmentation. (C) CoNIFER plot. The red line is the
result from the Circular Binary Segmentation algorithm applied to the CoNIFER data.
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Figure 3.15: The sixth of eight unconfirmed CNVs called by ExomeDepth. Here, it called a duplication in
the gene TNNI3 of patient H10 (panel A). The red crosses indicate the ratio of observed/expected number of
reads (RR). The grey-shaded area is the estimation of the 99% Confidence Interval for the RR in the absence
of a CNV call. The X axis shows the affected gene plotted underneath, with the vertical lines showing the
location of the exons. (B) The subsequent aCGH/snapCGH (Panel B) plot. The blue horizontal line
represents the fitting of a homogenous Hidden Markov Model for Segmentation. (C) CoNIFER plot. The
red line is the result from the Circular Binary Segmentation algorithm applied to the CoNIFER data.
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Figure 3.16: The seventh of eight unconfirmed CNVs called by ExomeDepth. Here, it called a duplication in
the gene TNNI3 of patient H11 (panel A). The red crosses indicate the ratio of observed/expected number of
reads (RR). The grey-shaded area is the estimation of the 99% Confidence Interval for the RR in the absence
of a CNV call. The X axis shows the affected gene plotted underneath, with the vertical lines showing the
location of the exons. (B) The subsequent aCGH/snapCGH (Panel B) plot. The blue horizontal line
represents the fitting of a homogenous Hidden Markov Model for Segmentation. (C) CoNIFER plot. The
red line is the result from the Circular Binary Segmentation algorithm applied to the CoNIFER data.
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Figure 3.17: The eighth of eight unconfirmed CNVs called by ExomeDepth. Here, it called a duplication
in the gene ACTC1 of patient H12 (panel A). The red crosses indicate the ratio of observed/expected
number of reads (RR). The grey-shaded area is the estimation of the 99% Confidence Interval for the RR in
the absence of a CNV call. The X axis shows the affected gene plotted underneath, with the vertical lines
showing the location of the exons. (B) The subsequent aCGH/snapCGH (Panel B) plot. The blue horizontal
line represents the fitting of a homogenous Hidden Markov Model for Segmentation. (C) CoNIFER plot.
The red line is the result from the Circular Binary Segmentation algorithm applied to the CoNIFER data.
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3.4 Discussion

505 consecutive and unrelated patients that have been diagnosed with HCM underwent targeted exome

sequencing of 41 genes that are either known or thought to be involved with disease pathogenesis. In

addition to the SNP analysis discussed in [Lopes et al., 2013b], a RD based CNV identification strategy was

used here. This was motivated by evidence that approximately 50-60% of HCM patients remain genetically

undiagnosed [Lopes et al., 2013a]. This methodology was however hindered by the recognized difficulty in

short-read approaches that negatively affects sensitivity/specificity [Duan et al., 2013].

In an attempt to deal with these technical issues, two other approaches were used to validate the

12 calls made by ExomeDepth. Both CoNIFER, which utilised an SVD-RPKM approach, and the Array

CGH cytogenetic method validated 4/12 calls. This is in line with the previously high false positive rate of

all available algorithms [Duan et al., 2013; Tan et al., 2014]. Using this multi-step design, we detected and

validated potentially disease causing CNVs in 0.8% of samples. This has direct implications for diagnostic

and counselling services: some patients without mutations found through direct sequencing may still have

transmissible CNVs in sarcomeric protein genes.

Information about the contribution of CNVs for the genetics of cardiomyopathy is limited. Reports

in HCM include a Multiplex Ligation-Dependent Probe Amplification (MLPA) based study that failed to

detect any CNVs in MYBCP3 or TNNT2 in a cohort of around 100 unrelated HCM patients [Bagnall et al.,

2010]. Additionally, work on a single family identified a large MYH7 deletion as the probable cause [Marian,

2012], which was detected using a PCR-based method and more recently another MPLA study found a single

MYBPC3 deletion [Chanavat et al., 2012] in a cohort of 100 unrelated genotype-negative patients.

Despite the fact that CNVs were only detected in a small percentage of our cohort, it raises the

possibility that a patient with no identifiably causative variants can in fact harbour a structural variation

not detected by direct sequencing. Consistent with this view, 3 out of 5 patients with confirmed CNVs did

not carry any potentially causal variants in a sarcomeric or related gene, and a fourth patient only had a

variant of unknown significance in TNNT2.
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The patient with the most plausible single-nucleotide variant candidate (R495G in MYBPC3 ) also

carries a CNV in the gene LMNA. This is an interesting finding because LMNA has traditionally been

associated with DCM and not HCM [Vaikhanskaya et al., 2014; Pérez-Serra et al., 2015]. Furthermore,

mutations in LMNA also cause Familial Partial Lipodystrophy 2 (FPL2), one of a group of heterogenous

disorders that cause abnormal fat distribution. While DCM causing variants can occur across the gene, FPL2

variants are generally restricted to the the C-terminal [Lalitha Subramanyam, 2010]. Intriguingly, there have

been reports of patients who present with FPL2 and are subsequently found to also have HCM [Araújo-Vilar

et al., 2008; Chirico et al., 2014]. Information about the cholesterol levels or patterns of deposition and

other FPL2 criteria were not available for the patients studied here. Analysis of such clinical data would be

a natural way to investigate the potential role of LMNA in HCM further and to expand on recent work on

refining phenotypes of a subset of these patients [Lopes et al., 2014].
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Chapter 4

A novel method to deal with technical

artefacts in exome sequencing data

4.1 Introduction

Population Stratification, Cryptic Relatedness (CR) and GC bias are three of many possible reasons why

artefacts may exist in association studies based on High Throughput Sequencing data. This can confound

the association between marker genotype and disease. Various methods have been implemented to account

for this. One of the most commonly used involves performing Principal Component Analysis to identify

orthogonal axes (PCs) which explain most genetic variation, which typically corresponds to PS and CR,

then including the top PCAs as covariates in the regression to allow for any phenotypic variation caused by

these sources. This can be incorporated into a PCA, thereby controlling for PS. Association studies that

utilise pooled data, perhaps to increase study power, are more likely to suffer from technical artefacts/batch

effects. These originate from the heterogenous nature of such studies, whether the samples can be grouped

as cohorts that differ in their preparation, storage, sequencing technology etc. Spurious associations will

arise when case/control ratios differ between cohorts; at the most extreme when some cohorts are all cases

or all controls.
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I introduce the concept of Technical Kinship (TK). TK is defined as a similarity matrix estimated

on the SNP and INDEL missing/nonMissing matrix. Adapting the PCA approach of controlling for PS,

we attempt to control for this by removing ten ”technical” Principal Components in the LMM. This novel

idea fails, highlighting the fact that technical bias in the data renders a more subtle effect than PS. By

then using a LMM with a random effect with a correlation structure specified by the TK, I improve the

ability to control for SNPs/INDELS that are more likely artefacts than true positives. This reduction of

false positive inflation readily leads to more accurate association studies, thereby increasing the ability to

identify disease causing genes. This analysis is performed on the UCL Exome Consortium of ∼ 4500 disease

exomes which includes both Hypertrophic Cardiomyopathy (HCM) and Arrhythmogenic Right Ventricular

Cardiomyopathy (ARVC) samples.

Different HTS machines and chemistries have different RD profiles but in general low coverage is a

sign of low quality. This novel LMM is further refined by including a RD similarity matrix. The combination

of this RD matrix and the TK matrix yields an improved result when compared to the standard linear

regression with no such correction for artefacts.

4.1.1 Retinal Dystrophy - a motivating example

Retinitis Pigmentosa refers to a group of inherited retinal diseases that are characterised by photoreceptor

and retinal pigment epithelium degeneration [Testa et al., 2014]. Symptoms typically include night blindness,

visual field constriction and reduced electroretinographic waves (Figure 4.1). The gene Retinitis Pigmentosa

GTPase Regulator (RPGR) is known to be responsible for ∼ 8.5% cases of the autosomal dominant form

[Meindl, 1996; Churchill et al., 2013]. In a recent study we found a novel association between the gene

Tubulin Tyrosine Ligase-Like family member 5 (TTLL5 ) and 28 individuals with ”cone-first” retinal disease

and clinical features that were atypical for ATP-binding cassette, sub-family A (ABC1 ), member 4 ABCA4 -

retinopathy [Sergouniotis et al., 2014]. TTLL5 came second only to RPGR (Table 4.1). Two RPGR LOF

variants, c.1586 1589delAGAG and c.401delT, a nonsense c.1627G>T and a missense c.1627G>A were found

in the 88 cases examined (Figure 4.2).
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Figure 4.1: Color Fundus Photographs, Fundus Autofluorescence Images, and Foveal Optical Coherence
Tomographs of the Right Eyes of Subjects CD1, CD2, CD3, and CD5. Images from subjects CD1 (aged 35
years; A), CD2 (aged 45 years; B), and CD5 (aged 53 years; D) are highly similar. Fundus autofluorescence
imaging revealed a high-density concentric perifoveal ring surrounding irregular foveal autofluorescence in
subjects CD1, CD2, and CD5; outside this ring, normal signal was observed (A, B, and D). In subject CD3
(aged 46 years; C), hypoautofluorescent patches were noted in the fovea and parafovea; this was combined
with irregular autofluorescence outside the foveal region, suggesting more generalized retinal pigment ep-
ithelial dysfunction (C). Optical coherence tomography revealed abnormalities consistent with photoreceptor
loss; they were either confined to the foveal region (subjects CD1, CD2, and CD5) or observed throughout
the scan (subject CD3). Scale bars represent 200 m. Adapted from Sergouniotis,Chakarova, Murphy et al,
2014. I did not make this figure, included for illustration.

The support for these two genes is therefore well founded. However, when one looks at the third gene

in the list, C1R, it becomes more difficult to verify its association. C1R is one of the proteases involved in

the complement pathway, a vital part of the immune system [Rossi et al., 2014]. This fact alone fails to lend

credence to it being thought of as a real association. Upon further examination of this gene, it was found

that its entire signal was driven by the presence of the same LOF variant, chr12:7244369C>T, in 3 cases.

As explained in detail in the Methods section (4.4.5), a PCA was performed on the missing/nonMissing
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Figure 4.2: The number of presumed LOF alleles in both cases and controls (x-axis) and their proportions
in the 23 retinal dystrophy samples (y-axis). The area above the red line is the gene based p-value threshold
of p ≤ 10−4. I did not make this figure, included for illustration.

genotypes from UCL-ex to examine variant artefactual status. By including each of the PCs individually

as covariates in separate linear regressions of phenotype on genotype, it was possible to determine that

this variant is in fact strongly associated with the the 66th Principal Component (pvalue of 5.54e-25). The

carriers of this SNP are outliers on the relevant PCA plot (Figure 4.3). It should be noted however that as

Figure 4.4 illustrates, typically PCs after the 5th explain little of the total variance so the 66th is unlikely

to influence the results significantly.

The C1R signal was thus declared an artefact. This filtering methodology is not the norm and differs

largely from that employed by GATK (Section 1.8.3 on page 18). Be that as it may, it is an onerous approach

as it required manually examining the most significant genes. A more thorough and efficient approach is

therefore needed. That is one aim of this thesis.

Gene Position CaseCount ControlCount SKAT Binomial
RPGR chr23:38128893-38182760 4 2 0.000384659 2.57163e-06
TTLL5 chr14:76127372-76368547 4 5 0.000851088 2.05575e-05
C1R chr12:7187848-7244382 3 3 0.000422697 0.000164897
OR5AU1 chr14:21623166-21624176 2 0 0.003364555 0.000420963
CDH3 chr16:68679283-68732274 2 0 0.003117345 0.000420963

Table 4.1: Top 5 Retinal Dystrophy candidate genes based on a binomial test for excess of variants in 23
cases compared to 1098 controls.
.
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Figure 4.3: The first two principal components from the technical PCA. Highlighted are the locations of
samples that contain the minor allele for the variant causing the false positive (chr12:7244369).

4.1.2 Crohn’s Disease

The inflammation in Crohn’s Disease (CD) is a transmural form of IBD (occurs across the entire wall of

an organ). It can affect the entire gastrointestinal (GI) tract, from the mouth to the anus (Marshall et al.,

2010). The affected regions may be discontinuous throughout the GI tract, and may locally involve strictures,

abscesses or fistulas. Other symptoms include diarrhoea or constipation, abdominal pain, passing blood and

signs of clinical obstruction (Baumgart and Sandborn, 2007). Diagnosis of CD is made by endoscopy and

histology (Benevento et al., 2010). In addition to the incidence of CD varying from country to country, it

also fluctuates between ethnic groups. The prevalence is 2-4 fold higher in people of Ashkenazi Jewish origin

compared to non-Jewish Europeans [Kenny et al., 2012]. 800 such patients are included in UCL-ex.
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Figure 4.4: Principal Component Analysis of the Combined 1000 Genome Project and UCLex data for
missingness estimation. (A) The samples are the dots, coloured on a scale from dark to light blue where the
lighter the dot the higher the percentage of that samples SNPs that were not successfully called. (B) Same
samples, but now they are coloured based on what research group they came from. (C) Scree plot showing
the level of variance explained by each of the top 20 PCs.

70



4.1.3 Chapter aims

Dr. Vincent Plagnol created a pipeline that performs the initial alignment and variant calling of the UCL-ex.

The work here builds on this, extending the pipeline to perform quality control, filtering and case control

tests for all phenotypes within. This was all my work.

As mentioned already, HTS data can suffer from artefacts derived from many sources. These can

be more apparent in a dataset such as UCL-ex where samples from multiple sources are pooled and all have

rare diseases. This chapter is devoted to an attempt to create a novel statistical model that adapts classical

methods from population genetics to try solve this problem. Dr. Plagnol and Dr. Doug Speed assisted with

technical and statistical advice while the implementation and testing is my work.

4.2 Methods

4.2.1 UCL-ex Samples

Table 4.2 lists the breakdown of the samples, by number of samples and disease.

Phenotype #Samples
Inflammatory Bowel Disease 799
Huntington’s Disease 48
Ophthalmology 71
Ophthalmology 38
Ophthalmology 101
Ophthalmology 90
Ophthalmology 23
Ophthalmology 24
Ophthalmology 23
Dermatology 63
Sudden Cardiac Death 98
Keratoconus 12
Primary Immunodeficiency 128
Prion Disease 1112
Epilsepsy 164
ARVC 28
Bone Marrow Failure 184
Cone Rod Dystrophy 40

Table 4.2: UCLex Sample Information. Phenotype and number of samples
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4.2.2 Data quality assessment

As might be expected, combining samples that have been prepared differently is not without some difficulty.

For the most part, there is a high concordance rate. However, despite this, some SNPs will not be called in one

or more methods (Figure 4.5A). The mean failure rate within each group was also examined (Figure 4.5B).

Figure 4.5: Genotyping call failure rate (A) across all samples within UCL-ex and (B) by group.
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4.2.3 Attempting to identify samples with similar missingness patterns

Principal Component Analysis

A set of 5000 SNPs were chosen that are known to be well covered across all commonly used sequencing

technologies. This was used because it would enable the PS control to be free from any bias associated

with sample preparation differences. The 1000 Genome Project (1KG) provides a valuable resource of 1092

samples of known ancestry that have been sequenced with low-coverage genome and exome sequencing

[Abecasis et al., 2012]. These data were combined with the UCL-ex samples at these 5000 loci. A PCA was

then run on this subset. Generally, using the first two PCs is regarded as enough to adequately control for

large scale PS [Price et al., 2006]. By comparing these first two PCs, one can readily see the separation of

different populations (Figure 4.6). This PCA will be herein referred to as PCpop.

In an attempt to identify any patterns of missingness in the data, the genotype matrix was converted

to a missing/nonMissing matrix. Unlike PCpop, this was performed on all SNPs as the sample preparation

differences are of interest here. Regardless of exact genotype, if a SNP in a particular sample is called it was

recoded as 1. If it was not called it was coded as 0. A PCA is then performed on this matrix to identify

patterns of missingness (PCtech). This can be visualised in the same way as the PCpop (Figure 4.4A). As this

shows, the first two PCs of this technical PCA can readily discriminate between samples that exhibit different

missingness patterns. To understand this better, one can alternatively colour the samples based upon what

research group they come from (Figure 4.4B). There is clear structure visible in the data. Removing samples

based on this to create a more homogenous data set was attempted but the result is the removal of too many

samples to be acceptable.

Adapting ADMIXTURE

ADMIXTURE is a model based clustering method that is used in population genetics to probabilistically

assign samples to one of M populations, whether or not M is known. Traditionally, this is implemented on a

matrix of sample genotypes and samples with similar haplotypes clustering together. As per the Pima Indian
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Figure 4.6: Principal Component Analysis of the Combined 1000 Genome Project and UCLex data for
population estimation. The 1000G samples are yellow circles and the UCL-ex samples are shown as blue
crosses. The coordinates for the different populations of the 1000G samples are shown. The green box
demarcates the location of the Caucasian samples (CEU,TSI,GBR,IBS,FIN).

example mentioned in the introduction, restricting analyses to a closely matched population, as opposed to

performing it on all samples can yield better quality data. The hypothesis here was that if it was possible

to identify a group of samples (both cases & controls) that have a similar patterns of missingness, then this

would allow for the calculation of more accurate case control association statistics.

To achieve this, the missing/nonMissing matrix was first converted to PLINK format [Purcell et al.,

2007]. This was then supplied to ADMIXTURE, which was then ran 24 times, each time M was specified

as a unique integer between 1 and 24. 24 was chosen as the maximum number of theoretical groups based
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on the known number of batches of samples in UCL-ex (23). Figure 4.7 shows the estimated population

assignation for M = 1:8.

ADMIXTURE plot of Missingness in UCLex
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Figure 4.7: ADMIXTURE plot of the UCLex data illustrating the clustering of samples based on their
missingness patterns. The y-axis shows the clustering of samples based on differing values of M, the sub-
population limit for the ADMIXTURE algorithm. In each horizontal section, samples that are coloured the
same are predicted by ADMIXTURE to have similar patterns of missingness. The individual samples are
represented as vertical lines along the x-axis, with the grouping of samples based on their respective groups
of origin labelled.

75



4.2.4 Mixed Model Association Testing

Imagine a given cohort comprised of distinct case and control samples. It is routine to imagine that sample

preparations can differ between groups, at a rate higher than the within group variability (Figure 4.4).

This can introduce confounding when one progresses to case-control association studies. This can present

as not overly dissimilar to population stratification and cryptic relatedness, which are essentially the same

confounder [Astle and Balding, 2009].

When testing SNPs for association with a phenotype, the basic linear model is most commonly used

(Equation 4.1), where Y contains the phenotype, Z covariates, α fixed effects, Xj is the SNP being tested

and βj its effect size. The noise e is assumed to be normally distribution, e ∼ N(0, σ2
e)). This is typically

solved using a score test, which estimates β̂j and its standard error, then tests whether β̂j is significantly

non-zero.

Y = Zα+ βjXj + e (4.1)

Generally, the covariates might include clinical factors such as age and sex, as well as often including

top axes from PCA, in order to guard against population structure, as described above. In recent years,

mixed model association testing has become more popular, where a random effect term is added to the basic

linear model (Equation 4.2):

Y = Zα+ βjXj + g + e (4.2)

g is a random effect, with distribution N(0,Kσ2
g), where K is a specified kinship matrix, which is a measure

of pairwise similarity across individual. Most commonly, K = XXT /N , where the matrix X contains the

standardized genotypes for the N SNPs, in which case we have Equation 4.3, where I is is the Identity matrix.
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V ar(Y ) = σ2
gXX

T /N + σ2
eI (4.3)

Y = Zα+ βjXj +

N∑
l=1

γlXle with γjN(0, σ2
g/N) (4.4)

Written this way (Equation 4.4), it becomes clear that mixed model analysis is equivalent assuming

each SNP used when constructing the kinship matrix contributes to the phenotype with effect size γl. The

random effect g is designed to pick up patterns due to PS and CR, and can also increase power by accounting

for the contribution of causal variants away from the SNP being tested. Moreover, this approach avoids the

need to decide how many PCs to include.

The aim of this chapter is to consider alternatives kinship matrices. Therefore, instead of representing

genome-wide correlations across SNPs, we consider constructing K to reflect patterns of missingness and

variance in RD.

4.2.5 Controlling for Read Depth

Another manifestation of the differing results from different capture technologies, or indeed from something as

specific as the discrepancies between one lab’s standard protocol to anothers might be a regional fluctuation

in RD. For variant calling, particularly CNV identification, regional RD can be an important determinant of

whether or not a call is made. However, most HTS technologies utilise a Polymerase Chain Reaction (PCR)

amplification step, which introduces a bias in the library [Aird et al., 2010]. This skewed representation of

reads can hinder accurate calling. A mostly effective way to control for this is to simply remove variants that

have a depth below a given threshold. This is standard practise for many association studies [DePristo et al.,

2011], with Picard (http://broadinstitute.github.io/picard/faq.html) being a widely used implementation.

It has been recently shown though that this practise can introduce a bias, one that increases with RD [Zhou

et al., 2014]. One goal of this project is therefore to attempt to refine Equation 4.3 to incorporate a correction
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for RD. The logic is that one can create a ’Read Depth Kinship’ matrix so that including it in the LMM

will control for RD without the need for filtering. This is similar to the methods of calculating traditional

kinships based on genotype in order to estimate and therefore control for ancestry.

4.2.6 Single Variants

To clarify, the models listed here are not all part of the final model used in the results section; they are

instead included to discuss the process of model development.

These models were created and implemented with the help of Dr. Vincent Plagnol and Dr. Doug

Speed.

Model 1 - Establishing a baseline with a standard Fixed Effect Linear Regression

Equation 4.5 was the basic model run for SNP j. Here, the covariates (Z) are PCpop, the fixed effects

Principal Components. Figure 4.8A illustrates the distribution of resultant pvalues. This clearly displays a

false positive inflation, highlighting the need for correction.

Y = PCpopα1 + βjXj + e (4.5)

Model 2 - Adding Technical Principal Components to the Linear Regression

In the field of population genetics, the first two principal components are often used in a model to control for

population stratification. The technical PCs were used here in a similar way to try to control for technical

artefacts/bias. To that end, the top 10 PCtechs were added as covariates into the model (Equation 4.6).

This did not have a noticeable correction effect as shown by the pvalue distribution in Figure 4.9.

Y = PCpopα1 + PCtkα2 + βjXj + e (4.6)
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Figure 4.8: QQplots of Single Variant LMM with technical kinship correction on the PID cohort with the
rest of UCL-ex as controls. The threshold of ”common”, in terms of observed counts of a particular variants
minor allele, was varied to determine the least stringent useful cutoff.

Model 3- Linear mixed model with traditional kinship matrix.

As introduced in Section 1.7, SNP kinship matrices in LMMs can control for many confounders. Given that

the PCs in the previous section did not work, I then tried Equation 4.7 which includes such a kinship matrix,

gSNP .

79



Figure 4.9: QQplots of Single Variant Linear Regression with ten technical Principal Components included to
control for technical artefacts. This analysis was performed on the Sudden Cardiac Death (SCD) , Primary
Immunodeficiency (PID) and Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) cohorts. The
”base” QQplots include no artefact correction. These are compared to the ”tech” models that do include
these covariates.

Y = PCpopα1 + βjXj + gSNP + e with gSNP ∼ N(0, XXT /Nσ2
SNP ) (4.7)
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Model 4 - Adding the technical kinship matrix into the Linear Mixed Model

Essentially, Equation 4.8 differs from Equation 4.5 solely by replacing the traditional SNP kinship Matrix

with the TK kinship previously described. The theory behind this is that SNPs that are artefacts will be

explained by TK and therefore will not retain statistical significance as they will be controlled for. In theory,

this should perform better than Equation 4.6 at correcting for artefacts as the kinship matrix will explain

all the variability attributable to missingness.

Y = PCpopα1 + βjXj + gTK + e with gTK ∼ N(0, TKσ2
TK) (4.8)

Model 5 - Addition of Read Depth Kinship Matrix.

The final model builds upon Equation 4.8 by adding a RD Kinship Matrix to further control for the data

artefacts. The log of the raw RD values was used to gain a more sensible representation and in an attempt

to reduce its correlation with TK. Ten SNP PCs and five Hapmap PCs were further included to eliminate

PS, creating the final model shown as Equation 4.9. SNPs that had a MAF of ≥ 1%, missingess rate of

≤ 20% and a Hardy-Weinberg Equilibrium (HWE) pvalue of ≥ 0.001 were kept for this analysis.

Y = PCpopα1 + βjXj + gTK + gRD + e with gTK ∼ N(0, TKσ2
TK) and gRD ∼ N(0, RDσ2

RD)

(4.9)

4.2.7 Computational cost considerations

As discussed in Section 1.7, exact solving of the mixed model for each SNP is computationally feasible with

just one kinship random effect. However, we progress to situations with more than one kinship such as

Equation 4.9 in which case it is necessary to use the approximation used by GRAMMAR.

Performing a GWAS on a dataset the size of UCL-ex, with 4500 WES’ at the time of writing, is
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computationally demanding. The burden of such LMMs are well known in the literature, as the computation

time increases to the scale of n3 Zhang et al. [2010]; Yu et al. [2006]. This was mentioned in Section 1.7.

Throughout this thesis, PCs were used instead of full Kinship matrices where possible as they are far less

computationally demanding while still offering adequate correction for PS.

LMMs do however offer the ability to correct for population stratification and cryptic relatedness

alongside NGS artefacts by Variance Component Estimation (VCE). VCE has a long history in genetics, from

its origins in animal breeding to Quantitative Trait Loci (QTL) analysis [Amos, 1994; Almasy and Blangero,

1998]. Estimating these parameters is intensive in its own right, as iterations are required for each marker

[Gilmour, A; Thomson, R; Cullis, 1995]. 2007 saw the introduction of GRAMMAR, an expedited solution to

this problem [Aulchenko et al., 2007]. This combines a mixed model analysis with a basic linear regression.

This divides the analysis into at least two steps; firstly the VCE without marker data. The residuals from

this step are then used as a novel phenotype for a classical association test with linear regression. In our

case, the initial step uses Restricted Maximum Likelihood (REML) to estimate the variance explained by

two Kinship matrices, ”RD” and ”TechnicalKinship”, and any population stratification parameters that are

additionally included (Equation 4.10). The residuals from this, now free from artefacts associated with RD

and informative missingness, are used in Equation 4.11.

Y = Zα+ gRD + gTK + e (4.10)

i.e. Equation 4.4 without the SNP Xj , then use the resulting estimates of the fixed and random

effects, α̂ and ĝ respectively, to compute the ”residual phenotype” (Equation 4.11). This phenotype is

compared against the original phenotype in Figure 4.10. Finally, the residuals Y ∗ can be used as the

phenotype in Equation 4.1.

Y ∗ = Y − Zα̂− ˆgRD − ˆgTK (4.11)
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Figure 4.10: Comparison of phenotype to its residuals for a given trait in UCL-ex. The X axis represents the
case control (1/2) phenotype while the Y axis is the ’Residual Phenotype’ as discussed for use in Equation
4.11.

4.2.8 Gene based tests

Variants with a MAF of ≤ 1% are not tractable to single variant approximations such as Equation 4.6 due

to a lack of statistical power to detect a signal. Various methods were used during this work in an attempt

to glean sensible data from these less tractable variants. Different forms of Gene based tests were used.

Here, the hypothesis was that one could first remove variants that are associated with the technical PCs,

PCtech1:10. This would remove variants that are thought to be technical artefacts. To do so, each variant

was regressed as in Equation 4.12. This is an exclusion test, as a significant pvalue (p <0.0001) indicates

that there is a significant association between the variant and PCtech1:10. Therefore such associated variants

were removed from further analysis.

SNP ∼ Y + PCpop1:2 + e (4.12)

SNP ∼ Y + PCpop1:2 + PCtech1:10 + e

Rare (MAF <0.3%) and non-synonymous, LOF or splicing variants were retained from the variants
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that remained after the PCtech filtering of Equation 4.12. MAF was defined separately based on the 1000G

samples and on a random quarter of the UCL-ex controls (which were not used for subsequent analyses).

This filtered list of variants was then subjected to both SKAT and a basic binomial test that tests for an

excess of variants in cases compared to controls.

4.3 Sudden Cardiac Death

4.3.1 SCD-UCLex Single Variant Association Tests

68 samples diagnosed with Sudden Cardiac Death were included in the UCL-ex consortium. When one has a

low number of cases like this, an improperly designed study may remove any possibility of retaining enough

power to detect SNPs of weak or moderate effect. In general, case control studies using unrelated samples

have more power than family based studies, in part due to the increased ease of obtaining large numbers of

samples [Risch and Teng, 1998]. However it has been shown that including families with multiple affected

siblings in a case control of mostly unrelated individuals can further increase the power because it enriches

the study with disease alleles [Risch, 2000]. This may be more true in polygenic diseases such as SCD than

in monogenic diseases [Li et al., 2006]. Much work has been done to try identify the optimal study design,

using different combinations of classical tests such as the Transmission Disequilibrium Test [Spielman et al.,

1993] with linkage and association studies [Fingerlin et al., 2002]. This was further improved with likelihood

based strategies, such as a combined likelihood approach that multiplies the likelihood contributions of

families and unrelated samples together [Nagelkerke et al., 2004]. Even more recently, it has been shown

that by combining aggregated haplotype weighted counts from case control and trios under a generalised

linear model, you can have a more powerful and cost effective study than other version alone [Wen and Tsai,

2014].

This cohort includes a family whose pedigree is shown in Figure 4.11). 2 case control tests were

performed on this cohort, one with the family excluded (everyone except the proband) (Table 4.3) and one

with them included (Table 4.4). This was done to ascertain if inclusion of family members substantially
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increased the power to detect real signal and did not simply highlight the existence of private mutations of

no clinical consequence. The related QQ plots are in Figure 4.12. This does not display a good correction

for PS with a large level of inflation remaining so the results may be artefactual.

Figure 4.11: Pedigree of the J wave Family discussed in relation to Table 4.4. A blue line underneath the
phenotype indicates that this sample was present in this study. The sample highlighted with the red box is
the proband

rsID SNP Gene Fisher LRp LMMp OR #Hom.SCD(#n62) #Hom.ctrl(#n4268) #Het.SCD #Het.ctrl
NA c.2084 2107del C10orf71 1.74E-15 1.00E-16 1.00E-16 1.73E+01 6 22 7 8
NA c.2093 2094insCACACG C10orf71 1.05E-16 1.00E-16 1.00E-16 2.03E+01 6 22 7 8
NA c.185C>T OR10G4 2.24E-02 3.32E-01 1.51E-11 8.91E+01 0 4 1 34

rs11538191 c.-398C>T C12orf44 1.00E+00 1.37E-02 4.56E-09 0.00E+00 0 3 0 18

Table 4.3: Sudden Cardiac Death(SCD) Single Variant Results without Jwave family. SNP details the
position of the tested variant (hg19). Gene is the HUGO name for the gene in which the SNP resides.
FisherP is the pvalue from Fisher’s exact test. LRp is the Linear Regression pvalue with no covariates or
kinship matrices. LMMp is the pvalue from Equation 4.9. OR is the risk odds ratio. ’Homs’ are homozygotes
for the minor allele, while ’Hets’ are heterozygotes

rsID SNP Gene Fisher LRp LMMp OR #Hom.SCD(#n68) #Hom.ctrl(#n4268) #Het.SCD #Het.ctrl
rs141832071 c.3463C>G FOCAD 9.17 ∗ 10−4 ≤ 1. ∗ 10−16 ≤ 1. ∗ 10−16 69 0 0 2 3

NA c.209C>T ZNF323 4.51 ∗ 10−19 ≤ 1. ∗ 10−16 5.52 ∗ 10−13 NA 1 0 7 0
NA c.237G>T ZNF323 4.46 ∗ 10−19 ≤ 1. ∗ 10−16 6.14 ∗ 10−13 NA 1 0 7 0
NA c.781C>T OR5V1 6.41 ∗ 10−19 ≤ 1. ∗ 10−16 7.03 ∗ 10−13 NA 1 0 7 0

rs11466802 c.2413G>A ADAM19 7.29 ∗ 10−4 ≤ 1. ∗ 10−16 3.23 ∗ 10−12 90 0 0 2 2
NA c.591A>G FSTL1 6.17 ∗ 10−15 ≤ 1. ∗ 10−16 4.01 ∗ 10−12 NA 0 0 7 0

rs146280894 .285G>A CEP97 6.55 ∗ 10−15 ≤ 1. ∗ 10−16 5.4 ∗ 10−12 NA 0 0 7 0
rs376775426 c.333C>T BTG2 7.32 ∗ 10−15 ≤ 1. ∗ 10−16 7.18 ∗ 10−12 NA 0 0 7 0
rs267603590 c.306G>A HSD17B6 1.26 ∗ 10−12 ≤ 1. ∗ 10−16 8.8 ∗ 10−10 NA 0 0 6 0

Table 4.4: Sudden Cardiac Death(SCD) Single Variant Results with Jwave family. SNP details the position
of the tested variant (hg19). Gene is the HUGO name for the gene in which the SNP resides. FisherP is the
pvalue from Fisher’s exact test. LRp is the Linear Regression pvalue with no covariates or kinship matrices.
LMMp is the pvalue from Equation 4.9. OR is the risk odds ratio. ’Homs’ are homozygotes for the minor
allele, while ’Hets’ are heterozygotes.
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(a) These plots illustrate the case control analysis of only unrelated cases and controls

(b) The J wave family is included in the case control analysis shown here.

Figure 4.12: Sudden Cardiac Death (SCD) single variant mixed model association results. QQplots of the
uncorrected (a) and corrected (b) SCD analysis for variants with a MAF of ≥ 1% are shown.
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4.3.2 An enhanced model for gene based correction of technical artefacts

As mentioned previously, Equation 4.9 on page 81 worked well for at least some traits and for variants with

a MAF of ≥ 1%. This left rare variants uncorrected. Power to detect and correct rare variants would be

gained by pooling variants into a region based testing procedure. For this, grouping variants based on what

genes they lie in seems intuitive biologically. For all sequenced genes, the SCD samples were compared to

the rest of UCL-ex with SKAT and a Binomial test (further methodological details in Section 4.2.8). Figure

4.13 shows that this region-centric approach improves the distribution over the single variant scores shown

in Figure 4.12. The most significant genes, ranked by Binomial pvalue are shown in Table 4.5. This table is

dubious as none of these genes have been reliably associated with SCD previously: The SCD cohort remains

difficult to interpret, so a different approach is needed.

Gene Position Case Counts(n=90) Control Counts(n=2,236) SKAT Binomial

OR5V1 chr6:29323076-29323905 10 7 3.011447e-15 1.831340e-12
PCDHGA9 chr5:140782689-140784943 13 34 1.934987e-10 3.476049e-09
PHKA1 chrX:71800901-71933724 11 1 1.430687e-10 1.212894e-08
ZNF280A chr22:22868366-22869937 15 31 2.629286e-10 1.496724e-08
RSAD2 chr2:7017943-7027279 9 13 5.225212e-14 2.682962e-08

Table 4.5: Top 5 Sudden Cardiac Death candidate genes based on the binomial test. The criteria for retaining
variants are: GATK Variant Quality score of PASS, MAF (MAF of ≤ 0.3%) , ≤ 10% missingness across all
samples, non-synonymous, LOF or affecting splicing.

Methods

In an effort to increase the improvement, two alternative methods, similar to each other, were implemented.

The single variant permutations of Figure 4.14 reveal the power of this approach. To create a null distribution

based on our dataset, phenotype status for all samples was permuted using the software LDAK (v3.0). This

entails retaining the same number of cases and controls, but altering randomly which samples are assigned

as cases and controls, respectively. While such permutations will not improve the low resolution caused by a

small sample size, it will remove the technical artefacts that are associated with case control status. A 100

such permutations were run to create a null distribution relevant to the data. This was compared to the real

pvalue from both the basic LMM and Equation 4.9. The QQplots from a random permutation, and both
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Figure 4.13: SKAT Gene based tests for the PID, ARVC and SCD cohorts. Each circle is the gene based
pvalue from the SKAT test. QQplots compare the observed distribution of pvalues to the expected Chi
Squared distribution. Before the pvalue for each gene is calculated, some variants are filtered/removed. On
the left graphs, the criteria for retaining variants are: GATK Variant Quality score of PASS, MAF (MAF
of ≤ 0.3%) , ≤ 10% missingness across all samples, non-synonymous, LOF or affecting splicing. (B) For the
graphs on the right, the same criteria are used but additionally variants are filtered based on the technical
PCA. The first ten principal components (PC) are included in the linear regression as covariates. SNPs
that are associated with the technical PC are removed. The percentage of SNPs/INDELs removed across
all genes is included in the figure titles.

non-permuted tests are shown in Figure 4.15. As this shows, Equation 4.9 goes some way to correcting the

test, resulting in data that is somewhat interpretable.

TK was included in the mixed effects model of Equation 4.4. Here, TK is calculated only on the
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Figure 4.14: Association results for SNPs/INDELs with PID. The -log10 (y-axis) of the pvalues from 20
permutations (grey), Linear Regression (red) and Linear Mixed Model with technical kinship (blue).

SNPs in the gene of interest. The likelihood ratio statistic −2log(L(Y |σ̂2
e , σ̂

2
g , TK)/L(Y |σ̂2

e , 0, TK) has an

approximate null distribution χ2(Equation 4.3)/2. σ2
e is calculated individually for the numerator and the

denominator. Restricted Maximum Likelihood (REML) then derives the model likelihood from Equation

4.3, an efficient process when you have more SNPs(N) than individuals (n). On a gene based level however,

n is typically greater than N, so to expedite model likelihood calculation, Equation 4.4 is used to abrogate

the need for K calculation (Speed et al, in preparation).

To identify candidate genes from this, some pvalue comparisons were made. Firstly, a gene is unlikely

to be truly disease causing if it has a pvalue within the range of pvalues seen in the permutations. Table

4.6 therefore includes the minimum permuted pvalue for each gene. LRRC37A2 has an uncorrected pvalue

of 2.40e-30, but the corrected pvalue is less extreme than the permuted pvalue, thereby rendering it a false

positive. The gene Phosphodiesterase Interacting Protein 4 (PDE4DIP) has an uncorrected pvalue of p

<1e-40. Phosphodiesterases regulate cyclic nucleotide signalling, and are therefore of clinical importance
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Figure 4.15: Comparing the distribution from different Sudden Cardiac Death Gene based tests.

[Jeon et al., 2005]. PDE4DIP/MMGL4 has been reported to phosphorylate MYBPC3 [Uys et al., 2011].

Variations in MYBPC3 are known to confer an increased risk to developing Hypertrophic Cardiomyopathy.

While this would place PDE4DIP as a likely novel gene for SCD risk, the pvalue when TK is included

changes to 1 (while the minimum permuted pvalue is 7.97e-05). Even if PDE4DIP is in actuality a disease

causing gene for SCD, this corrected pvalue of 1 means that any real signal correlates strongly with the batch

effect removed by TK. To determine if it is a real signal or a false positive, the batch effect would have to

be non existent. This could be achieved, for example, by preparing cases and controls in entirely the same
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fashion. This would include everything from DNA extraction, to sample storage all the way to sequencing

and processing. The same can be said for RIMS3. The remaining genes in this table retain significance

with the inclusion of TK, meaning that it corrects for batch effects. When their permuted pvalues are less

significant than the corrected pvalues, then that is evidence for a true association.

Gene Position Pvalue.no.correction Pvalue.with.correction Min.Permuted.pvalue
SPACA5B chr23:47990038-47991995 1 1.26e-08 3.33e-06
FAM58A chr23:152853382-152864632 0 1.26e-08 4.26e-05
SSX6 chr23:47967366-47980068 1 5.88e-08 1.18e-06
RIMS3 chr1:41086351-41131324 1 2.06e-06 1.11e-07
PROKR2 chr20:5282685-5295015 3.94e-01 2.51e-06 2.93e-03
LRRC37A2 chr17:44590075-44633014 2.40e-30 2.04e-05 1.91e-06
PDE4DIP chr1:148889463-149033016 <1e-40 1 7.97e-05

Table 4.6: Top 5 Sudden Cardiac Death candidate genes based on the gene based technical kinship corrected
pvalue. 98 cases were compared to 4,236 controls.

4.4 Results

4.4.1 Initial data quality assessment

The 4334 exomes were stored in a 4334 * 884887 matrix (Samples * variants). All variants were either exonic

or altered splicing. An initial quality check examined the call rate across all SNPs (Figure 4.5). As expected,

the vast majority had a failure rate of <20%. The call rate varied from group to group however, over a range

of 2-25% (Figure 4.5B).

4.4.2 Principal Component Analysis

A PCA was performed on the ∼ 5000 SNPs that are known to be well covered across all commonly used

sequencing technologies. This was used because it would enable the Population Stratification (PS) control to

be free from any bias associated with sample preparation differences. The first two Eigenvectors of this PCpop

were readily able to discriminate population substructure in UCL-ex by comparing it against the samples of

known ethnicity from the 1000G project (Figure 4.6). While the majority of UCL-ex was determined to be

of Caucasian origin, as expected, some were more likely African or Asian. Such population substructure was
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controlled for in the association testing used here by including the top PCs as covariates in both the Linear

Regression and the Linear Mixed Model.

In addition to the PCpop approach, a PCA was performed on the missing/nonMissing matrix of

all variants (PCtech). Figure 4.4A shows the first two PCs’ ability to differentiate samples based on their

patterns of missingness. The samples are the dots, coloured on a scale from light to dark blue where the

darker the dot the higher the percentage of that samples SNPs that were not successfully called. The general

trend from this is that samples with similar numbers of NA SNPs/INDELs cluster together. Figure 4.4B is

the same plot except for the fact that samples are coloured based on their research group of origin. This

reinforces the idea that technical artefacts can be highly associated with case control status. Figure 4.16A

illustrates this further by including just the samples whose sequencing chemistries are known. Samples from

different traits readily cluster together when viewed by Technical PCs. Figures 4.16B and C show how by

overlaying these well characterised samples across all of UCL-ex, you can reliably predict the HTS platform

used. The same method was applied to a RD matrix. Figure 4.17 shows the PCA plot from this. It is

relatively uninformative as it does not offer much discrimination. The Scree plot in the lower section of this

Figure shows that there is little variance (≤ 5%) explained by PCs and below. By comparing these Figures,

it shows that read depth is not as useful a determinant as missingness in identifying clusters in the data.

4.4.3 ADMIXTURE based sample separation

ADMIXTURE, the model based clustering approach to identifying population stratification, was used here

to see if it was possible to identify a group of samples (both cases & controls) that have a similar patterns of

missingness. This may then allow for the calculation of more accurate case control association statistics by

filtering controls so that they matched the cases as closely as possible. This programme was run numerous

times; each time the parameter M that governed the desired number of subpopulations for ADMIXTURE to

resolve was varied from 1 to 25. Values of M ≥ 4 start to show signs of empty resolution (Figure 4.7). Similar

to Figure 4.4B, this ADMIXTURE plot highlights the Prion samples as outliers. A case control study that

naively used all samples in UCL-ex could be affected by this grouping. Variants may be erroneously called as
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(a) Missingness PCA on a subset of UCL-ex samples.
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Figure 4.16: Identifying clusters of samples based on sequencing capture technique used during preparation.

93



●

0.00 0.05 0.10 0.15 0.20

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

DepthPCA Wed Aug  5 15:32:30 2015

PC1

P
C

2

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●
●
●●
●
●●●●●●●
●
●●●●
●●●
●●●

●
●●

●●
●●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●● ●
●

●
●

●
●●

●●
●●●

●

●

●

●●

● ●

●

●●●
●

●

●●

●
●

●
●

●
●

●

●●

● ●●
● ●●

● ●

●

●●
●

●

●
●

●

●●
●

●
●

●

●
●
●

●
●

●●

●●

●
● ●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●
●

● ●●
●

●
●● ●

●
●

●
●

●

●●

●

●

● ●
●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●
●

● ●●
●●

●●
●

● ●●

●
● ●● ●

●

●●●●

●

● ●
●

●
●

●

●

● ●
●

● ●
●

●●

●

●
●

●

●
●

●●

●●
●

●
●●

●●

●
●

●

●

●●
●

●

●
●

●
●

●
●

●
●

●
●

●●

●
●

●

●●
●

●

●
●

●
●●

●●
●

●●
●

● ●●

●
●

● ●●●●
●

●●

●
●

●●

● ●
●
●

●
●

●●

●

●
● ●

●

●
●
●●

●

●
●

●
●● ●

●
●●

● ●

●●● ●●● ●●●●● ●● ●●● ●
●

●● ●●●● ●●●●●

●

● ●●●●●●●●● ●●●●●●● ●●●●
●

●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●
●●●● ●●●●●● ●●●●●●●●●● ●●●

●
●●●●● ●●●●●●●●●●● ●● ●●● ●●

●
●●● ●

●
●●● ●● ●● ●●

● ●●● ●●● ●
● ●● ●●●●●● ● ●● ●●●●

●
●●●●●

●
●●●●
●

●●●●
●

● ●●
● ●●●● ● ●●

●
● ●

●

●
● ●●●

●
●●

●
●●● ● ●

●

●●● ● ●● ●●● ●●●●●●●●●●●●●● ●●●●●●●

●

●●●●●●●●
●

●●●●●●●●●●●●●●●●● ●●●●● ●● ●●●● ●
●

●●●●●
●●●● ●●●●●●●●●●●●●●●●
●●

●
●●●●●●●

●●● ● ●
●●●● ●●● ●●● ●●●●●● ●●●●● ●●●●●●●●●●●●

●
●●●●●●●●●●●● ●●●●

●●●● ●●● ●●● ●● ●●●● ●●●● ●●●●●●●●●●●●●
●

●
●

● ● ●●●●●● ● ●● ●●●●● ● ●●● ●●
●●●●●●●●●●● ●●● ●●●●● ●●

● ●● ●●●●●●● ●●
●

●●●●●● ●
●●● ●
●
●● ●● ●●●●

●
●● ●● ●●●●●●●●● ●●●●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●●
●●

●

●

●
●●

●●

●●

●

●
●
●
●

●

●

●●
●

●

●●

●

●
●

●

●●
●

●

●●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●●
●

●● ●

●●
●

●
●

●

●

●
●
●●
●●
●

●
●

●

●●
●

●●●●●

●●
●

● ●
●

●●●
●

●● ●● ●●●
●● ●

●●●● ●
●

●●●
●

●●
●

●
●

●
●

●●●● ●●● ●●● ●
● ●
●●●●●● ●●●●●●

●
●●●●●●●●●●●●● ●●●●●● ●

●
●● ●●

● ●●●
●●●●●●● ●

●●●●

●

●
●●

●●●
●

●

●
●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●●
●

●

●

●
●

●

● ●●●

●

●

●●●●●●●●●●●●●●●● ●● ●●●
●

●●●● ●
●●●●●●●●●●

●
●

●

●●● ●

●

●
● ●●

●
●●

●
●● ●●●●●●

●● ●●●
●●●

● ●
●
●
●

●

●
●

●
●●
●

●●●●● ●●●●● ●●●●● ●●●●●●
●●●

●
●●●●●

●●●●●● ●
●●●●● ●

●
● ●●●●
●

● ●
●●●

●
●●●

● ●● ●●●
●

●
●

●

●●●●●●●●●●●

●

●

●●●
●

●●
●
●

●

●

●
●

●

●

●
●

●

●

●●●●

●●

●●●
●
●●
●●●●
●
●
●●
●●●●●●●●●●●
●●●
●●●●●●●
●
●●
●
●
●
●
●●●

●●

●

●
●
●

●

●
●
●

●
●
●

●

●

●●

●●
●

●● ●●
●●

●
●

●

●

● ●
●

●
●

●●●

●●
●
●●●

●

●●
● ●

●●● ●
●
●

●
●●●

●

●●
●●●
●

●

●

●

●
●

●

● ●

●

●
●●
●

●
● ●●
●

●●
●

●

●

●

●
●●
●
●●

●
●
●

●

●
●

●

●

●
●

●

●

●
●●
●

●
●●
●

●

●

●●
●
●●

●

●
●

●

●

● ●

●

●

●
●●

●
●●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●●
●●
●

●
●
●●●

●●

●
●
●
●●
●●●

●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●●●●

●

● ●

●

●●●

●
●

●

●●

●
●

●

●

●

●
●

●
●
●●●●

●

●
●

●●

●●
●

●
●
● ●

●
●●●●●● ●

●●
●● ●●

●
●

●
●
●
●

●
●
●
●
●

● ●
●

●●●
●

●●
● ●

●●
●

●●
●

●
●● ● ●●●

●●

●
●
●

● ●
●

●●●●
●

●
●●●●

●●
●

● ●
●

●

●
●

●●
●●●

●●●
● ●●●

●
●

●
●

●●●●●
●●●●●
●

● ●●●
●

●
●● ●●

●
●● ●●

●● ●●
● ●

●

●●●●●●●
●●●

●●●

●
●

●
●
●●

●
●

●
●●

●
●

●●
● ●

●
●

●

●

●●●
●

●●

●

●
●●
● ●

●●●●●● ●●●●●●
●

●● ●●
●● ●●●●●● ●

●●

●

●●●
●●

●
●●●
●
●●

●
●●●●●
●

●

●
●

●

●●
●●
●●

●
●●●
●
●

●●
●●●● ●●●●●●

●●
●

●
●

●●●●●●
●
●
●●●●●●●●● ●

●
●●

●
●
●●

●

●●

●

●●●
●

●●

●

●

●●●●●● ●●●●
●●

●● ●● ●●
●●● ●●

●
●
●●●●●●● ●

●
●

●●

●

●

●
●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●

●
●●●●●

●
●

●
●

●

●

●●●●

●

●

●

●

●●

●

●●

●

●

●
●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●
●●

●●

●●●

●
●
●

●

●

●

●
●

●

●
●

●●●

●

●
●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●●

●
●

●

●

●

●●
●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

● ●
●

●●

●
●

●

●

●●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●
●●

●

●●
●

●●

●

●

●

●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●●
●

●
●
●

●●

●
●

●

●●●
●

●
●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●●
●
●●

●
●●

●

●●

● ●

●
●

●

●

●

●●
●

●●
●●●

●

●

●
●

●

●
●

●
●●

●●●●

●

●
●

●

●●●●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●
● ●

●
●

●
●●

●●●
●
●●
●

●

●
●

●
●
●●●

●
●

●●
●
●
●●

●
●
●●●

●
●

●
●●●●●

●●

●●

●
●

●
●

●●●
●●
●●●●

●
●

●

●●●●
●

●
●●

●●●

●

●●

●

●●
●
●

●

●
●●●
●
●
●●●
●●
●
●●

●

●
●●●●
●●

●
●●
●●

●
●

●
●

●

●
●
●

●●

●●●●●
●
●

●
●

●●

●
●
●●
●
●●
●●
●●

●

●●●●●●●
●
●
●
●●
●
●●●
●●●●
●
●

●
●●●

●●
●●●
●

●●●
●
●

●

●

●●●●

●
●
●

●
●●●●●●
●●
●
●
●
●●

●
●

●

●●
●●●●●●

●
●
●●
●●

●●●

●

●

●

●●●
●

●

●●●●
●●

●

●●
●

●
●●●●●●
●

●●
●

●● ●●
●●

●●●●●●
●

●
●
●●● ●

●

● ●
●

● ●● ●●●● ●●●●
●

●
●

●●●●●●●●●●●●●●●●
●●●
●

●●●
● ●●●●

●
●●●

●●● ●
●●●●●
●

●
●

● ●●●
●●●● ●●
●●●

●
●●●

●●●●●●
●

●
●●
●

●●●
●

●●●●●
●

●●●● ●
●

●
●●●●

●●
●●● ●

●●
●●

●

●

●●●●●●
●

●●●●●
●●

●
●●●●●●●●● ●●●●

●● ●●●●●●●
●

●
●●
●
●●●●●●

●●●●●● ●●
●●

●●●●
●●

●●●
●

●●
●

●
●

●
●

●
●

●●●●●
●

●●●●●
●

●●●●●●●
●●●

●
●●●●●

●● ●●●●
●

●●● ●● ●●
●

●●
●●

●● ●
●●

●●●
●●

●●●●
●●● ●●

●●●
●

●●●●●●●●●●● ●
●●
●

●●●●● ●●
●

●●
●

●●
●

●●●●
●● ●●●

●●● ●●●

●

●●
●

●●●●● ●●
●●●●●●●

●●● ●●●●●
●

●●● ●●
●●●●●

●
● ●●

●●● ●●●●●
●

●
● ●●●

●●●●●●
●

●●●●●●●
●●●●●

●●●●●●●●●
●

●
●●●●●

●●●●●●●●
●●●

●
●●● ●●

●
●●

●●
● ●

●●
●●●●● ●●

●●●●
●●

●●●●●
●

●●●
●
●●
●●●

●
●●●● ● ●

●●
●●

●
●●●
● ●●●
●

●
●●

●●
●

●
● ●●●●

●●
●

●●●● ●
●●

●● ●●●
●●

●●●●●●●
●

●●●●●●●
●

●

●●● ●●●●●
●●

●●●
●●●●●●●●●●●●●
●●●●●●●●●

●●●●
●●●

●●
●

●
● ●●●●●

●●
●●●

●●●●●●
●

●
●

●●●●
●●●

●●
●

●
●●●●●●●●●

●●
●

●
●

●●●●●
●

●
●●●

●
●●

●●
●●●●●
●

●
●●●● ●●
●●●●●●●

●
●

●●●●●●
●●

● ●●
●

●●●●
●

●● ●●
●

●

●●●●●
●●●

●
●●●●

●●
●●

●
●●●●●●●●●●●●
●

●●●●●
●

●●●●●
●●●

●●●●●●●●●●●
●

●
●●●

●
●

●●●●●
●●●●
●

●
●

●

●
●●

●●●●
●

●●●●●●●●●
● ●●
● ●●●●●●

●●
●

●

●●●● ●●
●

●
●● ●●●

●
●●●●●
●●● ●

●
●●●●
●

●

●●
●●

●●●

●

●●●
●●●●●●●●

●

●●●●

●

●●●●
●

●●●●●
●● ●●●

●

●
●

●

●●●●
●●

●●●●●
●
●●
●
●●●
●●
●●●●●
●
●●●
●
●●
●
●●
●
●
●
●
●●
●●
●

●●
●●●●
●
●●
●
●
●●
●●●●●●●●●
●●●●
●●
●●
●
●●●

●
●●
●

●●

●

●●●

●

●

●●

●

●
●●

●●
●

●●
●●

●

●
●●●●

●●
●
●●

●

●
●

●●
●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●

●

●
●

●
●●●

●

● ● ●●
● ●●●●

●●
●

●

●●●
●

●●
●
●

● ●
●

●
●

●●

●●

●
●

●

●●●
●

●
●●●●

●

●
●●●●●●●

●●●●
●

●

●

●

●●

●●●
●

●

●

●

●
●
●
●●
●
●●

●

●●

●●
●
●●
●
●
●

●
●
●●

● ●●

● ●

●

●●●●●●●●●●●●●●●●●●●●●

●●

●

●
● ●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●● ●●●
●
●

●
● ●

●

●

●

●
●●

●

●

●●

●

● ●●●
●

● ●
●

●

● ●
●

●

●●
●

●

●
●

●

●

●
●

●
● ●●

●
●

●

●
●

●

● ●●
●

●

●

●

●●
●
●

●

●●

●

●

●
●

●●

●

●
●

●●

●●

●●●●

●●

●

●

●
●●

●●
●●

●●●●●●●
●
●●●●●
●●

●
●

●●
●

●
●
●●

●

●

●●

●●
●

●
●

●
●

●
●● ●

●

●

● ●

●●
●●●●●●
●
●
●●●
●
●●
●
●●●●
●
●●●
●●●●●●●●●●
●●●●●●●●
●
●●●●●●●
●
●
●
●
●●●
●

●
●

●

●
●●●
●

●

●●
●

●
● ●

●●

●

● ●●
●

●●● ● ●●● ●● ●●●
●●

●
●

●

●

●●
●

●

●

●

●

●●

●

●●

●

●

●
●
●

●
●

●

●● ●● ●●
●●

●
●

● ●● ●
●●

●
●

●
● ● ●

●
●

●●

●
● ●

●

●

● ●
●●
●

●
●●

●
●

●●
●

●●
●

●●●
●

●

●

●

●
●

●

●● ●●

●
●

●

●●●
●●

●
●

●
● ●

●
●● ●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

● ●●
●●

●

●
●●●

●

●

●
●

● ●

●●
●

●●
●
●
● ●
●

●
●
● ●●●
●●●

●
●

●

●

●● ●●●
●

●●●
●

●

●

●●

●

●

●

●●
●

●●●●

●

●
●

●●●●
●●

●

●

●

●●

●

●
●

●

●
●

●

●●●●
●●●

●

●●

●

●

●
●●

●
●

●●●
●
●
●●
●●●●●●

●

●
●
●

●●
●

●
●

●
●
●

●

●
●

●
●●
●●● ●●●●●●

●
● ●
●

●●●●●●
●

●●● ●
●

●
●

●●●
● ●●●● ●●●

●
●●●
●

●

●

●●
●●
●
●

●

●
●

●●●●●●
●
●●

●●

●●
●

●
●●

●
●

●● ●
●●●● ● ●●

●
●●

●●●
●● ●

● ●●
●●●●
●

●● ●
●●●

●●●
●●●●●

●
●●

●
●●●

●
●
●●●●

●●

●
●

●●
●

●●

(a) Principal Component Analysis plot of the UCL-ex RD kinship matrix.
The samples are coloured by research group of origin.
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Figure 4.17: Analysis of the UCL-ex RD kinship matrix.94



protective or deleterious if their frequencies in cases compared to controls vary as a result of this missingness

discrepancy.

4.4.4 Identifying technical PCs that explain missingness

By taking the sum of the squares of the standard deviations of each PC, the level of variance explained by

each PC was found. This showed that the first five PCs explains approximately ∼ 52% (Figure 4.18A). Be

that as it may, this did not offer sufficient correction when included as fixed effects in Equation 4.6.

The 1025 variants that had a pvalue that was ≥ 0.9 smaller in the Linear Regression of Equation

4.5 than the corresponding corrected pvalue in Equation 4.8 were defined as Corrected Variants (CVs).

To determine if this was caused by any identifiable subset(s) of the Technical Kinship Matrix, a separate

linear regression was run on each CV with one of the 1763 PCtechs as covariates (1763 regressions per CV).

There are 1763 PCs here because that was the number of samples we had at the time. A χ2 test compared

these models to the standard regression of phenotype on SNP with no covariates to determine which, if any,

PCtechs are associated with case control status (p <= 1×10−8). Figure 4.18B illustrates the extent to which

different PCtechs survive this threshold. This shows that even when the level of variance explained by a PC is

negligible many if not all of these SNPs can be strongly associated with it. If the dataset remained small then

this approach of identifying variants as artefacts by their association with PCs may be amenable. However,

it is not computationally tractable at a larger scale and required too many assumptions and arbitrary filters.

4.4.5 Single Variant Model Optimisation

A cohort of 104 exomes with PID were included in UCL-ex. These samples were used as cases to refine the

model. Equations 4.1 and 4.8 were used to perform a case control association on this data. 9.2% (62060 /

672504) of variants were first removed as they failed the GATK quality metric. The QQplot of the remaining

variants pvalues from Equation 4.8 shows that the mere inclusion of TK did not correct the test statistics

completely, as Figure 4.8A shows a deviation from the expected χ2 distribution. Rare variants were then

pruned until the distribution reflected a χ2 distribution (Figure 4.8B-I). The threshold at which a satisfactory

95



Figure 4.18: Assessing the importance of each Technical Principal Component(PC): (A) The percentage of
variance explained by each technical PC. (B) The 1000 SNPs/INDELs with a pvalue difference of ≥ 0.9
between Equation 4.1s and 4.8 were tested for their associations with each of the 1763 technical Principal
Components (PCtechs). The x-axis displays each PCtech and the y-axis is the number of these 1000 SNPs
that associate with that particular PCtech.

distribution was reached was assigned as variants that have ≥ 20 calls of the alternative allele.

Equations 4.1 and 4.8 were compared to a series of 20 models in which case control status was

permuted randomly. This tested the theory that a large number of these technical artefacts are strongly

associated with case control status, so it was expected that you would see few if any significant associations

in the permutations. While such permutations would remove any true signal too, the number of variants

that you would expect to be artefacts is higher than the expected number of true signals, so this approach

remains valid. Figure 4.14 shows that while the permutations exhibit a much lower range of pvalues as

expected, the Equation 4.1 is more extreme than 4.8, suggesting that 4.8 works to correct outliers.

A variant (E1021K) was previously identified in these samples to be a dominant gain of function

that alters the PIK3CD gene [Angulo et al., 2013]. This was used as a positive control throughout the model

development process (Table 4.7). E1021K’s disease association was confirmed with an Equation 4.1 pvalue

of 1.162e-23 and an Equation 4.8 pvalue of 1.809e-08. The latter being closer to the reported association of

4.767e-08.
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C1R variant

The C1R variant from Section 4.1.1 was used as a negative control for the single variant analysis of the cone

rod dystrophy cohort. The naive single variant linear regression pvalue of 1.10e-04 for chr12:7244369C>T is

close to the gene based pvalue of C1R of 4.22e-04 from SKAT and 1.64e-04 for the binomial test. However, its

artefactual status is confirmed by the corrected pvalue of 0.144 (from Equation 4.8). The Genomic Inflation

Factor λ was calculated for every UCL-ex trait for three models; Equations 4.5, 4.9 and a permuted model

for an idealised distribution. These λs were compared at a range of MAF thresholds (Figure 4.19).
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Figure 4.19: The GIF across all UCL-ex cohorts. Base (red) is the mean of the uncorrected GIFs from all
cohorts, green is the corrected GIF while blue is the Permuted GIF. The X-axis indicates the MAF less than
which SNPs were excluded to calculate their respective GIFs.
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4.4.6 Final Single Variant Model Application

Table 4.7 in Section 4.4.5 showed that the correction applied by Equation 4.9 was performing as desired in

that it successfully removed variants known to artefacts while retaining known risk loci. To further test this,

it was applied to another of the UCL-ex cohorts, 800 mostly Ashkenazi Jewish Samples with Inflammatory

Bowel Disease (IBD). The most associated single variants are in Table 4.8. The associated QQplots and

Manhattan plots are show in Figure 4.20. While the corrected QQplot in this Figure does show a reduced

Genomic Inflation, it remains quite elevated which, combined with the unusual genes with the strongest

pvalues, makes it unlikely to be fully controlling for both artefacts and other noise such as PS.

rsID SNP Gene Fisher LRp LMMp OR #Hom.IBD(#n799) #Hom.ctrl(#n3535) #Het.IBD #Het.ctrl
rs201286142 c.1957G>A GRM3 6.16E-04 4.78E-02 2.30E-16 25 0 0 3 5
rs184616940 c.2624C>T LRRCC1 2.34E-18 4.59E-11 1.21E-15 90 0 0 14 6
rs77786095 c.1376G>T DTX3L 1.08E-07 3.49E-07 2.09E-15 44 0 0 6 6

rs200843707 c.658G>A GUF1 4.39E-17 1.75E-12 4.39E-15 60 0 0 14 9
rs201337101 :c.2597T>C ITGAM 1.77E-05 3.77E-14 6.23E-15 21 0 1 5 8
rs139134493 c.2328A>G TTC27 1.99E-11 6.68E-07 1.41E-14 55 0 0 9 7
rs139555612 c.1966T>A RTN4 6.66E-04 ≤1.00E-16 1.79E-14 25 0 0 3 5
rs104895423 c.662T>G NOD2 5.53E-05 1.27E-03 1.60E-07 15 0 0 5 15

Table 4.8: IBD Single Variant Test Results, with 799 cases and 3535 controls. SNP details the position of
the tested variant (hg19). Gene is the HUGO name for the gene in which the SNP resides. Fisher is the
pvalue from Fisher’s exact test. LRp is the Linear Regression pvalue with no covariates or kinship matrices.
LMMp is the pvalue from Equation 4.9. OR is the risk odds ratio. ’Homs’ are homozygotes for the minor
allele, while ’Hets’ are heterozygotes.

4.4.7 Gene Based Model Optimisation

Variants that were not deemed to be artefacts based on the linear regression of Equation 4.12 were filtered

further by selecting for rare variants and those that were either non-synonymous, LOF or splicing. The

region based Binomial and SKAT tests were then run on these variants for each gene separately for the PID,

ARVC and SCD cohorts. The top PID gene for the Binomial test was CASC5 (p <5.765e-06). The counts

for the 5 top genes for the PID cohort are in (Table 4.9) and the QQplots for both tests of all three cohorts

are in Figure 4.21 for the Binomial pvalues and Figure 4.13 for SKAT. As these figures show, this gene based

model did not work so no reliable results were generated.
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Figure 4.20: Artefact correction in the Inflammatory Bowel Disease cohort of UCL-ex. The qqplot and the
Manhattan plot in the top row show the uncorrected LMM results. In contrast, the bottom row displays the
results from Equation 4.9.

4.4.8 REML Estimates of variance explained by Kinship component

The estimations of variance explained by the TK/RD Kinship matrices initially showed that some phenotypes

were very highly correlated with these kinships, indicative of being artefacts. To start, the only variant

filtering performed was removing variants that GATK ’PASS’ flag. However, as Figure 4.22 shows, the

GATK flag was rather uninformative. This meant that many cohorts had ≥ 95% variance explained by

100



Gene Position Case Counts(n=143) Control Counts(n=1,956) SKAT Binomial
CASC5 chr15:40895128-40954311 14 31 1.245890e-05 5.765778e-06
LRRC46 chr17:45909365-45914403 9 12 4.838810e-05 1.451893e-05
C4orf17 chr4:100434240-100463258 12 25 3.836317e-04 1.657423e-05
PGAM2 chr7:44102399-44105115 7 6 2.188516e-04 2.137651e-05
PZP chr12:9302172-9360933 11 22 1.189751e-03 2.781703e-05

Table 4.9: Top 5 PID candidate genes based on the binomial test. The criteria for retaining variants are:
GATK Variant Quality score of PASS, MAF (MAF of ≤ 0.3%) , ≤ 10% missingness across all samples,
non-synonymous, LOF or affecting splicing.

the kinships. This was thought to explain why the initial corrections appeared to work well; it was in fact

explaining most of the variance in the data which lead to an inability to detect any true signal.
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Figure 4.21: Binomial Gene based tests for the PID, ARVC and SCD cohorts. Each circle is the gene based
pvalue from the binomial test. QQplots compare the observed distribution of pvalues to the expected Chi
Squared distribution. Before the pvalue for each gene is calculated, some variants are filtered/removed. On
the left graphs, the criteria for retaining variants are: GATK Variant Quality score of PASS, MAF (MAF
of ≤ 0.3%) , ≤ 10% missingness across all samples, non-synonymous, LOF or affecting splicing. (B) For the
graphs on the right, the same criteria are used but additionally variants are filtered based on the technical
PCA. The first ten principal components (PC) are included in the linear regression as covariates. SNPs
that are associated with the technical PC are removed. The percentage of SNPs/INDELs removed across
all genes is included in the figure titles.
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Figure 4.22: Effect of SNP filtering using different criteria on amount of variance explained by technical
kinship. (A) Filtering SNPs by MAF. The X axis indicates the minimum MAF of the retained SNPs and the
Y axis shows the averaged level of variance explained by the Technical Kinship for all UCL-ex phenotypes.
(B) Low quality SNPs that did not receive a ’PASS’ flag from the GATK VQSR test were removed. (C) The
required variant call rate is increased across the X axis.
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4.5 Arrhythmogenic Right Ventricular Cardiomyopathy

4.5.1 ARVC-UCLex Single Variant Association Tests

28 ARVC exomes were also included in the UCL-ex consortium. They were subjected to the Single Variant

analysis (Equation 4.9) of common variants and Gene based testing for rare variants as previously described.

Figure 4.23 illustrates the QQ plots of both the uncorrected and corrected models. The 5 SNPs most strongly

associated with ARVC are in Table 4.10. These results should be interpreted with caution however as 28

samples does not provide adequate power to detect all but the largest signals and may yield many artefacts.

The gene based testing procedures involving SKAT and the binomial test were additionally applied to the

ARVC cohort, with Table 4.11 detailing the genes with the strongest association.

rsID SNP Gene Fisher LRp LMMp OR #Hom.ARVC(#n28) #Hom.ctrl(#n4306) #Het.ARVC #Het.ctrl
rs368209124 c.1162-3C>T COL9A2 1.59 ∗ 10−4 ≤ 1. ∗ 10−16 ≤ 1. ∗ 10−16 172 0 0 2 3
rs149175095 c.1123A>C PHF7 3.14 ∗ 10−4 ≤ 1. ∗ 10−16 ≤ 1. ∗ 10−16 106 0 0 2 5
rs199640194 c.20318G>A TTN 0.034 3.68 ∗ 10−9 ≤ 1. ∗ 10−16 0 1 0 0 4
rs150671437 c.1619G>A EFHB 9.46 ∗ 10−4 ≤ 1. ∗ 10−16 3.42 ∗ 10−10 54 0 0 2 9

Table 4.10: ARVC Single Variant Results. SNP details the position of the tested variant (hg19). Gene is
the HUGO name for the gene in which the SNP resides. Fisher is the pvalue from Fisher’s exact test. LRp
is the Linear Regression pvalue with no covariates or kinship matrices. LMMp is the pvalue from Equation
4.9. OR is the risk odds ratio. ’Homs’ are homozygotes for the minor allele, while ’Hets’ are heterozygotes.

Gene Position Case Counts(n=16) Control Counts (n=4318) SKAT Binomial
TAS2R40 chr7:142919173-142920122 6 7 1.83 ∗ 10−3 6.35 ∗ 10−9

ANO5 chr11:22225349-22301267 5 34 2.80 ∗ 10−4 1.27 ∗ 10−4

PPP1R3F chr23:49126534-49143288 2 1 1.42 ∗ 10−3 4.72 ∗ 10−4

CIITA chr16:10989219-11017124 4 31 1.09 ∗ 10−2 9.65 ∗ 10−4

ATF7IP2 chr16:10524564-10576102 3 13 4.20 ∗ 10−3 9.90 ∗ 10−4

Table 4.11: Top 5 ARVC candidate genes based on the binomial test using the rest of UCL-ex as controls.
The criteria for retaining variants are: GATK Variant Quality score of PASS, MAF (MAF of ≤ 0.3%) , ≤
10% missingness across all samples, non-synonymous, LOF or affecting splicing.
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(a) Left - qqplot of the uncorrected ARVC analysis for variants with a MAF of ≥ 1%. Right - Manhattan plot
showing the associations per chromosome. Red horizontal line is pvalue of 1 ∗ 10−8 and blue is 1 ∗ 10−5.

(b) Left - qqplot of the corrected ARVC analysis for variants with a MAF of ≥ 1%. Right - Manhattan plot
showing the associations per chromosome. Red horizontal line is pvalue of 1 ∗ 10−8 and blue is 1 ∗ 10−5.

Figure 4.23: Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) single variant mixed model asso-
ciation results.
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4.6 Comparing Coding and NonCoding variants in ARVC to HCM

In addition to the main UCL-ex work, this analysis was applied to 359 Arrhythmogenic right ventricular

cardiomyopathy (ARVC) and 875 Hypertrophic Cardiomyopathy (HCM) genome/exome samples. These

samples were prepared in the same lab, using the same capture methodology. From HCM ”plate 3 rerun” on,

the sequencing platform differed - it occurred on a HiSeq2000 instead of a GAIIx, with increased multiplexing

for plates 4 and 5 (96 samples) and again for 6 (120) and 7,8,9 (128). The exact sample breakdown by platform

is GaIIx (252 samples), HiSeq2000 (12) and HiSeq2000.Multiplexed (695). A Principal Component Analysis

was performed on the missing/nonMissing genotype matrix to ascertain what the missingness patterns in

the data were. The initial step in analysing this consisted of determining if there was a significant difference

that correlated with phenotype. Figure 4.24A reveals that these technological disparities affect the PCtech

more than the disease differences.

Processing this many samples is routinely performed in batches. These samples were prepared in

12 distinct batches, some of which involved re-running samples for Quality Control purposes. Figure 4.24B

shows that this batch effect is readily visible. While some batches are distinct from each other with almost

no overlap, the majority are similar. This effect is less powerful than that influenced by the transition from

the Illumina GAIIx to its HiSeq 2000 sequencing system (Figure 4.24C).

As these samples included non coding regions, a gene based test was infeasible. While a region can

be defined in any arbitrary way to offer an alternative, this has not yet been performed. As noted previously,

TK is better suited to correcting common artefacts than rare ones. Rare variants, those with less than 20

calls of the non-reference allele between cases and controls were therefore excluded. Any related samples were

removed before the analysis as part of the standard QC based on clinical pedigree data and plink estimates

of relatedness. The top 5 variants are listed in Table 4.12 and the number of variants that are significant at

a range of levels summarised in Table 4.13.
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Figure 4.24: Technical PCA of ARVC vs HCM: (A) Arrhythmogenic right ventricular cardiomyopathy
(ARVC) in red compared to Hypertrophic Cardiomyopathy (blue). (B) Samples were prepared in batches.
(C) Different sequencing technologies.

4.6.1 ARVC, HCM and UCLex joint artefact analysis

As discussed already in this thesis, pre-sequencing combination of cohorts can lead to technical artefacts.

Figure 4.25 displays such an effect when one integrates the ARVC,HCM and UCL-ex cohorts, retaining the

variants that are called in both cases and controls. Additionally, the technical PCA was performed on the

rotated matrix. Figure 4.26 shows the top two PCs from this. Figure 4.26B shows these loadings coloured
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Variant Gene ARVC Counts(n=407) HCM Counts(n=957) ARVC.Freq HCM.Freq PT

rs193922652 MYH6 12 35 3.34% 4% 5.305 ∗ 10−41

rs111679193 PKP2 30 52 8.36% 5.94% 1.302 ∗ 10−14

chr17:68174142 - T KCNJ2 3 28 1.11% 3.2% 2.260 ∗ 10−14

chr2:179660461 T - TTN 70 149 19.5% 17.03% 4.029 ∗ 10−14

chr18:28681054 - G DSC2 20 58 5.57% 6.63% 1.016 ∗ 10−12

Table 4.12: The most significant common (≥ 20 total calls) SNPs/INDELs from the Linear Mixed Model
with technical Kinship correction of the ARVC vs HCM comparison. The columns, in order from left to
right, are the genes containing the variant, its exact position, the number of counts in the ARVC and HCM
samples, the resultant frequencies and corrected pvalue. The absolute genomic position is reported for the
variants that do not effect the coding sequence.

Threshold Nb.SNPs.Below Nb.SNPs.Above
1e-03 39 10068
1e-04 25 10082
1e-05 19 10088
1e-06 12 10095
1e-07 12 10095
1e-08 10 10097
1e-09 9 10098
1e-10 8 10099
1e-11 7 10100
1e-12 4 10103
1e-13 4 10103
1e-14 1 10106

Table 4.13: The number of SNPs/INDELs that are significant in the ARVC/HCM comparison at a number
of thresholds.

by gene of origin. Gene was used to represent genome location and from this you can see that missingness

varies systemically across the genome. This graph is dominated in the centre by Titin. Given that Titin

dwarfs the other genes in length, at some 34Mb long, it is expected to contribute the most to the PCA.
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Figure 4.25: Technical PCA of the HCM/ARVC Joint Analysis. The ARVC (red), HCM (blue) and UCL-ex
control (green) samples are shown.
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Figure 4.26: Technical PCA of the ARVC/HCM joint analysis. Here, the data is rotated so that the
Eigenvectors correspond to the variants, rather than individuals, which is the norm. (A) PC one (X-Axis)
against PC2. The points represent SNPs and INDELs and are coloured according to gene of origin. (B)
PC1 against PC3 of the same data, again coloured by gene. (C) PC1 against PC3 but here coloured based
on GC content of SNPs, as defined by ± 50 base pair bins around each variant.
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4.7 Discussion

4.7.1 Single variant model optimisation

Studies that perform case control associations through the analysis of exome sequencing data have a variety

of sample preparation related confounders to differentiate from true signals [Nothnagel et al., 2011; Lam

et al., 2012]. We have herein described a model that implements a novel approach to deal with such

cryptic artefacts. A kinship matrix can be calculated that estimates the extent to which pairwise similarity

between individuals is based on the missing/nonMissing status of their respective variants, Single Nucleotide

Polymorphism (SNP) and/or Insertions/Deletions (INDELs). By including this alongside a RD kinship

matrix in a Linear Mixed Model that tests for an association between disease status and genotype, you can

get a measure of association that is free from noise caused by SNPs with spurious call patterns.

For the association tests performed here, an additive genetic model was assumed. This is the norm

in GWAS and operates by representing the major (more common) allele as 0 and the minor allele as 1.

Homozygote wildtypes are therefore given a count of 0 for a given SNP, while heterozygotes are 1 and

homozgygotes for the minor allele are 2, respectively. The 4334 samples in the UCL-ex consortium that

served as the test dataset for model development were exome sequenced, which generated 900,000 calls of

SNPs or INDELs.

Long a mainstay of genetics, linear regressions of all single genotyped SNPs has been robustly studied

in association studies [Lourenço et al., 2011]. Applying linear regression, while controlling for population

stratification, to a case control analysis of all groups in UCL-ex yields an inflated false positive across many

SNPs (Figure 4.9). This makes it difficult, if not impossible, to gain an accurate idea of what the true disease

causing/associated variants are. To improve the ability of the model to correct for the data artefacts driving

this Type 1 error inflation, a Principal Component Analysis was performed on the binary missing/nonMissing

genotype matrix (PCtech). The Principal Component plot in Figure 4.4 reinforces the notion that factors

such as sample preparation or sequencing chemistry used to process samples can influence the variant call

rate more than the sample phenotype. An effective technique to overcome such noise will be a boon to
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modern exome sequencing studies that require ever larger sample sizes. This will instantly make available

many samples, that until then will have been incompatible because of such technical artefacts. The Technical

Principal Components were included in two forms of linear regression, which differed based on whether the

phenotype or the genotype was the dependent variable. For the former, a corrected pvalue was obtained for

all SNPs and CNVs. This correction failed to effectively correct the data to a χ2 distribution (Figure 4.9).

This was the case for the three cohorts tested even when the analysis was restricted to solely the common

variants.

To gain more power than the process of including an arbitrary number of PCtechs in the association

tests, a linear mixed model (LMM) was then used instead of a linear regression. LMMs contain a random

effects component, which can include a kinship matrix that traditionally is a measure of the pairwise genetic

similarity between all individuals in the study. We have modified this to what we call a ”Technical Kinship”

matrix (TK). The kinship is calculated on the missing/nonMissing genotype matrix. This estimates the

extent to which observations’ genotyping success rates are similar. Figure 4.8 shows that the mere inclusion

of this matrix does not yield the expected χ2 distribution. Biases caused by spurious calls from different

capture technologies or sequencing platforms are unlikely to be overly common [Nothnagel et al., 2011].

Through a process of repeated pruning, it was found that by restricting the analysis to variants that had at

least 20 calls of the alternative allele, Equation 4.8 adequately adjusts for artefacts (Figure 4.8) for some of

the traits tested.

Not all artefacts will manifest as a binary missing/nonMissing factor. As shown in Figure 4.17, a

PCA of a RD kinship matrix does cluster samples based on research group of origin. Figure 4.16B includes

the sequencing platform and chemistry information, which is known for just a subset of samples within

UCL-ex. The fact that this is captured by using RD as a proxy as per Figure 4.17 is thus clear. This was the

motivation behind adapting Equation 4.8 to include a RD kinship matrix, yielding Equation 4.9, the final

model used for single variant testing. Application of this model gave a pvalue of 0.00358 for the negative

control and 1 ∗ 10−16 for the positive control in Table 4.7, which shows the model has sufficient sensitivity

and specificity.
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4.7.2 Model application to Crohn’s Disease

Linkage analysis was employed to identify the first CD susceptibility locus [Hugot et al., 1996]. 25 Caucasian

families, each with at least two affected individuals were genotyped for 270 polymorphic markers that were

spread throughout most of the genome. A region on chromosome 16 was identified as conferring susceptibility

to CD (p = 0.01). In-depth analysis of this locus subsequently identified variations in the NOD2 gene as

involved in CD susceptibility. Two missense variations and a frame-shift altered the leucine rich repeat

domain (LRR) in NOD2 [Hugot et al., 2001]. Via the LRR, NOD2 detects the presence of muramyl

dipeptide, a component of bacterial cell walls. It also activates nuclear factor Kappa B (NFB). NFB is

a major transcription factor that is involved in cancer, inflammation, immunity and synaptic plasticity

[Gilmore, 2006; Ogura et al., 2001]. As a result of recent GWAS meta-analyses, there are now to thought to

be at least 71 CD susceptibility loci [Franke et al., 2010].

Equation 4.9 was used for single variant testing on the IBD cohort in UCL-ex (Table 4.8). The

NOD2 SNP Chr16:50744565T-G has a pvalue of 1.60 ∗ 10−7. While not the strongest association for this

trait, which is for a variant in GRM3, a gene with no known association with Crohn’s Disease, it remains

evidence of model efficacy. In addition, a variant in ITGAM, 16 31336912 T C, has a pvalue of 6.23 ∗ 10−15.

ITGAM one has had a disputed role in Crohn’s for some time [Kenny et al., 2012; de Jong et al., 2003].

It may related to the functioning of a microRNA hsa-miR-155, reduced levels of which have been shown to

have a protective effect against colitis while lowering the number of CD11b+ T helper cells [Singh et al.,

2014]. The QQ-plot in Figure 4.20 still displays evidence of inflation which explains the domination of the

list by presumed false positives. Despite best efforts, it was not impossible to improve this further. The

difficulty of interpreting this cohort was exacerbated by the fact that 203/799 (25%) of the cases came from

2 large families. While in the case of the SCD analysis it was practical to remove related individuals without

having too deleterious an impact on sample size, here that is not the case. This NOD2 variant was seen in

both families and in unrelated cases however so it remains a plausible result.
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4.7.3 Model application to SCD and ARVC

68 patients were diagnosed with SCD and their exomes included in UCL-ex. A basic linear regression was

initially used. Many variants were flagged as highly significant but were based upon the presence of a

singleton, typically because of one call of the non-reference allele across all samples. This can be rectified by

removing variants with a MAF of <1:1000 or by using an exact test.

The SCD samples were initially analysed with the non-proband family members excluded. Table

4.3 contains those that have a pvalue of ≤ 1 ∗ 10−10. The QQplots in Figure 4.12 show that this data has a

high inflation factor meaning it is not clean enough to be interpretable and informative clinically. The most

significant variants are in open reading frames so are most likely not transcribed.

Table 4.4 contains the 9 variants that have a pvalue of ≤ 1 ∗ 10−10 for the SCD cohort when the J

wave family is included. Of these, three are in genes that have previously been shown to be associated with

heart development or disease. ADAM19 has been shown to have a role in the development of the endocardial

cushion and congenital heart disease [Kurohara et al., 2004; Goldmuntz et al., 2011]. Just last year, FSTL1

was found to a potent activator of regeneration of the adult mammalian heart following myocardial infarction

[Wei et al., 2015]. Finally, the expression of BTG2 is increased when oxidative stress occurs in cardiomyocytes

[Choi et al., 2013]. However, it does have many other functions so is likely a false positive [Tong et al., 2015].

None of these genes are already reported strong candidates for SCD so caution must be paid to their

veracity. All variants in this list, excluding chr5:156915410C-T and chr9:20944681C-G, are present only in

members of a single family pedigree (Figure 4.11). This family was identified after the proband presented

with Ventricular Fibrillation, and was subsequently identified to have a J wave abnormality on ECG, along

with four immediate family members. This includes both parents and 2/6 siblings, indicative of a recessive

model of inheritance. None of these variants co-segregated with the J wave phenotype in this family, so are

unlikely to be causative and are therefore thought to be benign private mutations.

Validation of private mutations can often be complicated by the large number of rare variants with

uncertain effects that are present in the general population, even in candidate genes. Furthermore, given
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the incomplete penetrance and variable phenotype of SCD, this approach would be even more difficult

here. Efforts to improve the predictive accuracy of variant pathogenicity is an ongoing effort. This includes

improving algorithms to predict biological function or evolutionary conservation (eg SIFT and PolyPhen) and

more clinically oriented work that attempts to associate certain variants or genes with specific presentations

of a given condition [Lopes et al., 2014; Syrris et al., 2007]. It is expected that in the future such progress

will help with the interpretation of variant lists generated by HTS such as that discussed here. As it stands,

including related individuals in the study complicates the interpretation while offering little benefit which is

in agreement with most of the literature that espouses removing them or controlling for relatedness.

The ARVC analysis’ top SNPs are in Table 4.10. Only four reach a pvalue of ≤ 1 ∗ 10−10. Three are

in genes with no known association with ARVC. The fourth however, the non-synonymous chr2:179482565C-

T rs199640194 is in Titin exon 253. This however is a singleton with an exact Fisher pvalue of 0.034. As

stated already, only 28 cases were available for this analysis. This does not have enough power to detect

anything except the strongest of signals so a lack of strongly significant pvalues was to be expected.

4.7.4 Comparing the genetic architecture of ARVC to that of HCM

The clinical presentations of HCM and ARVC is somewhat similar. By comparing ARVC samples directly

against HCM samples, it was thought that insight may be gained about any genetic variants that are more

associated with one cardiomyopathy than the other. A targeted sequencing approach including the exonic and

flanking/intronic noncoding regions of 73 genes was sequenced. Table 4.12 details the 5 variants most able to

discriminate between ARVC and HCM pathogenesis. With a pvalue of 4.447e-33 for the chr14:23858281GC -

variant, the MYH6 gene seems more strongly associated with HCM than ARVC. This is in line with previous

studies, one of which recently showed that allele specific silencing of certain MYH6 transcripts suppresses

HCM [Carniel et al., 2005; Jiang et al., 2013].

PKP2 variants have been robustly shown to cause ARVC [Li Mura et al., 2013; Roberts et al., 2013;

Cerrone and Delmar, 2014]. A recent study of 90 subjects identified 78 variants in known ARVC genes;

PKP2 mutations consisted 31 (58%) of these. Furthermore, PKP2 carriers were significantly more likely to
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exhibit Ventricular Tachycardia than those with other putatively causative variants [Bao et al., 2013]. This

lends credence to our findings that the chr12:33026249T>C SNP in PKP2 is significantly more common in

ARVC cases than HCM cases (8.36% & 5.94%, respectively, p = 1.302958e-14).

4.7.5 Gene based tests

Association tests have limited power to detect rare variants at the single variant level. It could therefore be

argued that the inability of Equation 4.8 to correct artefacts when their MAF is low is of little consequence.

This has led to a plethora of solutions that involve the combination of rare variants into region based testing

procedures. These can be broadly categorised as the Cohort Allelic Sum tests [Morgenthaler and Thilly,

2007], the Combined Multivariate and Collapsing Tests [Li and Leal, 2008a], Weighted Sum Tests [Madsen

and Browning, 2009] or Kernel Association tests. A multivariate test such as the Sequence Kernel Association

Test [Wu et al., 2011] combines single variant test statistics while not declaring alleles that are more frequent

in cases as necessarily deleterious, as is the case with some alternative methods. As Equation 4.8 controlled

for artefacts in common variants but not rare variants, SKAT was applied to UCL-ex. Variants were excluded

from the SKAT procedure if an initial linear regression, where genotype was the outcome, indicated that

the top ten technical Principal Components indicated artefactual status. As described in Section 4.2.8,

SKAT and a binomial test were applied to the rare variants that were predicted to be of functional import

(those that cause non-synonymous, LOF or splicing changes). By comparing the gene based tests with no

correction, as shown in Figure 4.21, to the scores from the corrected model (Figure 4.13), it appears that

the correction has no noticeable impact. This is similar to the results from Equation 4.6 that showed that

the first ten technical principal components fail to adequately control for artefacts.

4.7.6 Application to SCD

A different gene based testing procedure was used that compared the linear mixed model with technical

kinship (TK) correction to permutations that established a null distribution for the data free from phenotype

specific batch effects. Here, the X-chromosome gene SPACA5B is strongly associated with SCD. Without
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TK, SPACA5B has a pvalue of 1, but its inclusion changes that to 1.26e-08, two orders of magnitude lower

than the lowest permuted pvalue. Whilst this is encouraging evidence for an association, knowledge of a

biological relevance is lacking. It is known to be expressed in the acrosome, the cap like structure of the

sperm that is involved in fertilisation (GeneCards). It may yet have a functional role in SCD. The fact that

it is on the X chromosome may reflect the epidemiological observation that SCD has a higher prevalence in

men than women.

It is not uncommon for association studies to flag genes that have no readily relevant role that could

be linked to disease pathogenesis. Typically, such findings are tested by examining more cases and controls,

through sequencing or from publically available data, to identify if the association remains. This may then

be combined with functional examination of the protein from cell culture to a model organism such as a

mouse. While this approach can work well, it can be onerous. To increase confidence in an association, we

recommend subjecting significant genes to an additional round of (eg 10000) permutations. If the corrected

pvalue remains outside the range of all of the permutations, then it is likely a real association.

Finding a novel causative gene in this way is unlikely. Through using this correction, we expect to

render artefacts insignificant and not necessarily to increase the p-value of true associations. This hypothesis

combined with the paucity of supporting literature lead me to consider genes such as SPACA58 to be false

positives.

4.7.7 Chapter summary

This chapter is the first demonstration of an attempt to use alternative Kinship matrices to control for factors

other that PS. While the final model used does show an improvement in the distribution of association test

statistics across a range of cohorts, clear inflation of the test statistic distribution remains. This is in addition

to the possibility that real signals may also be removed by the correction. It was not possible to find a single

kinship or particular combination thereof that worked sufficiently well across all cohorts. Thus, the major

limitation is the inability to distinguish technical artefacts from actual association signals.
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Chapter 5

Discussion

5.1 Application to other non-cardiovascular cohorts

5.1.1 Single variant analysis

Model 4.9 was applied to the principal cohorts within UCL-ex. This included SCD (Section 4.3.2), IBD

(Section 4.4.6) and ARVC (Section 4.5.1) cohorts. The results for 12 additional phenotypes are included in

the Appendix but not discussed further. These include cohorts with:

• Huntington’s Disease

• 3 Ophthalmology conditions

• IBD - An additional ethnically distinct Icelandic IBD cohort

• An unknown Neurological condition

• A Dermatology condition

• Keratoconus

• Primary Immuno Deficiency
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• A Prion condition

• A Mitochondrial defect

• Bone Marrow Failure

Two of these, the IBD and ARVC cohorts, proved quite amenable to this model, with principal genes NOD2

and TTN remaining significant with this correction. An in-depth clinical knowledge of these conditions is

required for a full evaluation of the veracity of any single variant or gene lists. In general however, this

combined with the improved genomic inflation factor (Figure 4.19) indicates that the model works well in

at least some situations.

5.1.2 Dealing with rare variants or limited cases

As mentioned already, various methods for accurate rare variant association tests were attempted. Published

methods such as SKAT generally perform better than basic binomial or Fisher tests because they are more

capable of modelling complex genetic architecture. The gene based results for ARVC and HCM in Section

2.2.2 robustly agreeing with the known genetic architecture of these conditions reinforces this point. Even

these methods struggle however when faced with factors such as cryptic relatedness or batch effects that

cannot be readily controlled for by currently available methods. That is to say, a mixed model methodology

for region based testing that can incorporate multiple kinship matrices and fixed covariates such as that

developed here for single variants has not yet been developed. The attempts discussed here are a start but

it is beyond the scope of this PhD to progress it further. As a result, until this is robustly developed, any

results from these models under development should be viewed with caution.

In order to refine our understanding of the clinical sub-types of conditions such as HCM and ARVC,

more specific phenotypes should be used in association studies. For example, patients with apical HCM

have been shown to have less fibrosis and diastolic dysfunction than those without apical involvement [Kim

et al., 2015]. This difference may have a genetic basis and could perhaps be tested by separating cases into

apical and non apical. The obvious problem with this approach would be the resultant reduction in sample
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size lowering the power to detect association. Table 4.10 shows the association results for ARVC based on

4334 samples. It also highlights the difficulty faced when even a number as large as this contains just 28

cases. It was impossible to get reliable results with such few cases so a balance should be achieved between

statistical power and clinical utility. Some methods have been developed in an attempt to improve power

amidst phenotypic heterogeneity. 2010 saw the discussion of a multinomial regression modeling framework

that categorised type 2 diabetes(T2D) cases by Body Mass Index. This allowed discrimination to be made

between the genetic basis of obese and non-obese forms of T2D [Morris et al., 2010]. This was improved upon

by the development of a multiclass likelihood ratio approach which determines itself the optimum number

of subphenotypes and builds a risk model prediction for each [Wen and Lu, 2013].

5.2 Limitations of the methodology for technical artefacts

My results show an improvement in the distribution of association test statistics across a range of cohorts.

The advantages to including alternative kinship matrices, such as Read Depth and Missingness have been

demonstrated. However, for several of the cohorts considered in this thesis, clear inflation of the test statistic

distribution remains. In addition, real association signals can, in some cases, be removed by the technical

correction. The major limitation is the inability to distinguish technical artefacts from actual association

signals. In situations where the sequencing (or more generally technical) batches are fully confounded with

the case control batches, no statistical methodology can separate signal from noise.

This issue is reflected by the fact that some cohorts are highly corrected with the Technical Kinship

and/or the Read Depth Kinship matrices. It was thus not possible to find a single kinship or particular

combination thereof that worked sufficiently well across all cohorts. By using spectral decomposition as

discussed in Section 1.7, it is possible to include a single kinship that is solved in the same time as a

standard linear regression. However, for multiple kinships, it is necessary to use an approximation, such as

GRAMMAR. This was not perfect however, as the variance component estimations from Section 4.4.8 (page

100) show that some cohorts naively exhibit a perfect or close to perfect (≥ 95%) correlation with these

Kinship Matrices. The SNP filtering that was ultimately used corrected for this in some cohorts by lowering
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the variance explained. In these cases the joint model retained enough power to detect the strongest signals,

but some associations were presumably lost. This is to be expected however with any model that corrects

for factors such as PS or technical artefacts. Over correction is less of an issue than under correction as we

are interested in only the top variants i.e. an inflation factor of 0.9 is better than 1.1.

5.3 Implications for experimental design

Obviously, the ideal experimental design involves homogeneous case control cohorts from the technical stand-

point. However, this is not always feasible given the costs of sequencing controls. This issue is particularly

strong for rare diseases. Indeed, while for complex traits with small effect sizes, equal case control cohorts

maximize the power to detect associations, the situation is different for rare diseases with large effect sizes.

The optimum ratio of controls to cases is equal to the odds ratio parameter, which raises the need for

large control cohorts that are ideally shared across studies. This idea has been applied very successfully by

the Wellcome Trust Case Control Consortium (WTCCC) that has provided shared controls to the medical

genetics community [Lee et al., 2014; Todd et al., 2007; Lindgren et al., 2009].

However, there are practical situations where the approach can be effective at correcting sub-optimal

case control designs. For example, if cases were sequenced using capture technology A, and controls were

sequenced using a combination of technologies A and B, the technical correction will appropriately remove

variants present in excess in samples sequenced using technology A, independently of the case control status.

Hence, even a limited number of controls sequenced using technology A can be sufficient to provide useful

information to separate signal from background. Similarly, the addition of cases sequenced using technology

B can serve the same purpose to verify that candidate variants present in technology A cases are also found in

excess in technology B cases. Statistically, factors that may induce some systematic artefact, eg technology

used, sample plate information, where the sample was sequenced, who prepared it etc may by partially

modelled for as a random effect. However, there are limits, as the number of fixed or random effects included

in the model should be limited to avoid removing all signal.

As discussed already, many possible sources of artefacts exist. PCR bias [Kanagawa, 2003], PCR
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artefacts [Kurata et al., 2004] and amplification inefficiencies or drift [Walsh PS, Erlich HA, 1992; Mutter

and Boynton, 1995] to name a few. In the early rounds of PCR, certain amplicons may be stochastically

amplified more than others, resulting in a skewed distribution later on. As this drift bias is random, it is likely

not a large factor in systematic differences between cases and controls however. Bias can also be caused by

a relative difference in the size of genomes in the solution being amplified; smaller genomes have been shown

to be overamplified compared to larger genomes [Pinard et al., 2006]. This last problem can be overcome by

amplifying the target genome in isolation, readily achieved through methods such as microfluidic droplets

and microdissections [Woyke et al., 2010].

The concentration of the DNA template is also important. It is increasingly difficult to equally

amplify the entirety of a sequence as its concentration lowers [Chandler et al., 1997]. This can pose problems

as research moves towards lower starting quantities of target DNA; for example in the cases of single cell

or cell-free DNA [Woyke et al., 2010]. This has led to the development of Amplication free methods which

lower or eliminate traditional sources of bias [Karlsson et al., 2015].

5.3.1 Remaining sources of artefacts, impact of sequence capture and transition

to WGS

My analysis of exome data points to a variety of artefacts that remain difficult to control for without applying

drastic quality control measures. Exploratory analysis of the data clearly shows that the artefacts identified

are correlated with sequencing batches, which are in turn associated with sequence capture technologies.

However, this does not imply that all these artefacts are created by the sequencing technology itself. For

example, manual curation of the results of the HCM and ARVC association results (Chapter 2, Tables 3

and 4) identified several cases of C>A/G>T transversion artefacts, as described in [Costello et al., 2013],

which are likely to result from oxidation of DNA during acoustic shearing in samples containing reactive

contaminants from the extraction process. Two examples of this are shown in Figure 5.1. This is most likely

a property of the sequencing batch, or perhaps of the sequencing facility during a specific period of time,

which typically happens to be confounded with capture technology in this case. Another issue when calling
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variants is the difficulty that aligners have when dealing with repetitive regions. Homopolymer sequences

are often miscalled as indels, so care must be taken to ensure that this is not just due to misalignment.

Figure 5.2 shows one such erroneous call. Manually examining the reads via IGV in this way is invaluable

in determining if this call is real. Nevertheless, other sources of artefacts, for example capture of paralogue

sequences that are mismapped to target regions, are a consequence of capture technology choices.

Figure 5.1: Two examples of C>A Transversion Artefacts shown in two HCM samples via IGV. On the left,
a RBM20 variant, chr10:112540622A-C, and on the right a TTN variant chr2:179436669A-C.

A conclusion from these observations is that some of these challenges will be alleviated by the

transition from exome/capture sequencing to WGS, because of the removal of a potential source of differential

bias between cohorts. In addition, the analysis of non-coding regions remains an unsolved challenge. Even for

broad capture techniques, in the case of the HCM and ARVC targeted sequencing datasets, the higher level

of polymorphisms in non coding regions combined with the absence of large reference datasets such as EXaC

[Consortium et al., 2015] prevented us from obtaining meaningful association results. This is particularly

frustrating as likely causal variants are detected in only half of HCM patients, and it is likely that regulatory

regions contribute to at least some extent to that missing heritability.

Given the limitations highlighted above, ongoing projects such as Genomics England appear to be
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Figure 5.2: TTN homopolymer run. The insertion that was called here, chr2:179563646-A, is bounded by
black vertical dashed lines. The DNA sequence of the region is labelled below, highlighting the extent of the
homopolymer region.

a major step forward toward a refined understanding of cardiovascular disease genetics. ARVC, HCM and

DCM alongside many other conditions are included in this projects remit (Figure 5.3). This project will

achieve the combined aims of (i) increasing sample size to improve statistical power, (ii) reduce the technical

artefacts that complicate the analysis of sequence data and cross-cohort comparison and (iii) provide a new

window into the yet unexplored role of regulatory regions. These data will provide a unique opportunity to

revisit and expand the outcome of exon centric association studies that are presented in this thesis.
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Figure 5.3: The types of cardiovascular disease that are included in the 100,000 Genomes Project. For more
information on factors such as diagnostic criteria of these conditions refer to the Genomics England website.

5.4 Comparison to other methods

There are many companies that offer capture platforms for WES. The platforms that they provide have

improved considerably over time. Despite this, many issues still exist, as discussed extensively already

(Section 1.6.2). Some solutions have been proposed to solve these issues. Consider the case of ArtQ from

the Introduction. While this worked in that specific case, it is far from a general solution. More far reaching,

another approach is assigning genotypes through the use of imputation [Davies et al., 2016]. The efficacy

of such an approach will vary depending on the discrete pattern of missingness, be it missing completely at

random, missing at random or not missing at random. However, it has been shown to have biases too and

indeed these are more pronounced for rare variants [Palmer and Pe’er, 2016]. Thus, this approach would not

be ideal for the data in UCL-ex, which is dominated by rare variants.

Chapter 4 provides the first demonstration of an attempt to use alternative Kinship matrices to
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control for factors other than PS. This approach is promising in that it does not require an idea of the

cause of the data, unlike ArtQ. Furthermore, the concepts’ derivation from standard methods of correcting

PS in GWAS means it is statistically robust. However, at the time of submission of this thesis, this had

not progressed sufficiently to offer adequate interpretable results. It is therefore difficult to comprehensively

compare its performance against other methods. Work is ongoing, and it is being integrated into the principle

pipeline for analysing WES at the UCL Genetics Institute.

An interesting alternative was proposed in [Palmer and Pe’er, 2016]. Multiple Imputation (MI)

functions better than traditional imputation as it probabilistically assigns genotypes by generating posterior

probabilities that are weighted by the confidence in the data. This intuitively makes sense: you would expect

variants that are of lower quality to be downweighted in comparison to high quality variants. Such methods

provide a benchmark against which other solutions need to be compared to identify if they provide a genuine

improvement.
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Appendix

.1 Chapter 2 - Cardiac Case Control

.1.1 Molecular Autopsy of Sudden Arrhythmic Death Syndrome Gene panel
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Channelopathy associated or candidate genes
1 AKAP9 (A kinase (PRKA) anchor protein (yotiao) 9)
2 ANK2 (ankyrin 2, neuronal)
3 ANKRD1 (ankyrin repeat domain 1 (cardiac muscle)
4 CACNA1B (calcium channel, voltage-dependent, N type, alpha 1B subunit)
5 CACNA1C (calcium channel, voltage-dependent, L type, alpha 1C subunit)
6 CACNA1D (calcium channel, voltage-dependent, L type, alpha 1D subunit)
7 CACNA2D1 (calcium channel, voltage-dependent, alpha 2/delta subunit 1)
8 CACNB2 (calcium channel, voltage-dependent, beta 2 subunit)
9 CASQ2 (calsequestrin 2 (cardiac muscle))

10 CAV3 (caveolin 3)
11 DPP6 (dipeptidyl-peptidase 6)
12 GJA1 (gap junction protein, alpha 1, 43kDa)
13 GJA5 (gap junction protein, alpha 5, 40kDa)
14 GPD1L (glycerol-3-phosphate dehydrogenase 1-like)
15 HCN1 (hyperpolarization activated cyclic nucleotide-gated potassium channel 1)
16 HCN4 (hyperpolarization activated cyclic nucleotide-gated potassium channel 4)
17 KCNA5 (potassium voltage-gated channel, shaker-related subfamily, member 5)
18 KCND3 (potassium voltage-gated channel, Shal-related subfamily, member 3)
19 KCNE1 (potassium voltage-gated channel, Isk-related family, member 1)
20 KCNE1L (KCNE1-like)
21 KCNE2 (potassium voltage-gated channel, Isk-related family, member 2)
22 KCNE3 (potassium voltage-gated channel, Isk-related family, member 3)
23 KCNE4 (potassium voltage-gated channel, Isk-related family, member 4)
24 KCNH2 (potassium voltage-gated channel, subfamily H (eag-related), member 2)
25 KCNJ11 (potassium inwardly-rectifying channel, subfamily J, member 11)
26 KCNJ12 (potassium inwardly-rectifying channel, subfamily J, member 12)
27 KCNJ2 (potassium inwardly-rectifying channel, subfamily J, member 2)
28 KCNJ3 (potassium inwardly-rectifying channel, subfamily J, member 3)
29 KCNJ5 (potassium inwardly-rectifying channel, subfamily J, member 5)
30 KCNJ8 (potassium inwardly-rectifying channel, subfamily J, member 8)
31 KCNQ1 (potassium voltage-gated channel, KQT-like subfamily, member 1)
32 KCNQ2 (potassium voltage-gated channel, KQT-like subfamily, member 2)
33 NPPA (natriuretic peptide A)
34 RANGRF (RAN guanine nucleotide release factor)
35 RYR2 (ryanodine receptor 2 (cardiac))
36 SCN1B (sodium channel, voltage-gated, type I, beta subunit)
37 SCN2B (sodium channel, voltage-gated, type II, beta subunit)
38 SCN3B (sodium channel, voltage-gated, type III, beta subunit)
39 SCN4B (sodium channel, voltage-gated, type IV, beta subunit)
40 SCN5A (sodium channel, voltage-gated, type V, alpha subunit)
41 SCNN1B (sodium channel, non-voltage-gated 1, beta subunit)
42 SCNN1G (sodium channel, non-voltage-gated 1, gamma subunit)
43 SNTA1 (syntrophin, alpha 1)
00 Cardiomyopathy associated or candidate genes
01 ABCC9 (ATP-binding cassette, sub-family C member 9)
02 ACTC1 (Actin, alpha cardiac muscle 1)
03 ACTN2 (Actinin, alpha 2)
03 AGL (amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase)
04 BAG3 (BCL2-associated athanogene 3)
05 BRAF (v-raf murine sarcoma viral oncogene homolog B1)

Table 1: Name according to HGNC of the candidate genes for the Molecular Autopsy of Sudden Cardiac
Death study
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Cardiomyopathy associated or candidate genes
1 CALR3 (calreticulin 3)
2 CRYAB (crystallin, alpha B)
3 CSRP3 (cysteine and glycine-rich protein 3 (cardiac LIM protein)
4 DES (desmin)
5 DMD (dystrophin)
6 DSC2 (desmocolin 2)
7 DSG2 (desmoglein 2)
8 DSP (desmoplakin)
9 DTNA (dystrobrevin, alpha)

10 EMD (emerin)
11 EYA4 (eyes absent homolog 4)
12 FHL1 (four and a half LIM domains 1)
13 FHL2 (four and a half LIM domains 2)
14 FKTN (fukutin)
15 FLNC (filamin C, gamma)
16 FXN (frataxin)
17 GAA (glucosidase, alpha; acid)
18 GATAD1 (GATA zinc finger domain containing 1)
19 GLA (galactosidase, alpha)
20 HRAS (v-Ha-ras Harvey rat sarcoma viral oncogene homolog)
21 ILK (integrin-linked kinase)
22 JPH2 (junctophilin 2)
23 JUP (junction plakoglobin)
24 KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog)
25 LAMA4 (laminin, alpha 4)
26 LAMP2 (lysosomal-associated membrane protein 2)
27 LDB3 (LIM domain binding 3)
28 LMNA (lamin A/C)
29 MAP2K1 (mitogen-activated protein kinase kinase 1)
30 MYBPC3 (myosin binding protein C, cardiac)
31 MYH6 (myosin, heavy polypeptide 6, cardiac muscle, alpha)
32 MYH7 (myosin, heavy polypeptide 7, cardiac muscle, alpha)
33 MYL2 (myosin, light chain 2, regulatory, cardiac, slow)
34 MYL3 (myosin, light chain 3, alkali; ventricular, skeletal, slow)
35 MYLK2 (myosin light chain kinase 2)
36 MYOT (myotilin)
37 MYOZ2 (myozenin 2)
38 MYPN (myopalladin)
39 NEBL (nebulette)
40 NEXN (nexilin (F actin binding protein))
41 NRAS (neuroblastoma RAS viral (v-ras) oncogene homolog)
42 PDLIM3 (PDZ and LIM domain 3)
43 PKP2 (plakophilin 2)
44 PLEC (plectin)
45 PKP4 (plakophilin 4)
46 PLN (phospholamban)
47 PNN (pinin, desmosome associated protein)
48 PRKAG2 (protein kinase, AMP-activated, gamma 2 non-catalytic subunit)
49 PSEN1 (presenilin 1)
50 PSEN2 (presenilin 2)

Table 2: Name according to HGNC of the candidate genes for the Molecular Autopsy of Sudden Cardiac
Death study
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Cardiomyopathy associated or candidate genes
1 PTPN11 (protein tyrosine phosphatase, non-receptor type 11)
2 RAF1 (v-raf-1 murine leukemia viral oncogene homolog 1)
3 RBM20 (RNA binding motif protein 20)
4 SGCD (sarcoglycan, delta (35kDa dystrophin-associated glycoprotein))
5 SHOC2 (soc-2 suppressor of clear homolog (C. elegans))
6 SLC25A4 (solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 4)
7 SOS1 (son of sevenless homolog 1 (Drosophila))
8 TAZ (tafazzin)
9 TCAP (titin-cap)

10 TGFB3 (transforming growth factor, beta 3)
11 TMEM43 (transmembrane protein 43)
12 TMPO (thymopoietin)
13 TNNC1 (troponin C type 1 (slow))
14 TNNI3 (troponin I type 3 (cardiac))
15 TNNT2 (troponin T type 2 (cardiac))
16 TPM1 (tropomyosin 1 (alpha))
17 TTN (titin)
18 TTR (transthyretin)
19 VCL (vinculin)
00 Others
01 ADRB2 (adrenoceptor beta 1)
02 ADRB2 (adrenoceptor beta 2)
03 ADRB3 (adrenoceptor beta 3)
04 BMPR2 (bone morphogenetic protein receptor, type II (serine/threonine kinase)
05 CTF1 (cardiotrophin 1)
06 DNM1L (dynamin 1-like)
07 ELN (elastin)
08 GATA4 (GATA binding protein 4)
09 potassium inwardly-rectifying channel, subfamily J, member 11
10 LRP6 (low density lipoprotein receptor-related protein 6)
11 NKX2-5 (NK2 homeobox 5)
12 TBX20 (T-box 20)
13 FBN1 (fibrillin 1)
14 FBN2 (fibrillin 2)
15 TGFBR1 (transforming growth factor, beta receptor I)
16 TGFBR2 (transforming growth factor, beta receptor II)
17 ACTA2 (actin, alpha 2, smooth muscle, aorta)

Table 3: Name according to HGNC of the candidate genes for the Molecular Autopsy of Sudden Cardiac
Death study
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.1.2 ARVC/HCM Gene Panel
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ENSEMBL HUGO Chromosome Start End
1 ENSG00000118194 TNNT2 1 201359008 201377762
2 ENSG00000118729 CASQ2 1 115700007 115768781
3 ENSG00000159166 LAD1 1 201373244 201399915
4 ENSG00000160789 LMNA 1 156082573 156140089
5 ENSG00000198626 RYR2 1 237042205 237833988
6 ENSG00000144283 PKP4 2 158456964 158682879
7 ENSG00000153237 CCDC148 2 158171081 158456753
8 ENSG00000155657 TTN 2 178525989 178830802
9 ENSG00000175084 DES 2 219418377 219426739

10 ENSG00000237298 TTN-AS1 2 178521183 178779963
11 ENSG00000114854 TNNC1 3 52451102 52454070
12 ENSG00000125046 SSUH2 3 8619400 8745040
13 ENSG00000160808 MYL3 3 46857872 46882169
14 ENSG00000170876 TMEM43 3 14124940 14143679
15 ENSG00000182533 CAV3 3 8733800 8841808
16 ENSG00000183873 SCN5A 3 38548057 38649673
17 ENSG00000145362 ANK2 4 112818109 113383740
18 ENSG00000154553 PDLIM3 4 185500660 185535612
19 ENSG00000096696 DSP 6 7541575 7586717
20 ENSG00000152661 GJA1 6 121435692 121449727
21 ENSG00000198523 PLN 6 118548298 118560730
22 ENSG00000055118 KCNH2 7 150944961 150978315
23 ENSG00000178209 PLEC 8 143915147 143976734
24 ENSG00000035403 VCL 10 73995193 74121363
25 ENSG00000122367 LDB3 10 86668449 86736068
26 ENSG00000203867 RBM20 10 110644397 110839469
27 ENSG00000053918 KCNQ1 11 2444684 2849109
28 ENSG00000129170 CSRP3 11 19182030 19210573
29 ENSG00000134571 MYBPC3 11 47331397 47352702
30 ENSG00000057294 PKP2 12 32790745 32896840
31 ENSG00000111245 MYL2 12 110910819 110920722
32 ENSG00000092054 MYH7 14 23412738 23435718
33 ENSG00000100941 PNN 14 39175183 39183218
34 ENSG00000119699 TGFB3 14 75958099 75982991
35 ENSG00000197616 MYH6 14 23381990 23408277
36 ENSG00000259083 RP11-407N17.4 14 39174885 39175880
37 ENSG00000140416 TPM1 15 63042632 63071915
38 ENSG00000159251 ACTC1 15 34788096 34796139
39 ENSG00000123700 KCNJ2 17 70168673 70180048
40 ENSG00000173801 JUP 17 41754604 41786931
41 ENSG00000173991 TCAP 17 39664187 39666555
42 ENSG00000046604 DSG2 18 31498043 31549008
43 ENSG00000134755 DSC2 18 31058840 31102415
44 ENSG00000129991 TNNI3 19 55151767 55157773
45 ENSG00000267110 CTD-2587H24.4 19 55154757 55160671
46 ENSG00000159197 KCNE2 21 34364024 34371389
47 ENSG00000180509 KCNE1 21 34446688 34512275

Table 4: Genes sequenced in the ARVC/HCM Gene panel
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.2 Chapter 3 - HCM Copy Number Variant analysis gene panel
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Gene Ensembl Number Chromosome:Start-End Number(bp)
MYBPC3 ENSG00000134571 Chr11:47352958-47374253 21295
MYH7 ENSG00000092054 Chr14:23881948-23904870 22922
TNNI3 ENSG00000129991 Chr19:55663137-55669100 5963
TNNT2 ENSG00000118194 Chr1:201328143-201346805 18662
TPM1 ENSG00000140416 Chr15:63334838-63364111 29273
MYL2 ENSG00000111245 Chr12:111348626-111358404 9778
MYL3 ENSG00000160808 Chr3:46899357-46904973 5616
ACTC1 ENSG00000159251 Chr15:35080297-35087927 7630
TNNC1 ENSG00000114854 Chr3:52485108-52488057 2949
MYH6 ENSG00000197616 Chr14:23851199-23877482 26283
TTN ENSG00000155657 Chr2:179390720-179672150 281430
PDLIM3 ENSG00000154553 Chr4:186422852-186456712 33860
CSRP3 ENSG00000129170 Chr11:19203578-19223589 20011
DES ENSG00000175084 Chr2:220283099-220291459 8360
LMNA ENSG00000160789 Chr1:156084461-156109878 25417
LDB3 ENSG00000122367 Chr10:88428426-88495822 67396
VCL ENSG00000035403 Chr10:75757872-75879912 122040
TCAP ENST00000309889 Chr17:37821599-37822806 1207
PLN ENSG00000198523 Chr6:118869442-118881586 12144
RBM20 ENSG00000203867 Chr10:112404155-112599227 195072
JUP ENSG00000173801 Chr17:39910859-39942964 32105
DSP ENSG00000096696 Chr6:7541870-7586946 45076
PKP2 ENSG00000057294 Chr12:32943682-33049780 106098
DSG2 ENSG00000046604 Chr18:29078027-29128813 50786
DSC2 ENSG00000134755 Chr18:28645944-28682388 36444
RYR2 ENSG00000198626 Chr1:237205702-237997288 791586
TMEM43 ENST00000306077 Chr3:14166440-14185180 18740
TGF-3 ENST00000238682 Chr14:76424442-76448092 23650
KCNQ1 ENSG00000053918 Chr11:2466221-2870339 404118
KCNH2 ENSG00000055118 Chr7:150642050-150675014 32964
SCN5A ENSG00000183873 Chr3:38589554-38691164 101610
KCNE1 ENSG00000180509 Chr21:35818989-35828063 9074
KCNE2 ENSG00000159197 Chr21:35736323-35743440 7117
ANK2 ENST00000394537 Chr4:113970785-114304894 334109
CASQ2 ENSG00000118729 Chr1:116242628-116311426 68798
CAV3 ENSG00000182533 Chr3:8775496-8788450 12954
KCNJ2 ENSG00000123700 Chr17:68165676-68176181 10505
PLEC ENSG00000178209 Chr8:144989321-145025044 35723
GJA1 ENST00000282561 Chr6:121756745-121770872 14127
PKP4 ENSG00000144283 Chr2:159313476-159537938 224462
PNN ENSG00000100941 Chr14:39644387-39652421 8036

Table 5: Name of the targeted genes, Ensembl accesion number, chromsomal positon and size sequenced for
the HCM CNV study.
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.3 Chapter 4 - Single Variant Results for additional UCLex Co-

horts

For each of the tables in this section the layout is the same so, a common legend is provided: SNP details

the position of the tested variant (hg19). Gene is the HUGO name for the gene in which the SNP resides.

FisherPvalue is the pvalue from Fisher’s exact test. LRpvalue is the Linear Regression pvalue with no

covariates or kinship matrices. LMMpvalue is the pvalue from Equation 4.9. OR is the risk odds ratio.

’Homs’ are homozygotes for the minor allele, while ’Hets’ are heteroozygotes.

SNP Gene FisherPvalue LRpvalue LMMpvalue OR nb.Homs.Huntingtons nb.Homs.ctrls nb.Hets.Huntingtons nb.Hets.ctrls
1 1 7723921 T C CAMTA1 8.82E-04 1.00E-16 1.00E-16 81 0 0 2 2
2 18 72223597 - TGT CNDP1 1.19E-12 1.00E-16 1.00E-16 NA 1 0 4 0
3 3 49845468 C T UBA7 8.46E-04 1.00E-16 1.00E-16 83 0 0 2 2
4 11 44228488 C T EXT2 9.16E-04 1.00E-16 1.87E-11 80 0 0 2 2

Table 6: Huntingtons Single Variant Results

SNP Gene FisherPvalue LRpvalue LMMpvalue OR nb.Homs.Eye nb.Homs.ctrls nb.Hets.Eye nb.Hets.ctrls
1 10 100189567 C G HPS1 8.70E-12 1.00E-16 1.00E-16 358 0 0 7 1
2 10 115368200 C T NRAP 9.47E-13 1.00E-16 1.00E-16 NA 0 0 7 0
3 10 123970354 A G TACC2 2.97E-09 1.00E-16 1.00E-16 NA 0 0 5 0
4 10 124753444 A G IKZF5 3.30E-09 1.00E-16 1.00E-16 NA 0 0 5 0
5 10 16992007 G C CUBN 2.23E-06 1.00E-16 1.00E-16 100 0 0 4 2
6 10 27524067 T C ACBD5 8.82E-07 1.00E-16 1.00E-16 192 0 0 4 1
7 10 3193452 G A PITRM1 3.70E-05 1.00E-16 1.00E-16 139 0 0 3 1
8 10 84745067 A G NRG3 9.58E-13 1.00E-16 1.00E-16 NA 0 0 7 0
9 11 100211919 T C CNTN5 2.12E-07 1.00E-16 1.00E-16 NA 0 0 4 0

10 11 433357 G - ANO9 7.45E-06 1.00E-16 1.00E-16 25 0 0 5 9
11 1 150530506 G T ADAMTSL4 7.74E-09 1.00E-16 1.00E-16 296 0 0 5 1
12 1 153279608 C T PGLYRP3 3.62E-09 1.00E-16 1.00E-16 NA 0 0 5 0
13 1 154920148 G A PBXIP1 8.66E-10 1.00E-16 1.00E-16 70 0 0 7 5
14 11 56237921 C T OR5M3 6.56E-11 1.00E-16 1.00E-16 NA 0 0 6 0
15 11 56237921 C T OR8U8 6.56E-11 1.00E-16 1.00E-16 NA 0 0 6 0
16 1 158670285 G C OR6K2 3.32E-11 1.00E-16 1.00E-16 183 0 0 7 2
17 1 171605478 G A MYOC 5.80E-07 1.00E-16 1.00E-16 52 0 0 5 5
18 1 174210750 G A RABGAP1L 1.64E-04 1.00E-16 1.00E-16 48 0 0 3 3
19 1 182353781 A C GLUL 6.62E-07 1.00E-16 1.00E-16 206 0 0 4 1
20 11 85445453 T C SYTL2 3.27E-05 1.00E-16 1.00E-16 145 0 0 3 1

Table 7: Opthalmology Condition 1 Single Variant Results
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SNP Gene FisherPvalue LRpvalue LMMpvalue OR NA..3 nb.Homs.ctrls NA..4 nb.Hets.ctrls
1 11 120175740 C T POU2F3 8.51E-09 1.00E-16 1.00E-16 NA 0 0 4 0
2 22 29621158 C T EMID1 6.14E-11 1.00E-16 1.00E-16 NA 0 0 5 0
3 22 30688584 C T TBC1D10A 6.64E-11 1.00E-16 1.00E-16 NA 0 0 5 0
4 2 56420484 C A CCDC85A 5.38E-06 1.00E-16 1.00E-16 272 0 0 3 1
5 3 169700534 A C SEC62 9.23E-10 1.00E-16 1.00E-16 466 0 0 5 1
6 8 25234859 G A DOCK5 9.78E-09 1.00E-16 1.00E-16 NA 0 0 4 0
7 11 2432745 G A TRPM5 9.77E-04 1.00E-16 2.45E-16 67 0 0 2 3
8 16 51175457 C T SALL1 3.32E-06 1.00E-16 5.19E-16 320 0 0 3 1
9 17 17124804 C T FLCN 8.16E-06 1.00E-16 1.08E-15 161 0 0 3 2

10 3 38307622 G A SLC22A13 8.37E-06 1.00E-16 3.42E-15 159 0 0 3 2
11 19 334440 T G MIER2 7.43E-06 1.00E-16 1.47E-13 166 0 0 3 2
12 1 53932322 A G DMRTB1 1.58E-04 1.00E-16 9.16E-13 36 0 0 3 9
13 1 55014014 G A ACOT11 1.23E-05 1.00E-16 2.06E-12 140 0 0 3 2
14 12 55420621 G A NEUROD4 7.54E-06 1.00E-16 9.22E-12 165 0 0 3 2
15 9 19785979 G A SLC24A2 1.16E-07 1.00E-16 1.18E-11 215 0 0 4 2
16 1 889212 G A NOC2L 1.55E-07 1.00E-16 2.38E-11 200 0 0 4 2
17 1 114394645 A C PTPN22 7.54E-06 1.00E-16 3.67E-11 165 0 0 3 2
18 1 201868510 G T LMOD1 1.10E-05 1.00E-16 3.97E-11 146 0 0 3 2
19 17 9631505 C T USP43 6.72E-04 3.90E-15 4.27E-11 94 0 0 2 2
20 1 979517 T A AGRN 2.74E-07 1.00E-16 4.32E-11 142 0 0 4 3

Table 8: Icelandic IBD Cohort Single Variant Results

SNP Gene FisherPvalue LRpvalue LMMpvalue OR nb.Homs.Neur nb.Homs.ctrls nb.Hets.Neur nb.Hets.ctrls
1 1 109806800 A G CELSR2 6.12E-07 1.00E-16 1.00E-16 NA 0 0 4 0
2 11 19077074 CT GT MRGPRX2 1.13E-09 1.00E-16 1.00E-16 254 0 0 6 1
3 11 19077075 T G MRGPRX2 3.18E-10 1.00E-16 1.00E-16 NA 0 0 6 0
4 1 161695685 TACG GACG FCRLB 1.26E-10 1.00E-16 1.00E-16 240 0 0 7 1
5 11 6977031 A G ZNF215 1.12E-06 1.00E-16 1.00E-16 NA 0 0 4 0
6 11 700213 G A TMEM80 1.13E-06 1.00E-16 1.00E-16 NA 0 0 4 0
7 11 76928315 - ATCT GDPD4 2.61E-06 1.00E-16 1.00E-16 145 0 0 4 1
8 12 123342763 G A HIP1R 5.42E-07 1.00E-16 1.00E-16 NA 0 0 4 0
9 13 25671955 T C PABPC3 1.80E-06 1.00E-16 1.00E-16 NA 0 0 4 0

10 13 39425226 G T FREM2 3.27E-08 1.00E-16 1.00E-16 NA 0 0 5 0
11 14 33291745 G A AKAP6 5.36E-07 1.00E-16 1.00E-16 NA 0 0 4 0
12 14 88893017 C T SPATA7 6.47E-07 1.00E-16 1.00E-16 NA 0 0 4 0
13 16 84270704 C T KCNG4 1.15E-06 1.00E-16 1.00E-16 NA 0 0 4 0
14 17 2227024 C G SRR 1.59E-08 1.00E-16 1.00E-16 NA 0 0 4 0
15 17 2227024 C G TSR1 1.59E-08 1.00E-16 1.00E-16 NA 0 0 4 0
16 17 39346627 CCACCCAACA - KRTAP9-1 2.78E-19 1.00E-16 1.00E-16 156 0 0 14 3
17 17 39346639 CTGTCAAACC - KRTAP9-1 3.84E-19 1.00E-16 1.00E-16 152 0 0 14 3
18 1 75037184 C G C1orf173 2.71E-08 1.00E-16 1.00E-16 NA 0 0 5 0
19 17 72366771 T G GPR142 1.01E-06 1.00E-16 1.00E-16 NA 0 0 4 0
20 19 20002909 A C ZNF253 5.68E-07 1.00E-16 1.00E-16 79 0 0 5 2

Table 9: Neurology Single Variant Results
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SNP Gene FisherPvalue LRpvalue LMMpvalue OR NA..3 nb.Homs.ctrls NA..4 nb.Hets.ctrls
1 9 140878697 C T CACNA1B 6.99E-04 6.83E-15 1.21E-16 70 0 1 2 3
2 15 42192873 C T EHD4 2.01E-04 1.00E-16 1.81E-16 174 0 0 2 2
3 1 175365772 G A TNR 6.93E-06 1.25E-15 6.83E-13 123 1 0 1 5
4 19 48714997 G A CARD8 3.77E-04 2.32E-06 3.24E-10 101 1 0 0 4

Table 10: Opthalmology Condition 2 Single Variant Results

SNP Gene FisherPvalue LRpvalue LMMpvalue OR nb.Homs.Skin nb.Homs.ctrls nb.Hets.Skin nb.Hets.ctrls
1 10 121140398 A G GRK5 5.47E-07 1.00E-16 1.00E-16 143 0 0 4 2
2 10 128923854 A G DOCK1 1.62E-09 1.00E-16 1.00E-16 414 0 0 5 1
3 10 129216722 A G DOCK1 5.22E-13 1.00E-16 1.00E-16 343 0 0 7 2
4 10 135099022 G T TUBGCP2 1.79E-08 1.00E-16 1.00E-16 NA 0 0 4 0
5 10 16975189 C T CUBN 3.31E-05 1.00E-16 1.00E-16 99 0 0 3 2
6 10 31799735 A G ZEB1 6.24E-08 1.00E-16 1.00E-16 NA 0 0 4 0
7 10 38406867 G T ZNF37A 2.54E-06 1.00E-16 1.00E-16 72 0 0 4 4
8 10 72181468 C T EIF4EBP2 8.99E-04 5.73E-15 1.00E-16 80 0 0 2 2
9 10 73562724 G A CDH23 1.43E-16 1.00E-16 1.00E-16 420 0 0 9 2

10 10 79553803 C T DLG5 2.17E-11 1.00E-16 1.00E-16 24 0 0 11 38
11 10 79576826 C T DLG5 5.12E-12 1.00E-16 1.00E-16 28 1 0 9 29
12 10 79616631 C T DLG5 4.35E-12 1.00E-16 1.00E-16 28 1 0 9 34
13 10 82403828 TGT - SH2D4B 3.45E-15 1.00E-16 1.00E-16 NA 0 0 8 0
14 10 90537864 G C LIPN 4.04E-10 1.00E-16 1.00E-16 67 1 0 5 8
15 10 90575223 T C LIPM 1.54E-10 1.00E-16 1.00E-16 86 1 0 5 6
16 10 93904826 A G CPEB3 1.85E-11 1.00E-16 1.00E-16 159 1 0 5 3
17 10 95275274 A G CEP55 7.43E-09 1.00E-16 1.00E-16 41 1 0 5 10
18 1 109823574 A G PSRC1 1.80E-05 1.00E-16 1.00E-16 122 0 0 3 2
19 11 107375857 G T ALKBH8 2.33E-05 1.00E-16 1.00E-16 112 0 0 3 2
20 11 114401546 G A NXPE1 4.98E-11 1.00E-16 1.00E-16 119 0 0 7 4

Table 11: Dermatology Single Variant Results
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SNP Gene FisherPvalue LRpvalue LMMpvalue OR NA..3 nb.Homs.ctrls NA..4 nb.Hets.ctrls
1 10 106209864 G T CCDC147 4.52E-04 1.00E-16 1.00E-16 81 0 0 2 9
2 10 117704227 A G ATRNL1 3.67E-04 1.00E-16 1.00E-16 91 0 1 2 6
3 10 1421303 A C ADARB2 5.51E-06 1.00E-16 1.00E-16 121 1 0 1 9
4 10 1421304 G C ADARB2 5.51E-06 1.00E-16 1.00E-16 121 1 0 1 9
5 10 24833905 C T KIAA1217 7.82E-04 1.00E-16 1.00E-16 59 1 0 0 12
6 10 29581461 A G LYZL1 3.75E-04 1.00E-16 1.00E-16 90 0 0 2 8
7 10 3823777 T C KLF6 7.12E-05 1.00E-16 1.00E-16 299 0 0 2 2
8 10 3824081 G A KLF6 5.34E-05 1.00E-16 1.00E-16 347 0 0 2 2
9 10 43596103 G A RET 1.41E-04 1.00E-16 1.00E-16 169 0 1 2 2

10 10 75184902 G A MSS51 1.38E-06 1.00E-16 1.00E-16 220 1 0 1 5
11 10 84744970 C T NRG3 3.46E-06 1.00E-16 1.00E-16 145 1 0 1 8
12 10 91477375 G T KIF20B 4.68E-04 1.00E-16 1.00E-16 81 0 0 2 8
13 10 97154762 G A SORBS1 5.26E-04 1.00E-16 1.00E-16 74 0 0 2 10
14 1 100387183 T A AGL 1.46E-04 1.00E-16 1.00E-16 166 0 0 2 4
15 1 10709186 G A CASZ1 1.31E-04 1.00E-16 1.00E-16 176 1 0 0 4
16 1 109803697 G A CELSR2 8.29E-06 1.00E-16 1.00E-16 103 0 0 3 11
17 11 100141950 G A CNTN5 2.54E-04 1.00E-16 1.00E-16 112 0 0 2 10
18 11 102196019 A G BIRC3 8.31E-05 1.00E-16 1.00E-16 240 0 0 2 3
19 11 107375667 C T ALKBH8 1.47E-04 1.00E-16 1.00E-16 166 0 0 2 4
20 11 111753245 C T C11orf1 6.34E-04 1.00E-16 1.00E-16 66 0 1 2 9

Table 12: Keratoconus Single Variant Results
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SNP Gene FisherPvalue LRpvalue LMMpvalue OR nb.Homs.Immune nb.Homs.ctrls nb.Hets.Immune nb.Hets.ctrls
1 10 48429512 G A GDF10 2.26E-07 1.00E-16 1.00E-16 148 0 0 5 1
2 1 197072458 T C ASPM 1.62E-06 1.00E-16 1.00E-16 NA 0 0 4 0
3 12 68720470 A G MDM1 3.07E-04 4.29E-13 1.00E-16 45 0 0 3 2
4 19 11565623 G T ELAVL3 1.20E-06 1.00E-16 1.00E-16 NA 1 0 2 0
5 1 9787030 G A PIK3CD 7.85E-10 1.00E-16 1.00E-16 NA 0 0 6 0
6 20 25258960 T C PYGB 6.65E-04 2.53E-10 1.00E-16 29 0 0 3 3
7 2 127453624 G A GYPC 5.42E-06 1.00E-16 1.00E-16 119 1 0 2 1
8 2 241463616 G A ANKMY1 3.29E-04 3.05E-13 1.00E-16 44 0 0 3 2
9 2 46588218 C T EPAS1 6.41E-04 1.35E-10 1.00E-16 29 0 0 3 3

10 3 51671458 G A RAD54L2 2.91E-04 5.39E-14 1.00E-16 46 0 0 3 2
11 6 33283594 G A ZBTB22 5.59E-05 1.04E-11 1.00E-16 16 0 0 5 9
12 6 33372831 T C KIFC1 2.17E-05 1.37E-11 1.00E-16 13 0 0 6 13
13 6 38906754 T C DNAH8 3.50E-04 8.22E-13 1.00E-16 43 0 0 3 2
14 6 38906754 T C LOC100131047 3.50E-04 8.22E-13 1.00E-16 43 0 0 3 2
15 7 150918769 G A ABCF2 3.07E-04 2.79E-13 1.00E-16 45 0 0 3 2
16 X 10085293 G A WWC3 2.95E-04 1.00E-16 1.00E-16 46 0 0 3 2
17 16 57095409 G A NLRC5 2.05E-08 1.00E-16 1.03E-16 43 1 0 5 5
18 14 103450076 G A CDC42BPB 6.84E-06 1.00E-16 1.10E-16 112 0 0 4 1
19 3 48658942 C T TMEM89 3.13E-07 1.00E-16 3.26E-16 36 1 0 4 6
20 1 12433865 C T VPS13D 4.51E-04 6.95E-09 3.95E-16 14 0 0 4 8

Table 13: Primary Immuno Deficiency Single Variant Results

SNP Gene FisherPvalue LRpvalue LMMpvalue OR NA..3 nb.Homs.ctrls NA..4 nb.Hets.ctrls
1 1 152681693 TGTGGT - LCE4A 7.93E-75 1.00E-16 1.00E-16 189 3 0 52 10
2 X 73811755 C G RLIM 1.85E-60 5.52E-16 5.91E-13 59 0 0 57 27
3 7 150325310 C T GIMAP6 9.24E-04 4.27E-03 2.64E-12 31 0 0 3 2
4 1 248616401 G A OR2T2 1.95E-38 1.34E-05 9.55E-11 6 2 21 101 279
5 1 248616408 C T OR2T2 5.41E-37 6.23E-05 1.21E-10 5 2 22 102 299
6 2 10584626 C T ODC1 3.83E-04 2.05E-01 1.53E-10 6 1 0 5 21

Table 14: Prion Single Variant Results
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SNP Gene FisherPvalue LRpvalue LMMpvalue OR nb.Homs.Mito nb.Homs.ctrls nb.Hets.Mito nb.Hets.ctrls
1 10 120934107 - A PRDX3 5.84E-08 1.00E-16 1.00E-16 127 0 0 5 2
2 1 153314126 C T PGLYRP4 1.75E-04 1.00E-16 1.00E-16 47 0 0 3 3
3 12 111772320 C T CUX2 3.57E-05 1.00E-16 1.00E-16 141 0 0 3 1
4 12 15650326 T C PTPRO 5.12E-05 1.00E-16 1.00E-16 125 0 0 3 1
5 1 228595950 C T TRIM17 1.73E-04 1.00E-16 1.00E-16 47 0 0 3 3
6 12 55759555 C T OR6C75 3.50E-05 1.00E-16 1.00E-16 142 0 0 3 1
7 14 21841524 A G SUPT16H 1.02E-04 1.00E-16 1.00E-16 67 0 0 3 2
8 17 65925556 A G BPTF 8.78E-05 1.00E-16 1.00E-16 70 0 0 3 2
9 19 24102851 A G ZNF726 2.08E-04 1.00E-16 1.00E-16 44 0 0 3 3

10 1 982833 C T AGRN 2.86E-09 1.00E-16 1.00E-16 NA 0 0 5 0
11 2 108994856 C T SULT1C4 4.23E-05 1.00E-16 1.00E-16 133 0 0 3 1
12 2 170092467 G A LRP2 3.57E-04 7.75E-15 1.00E-16 33 0 0 3 4
13 3 138187558 C T ESYT3 1.49E-04 1.00E-16 1.00E-16 49 0 0 3 3
14 3 193081064 G A ATP13A5 3.68E-05 1.00E-16 1.00E-16 139 0 0 3 1
15 3 58855204 C T C3orf67 1.95E-07 1.00E-16 1.00E-16 80 0 0 5 3
16 4 13616292 T A BOD1L1 1.46E-04 1.00E-16 1.00E-16 50 0 0 3 3
17 5 72980694 C T RGNEF 6.05E-05 1.00E-16 1.00E-16 80 0 0 3 2
18 5 75989260 C T IQGAP2 7.58E-05 1.00E-16 1.00E-16 74 0 0 3 2
19 5 90136800 A C GPR98 3.19E-05 1.00E-16 1.00E-16 147 0 0 3 1
20 7 100635250 C A MUC12 3.52E-04 4.51E-13 1.00E-16 31 0 0 3 5

Table 15: Mitochondrial disease Single Variant Results

SNP Gene FisherPvalue LRpvalue LMMpvalue OR nb.Homs.Bone nb.Homs.ctrls nb.Hets.Bone nb.Hets.ctrls
1 11 66099992 G T RIN1 3.81E-07 1.00E-16 1.00E-16 NA 0 0 5 0
2 1 170955836 C T C1orf129 9.79E-06 1.00E-16 1.00E-16 NA 0 0 4 0
3 16 3614342 G A NLRC3 7.16E-04 2.59E-10 1.00E-16 49 0 0 3 1
4 5 146763533 A G STK32A 7.12E-04 1.50E-10 1.00E-16 49 0 0 3 1
5 9 117139815 G A AKNA 9.83E-06 1.59E-10 1.00E-16 18 1 0 4 7
6 11 66334727 C T CTSF 7.28E-06 1.16E-15 1.52E-16 45 0 0 5 2
7 3 72495945 A G RYBP 7.24E-04 4.88E-10 3.40E-16 49 0 0 3 1
8 22 50187923 G T BRD1 4.59E-04 1.67E-10 1.63E-15 58 0 0 3 1
9 9 123673632 C T TRAF1 9.77E-06 1.00E-16 1.07E-14 NA 0 0 4 0

10 5 156381625 C T TIMD4 7.44E-04 1.60E-10 1.67E-14 48 0 0 3 1
11 7 4830898 C G AP5Z1 6.77E-04 1.42E-10 2.87E-14 50 0 0 3 1
12 7 44180307 G A MYL7 5.83E-04 9.08E-11 7.23E-14 53 0 0 3 1
13 11 65146965 A G SLC25A45 6.59E-04 2.12E-10 1.13E-13 51 0 0 3 1
14 10 102739999 C T SEMA4G 6.49E-04 1.54E-10 1.39E-13 51 0 0 3 1
15 10 102739999 C T MRPL43 6.49E-04 1.54E-10 1.39E-13 51 0 0 3 1
16 15 65983590 A G DENND4A 2.81E-04 1.94E-08 2.94E-13 12 0 0 5 7
17 5 141694394 C T SPRY4 1.50E-04 1.08E-09 1.07E-12 86 0 0 3 1
18 X 100169508 G A XKRX 5.13E-05 2.64E-14 1.12E-12 65 0 0 4 1
19 7 35293222 T A TBX20 1.64E-04 1.10E-11 1.29E-12 32 0 0 4 2
20 19 16006368 G A CYP4F2 7.09E-06 1.00E-16 1.32E-12 NA 0 0 4 0

Table 16: Bone Marrow Failure Single Variant Results
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SNP Gene FisherPvalue LRpvalue LMMpvalue OR NA..3 nb.Homs.ctrls NA..4 nb.Hets.ctrls
1 19 36002488 C A DMKN 6.23E-04 1.00E-16 1.00E-16 97 0 0 2 2
2 19 36027710 C T GAPDHS 8.59E-04 1.00E-16 2.29E-16 71 0 0 2 3
3 2 235951605 C T SH3BP4 8.35E-06 1.00E-16 7.68E-15 160 1 0 1 2
4 17 39115095 G A KRT39 3.08E-07 1.00E-16 9.71E-14 437 1 0 1 3
5 16 71483003 C T ZNF23 3.21E-06 1.00E-16 1.45E-13 323 0 0 3 1
6 1 11188142 C T MTOR 8.05E-04 2.95E-15 2.51E-12 74 1 0 0 3
7 1 152192053 C T HRNR 7.93E-04 1.00E-16 7.07E-12 74 0 0 2 3
8 5 132652228 G A FSTL4 7.93E-04 1.00E-16 1.64E-11 74 0 0 2 3
9 1 17396685 G A PADI2 7.82E-04 1.00E-16 3.07E-11 75 0 0 2 3

10 5 156923974 C T ADAM19 1.01E-05 1.00E-16 5.70E-11 39 0 0 4 11
11 19 55086356 - GT LILRA2 5.17E-05 1.00E-16 2.08E-10 59 0 0 3 6
12 19 55086359 GC - LILRA2 7.40E-05 1.00E-16 4.02E-10 50 0 0 3 7
13 4 111539617 T A PITX2 7.77E-04 1.00E-16 9.52E-10 75 0 0 2 3

Table 17: Opthalmology Condition 3 Single Variant Results
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Gonçalo R Abecasis, David Altshuler, Adam Auton, Lisa D Brooks, Richard M Durbin,

Richard a Gibbs, Matt E Hurles, and Gil a McVean. A map of human genome varia-

tion from population-scale sequencing. Nature, 467(7319):1061–73, oct 2010. ISSN 1476-4687.

doi: 10.1038/nature09534. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3042601{&}tool=pmcentrez{&}rendertype=abstract.

Goncalo R Abecasis, Adam Auton, Lisa D Brooks, Mark a DePristo, Richard M Durbin, Robert E

Handsaker, Hyun Min Kang, Gabor T Marth, and Gil a McVean. An integrated map of ge-

netic variation from 1,092 human genomes. Nature, 491(7422):56–65, nov 2012. ISSN 1476-4687.

doi: 10.1038/nature11632. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3498066{&}tool=pmcentrez{&}rendertype=abstract.

Daniel Aird, Wei-Shen Chen, Michael Ross, Kristen Connolly, Jim Meldrim, Carsten Russ, Sheila Fisher,

David Jaffe, Chad Nusbaum, and Andreas Gnirke. Analyzing and minimizing bias in Illumina sequencing

libraries. Genome Biology, 11(Suppl 1):P3, 2010. ISSN 1465-6906. doi: 10.1186/gb-2010-11-s1-p3.

David H Alexander, John Novembre, and Kenneth Lange. Fast model-based estimation of ancestry in

unrelated individuals. Genome Research, 19(9):1655–1664, 2009. doi: 10.1101/gr.094052.109.vidual.

L Almasy and J Blangero. Multipoint quantitative-trait linkage analysis in general pedigrees. American

journal of human genetics, 62(5):1198–1211, 1998. ISSN 00029297. doi: 10.1086/301844.

142

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3042601{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3042601{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3498066{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3498066{&}tool=pmcentrez{&}rendertype=abstract


C I Amos. Robust variance-components approach for assessing genetic linkage in pedigrees. American journal

of human genetics, 54(3):535–543, 1994. ISSN 0002-9297.
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Alexandra Pérez-Serra, Roćıo Toro, Oscar Campuzano, Georgia Sarquella-Brugada, Paola Berne, Anna

Iglesias, Alipio Mangas, Josep Brugada, and Ramon Brugada. A Novel Mutation in Lamin A/C Causing

Familial Dilated Cardiomyopathy Associated With Sudden Cardiac Death. Journal of Cardiac Failure, 21

(3):217–225, 2015. ISSN 10719164. doi: 10.1016/j.cardfail.2014.12.003.

Robert Pinard, Alex de Winter, Gary J Sarkis, Mark B Gerstein, Karrie R Tartaro, Ramona N Plant,

Michael Egholm, Jonathan M Rothberg, and John H Leamon. Assessment of whole genome amplification-

induced bias through high-throughput, massively parallel whole genome sequencing. BMC genomics, 7:

216, jan 2006. ISSN 1471-2164. doi: 10.1186/1471-2164-7-216. URL http://www.pubmedcentral.nih.

gov/articlerender.fcgi?artid=1560136{&}tool=pmcentrez{&}rendertype=abstract.

Vincent Plagnol, James Curtis, Michael Epstein, Kin Y Mok, Emma Stebbings, Sofia Grigoriadou,

Nicholas W Wood, Sophie Hambleton, Siobhan O Burns, Adrian J Thrasher, Dinakantha Kumararatne,

Rainer Doffinger, and Sergey Nejentsev. A robust model for read count data in exome sequencing experi-

ments and implications for copy number variant calling. Bioinformatics (Oxford, England), 28(21):2747–54,

174

http://dx.plos.org/10.1371/journal.pgen.1006091
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1713260{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1713260{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1560136{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1560136{&}tool=pmcentrez{&}rendertype=abstract


nov 2012. ISSN 1367-4811. doi: 10.1093/bioinformatics/bts526. URL http://www.pubmedcentral.nih.

gov/articlerender.fcgi?artid=3476336{&}tool=pmcentrez{&}rendertype=abstract.

Alkes L Price, Nick J Patterson, Robert M Plenge, Michael E Weinblatt, Nancy A Shadick, and David

Reich. Principal components analysis corrects for stratification in genome-wide association studies. Nature

genetics, 38(8):904–9, aug 2006. ISSN 1061-4036. doi: 10.1038/ng1847. URL http://dx.doi.org/10.

1038/ng1847.

J K Pritchard, M Stephens, and P Donnelly. Inference of population structure using multilocus genotype

data. Genetics, 155(2):945–59, jun 2000. ISSN 0016-6731. URL http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=1461096{&}tool=pmcentrez{&}rendertype=abstract.

Shaun Purcell, Benjamin Neale, Kathe Todd-Brown, Lori Thomas, Manuel a R Ferreira, David Bender,

Julian Maller, Pamela Sklar, Paul I W de Bakker, Mark J Daly, and Pak C Sham. PLINK: a tool set for

whole-genome association and population-based linkage analyses. American journal of human genetics,

81(3):559–75, sep 2007. ISSN 0002-9297. doi: 10.1086/519795. URL http://www.pubmedcentral.nih.

gov/articlerender.fcgi?artid=1950838{&}tool=pmcentrez{&}rendertype=abstract.

Fedik Rahimov and Louis M Kunkel. The cell biology of disease: cellular and molecular mechanisms un-

derlying muscular dystrophy. The Journal of cell biology, 201(4):499–510, may 2013. ISSN 1540-8140.

doi: 10.1083/jcb.201212142. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3653356{&}tool=pmcentrez{&}rendertype=abstract.

Alessandra Rampazzo, Andrea Nava, Sandro Malacrida, Giorgia Beffagna, Barbara Bauce, Valeria Rossi,

Rosanna Zimbello, Barbara Simionati, Cristina Basso, Gaetano Thiene, Jeffrey a Towbin, and Gian a

Danieli. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of

arrhythmogenic right ventricular cardiomyopathy. American journal of human genetics, 71(5):1200–

6, nov 2002. ISSN 0002-9297. doi: 10.1086/344208. URL http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=385098{&}tool=pmcentrez{&}rendertype=abstract.

175

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3476336{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3476336{&}tool=pmcentrez{&}rendertype=abstract
http://dx.doi.org/10.1038/ng1847
http://dx.doi.org/10.1038/ng1847
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1461096{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1461096{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1950838{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1950838{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3653356{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3653356{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=385098{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=385098{&}tool=pmcentrez{&}rendertype=abstract


Elliott Rees, James T R Walters, Lyudmila Georgieva, Anthony R Isles, Kimberly D Chambert, Alexan-

der L Richards, Gerwyn Mahoney-Davies, Sophie E Legge, Jennifer L Moran, Steven a McCarroll,

Michael C O’Donovan, Michael J Owen, and George Kirov. Analysis of copy number variations at 15

schizophrenia-associated loci. The British journal of psychiatry : the journal of mental science, 204:108–

14, feb 2014. ISSN 1472-1465. doi: 10.1192/bjp.bp.113.131052. URL http://www.ncbi.nlm.nih.gov/

pubmed/24311552.

Nora Rieber, Marc Zapatka, Bärbel Lasitschka, David Jones, Paul Northcott, Barbara Hutter, Natalie
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