
1 

 

FROM LATE TO MTE: ALTERNATIVE METHODS FOR 

THE EVALUATION OF POLICY INTERVENTIONS1
 

 

Thomas Cornelissen 

Christian Dustmann 

Anna Raute 

Uta Schönberg 

 

This version: June 2015 

 

Abstract: This paper provides an introduction into the estimation of Marginal Treatment 

Effects (MTE). Compared to the existing surveys on the subject, our paper is less technical and 

speaks to the applied economist with a solid basic understanding of econometric techniques 

who would like to use MTE estimation. Our framework of analysis is a generalized Roy model 

based on the potential outcomes framework, within which we define different treatment effects 

of interest, and review the well-known case of IV estimation with a discrete instrument 

resulting in a local average treatment effect (LATE). Turning to IV estimation with a 

continuous instrument we demonstrate that the 2SLS estimator may be viewed as a weighted 

average of LATEs, and discuss MTE estimation as an alternative and more informative way of 

exploiting a continuous instrument. We clarify the assumptions underlying the MTE 

framework, its relation to the correlated random coefficients model, and illustrate how the 

MTE estimation is implemented in practice. 
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1 Introduction 

Evaluating the causal effects of programs or policy interventions is a central task in 

empirical microeconomics. A common case is when the program under evaluation takes the 

form of a binary treatment, such as attending college or attending preschool. Responses to such 

treatments (and thus the treatment effect) will most likely differ across individuals. For 

example, more able individuals are likely to have lower costs of learning than low ability 

individuals and may therefore enjoy larger returns from college attendance. Children from 

disadvantaged backgrounds may benefit more from the exposure to a high quality child care 

program than children from advantaged backgrounds. 

Even though treatment effects are likely to be heterogeneous, early standard econometric 

textbooks aimed at applied researchers did not pay much attention to heterogeneous treatment 

effects (see e.g. the textbooks by Johnston, 1963 or Maddala, 1992). Switching regression 

models, in which the effects of observed and unobserved characteristics are allowed to differ 

across states (where the state could be a treatment, and thus the treatment effect would depend 

on observed and unobserved characteristics) present early approaches of modelling treatment 

effect heterogeneity and date back to the 1970’s (see Quandt, 1972; Heckman, 1976; and Lee, 

1979). Rubin (1974) defines heterogeneous causal effects at the individual level in terms of 

potential outcomes and discusses the average treatment effect (ATE) (or “average causal 

effect”) as an interesting parameter in order learn about the “typical” causal effect in a 

population. Heckman and Robb (1985) is an important early contribution in pointing out that 

the average treatment effect (ATE) and the average treatment effect on the treated (ATT) are 

two conceptually distinct parameters that ask different economic policy questions. They 

analyze a random coefficients treatment effects regression with observed and unobserved 

heterogeneity in rewards (which they show to be equivalent to the switching regression model 

with two states), and emphasize that different estimation methods will in general identify 

different parameters. However, despite these seminal early contributions, much of the applied 

work continued to assume homogeneous treatment effects, focusing mainly on addressing the 
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problem of endogeneity caused by self-selection into treatment based on unobserved 

characteristics.  

The “LATE revolution” in the 1990s changed the focus to identification of models when 

treatment effects are heterogeneous.
2
 The early papers in this literature by Imbens and Angrist 

(1994) and Angrist, Imbens and Rubin (1996) raised awareness about potential heterogeneity 

in returns and clarified the interpretation of IV estimates when treatment effects are 

heterogeneous. Heckman and Vytlacil (1998), Card (2001), and others proposed a control 

function approach based on the correlated random coefficient model as an alternative to 

conventional linear IV estimation which, under stronger assumptions than IV estimation, 

allows estimation of the ATE and yields some insight into the pattern of selection in the 

unobservables. The concept of the marginal treatment effect MTE was first introduced by 

Björklund and Moffitt (1987) in the context of a multivariate-normal switching regression 

model, in which they defined the “marginal gain” as the gain from treatment for individuals 

who are shifted into (or out of) treatment by a marginal change in the cost of treatment (i.e., the 

instrument). It was extended in a series of papers by Heckman and Vytlacil (1999, 2001b, 

2005, 2007) who define the MTE as the gain from treatment for individuals shifted into (or out 

of) treatment by a marginal change in the propensity score (i.e., the predicted probability of 

treatment, which is a function of the instrument), develop non-parametric estimation methods, 

and clarify the connection of the switching regime self-selection model and of MTE with IV 

and LATE.  

Since then the applied literature estimating MTE’s has been growing and now includes, in 

addition to many applications in the economics of education, applications as varied as the 

effect of foster care on child outcomes (Doyle, 2007), the effect of Disability Insurance receipt 

on labor supply (Maestas, Mullen, and Strand, 2013; French and Song, 2014) and the 

                                                 
2
 In their 1994 Econometrica paper, Imbens and Angrist (1994) define the local average treatment effect 

(LATE) and spell out the assumptions under which IV identifies LATE. Angrist et al. (1996) coined the terms 

compliers, always-takers, never-takers and defiers. However, the notion that in a world of heterogeneous 

treatment effects a binary IV identifies the average treatment effect for individuals who switch treatment status in 

response to changes in the instrument predates these papers. For example, it was already discussed in Angrist’s 

(1990) paper using the Vietnam draft lottery as an IV for veteran status. 
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interaction of quantity and quality of children (Brinch, Mogstad, and Wiswall, 2015).
3
  Some 

recent surveys provide insightful discussions about MTE, see for example Blundell and Costa 

Dias (2009) who discuss MTE among a range of alternative policy evaluation approaches, 

French and Taber (2011) who discuss treatment effects and MTE and its relation to the Roy 

model, and the excellent, comprehensive, but technical treatments of MTE in Heckman and 

Vytlacil (2007) and Heckman, Urzúa and Vytlacil (2006), based on the earlier work by 

Heckman and Vytlacil (1999, 2001a, 2001b, 2005). 

Drawing on these earlier papers, we provide here an introduction to the MTE framework, 

clarifying the discussion based on examples and developing it in a way that we believe is 

accessible to the applied economist. We commence by proposing a simple framework that 

allows for treatment heterogeneity, and define within this framework different treatment effects 

of interest such as the average treatment effect (ATE) the average treatment effect on the 

treated (ATT), and the average treatment effect on the untreated (ATU). We next discuss the 

well-known local average treatment effect (LATE) identified by IV with a binary instrument, 

before reviewing IV estimation with continuous instruments. We carefully describe how 

conventional ways of exploiting continuous instruments identify one overall IV effect that can 

be difficult to interpret and can hide interesting patterns of treatment effect heterogeneity. 

Based on the example of the correlated random coefficients model, we then discuss the control 

function approach as an alternative to conventional linear IV estimation. We explain that, under 

considerably stronger assumptions than conventional IV estimation, the control function 

estimator of that model identifies a more general effect than IV and reveals some information 

on the pattern of selection based on unobserved gains. After that, we turn to MTE estimation as 

a more informative way of exploiting a continuous instrument, which aims at identifying a 

                                                 
3
 Applications in economics of education range from estimating the effects of child care attendance on child 

performance (Felfe and Lalive, 2015, Noboa-Hidalgo and Urzúa, 2012, and Cornelissen, Dustmann, Raute, and 

Schönberg, 2016), the effects of secondary schooling attendance on earnings (Carneiro, Lokshin, Riado-Cano, and 

Umapathi, 2015), the effects of advanced high school mathematics education on earnings (Schrøter, Joensen and 

Skyt Nielsen, 2015), the effects of mixed-ability schools on long-term health (Basu, Jones, and Rosa Dias, 2014), 

the effects of alternative breast cancer treatments on medical costs (Basu, Heckman, Navarro-Lozano, and Urzúa, 

2007), and the returns to attending college (see e.g. Carneiro, Heckman, and Vytlacil, 2011 for the U.S., Balfe, 

2015 for the U.K., Kamhöfer, Schmitz, and Westphal, 2015, for Germany, and Nybom, 2014, for Sweden as well 

as Kaufmann, 2014, on the role of credit constraints in Mexico). 
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continuum of treatment effects along the distribution of the individual unobserved 

characteristic that drives treatment decisions and allows the identification of a variety of 

treatment parameters such as ATE, ATT and ATU under potentially no stronger assumptions 

than IV estimation. We finally illustrate MTE estimation using two examples from the 

literature.  

Our paper is less technical (and therefore also less rigorous) than the previous 

methodological contributions on MTE. It is written for the applied economist and introduces 

the method in a simple way, with a strong focus of relating MTE to more conventional IV 

estimation. The two applications we discuss illustrate to the applied researcher how MTE 

estimation can be implemented, and which additional insights hidden by IV estimation can be 

gained from MTE estimation. 

2 Instrumental variables estimation with heterogeneous treatment effects 

2.1 Framework of analysis and definition of treatment effects 

Our general framework is a generalized Roy model based on the potential outcomes model 

and a latent variable discrete choice model for selection into treatment, as in Heckman and 

Vytlacil (1999) and most of the subsequent MTE literature.
4
 We assume that treatment is a 

binary variable denoted by 𝐷𝑖. Let 𝑌1𝑖 be an individual’s outcome under the hypothetical 

scenario that the individual is treated (𝐷𝑖 = 1), and 𝑌0𝑖 the outcome under the hypothetical 

scenario that the individual is not treated (𝐷𝑖 = 0). For example, 𝑌1𝑖 and 𝑌0𝑖 could be an 

individual’s wage in the two hypothetical scenarios that the individual attends college and does 

not attend college, respectively. We model these potential outcomes as  

Y0i = μ0(Xi) + U0i (1)  

Y1i = μ1(Xi) + U1i (2)  

                                                 
4
 The potential outcome model, often also referred to as the “Rubin causal model” is a building block for the 

literature on causal inference and goes back to Rubin (1974) and Holland (1986). 
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where 𝜇𝑗(𝑋𝑖) is the conditional mean of 𝑌𝑗𝑖 given 𝑋𝑖 in treatment state 𝑗 and 𝑈𝑗𝑖 captures 

deviations from that mean implying that 𝐸[𝑈𝑗𝑖|𝑋𝑖] = 0.
5
 

Consider the following latent variable discrete choice model for selection into treatment, 

which forms the basis for the MTE approach: 

𝐷𝑖
∗ = 𝜇𝐷(𝑋𝑖, 𝑍𝑖) − 𝑉𝑖 (3)  

𝐷𝑖 = 1 if  𝐷𝑖
∗ ≥ 0,         𝐷𝑖 = 0   otherwise, (4)  

where 𝐷𝑖
∗ is the latent propensity to take the treatment. 𝐷𝑖

∗ is interpretable as the net gain 

from treatment (because individuals take the treatment if 𝐷𝑖
∗ ≥ 0). The observed variables that 

affect the treatment decision include the same covariates 𝑋𝑖 as the outcome equations (1) and 

(2), and one or more variables 𝑍𝑖 excluded from the outcome equation. 𝑉𝑖 is an i.i.d. error term 

indicating unobserved heterogeneity in the propensity for treatment. Because the error term 𝑉𝑖 

enters the selection equation with a negative sign, it embodies unobserved characteristics that 

make individuals less likely to receive treatment. One could thus label 𝑉𝑖 unobserved 

“resistance” or “distaste” for treatment. The condition 𝐷𝑖
∗ ≥ 0 of taking the treatment can be 

rewritten as 𝜇𝐷(𝑋𝑖 , 𝑍𝑖) ≥ 𝑉𝑖. If we apply the c.d.f. of 𝑉 to this inequality, we get 

F𝑉(𝜇𝐷(𝑋𝑖, 𝑍𝑖)) ≥ F𝑉(𝑉𝑖). Both sides of this inequality are now bounded within the 0/1-

interval. The left-hand side represents the propensity score, the probability of being treated 

based on the observed characteristics, and we refer to this term as 𝑃(𝑋𝑖, 𝑍𝑖) ≡ F𝑉(𝜇𝐷(𝑋𝑖, 𝑍𝑖)). 

The right-hand side, F𝑉(𝑉𝑖), represents the quantiles of the distribution of the unobserved 

distaste for treatment 𝑉𝑖, which we denote by UD ≡ F𝑉(𝑉𝑖). The treatment decision can thus be 

rewritten as  

𝐷𝑖 = 1 if  𝑃(𝑋𝑖, 𝑍𝑖) ≥ UD,         𝐷𝑖 = 0   otherwise. (5)  

Individuals take the treatment if the propensity score exceeds the quantile of the distribution of 

𝑉𝑖 at which the individual is located—that is, if the “encouragement” for treatment based on the 

observables 𝑋𝑖 and 𝑍𝑖  exceeds the unobserved distaste for treatment. 

                                                 
5
 The assumption of linear separability of Yji in 𝜇𝑗(𝑋𝑖) and 𝑈𝑗𝑖 is common in the applied MTE literature. It 

provides a simplification of the more general case Yji = 𝜇𝑗(𝑋𝑖 , 𝑈𝑗𝑖) and makes computation of the aggregate 

treatment parameters (equations (7)-(10) below) and of the MTE weights (section 4.3 below) more tractable. 
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It should be noted that the two potential outcomes 𝑌0𝑖 and 𝑌1𝑖 are never jointly observed for 

the same individual. Instead, we observe the realized outcome 𝑌𝑖  which is equal to either 𝑌0𝑖 or 

𝑌1𝑖 depending on treatment status: 

𝑌𝑖 = (1 − 𝐷𝑖)𝑌0𝑖 + 𝐷𝑖𝑌1𝑖 = 𝑌0𝑖 + 𝐷𝑖(𝑌1𝑖 − 𝑌0𝑖) 

This is in essence the switching regression model of Quandt (1972) and Lee (1979). 

Substituting in for 𝑌0𝑖 and 𝑌1𝑖 shows that the potential outcome framework can be represented 

as the regression model 

𝑌𝑖 = 𝜇0(𝑋𝑖) + 𝐷𝑖 [𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖) + 𝑈1𝑖 − 𝑈0𝑖]⏟                  
𝑌1𝑖−𝑌0𝑖≡∆𝑖

+ 𝑈0𝑖, (6)  

in which the coefficient on the treatment dummy varies across individuals and is equal to  

∆𝑖= 𝑌1𝑖 − 𝑌0𝑖 = 𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖) + 𝑈1𝑖 − 𝑈0𝑖. 

This treatment effect has two components: The average gain of someone with given 

observed characteristics, 𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖), and an idiosyncratic individual-specific gain, 

(𝑈1𝑖 − 𝑈0𝑖).  

There are good reasons to expect treatment effect heterogeneity. Consider the example of 

college education. First, individuals can be heterogeneous in their untreated outcome (𝑌0𝑖) 

reflecting differences in their experiences before entering college, such as the quality of their 

high-school education, family background, etc. If the main effect of college attendance is to 

equalize preexisting differences and to bring everyone to the same level, then 𝑌1𝑖 would be 

more homogeneous than 𝑌0𝑖, and individuals with lower outcomes in the untreated state would 

have higher treatment effects. Alternatively, it could be that some individuals are more able to 

benefit from college attendance (maybe because their ability to learn is higher) so that they 

would have a higher 𝑌1𝑖 even if 𝑌0𝑖 was similar to that of other individuals. A higher 𝑌1𝑖 for a 

given 𝑌0𝑖 could also result from variation in the quality of the treatment, for example because 

colleges differ in the quality of their teaching and resources. 

A main implication of heterogeneous effects is that summary treatment effects that 

aggregate over different parts of the population will in general be different from one another. 
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Consider for example the average treatment effect (ATE), the average treatment effect on the 

treated (ATT) and the average treatment effect on the untreated (ATU).
6
 Conditional on 𝑋𝑖 = 𝑥 

they are defined as: 

𝐴𝑇𝐸(𝑥) = 𝐸[∆𝑖|𝑋𝑖 = 𝑥] = 𝜇1(𝑥) − 𝜇0(𝑥) 

𝐴𝑇𝑇(𝑥) = 𝐸[∆𝑖|𝑋𝑖 = 𝑥, 𝐷𝑖 = 1] = 𝜇1(𝑥) − 𝜇0(𝑥) + 𝐸[𝑈1𝑖 − 𝑈0𝑖|𝑋𝑖 = 𝑥,𝐷𝑖 = 1] 

𝐴𝑇𝑈(𝑥) = 𝐸[∆𝑖|𝑋𝑖 = 𝑥,𝐷𝑖 = 0] = 𝜇1(𝑥) − 𝜇0(𝑥) + 𝐸[𝑈1𝑖 − 𝑈0𝑖|𝑋𝑖 = 𝑥,𝐷𝑖 = 0] 

 

Conditional on 𝑋𝑖 = 𝑥, the ATE is the average treatment effect for an individual with given 

observed characteristics 𝑋𝑖 = 𝑥, while the ATT is the average treatment effect in the subgroup 

of the population that participates in the treatment conditional on 𝑋𝑖 = 𝑥. Similarly, the ATU is 

the average treatment effect in the subgroup of the population that does not participate in the 

treatment conditional on 𝑋𝑖 = 𝑥. 𝐴𝑇𝐸(𝑥) measures how individuals with observed 

characteristics 𝑋𝑖 = 𝑥 would benefit on average from the treatment if everybody with these 

observed characteristics were participating in the treatment, or the expected effect if some 

individuals from the group of individuals with observed characteristics 𝑋𝑖 = 𝑥 were randomly 

assigned to treatment. 𝐴𝑇𝑇(𝑥) measures how those individuals with observed characteristics 

𝑋𝑖 = 𝑥 that are currently enrolled in the treatment benefit from it on average. 𝐴𝑇𝑈(𝑥) on the 

other hand answers the question how those individuals with observed characteristics 𝑋𝑖 = 𝑥 

who are currently not enrolled would benefit on average from treatment if they participated.  

By averaging these parameters over the appropriate distribution of 𝑋𝑖, they can also be 

defined unconditionally:  

𝐴𝑇𝐸 = 𝐸[∆𝑖] = 𝐸[𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖)] (7) 

𝐴𝑇𝑇 = 𝐸[∆𝑖|𝐷𝑖 = 1] = 𝐸[𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖)|𝐷𝑖 = 1] + 𝐸[𝑈1𝑖 − 𝑈0𝑖|𝐷𝑖 = 1] (8) 

𝐴𝑇𝑈 = 𝐸[∆𝑖|𝐷𝑖 = 0] = 𝐸[𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖)|𝐷𝑖 = 0] + 𝐸[𝑈1𝑖 − 𝑈0𝑖|𝐷𝑖 = 0] (9) 

 

                                                 
6
 For an extension of the framework including additional parameters on the cost and the surplus of the 

treatment, see Eisenhauer , Heckman, and Vytlacil (2015). 
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In a linear specification for the conditional mean, that is, 𝜇𝑗(𝑋𝑖) = 𝑋𝑖𝛽𝑗, the terms 

𝐸[𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖)], 𝐸[𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖)|𝐷𝑖 = 1] and 𝐸[𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖)|𝐷𝑖 = 0] would 

simplify to 𝐸[𝑋𝑖](𝛽1 − 𝛽0), 𝐸[𝑋𝑖|𝐷𝑖 = 1](𝛽1 − 𝛽0), and 𝐸[𝑋𝑖|𝐷𝑖 = 0](𝛽1 − 𝛽0), respectively. 

Sometimes we would like to know the aggregate effect of a specific policy change. This is 

given by the policy-relevant treatment effect (PRTE), see Heckman and Vytlacil (2001a, 2005) 

and Carneiro, Heckman, and Vytlacil (2011). Consider a policy change that affects the 

propensity score 𝑃(𝑋𝑖, 𝑍𝑖), but not potential outcomes (𝑌1𝑖, 𝑌0𝑖) or the unobservables of the 

selection process (𝑉𝑖). Such a policy will not change the underlying distribution of treatment 

effects, or preferences for treatment, but by changing the propensity score, the policy will 

change who selects into treatment based on the selection equation (5). Suppose 𝐷𝑖 is the 

treatment choice under the baseline policy, and �̃�𝑖 is the treatment choice under the alternative 

policy. The PRTE conditional on 𝑋𝑖 = 𝑥 is defined as (see Appendix A for details): 

𝑃𝑅𝑇𝐸(𝑥) =
𝐸[𝑌|𝑋𝑖 = 𝑥,  alternative policy] − 𝐸[𝑌|𝑋𝑖 = 𝑥,  baseline policy]

𝐸[𝐷|𝑋𝑖 = 𝑥,  alternative policy] − 𝐸[𝐷|𝑋𝑖 = 𝑥,  baseline policy]

= 𝜇1(𝑥) − 𝜇0(𝑥)

+
𝐸[𝑈1𝑖 − 𝑈0𝑖|𝑋𝑖 = 𝑥, �̃�𝑖 = 1]𝐸[�̃�𝑖|𝑋𝑖 = 𝑥] − 𝐸[𝑈1𝑖 − 𝑈0𝑖|𝑋𝑖 = 𝑥,𝐷𝑖 = 1]𝐸[𝐷𝑖|𝑋𝑖 = 𝑥]

𝐸[�̃�𝑖|𝑋𝑖 = 𝑥] − 𝐸[𝐷𝑖|𝑋𝑖 = 𝑥]

 

and the corresponding unconditional effect is 

𝑃𝑅𝑇𝐸 =
𝐸[𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖)|�̃�𝑖 = 1]𝐸[�̃�𝑖] − 𝐸[𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖)|𝐷𝑖 = 1]𝐸[𝐷𝑖]

𝐸[�̃�𝑖] − 𝐸[𝐷𝑖|]

+
𝐸[𝑈1𝑖 − 𝑈0𝑖|�̃�𝑖 = 1]𝐸[�̃�𝑖] − 𝐸[𝑈1𝑖 − 𝑈0𝑖|𝐷𝑖 = 1]𝐸[𝐷𝑖]

𝐸[�̃�𝑖] − 𝐸[𝐷𝑖|]

 

(10) 

The PRTE is the mean effect of going from a baseline policy to an alternative policy per 

net person shifted. It also corresponds to a weighted difference between the ATT under the 

alternative policy and the ATT under the baseline policy.
7
 

                                                 
7
 If a policy only shifts additional people into treatment without shifting anyone out of the treatment, the 

PRTE is the average effect on the subgroup of individuals shifted into treatment by the policy. In general, a policy 

may shift some individuals into treatment and some individuals out of treatment. In this case, the PRTE is a net 
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It is important to note that ATE, ATT, ATU and PRTE would be the same if there was no 

selection into treatment based on gains—one might imagine that individuals simply do not 

know their idiosyncratic returns to treatment or simply do not act on them. In reality it however 

seems likely that, depending on the context, individuals do select into treatment either directly 

based on gains, or based on characteristics that are related to gains. In consequence, the 

treatment parameters would in general differ. In the case of college attendance, for example, 

we would expect individuals who expect higher gains (e.g., higher future wages) from college 

attendance to be more likely to attend college. Such positive selection on gains is likely to 

occur based on both observed and unobserved characteristics. Positive selection on 

‘unobserved gains’ implies that 𝑈1𝑖 − 𝑈0𝑖 is positively related to 𝐷𝑖 conditional on 𝑋𝑖, such that 

𝐸[𝑈1𝑖 −𝑈0𝑖|𝑋𝑖 = 𝑥, 𝐷𝑖 = 1] > 0 and 𝐸[𝑈1𝑖 − 𝑈0𝑖|𝑋𝑖 = 𝑥, 𝐷𝑖 = 0] < 0, and thus 𝐴𝑇𝑇(𝑥) >

𝐴𝑇𝐸(𝑥) > 𝐴𝑇𝑈(𝑥). Positive selection on ‘observed gains’ implies that 𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖) is 

positively related to 𝐷𝑖, and thus ATT>ATE>ATU (provided that  𝐴𝑇𝑇(𝑥) ≥ 𝐴𝑇𝐸(𝑥) ≥

𝐴𝑇𝑈(𝑥)). 

When treatment effects are heterogeneous, it is of primary relevance to spell out which 

effect a given econometric method identifies. Next, we discuss which parameters linear 

instrumental variables estimation with a binary instrument and with a continuous instrument 

identify (Sections 2.2 and 2.3) and contrast these approaches with the control function 

estimator of the correlated random coefficient model (Section 2.4). 

2.2 IV with a binary instrument and LATE 

We first apply the IV estimator within subsamples stratified by 𝑋𝑖 = 𝑥, leading to 

covariate-specific IV estimates, similar to the covariate-specific treatment effects defined in 

section 2.1 above. We then derive one aggregate IV estimator representing an average across 

values of 𝑋𝑖. 

                                                                                                                                                           

effect in which those shifted out of treatment receive a negative weight. Nevertheless it is still informative on the 

aggregate effect of the policy (Heckman and Vytlacil, 2005). 
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2.2.1 Covariate-Specific IV 

Let 𝑍𝑖 be a binary instrumental variable. The IV estimator with binary instrument 

conditional on 𝑋𝑖 = 𝑥 is equal to the Wald estimator 

Wald(𝑥) =
𝐸[𝑌𝑖|𝑍𝑖 = 1, 𝑋𝑖 = 𝑥 ] − 𝐸[𝑌𝑖|𝑍𝑖 = 0, 𝑋𝑖 = 𝑥]

𝐸[𝐷𝑖|𝑍𝑖 = 1, 𝑋𝑖 = 𝑥] − 𝐸[𝐷𝑖|𝑍𝑖 = 0, 𝑋𝑖 = 𝑥]
. (11) 

 

In the sample of individuals with 𝑋𝑖 = 𝑥, this estimator divides the average difference in 

the outcome between individuals with the instrument switched on (𝑍𝑖 = 1) and individuals 

with the instrument switched off (𝑍𝑖 = 0) by the same difference in average treatment status. 

The numerator is also commonly referred to as the ‘reduced form’ and the denominator as the 

‘first stage’.  

The assumptions under which this ratio estimates a causal effect are well understood and 

we state them only briefly here (see e.g. Angrist and Pischke, 2009 for a detailed discussion). 

Let 𝐷0𝑖 denote the potential treatment state of individual i if 𝑍𝑖 = 0 and 𝐷1𝑖 the potential 

treatment state of individual i if 𝑍𝑖 = 1, so that observed treatment 𝐷𝑖 is equal to 
8
 

𝐷𝑖 = 𝑍𝑖𝐷1𝑖 + (1 − 𝑍𝑖)𝐷0𝑖 . 

The following assumptions are required for a causal interpretation of (11): 

 

(i) Independence: {𝑌1𝑖, 𝑌0𝑖, 𝐷1𝑖 , 𝐷0𝑖} ⫫ 𝑍𝑖 |𝑋𝑖. This assumption first states that the 

instrument 𝑍𝑖 must be as good as randomly assigned conditional on 𝑋𝑖. Random 

assignment ensures that the reduced-form effect of  𝑍𝑖 on 𝑌𝑖 has a causal 

interpretation (conditional on 𝑋𝑖) . The independence assumption further states that 

conditional on 𝑋𝑖 the instrument must affect potential outcomes only through its 

effect on the treatment probability 𝐷𝑖—which is commonly referred to as the 

exclusion restriction.
9
 The exclusion restriction is necessary for the Wald estimator 

                                                 
8
 Note that potential outcomes are indexed against the treatment state, whereas the potential treatment 

decision is indexed against the value of the instrument. 
9
 To make the distinction between random assignment and exclusion more explicit, Angrist and Pischke 

(2009) introduce the following notation. Let 𝑌𝑖(𝑑, 𝑧, 𝑥) denote the potential outcome of an individual with 

treatment status 𝐷𝑖 = 𝑑, instrument value 𝑍𝑖 = 𝑧, and covariate 𝑋𝑖 = 𝑥. The random assignment assumption may 
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to identify the causal effect of treatment 𝐷𝑖 on 𝑌𝑖. It should be noted that the 

exclusion restriction would be violated if treatment effects 𝑌1𝑖 − 𝑌0𝑖 depended on 

the instrument.
10

 Within the Generalized Roy Model of equations (1)-(4), the 

independence assumption may be alternatively written as (𝑈0, 𝑈1, 𝑉) ⫫ 𝑍| 𝑋. 

(ii) Existence of a first stage: 𝐸[𝐷1𝑖 −𝐷0𝑖|𝑋𝑖] ≠ 0 

(iii) Monotonicity (or uniformity): 𝐷1𝑖 ≥ 𝐷0𝑖∀𝑖 or 𝐷1𝑖 ≤ 𝐷0𝑖∀𝑖. This assumption means 

that all individuals who change their treatment status as a result of a change in the 

instrument either get all shifted into treatment, or get all shifted out of treatment.
11

 

Here we assume that 𝑍𝑖 is coded in a way that 𝑍𝑖 = 1 provides an extra 

encouragement for treatment compared to 𝑍𝑖 = 0, implying that monotonicity holds 

in the form of 𝐷1𝑖 ≥ 𝐷0𝑖∀𝑖. 

 

Under these assumptions the IV estimator in equation (11) above with a binary instrument 

applied in a subsample in which the covariates are fixed at 𝑋𝑖 = 𝑥 identifies the covariate-

specific Local Average Treatment Effect (LATE) defined by 

 

LATE(𝑥) = 𝐸[𝑌1𝑖 − 𝑌0𝑖|𝐷1𝑖 > 𝐷0𝑖 , 𝑋𝑖 = 𝑥]

= 𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖) + 𝐸[𝑈1𝑖 − 𝑈0𝑖|𝐷1𝑖 > 𝐷0𝑖, 𝑋𝑖 = 𝑥]

   

(12) 

                                                                                                                                                           

then be written as {𝑌𝑖(𝐷1𝑖 , 1, 𝑥), 𝑌𝑖(𝐷0𝑖 , 0, 𝑥), 𝐷1𝑖 , 𝐷0𝑖} ⫫ 𝑍𝑖 |𝑋𝑖 , while the exclusion restriction may be written as 

𝑌𝑖(𝑑, 0, 𝑥) = 𝑌𝑖(𝑑, 1, 𝑥). 
10

 To see this, consider the following simple example. Suppose 𝑌0𝑖 does not depend on the instrument, but 

treatment effects vary with the instrument such that 𝑌1𝑖 − 𝑌0𝑖 = ∆1 if 𝑍𝑖 = 1 and 𝑌1𝑖 − 𝑌0𝑖 = ∆0  if 𝑍𝑖 = 0. This 

violates the exclusion restriction. It follows that 𝐸[𝑌𝑖|𝑍𝑖 = 1] = 𝐸[𝑌0𝑖] + ∆1𝐸[𝐷𝑖|𝑍𝑖 = 1] and 𝐸[𝑌𝑖|𝑍𝑖 = 0] =

𝐸[𝑌0𝑖] + ∆0𝐸[𝐷𝑖|𝑍𝑖 = 0]. Substituting this into the Wald estimator yields 
∆1𝐸[𝐷𝑖|𝑍𝑖=1]−∆0𝐸[𝐷𝑖|𝑍𝑖=0]

𝐸[𝐷𝑖|𝑍𝑖=1]−𝐸[𝐷𝑖|𝑍𝑖=0]
. Because the 

treatment effect differs for the two values of the instrument, it cannot be factored out of the difference in the 

numerator and the result is a nonsensically weighted average of ∆0 and ∆1, giving positive weight 
𝐸[𝐷𝑖|𝑍𝑖=1]

𝐸[𝐷𝑖|𝑍𝑖=1]−𝐸[𝐷𝑖|𝑍𝑖=0]
 to ∆1 and negative weight 

−𝐸[𝐷𝑖|𝑍𝑖=0]

𝐸[𝐷𝑖|𝑍𝑖=1]−𝐸[𝐷𝑖|𝑍𝑖=0]
 to ∆0. Similarly, when using group indicator 

dummies (say, regions, cohorts, region-year cells, etc.) as instruments, the exclusion restriction requires the 

treatment effects to be similar across groups (conditional on the control variables). Whether or not this is credible 

depends on any given application. 
11

 The IV monotonicity assumption is an assumption of a unidirectional effect of 𝑍𝑖 on 𝐸[𝐷𝑖|𝑍𝑖] across 

individuals. It is therefore sometimes referred to as uniformity rather than monotonicity assumption (e.g., 

Heckman and Vytlacil, 2007).  
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The subpopulation for which 𝐷1𝑖 > 𝐷0𝑖 holds true is called the group of compliers (Angrist 

et al., 1996). These are individuals whose potential treatment status changes in response to the 

extra encouragement for treatment as the instrument changes from 0 to 1. They are treated if 

the instrument is switched on (𝐷1𝑖 = 1) and untreated if the instrument is switched off (𝐷0𝑖 =

0). For example, if the instrument is a dummy variable for a college being located nearby an 

individual’s place of residence, then the LATE is the treatment effect averaged over the group 

of individuals who attend college if living nearby a college, but who do not attend college if the 

college is far away. These might be people who are constrained in their resources to take up 

college far away from their place of residence, as argued by Card (2001), or who feel that their 

return from college would not warrant the cost of attending college in a faraway location. IV is 

not informative on the effect for the subgroup of always-takers (defined by 𝐷1𝑖 = 𝐷0𝑖 = 1) and 

never-takers (defined by 𝐷1𝑖 = 𝐷0𝑖 = 0), who decide in favour (or against) college attendance 

independently of the value of the instrument. In this example, always-takers could be 

individuals who estimate their returns as high enough in order to warrant college attendance 

even in a faraway location, and never-takers would not attend college even in a nearby 

location. The existence of defiers, defined by 𝐷1𝑖 < 𝐷0𝑖, who attend college in a faraway 

location but not in a nearby location is ruled out by the monotonicity assumption. 

2.2.2 Aggregating covariate-specific LATEs into one IV effect 

The covariate-specific LATEs can be aggregated into one IV effect by applying 2SLS with 

a fully saturated model in covariates in both the first and second stage and interactions between 

the instrument and the covariates in the first stage (the “saturate and weight” theorem by 

Angrist and Imbens, 1995). This produces a variance-weighted average of the covariate-

specific LATEs and equals: 

𝐼𝑉 = ∑𝜔(𝑥)𝐿𝐴𝑇𝐸(𝑥)

𝑥∈𝒳

  

where 𝒳 is the set of all unique values of 𝑋𝑖, and 𝜔(𝑥) are weights that sum to one and are 

equal to the contribution of the observations with 𝑋𝑖 = 𝑥 to the variance of the first stage fitted 
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values.
12

 In practice, less saturated models seem to provide a good approximation to the 

underlying causal relation (see the discussion related to Theorem 4.5.1 in Angrist and Pischke, 

2009). 

There is an important difference between LATE defined in (12) and the other treatment 

parameters defined in the previous section. ATE, ATT, ATU and PRTE are parameters that 

answer economic policy questions and are defined independently of any instrument. LATE, on 

the other hand, is defined by the instrumental variable used (because compliers are defined in 

relation to the instrument) and therefore does not necessarily answer an economic policy 

question and does not necessarily represent a treatment parameter for an economically 

interesting group of the population, criticisms made for example in Heckman (1997), Deaton 

(2009), and Heckman and Urzúa (2010). 

There are, however, special cases in which LATE coincides with economically interesting 

parameters. The first case is when the instrument is a policy change in which case LATE is 

equivalent to PRTE defined in equation (10) and thus a policy-relevant parameter (Heckman, 

LaLonde and Smith, 1999). An example is the paper by Oreopoulos (2006) who uses an 

increase of the compulsory school-leaving age as a binary instrument. LATE thus captures the 

effect for individuals induced to stay in school longer by the policy reform and is a PRTE. 

Interestingly, the case analyzed by Oreopoulos (2006) is at the same time an example for a 

second special case. Because the increase in the school-leaving age was fully enforced, there 

were no never-takers. Consequently all untreated are compliers (with the instrument switched 

off) and in such a case LATE is equal to ATU. An example for the opposite case is a recent 

paper by Chetty, Hendren and Katz (2016) who evaluate the long–run effects of the Moving To 

Opportunity (MTO) experiment, which offered randomly selected families housing vouchers to 

                                                 
12

 The weights are equal to 𝜔(𝑋𝑖) =
𝑝𝑥Var(�̂�𝑖|𝑋𝑖=𝑥)

Var(�̂�𝑖)
 where �̂�𝑖 = 𝐸[𝐷𝑖|𝑋𝑖 , 𝑍𝑖] denotes the first stage fitted value 

and 𝑝𝑥 the population share of individuals with 𝑋𝑖 = 𝑥. These are the same weights as equation 4.5.4 in Angrist 

and Pischke (2009) in somewhat different notation. It should be noted that conditional on X, all variation in �̂�𝑖 

comes from the instrument(s) and that Var(�̂�𝑖) = Cov(�̂�𝑖 , 𝐷𝑖). Therefore the weight 𝜔(𝑥) can also be interpreted 

as the contribution of observations with 𝑋𝑖 = 𝑥 to the first-stage covariance and in that sense the weights are 

proportionate to how strongly individuals with 𝑋𝑖 = 𝑥 are shifted by the instrument. This is, however, not in 

general equal to the share of compliers at 𝑋𝑖 = 𝑥 relative to all compliers. 
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move from high-poverty housing projects to lower-poverty neighborhoods. The random 

assignment to the treatment group (offer of a voucher) was used as an instrument for the actual 

treatment decision (in this case the decision to relocate to a lower-poverty neighborhood). 

Because nobody in the control group had access to the treatment, there were no always-takers, 

implying that all treated are compliers (with the instrument switched on) and LATE identifies 

ATT.
 13

 

2.3 IV with a continuous instrument 

2.3.1 Pairwise Covariate-specific LATEs 

If 𝑍𝑖 is a continuous instrument, then one can exploit any pair of values 𝑧 and 𝑧′ of 𝑍𝑖 as a 

binary instrument calculating the covariate-specific IV estimator  

Wald(𝑧, 𝑧′, 𝑥) =
𝐸[𝑌𝑖|𝑍𝑖 = 𝑧, 𝑋𝑖 = 𝑥] − 𝐸[𝑌𝑖|𝑍𝑖 = 𝑧′, 𝑋𝑖 = 𝑥]

𝐸[𝐷𝑖|𝑍𝑖 = 𝑧, 𝑋𝑖 = 𝑥] − 𝐸[𝐷𝑖|𝑍𝑖 = 𝑧′, 𝑋𝑖 = 𝑥]
. 

(13) 

In order for each of these IV estimators to capture the average treatment effect for 

compliers with a change in the instrument from 𝑧 to 𝑧′, 𝑍𝑖 needs to fulfil the IV assumptions 

discussed in section 2.2 above. In particular, the monotonicity (or uniformity) assumption 

needs to hold between all pairs of values 𝑧 and 𝑧′ of 𝑍𝑖. Denoting by 𝐷𝑧𝑖 a binary indicator for 

the potential treatment status of individual i for instrument value 𝑍𝑖 = 𝑧, the monotonicity 

assumption requires that for any given pair of values 𝑧 and 𝑧′, either 𝐷𝑧𝑖 ≥ 𝐷𝑧′𝑖, ∀𝑖, or 𝐷𝑧𝑖 ≤

𝐷𝑧′𝑖 , ∀𝑖 (Imbens and Angrist, 1994). That is, all individuals whose treatment status is affected 

by a change of the instrument from 𝑧 to 𝑧′ have to either all be shifted into treatment, or all be 

shifted out of treatment. A treatment choice model that ensures monotonicity to hold between 

all pairs of values of 𝑍𝑖 is the simple latent index choice model with a linearly separable error 

term defined in equations (3) and (4) above. Assuming that a move from 𝑧 to 𝑧′ shifts 

                                                 
13

 Using treatment assignment as an instrument for actual treatment is common in randomized trials when 

there is not full compliance with the treatment assignment. Just as in the examples above, LATE identifies ATT 

(when some members of the treatment group do not take the treatment, but nobody in the control group has access 

to treatment) or ATU (when all members of the treatment group take the treatment, and some members of the 

control group gain access to the treatment). These two cases are called “one-sided non-compliance”. 
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individuals into treatment (𝐸[𝐷𝑖|𝑧𝑖 = 𝑧, 𝑋𝑖 = 𝑥] > 𝐸[𝐷𝑖|𝑍𝑖 = 𝑧′, 𝑋𝑖 = 𝑥]), the associated 

LATE is
14

 

LATE(𝑧, 𝑧′, 𝑥) = 𝐸[𝑌1𝑖 − 𝑌0𝑖|𝐷𝑧𝑖 > 𝐷𝑧′𝑖, 𝑋𝑖 = 𝑥]. (14) 

In terms of the latent index choice model, the condition 𝐷𝑧𝑖 > 𝐷𝑧′𝑖 (which characterizes 

compliers in the case where a move from 𝑧 to 𝑧′ increases the average treatment probability) is 

equivalent to 𝑃(𝑧′) < UD < 𝑃(𝑧). That is, compliers are individuals with intermediate values 

of the “distaste” for treatment, such that they do not choose treatment when faced with a 

propensity score value of 𝑃(𝑧′), but they choose treatment when faced with the higher value 

𝑃(𝑧). The LATE exploiting pairs of values 𝑧 and 𝑧′ (for the case in which a change from 𝑧 to 

𝑧′ increases average treatment probability) can thus also be written as: 

𝐸[𝑌1𝑖 − 𝑌0𝑖|𝑃(𝑧′) < UD < 𝑃(𝑧), 𝑋𝑖 = 𝑥] (15) 

Figure 1, which is based on hypothetical data, helps to illustrate the group of compliers. 

Assuming a subsample with covariates fixed at 𝑋𝑖 = 𝑥, the figure depicts a continuous 

instrument 𝑍𝑖 on the horizontal axis varying between 0 and 200. The vertical axis measures the 

treatment probability, and the solid line displays 𝐸[𝐷𝑖|𝑍𝑖 , 𝑋𝑖 = 𝑥], the treatment probability as 

a function of 𝑍𝑖. For example, 𝑍𝑖 could be distance to college and 𝐷𝑖 college attendance. A 

reduction of the instrument from 𝑍𝑖 = 120 to 𝑍𝑖 = 90 raises the probability of treatment from 

𝑃(120) =.5 to 𝑃(90) =.75. This shifts individuals with . 5 < UD < .75 into treatment, which 

are individuals who are between the 50
th

 and 75
th

 percentile of the distribution of 𝑉. The 

associated LATE would thus be the treatment effect for this subgroup. 

In practice, the possibility of computing all pairwise LATEs with a continuous instrument 

is obviously limited, as the number of observations in a given sample for every 𝑧 and 𝑧′ pair is 

likely to be small. A useful way of exploiting a continuous instrument is therefore to partition it 

                                                 
14

 Conversely, if a move from 𝑧 to 𝑧′ shifts compliers out of treatment (𝐸[𝐷𝑖|𝑧𝑖 = 𝑧, 𝑋𝑖 = 𝑥] < 𝐸[𝐷𝑖|𝑍𝑖 =
𝑧′, 𝑋𝑖 = 𝑥]), then the associated LATE is 𝐸[𝑌1𝑖 − 𝑌0𝑖|𝐷𝑧𝑖 < 𝐷𝑧′𝑖, 𝑋𝑖 = 𝑥]. The only difference is that compliers are 

now defined by 𝐷𝑧𝑖 < 𝐷𝑧′𝑖 instead of 𝐷𝑧𝑖 > 𝐷𝑧′𝑖. 
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into discrete groups.
15

 Consider partitioning the range of 𝑍𝑖 in Figure 1 into equally sized bins 

identified by a bin identifier or grouping variable 𝑅𝑖, which is a function of 𝑍𝑖 and assumes the 

integer values of 1 to 20 to indicate in which bin a given value of 𝑍𝑖 is situated. This is 

illustrated in Figure 2, where the horizontal axis is partitioned into 20 bins, and the bin height 

indicates the average treatment probability in each bin, 𝐸[𝐷𝑖|𝑅𝑖, 𝑋𝑖 = 𝑥]. From any pair of two 

points 𝑅𝑖 = 𝑟 and 𝑅𝑖 = 𝑟′, and with corresponding data on the average outcome by bin, 

conditional on 𝑋𝑖, a Wald estimator of the form 
𝐸[𝑌𝑖|𝑅𝑖=𝑟,𝑋𝑖=𝑥]−𝐸[𝑌𝑖|𝑅𝑖=𝑟′,𝑋𝑖=𝑥]

𝐸[𝐷𝑖|𝑅𝑖=𝑟,𝑋𝑖=𝑥]−𝐸[𝐷𝑖|𝑅𝑖=𝑟′,𝑋𝑖=𝑥]
 can be 

constructed, each of which identifies LATE(𝑟, 𝑟′, 𝑥), a covariate-specific LATE for compliers 

with a move of the discretized instrument from r to r’. 

2.3.2 Aggregating Pairwise (covariate-specific) LATEs into one Effect  

An efficient way of obtaining an overall IV estimate that aggregates the covariate-specific 

Wald estimates LATE(𝑟, 𝑟′, 𝑥) across 𝑟-𝑟′ pairs and across 𝑥 into one overall effect is provided 

by 2SLS, using group indicator dummies for the values of 𝑅𝑖 as instruments, fully saturating 

the first and second stage in the covariates, and interacting the instruments in the first stage 

with the covariates. As discussed in section 2.2.2 above, this provides a variance-weighted 

average of covariate-specific LATEs. To further see how 2SLS using group indicator dummies 

aggregates the pairwise LATEs across 𝑟-𝑟′ pairs it is useful to abstract from covariates by 

assuming again a subsample with covariates fixed at 𝑋𝑖 = 𝑥. Figure 3 based on simulated data, 

which plots 𝐸[𝑌𝑖|𝑅𝑖 , 𝑋𝑖 = 𝑥] against 𝐸[𝐷𝑖|𝑅𝑖, 𝑋𝑖 = 𝑥],  helps to illustrate how the various Wald 

estimators are aggregated. The 2SLS estimator can be thought of as fitting a straight line 

through the points in Figure 3 using generalized least squares (GLS) estimation because 

grouped data have a known heteroscedasticity structure (Angrist, 1991). The resulting weights 

that each covariate-specific LATE receives are positive and sum to one. The weights are 

                                                 
15

 It should be noted that simply using 𝑍𝑖 as a continuous instrument in a linear IV estimator 
𝐶𝑜𝑣(𝑌𝑖,𝑍𝑖)

𝐶𝑜𝑣(𝐷𝑖,𝑍𝑖)
 requires 

an additional type of monotonicity assumption (see condition 3 in Imbens and Angrist 1994). This only produces a 

non-negatively weighted combination of LATEs if 𝑍𝑖 has a monotonic association with the treatment probability. 

One way to ensure this condition holds is to use the propensity score 𝑃(𝑍) as an instrument. 
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positively related to the strength of the first stage 𝐸[𝐷𝑖|𝑅𝑖 = 𝑟, 𝑋𝑖 = 𝑥] − 𝐸[𝐷𝑖|𝑅𝑖 = 𝑟′, 𝑋𝑖 =

𝑥] and to group size (i.e., number of observation in each bin).
16

 

Whereas it is fairly straightforward to describe for whom LATE with a single binary 

instrument is representative (the group of compliers with that instrument), this is no longer the 

case with a continuous instrument—since the overall IV effect is now representative for 

compliers with changes between all values of the instrument, with different weights attached to 

groups of compliers at different pairs of values.
 
An aggregate IV estimate may also hide 

interesting information, such as which pairs of values of the instrument shift a particularly 

large group of individuals, or a group of individuals with particularly large treatment effects, 

into treatment. 

2.4 Control Function Approach: The Correlated Random Coefficients Model  

An alternative to conventional linear IV estimation is to use the instrument to construct a 

control function, and to include this into the regression alongside the endogenous variable (see 

Wooldridge (2015) for an overview of control function methods). A well-known model for 

which a control function estimator has been proposed is the correlated random coefficients 

model (Card, 2001; Heckman and Vytlacil, 1998; Heckman and Robb, 1985). As we explain 

below, the control function estimator for this model allows estimation of the ATE and yields 

some insight into the pattern of selection in the unobservables, albeit under stronger 

assumption than IV estimation. Consider the outcome equation (6) above in which we assume 

linearity in the regressors, 𝜇0(𝑋𝑖) = 𝑋𝑖𝛽0 and 𝜇1(𝑋𝑖) = 𝑋𝑖𝛽1, and for a more compact notation 

rewrite the equation as: 

𝑌𝑖 = 𝑋𝑖𝛼 + 𝐷𝑖�̃�𝑖𝜃 + 𝐷𝑖𝛿𝑖 + 𝜀𝑖, (16) 
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 A slope estimated by ordinary least squares is equal to a weighted average of all possible combinations of 

pairwise slopes between any two points, with a larger weight on slopes between points that are further apart on the 

horizontal axis. This is because �̂�𝑂𝐿𝑆 =
𝑐𝑜𝑣(𝑥,𝑦)

𝑣𝑎𝑟(𝑥)
=
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. In Figure 3, the 

distance between two points on the horizontal axis is exactly equal to the first stage 𝐸[𝐷𝑖|𝑅𝑖 = 𝑟] − 𝐸[𝐷𝑖|𝑅𝑖 = 𝑟′] 
of the associated LATE, therefore LATEs with a stronger first stage get a higher weight. If in addition the slope is 

estimated by GLS, then LATEs associated with larger groups receive a higher weight, because GLS weights 

observations inversely to their variance, and the variance of groups means decreases in group size. 
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with 𝛼 = 𝛽0, 𝜃 = 𝛽1 − 𝛽0, 𝛿𝑖 = 𝑈1𝑖 − 𝑈0𝑖, 𝜀𝑖 = 𝑈0𝑖, and where �̃�𝑖 = 𝑋𝑖 − X̅ denotes the 

covariates centered around their sample means. This is a random coefficient model, in which 

the coefficient 𝛿𝑖 varies across individuals. Decomposing 𝛿𝑖 = 𝛿̅ + 𝛿𝑖 into its mean 𝛿̅ = 𝐸[𝛿𝑖] 

and the deviation from the mean 𝛿𝑖 = 𝛿𝑖 − 𝐸[𝛿𝑖], equation (16) can be transformed into a 

constant coefficient model 

𝑌𝑖 = 𝑋𝑖𝛼 + 𝐷𝑖�̃�𝑖𝜃 + 𝐷𝑖𝛿̅ + 𝑒𝑖. (17) 

Here, the coefficient on 𝐷𝑖 is defined as the ATE. Because the covariates interacted with  

𝐷𝑖 are centered around their mean, 𝛿̅ captures the ATE at means of 𝑋𝑖, which in this linear 

specification is also equal to the unconditional ATE. Deviations from the ATE enter the error 

term 𝑒𝑖 = 𝐷𝑖𝛿𝑖 + 𝜀𝑖. If there is selection based on gains, then 𝛿𝑖 and 𝐷𝑖 are positively 

correlated, resulting in 𝐸[𝐷𝑖𝛿𝑖|𝐷𝑖 = 1] > 𝐸[𝐷𝑖𝛿𝑖|𝐷𝑖 = 0], and hence (17) is referred to as the 

correlated random coefficients model. Any instrument 𝑍𝑖 that affects 𝐷𝑖 will in this case also be 

correlated with the augmented error term 𝑒𝑖. IV estimation of (17) will therefore yield a biased 

estimate of 𝛿̅ (the ATE). This is not surprising because, as explained above, when treatment 

effects are heterogeneous IV estimation does not in general identify the ATE. 

In addition to the standard assumptions of independence and existence of a first stage, 

assume that 𝐷𝑖 can be explained by the reduced-form equation 

𝐷𝑖 = 𝑋𝑖𝜋1 + 𝑍𝑖𝜋2 + 𝜈𝑖 ,   with  𝐸[𝜈𝑖|𝑋𝑖, 𝑍𝑖] = 0, (18) 

and that both of the unobservables in 𝑒𝑖 that cause selection bias in (17) are linearly related 

to the reduced-form error 𝜈𝑖: 

𝐸[𝜀𝑖|𝜈𝑖] = 𝜂𝜈𝑖 (19) 

𝐸[𝛿𝑖|𝜈𝑖] = 𝜓𝜈𝑖 (20) 

Equation (19) describes conventional selection bias. Because 𝜀𝑖 = 𝑈0𝑖, the relation 

between 𝜀𝑖 and 𝜈𝑖 states that individuals who are more likely due to unobserved characteristics 

to take the treatment differ in their pre-treatment characteristics from individuals who are less 

likely to take the treatment. Equation (20) describes the process of selection based on gains and 



20 

 

embodies the (rather strong) assumption that the unobserved part of the treatment effect 

depends linearly on the unobservables that affect the treatment. 

As shown in Card (2001), under these assumptions, (17) can be estimated by OLS 

including �̂�𝑖 and �̂�𝑖𝐷𝑖 as two additional regressors (control functions), where �̂�𝑖 is obtained as 

the predicted residual from (18) estimated by OLS.
17

 The estimate of 𝛿̅ is consistent for the 

ATE, and the sign of the coefficient on the control function �̂�𝑖𝐷𝑖 is informative on the selection 

pattern (a positive sign implying selection based on gains). This control function approach, 

which can be implemented with either a binary or a continuous IV, thus yields parameters that 

are usually not identified by conventional IV. However, it relies on stronger assumptions than 

those needed for IV estimation, which does not require assumptions (18)-(20). Moreover, while 

it estimates ATE, it does not recover other treatment parameters, such as the ATT, ATU, or 

PRTE. Next, we introduce the concept of Marginal Treatment Effects (MTE) as a more 

informative way of exploiting a continuous instrument, which uncovers treatment effect 

heterogeneity more widely than the control function estimator and allows the identification of a 

variety of treatment parameters under potentially weaker assumptions. 

3 Definition of Marginal Treatment Effects (MTE) and Relation to LATE 

3.1 Definition  

While LATE aggregates treatment effects over a certain range of the UD distribution—see 

equation (15)—MTE is defined as the treatment effect at a particular value of UD: 

MTE(𝑋𝑖 = 𝑥, UDi = 𝑢𝐷)   =   𝐸(𝑌1i − 𝑌0i|𝑋𝑖 = 𝑥, UDi = 𝑢𝐷) (21) 

It is thus the treatment effect for an individual with observed characteristics 𝑋 = 𝑥 who are 

at the 𝑢𝐷-th quantile of the 𝑉 distribution, implying these individuals are indifferent to 

receiving treatment when having a propensity score 𝑃(𝑋𝑖, 𝑍𝑖) equal to 𝑢𝐷. 
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 Because of the two-step approach, standard errors need to be adjusted or bootstrapped (Wooldridge, 2015). 

The approach can be modified by explicitly accounting for the binary nature of the endogenous variable and 

replacing �̂�𝑖 by a generalized residual based on the inverse Mills ratio from a probit first stage regression 

(Wooldridge, 2015). 
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To better understand what MTEs are, abstract from covariates by assuming that we exploit 

a subsample with covariates fixed at 𝑋𝑖 = 𝑥. The MTE for UDi = 𝑃(𝑧) is the limit of LATE in 

equation (15) above for 𝑃(𝑧′) → 𝑃(𝑧). The MTE at UD = 𝑃(𝑧) is thus, roughly, the LATE 

identified from a small departure of the propensity score from value 𝑃(𝑧) induced by the 

instrument.
18

 

In formal notation, and as shown for example in Heckman, Urzúa, and Vytlacil (2006) and 

Carneiro et al. (2011), the MTE is identified by the derivative of the outcome with respect to 

the propensity score: 

MTE(𝑋𝑖 = 𝑥,𝑈𝐷𝑖 = 𝑝)=
𝜕E(𝑌𝑖|𝑋𝑖 = 𝑥, 𝑃(𝑍𝑖) = 𝑝)

𝜕𝑝
 (22) 

Given that the Wald estimator in (13) is also a type of derivative of the outcome with 

respect to the treatment probability (it divides the instrument induced change in the outcome by 

the instrument induced change in the treatment), it may not be surprising that the MTE is 

identified by the derivative of the outcome with respect to the propensity score. In the 

following we provide some additional intuition why the derivative of the outcome with respect 

to the “observed inducement into treatment” (the propensity score) yields the treatment effect 

for individuals at a given point in the distribution of the unobserved resistance to treatment 

(𝑈𝐷). At a given propensity score 𝑝 = 𝑝0, individuals with 𝑈𝐷 < 𝑝0 are treated, while 

individuals with 𝑈𝐷 = 𝑝0 are indifferent. Increasing 𝑝 from 𝑝0 by a small amount 𝑑𝑝 shifts 

previously indifferent individuals into treatment, who thus have a marginal treatment effect of 

MTE(𝑈𝐷 = 𝑝0). The associated increase in 𝑌 equals the share of shifted individuals times their 

treatment effect: dY=dp* MTE(𝑈𝐷 = 𝑝0). Dividing the change in Y by the change in p (which 

is, roughly speaking, what a derivative does) thus gives the MTE: dY/dp= MTE(𝑈𝐷 = 𝑝0). 

Therefore, the derivative of the outcome with respect to the propensity score yields the MTE at 

𝑈𝐷 = 𝑝. 
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 The effect of a marginal change of the instrument as an interesting policy parameter was first introduced as 

the “marginal gain” in Björklund and Moffit (1987). It was first defined as a limit form of LATE by Heckman 

(1997) and its relevance for policy evaluation is emphasized in Heckman and Smith (1998). 
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Figure 3 helps to interpret MTEs in an alternative way. Whereas 2SLS based on the 

discretized instrument fits a straight line through the grouped values in Figure 3 (the slope of 

which is the aggregate IV effect), MTE can be thought of as using very fine ‘bins’ (all 

available values of the propensity score) and allowing the slope of the curve to differ across 

values of 𝑃(𝑍). The local slope in a point 𝑃(𝑍) = 𝑃(𝑧) then gives the MTE at UDi = 𝑃(𝑧).  

3.2 Relation to LATE and the importance of a continuous instrument 

Identifying the MTE across the full range of 𝑈𝐷 between 0 and 1 requires a continuous 

instrument (at least if one wants to identify the MTE under minimal assumptions, as we discuss 

in section 4.2 below). The following example illustrates this. Suppose that treatment is college 

attendance, and that individuals continuously differ with respect to their unobserved resistance 

to college enrolment, 𝑈𝐷. The instrument is distance to college and assume that it varies from 

living directly next to a college to living very far from a college. Suppose that, as depicted in 

Figure 1, when living right next to a college (distance of zero), all individuals attend college, 

even those with the highest resistance (conditional on X). In contrast, when living far away 

from a college, only individuals with the lowest resistance attend college (conditional on 𝑋𝑖). 

Gradually decreasing the distance from living maximally away until living right next to a 

college will then gradually shift all types into college, starting from the low-𝑈𝐷 types, 

gradually up to the high-𝑈𝐷 types. Thus, everybody is a complier at some value of the 

continuous instrument. The wage gains associated with increases in the propensity score that 

result from the gradual shift in the instrument are informative on the treatment effects of each 

of the shifted types, and thus the marginal wage increase at a given point (the derivative with 

respect to 𝑝) identifies the MTE for each type.  

Compare this continuous instrument with a binary instrument, say an indicator DIST for 

whether a college is more than 50 miles away (DIST=1) versus being less than 50 miles away 

(DIST=0). Suppose that conditional on X=x the probability of attending college is 

P(DIST=0)=0.95 if it is less than 50 miles away and P(DIST=1)=0.5 if it is more than 50 miles 

away. This instrument shifts types with 𝑈𝐷 between 0.5 and 0.95 into treatment (individuals 
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between the 50th and 95th quantile of the distribution of the unobserved resistance to 

treatment). The associated LATE identifies thus the average over the MTE curve between 

𝑈𝐷=0.5 and 𝑈𝐷=0.95. 

MTE is therefore defined as a continuum of treatment effects along the full distribution of 

UD (the individual unobserved characteristic that drives treatment decisions). This has several 

advantages. Firstly, rather than identifying one aggregate parameter which can mask important 

heterogeneity in treatment effects, the researcher is able to identify the whole (or at least a 

substantial part of the) range of individual treatment effects and thus characterize the extent of 

effect heterogeneity. Secondly, the MTE can be aggregated into economically interesting 

treatment effects such as the ATE, ATT, PRTE, as we show in Section 4.3. Thirdly, by relating 

the treatment effects to the decision of taking up the treatment measured by the participation 

probability, the researcher can infer the pattern of selection into treatment in a general manner 

along the entire unobserved resistance distribution. Estimation of the MTE is therefore more 

informative than both conventional IV estimator and the control function estimator of the 

correlated random coefficients model discussed in Sections 2.2 to 2.4 above. In the ideal case, 

in which the instrument varies strongly conditional on X (see Section 4.2), it requires 

assumptions that are no stronger than the assumptions for conventional IV estimation. 

To represent the heterogeneity in gains from treatment based on unobserved 

characteristics, and how it relates to the unobserved propensity to take up the treatment, one 

usually plots the MTE on the vertical axis of a graph against UD on the horizontal axis, with 𝑋 

fixed at given values (say, at means). One important aspect in interpreting an MTE curve is its 

slope, as this reveals the selection pattern in unobserved characteristics. Recall that UD are the 

quantiles of the unobserved resistance for treatment. An MTE curve that falls in UD would 

suggest that low-resistance types (who are more likely due to unobserved reasons to participate 

in the treatment) have a higher treatment effect, and high-resistance types have a lower 

treatment effect. A falling MTE curve would thus indicate positive selection in unobserved 

characteristics based on gains—the pattern we typically expect. A rising MTE curve, in 
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contrast, indicates reverse selection on gains in unobserved characteristics, while a flat MTE 

indicates no selection based on unobserved gains. In general, a non-monotonic shape of the 

MTE curve is also possible, which would imply a changing pattern of selection across the 

distribution of UD.  We provide examples of both a falling and a rising MTE curve in Section 

5. 

𝑈0, 𝑈1 and 𝑉 being residuals, their interpretation depends on the observables that are 

included in the regression. Changes in the variables included in (X, 𝑍) redefine the residuals 

and thus potentially change the MTE curve. Note however that if  𝑍 contains several 

instruments, then using them one at a time (conditioning on the respective other ones) 

identifies the same MTE curve (although it could identify different stretches of the MTE curve 

depending on the range of variation that the different instruments cause in the propensity 

score). 

The analysis of the selection pattern in unobserved characteristics can be complemented by 

checking for selection on gains (or otherwise) in observed characteristics, simply by checking 

whether those characteristics that lead to a high 𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖) in the outcome equations lead 

to a high 𝜇𝐷(𝑋𝑖, 𝑍𝑖) in the selection equation (or otherwise). 

Next, we discuss the estimation of MTEs, starting with the fully parametric normal model, 

which is the framework in which MTE was first introduced by Björklund and Moffitt (1987) 

and which relies on strong distributional assumptions. 

4 Estimation of MTE 

4.1 The fully parametric normal model 

The parametric normal model assumes a joint normal distribution of the error terms 𝑈0, 𝑈1 

and V of the outcome and selection equations, (𝑈0, 𝑈1, V)~𝑁(𝟎, 𝚺), with variance-covariance 

matrix 𝚺 in which the variance of V is normalized to 1. Moreover, suppose that potential 

outcomes and the selection equation are based on linear indices, that is 𝑌𝑗𝑖 = 𝑋𝑖𝛽𝑗 + 𝑈𝑗𝑖 for 

j=(0,1), and 𝐷𝑖
∗ = (𝑋𝑖, 𝑍𝑖)𝛽𝑑 − 𝑉𝑖 (and 𝑋𝑖 includes a constant). These assumptions lead to a 
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switching regime normal selection model or Heckman selection model (Heckman, 1976). 

Equations (1)-(4) can be estimated either jointly by maximum likelihood or following a two-

step control function procedure. The two-step procedure exploits the fact that the confounding 

endogenous variation in the error terms of the outcome equations is given by 

𝐸[𝑈0𝑖|𝐷𝑖 = 0, 𝑋𝑖, 𝑍𝑖] = 𝐸[𝑈0𝑖|𝑉𝑖 ≥ (𝑋𝑖, 𝑍𝑖)𝛽𝑑, 𝑋𝑖, 𝑍𝑖] = 𝜌0 (
𝜙((𝑋𝑖, 𝑍𝑖)𝛽𝑑)

1 − Φ((𝑋𝑖, 𝑍𝑖)𝛽𝑑)
), (23) 

𝐸[𝑈1𝑖|𝐷𝑖 = 1, 𝑋𝑖 , 𝑍𝑖] = 𝐸[𝑈1𝑖|𝑉𝑖 < (𝑋𝑖, 𝑍𝑖)𝛽𝑑, 𝑋𝑖, 𝑍𝑖] = 𝜌1 (
−𝜙((𝑋𝑖, 𝑍𝑖)𝛽𝑑)

Φ((𝑋𝑖, 𝑍𝑖)𝛽𝑑)
), (24) 

where 𝜙 and Φ denote the p.d.f and c.d.f. of the standard normal distribution, and 𝜌0 and 

𝜌1 are the correlation coefficients between 𝑈0𝑖 and Vi and 𝑈1𝑖 and Vi, respectively. Based on an 

estimate for 𝛽𝑑 from a first-stage probit estimation of the selection equation one can construct 

estimates of the ratios in parentheses in equations (23) and (24). With these terms added as 

control functions, the outcome equations (1) and (2) can be estimated by OLS. The ATE 

conditional on X is then given by 𝑋𝑖(�̂�1 − �̂�0). The coefficients on the correction terms 

provide estimates for the correlations 𝜌0 and 𝜌1. In the normal selection model, the MTE has a 

parametric representation that follows directly from the joint normal distribution:
19

 

 

MTE(𝑥, 𝑢𝐷)    = 𝐸(𝑌1 − 𝑌0|𝑋 = 𝑥, UD = 𝑢𝐷) = 𝑥(𝛽1 − 𝛽0) + (𝜌1 − 𝜌0)Φ
−1(𝑢𝐷)  

 

Not only is joint normality of (𝑈0𝑖, 𝑈1𝑖, Vi) a strong assumption, it also puts strong 

restrictions on the shape of the MTE curve, which is simply equal to Φ−1, the inverse of the 

standard normal c.d.f., multiplied by a constant (𝜌1 − 𝜌0), ruling out non-monotonic shapes of 

the MTE curve. If 𝜌1 = 𝜌0 there is no selection based on unobserved gains. If 𝜌1 − 𝜌0 < 0, 

there is positive selection based on gains, and if 𝜌1 − 𝜌0 > 0 there is reverse selection on gains. 

While Björklund and Moffitt (1987) first pointed out that the “marginal gain” is a relevant 

parameter which can be derived from the switching regime Heckman normal selection model, 
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 The joint normal distribution has the property that 𝐸(𝑈1|V=v) = 𝜇𝑈1 +
𝜌1

𝜎𝑉
2 (v − 𝜇𝑉). Given that in this 

model  𝜇𝑈1 = 𝜇𝑉 = 0, 𝜎𝑉
2 = 1, and v=𝛷−1(𝑢𝐷), it follows that 𝐸(𝑈1|UD = 𝑢𝐷) = 𝜌1Φ

−1(𝑢𝐷). 
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the subsequent literature has further clarified the definition and interpretation of the MTE and, 

crucially, has shown how it can be derived under much weaker assumptions (essentially under 

the same assumptions as conventional IV estimation). We now first describe the ideal case 

under which the MTE can be estimated non-parametrically under minimal assumptions (which 

puts high demands on the data), and then the more realistic case of semi-parametric or 

parametric assumptions typically followed in practice (which are usually still weaker than 

those of the normal selection model). 

4.2 Minimal assumptions and nonparametric estimation (the ideal case) 

In addition to the assumptions required for a causal interpretation of the IV estimator 

discussed in Section 2.2, the estimation of MTE requires in the ideal case a continuous 

instrument Z that has enough variation conditional on 𝑋𝑖 = 𝑥 to generate a propensity score 

P(Z) with full common support (i.e., that has support in the full unit interval for both treated 

and untreated individuals) conditional on 𝑋𝑖 = 𝑥. It should be noted that the “conditional on 

𝑋𝑖 = 𝑥” means within all unique combinations of the values of the 𝑋’s—a much stronger 

requirement than the mere existence of a first stage. Suppose that 𝑋 contains two dummy 

variables (say, gender and race), then 𝑍 should have strong variation within each of the four 

cells defined by all possible combinations of the values for gender and race. Obviously, the 

more regressors are included in 𝑋 and the more values each regressor assumes, the stronger is 

this requirement. 

The conventional estimation method to identify the MTE is the method of local 

instrumental variables (LIV – see Heckman and Vytlacil, 1999, 2001b, 2005), which estimates 

the MTE as the derivative of the outcome equation with respect to the propensity score, where 

the outcome has been modelled as a flexible function of the propensity score, thus exploiting 

the representation of the MTE given in equation (22) above.
20
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 The two-step estimation of the normal selection model described above is an example in which the MTE is 

estimated by a control function estimator, instead of the local IV estimator. For a more general comparison 

between Local IV and the Control Function approach to estimate MTE, see Heckman and Vytlacil (2007, section 

4.8). 
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If a continuous instrument with a large range of variation within cells of 𝑋𝑖 = 𝑥 is 

available, then the analysis can proceed in sub-samples defined by the values of 𝑋𝑖 = 𝑥, thus 

conditioning perfectly and non-parametrically on 𝑋, and identifying a separate MTE curve for 

each value of 𝑋𝑖 = 𝑥. It should be noted that this allows identifying the MTE in a model with 

outcome equations of the form 𝑌𝑗 = 𝜇𝑗(𝑋𝑖, 𝑈𝑗𝑖). This “ideal” estimation approach thus does not 

rely on the linear separability assumptions embodied in equations (1) and (2). Below we 

provide a sketch of this estimation method: 

a. Split up the sample into the cells defined by 𝑋𝑖 = 𝑥 and repeat the following steps 

separately within each of the subsamples. 

b. Within each sample, estimate the probability of being treated (the propensity score) 

P(Z) as a function of the excluded instrument(s) 𝑍. Ideally this might be done non-

parametrically. Denote the predicted propensity score by �̂�. 

c. Within each sample, model the outcome 𝑌 non-parametrically as a flexible function 

of �̂� (for example by local polynomial regression). Denote the predicted outcome 

from this flexible function as �̂�. 

d. Within each sample, obtain MTE(𝑋𝑖 = 𝑥,𝑈𝐷𝑖 = 𝑝0) as the derivative of �̂� with 

respect to �̂�, evaluated at point 𝑝0. Doing this for a grid of values for 𝑝0 from 0 to 1 

allows tracing out the MTE curve for the full unit interval.
21

 

4.3 Strengthening assumptions for estimation in less ideal cases 

The approach outlined in the previous section assumes the availability of an ideal 

continuous instrument with sufficient variation conditional on 𝑋𝑖 = 𝑥 to generate a propensity 

score P(Z) with full common support conditional on 𝑋𝑖 = 𝑥. This is rarely available, and 
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 Steps c. and d. of the estimation algorithm make clear why a continuous instrument that causes variation 

between 0 and 1 in the propensity score within each cell of unique values of 𝑋 is required. If P(Z) does not vary 

between 0 and 1 in each of the cells, then non-parametric estimation of 𝑌 as a function of �̂� is not possible across 

the full unit interval, and thus the MTE curve cannot be identified across the full unit interval (which in turn 

means that aggregate treatment parameters such as the ATE cannot be calculated). 
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additional assumptions need to be made. A first assumption is to not condition on X fully non-

parametrically, but in a parametric linear way and model potential outcomes as  

𝑌0𝑖 = 𝑋𝑖𝛽0 + 𝑈0𝑖 and 𝑌1𝑖 = 𝑋𝑖𝛽1 + 𝑈1𝑖 and the selection equation as  

𝐷𝑖
∗ = (𝑋𝑖, 𝑍𝑖)𝛽𝑑 − 𝑉𝑖. 

A second assumption restricts the shape of the MTE curve to be independent of 𝑋 

(common across all values of 𝑋), except for the intercept of the MTE curve which is allowed to 

vary with 𝑋. Independence of the shape of the MTE curve across X is implied by the full 

independence assumption (Xi, 𝑍𝑖) ⫫ (𝑈0𝑖, 𝑈1𝑖, 𝑉𝑖), which is stronger than the conditional 

independence assumption 𝑍𝑖 ⫫ (𝑈0𝑖, 𝑈1𝑖, 𝑉𝑖) | 𝑋𝑖 necessary for a causal interpretation of IV and 

the estimation of MTE in the ideal case. Full independence not only implies that X is 

exogenous, but also that the way in which 𝑈1 and 𝑈0 depend on 𝑉, and therefore the shape of 

the MTE curve, does not depend on X.
22

 Alternatively, rather than invoking full independence, 

one can, in addition to the conditional independence assumption, assume additive separability 

between an observed and an unobserved component in the expected potential outcomes 

conditional on UD = 𝑢𝐷 (Brinch et al., 2015): 

𝐸(𝑌𝑗|𝑋𝑖 = 𝑥, UDi = 𝑢𝐷) = 𝑋𝑖𝛽𝑗 + 𝐸(𝑈𝑗𝑖|UDi),       𝑗 = 0,1 

Both, the full independence and the linear separability assumption, imply that the marginal 

treatment effect defined in equation (21) is additively separable into an observed and an 

unobserved component:
23

 

MTE(𝑥, 𝑢𝐷)    = 𝐸(𝑌1i − 𝑌0i|𝑋𝑖 = 𝑥, UDi = 𝑢𝐷)

= 𝑥(𝛽1 − 𝛽0)⏟      
observed component

+ 𝐸(𝑈1i − 𝑈0i|UDi = 𝑢𝐷)⏟              
unobserved component

. 
(25)  

Exploiting linearity of the outcome in X and a constant shape of the MTE across X (except 

for a varying intercept) leads to the following outcome equation: 

                                                 
22

 Full independence between (X, 𝑍) and (U0, U1UD) is for example invoked in Aakvik, Heckman, and 

Vytlacil 2005; Carneiro et al., 2011; and Carneiro et al., 2015. 
23

 The choice of the assumption affects the interpretation of the coefficients and error terms of the outcome 

equations. Under full independence, 𝛽1, 𝛽0, 𝑈1i and 𝑈0i are interpreted as structural or causal, whereas under 

linear separability they are interpreted in terms of a linear projection. 
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𝐸[𝑌𝑖|𝑋𝑖 = 𝑥, 𝑃(𝑍) = 𝑝] = 𝑋𝑖𝛽0 + 𝑋𝑖(𝛽1 − 𝛽0)𝑝 + 𝐾(𝑝), (26) 

where 𝐾(𝑝) is a nonlinear function of the propensity score. The coefficients on the 

interaction terms of 𝑋𝑖 and 𝑝 identify 𝛽1 − 𝛽0 and show how observed characteristics shift the 

treatment effect (and thus the intercept of the MTE curve). The fact that 𝐾(𝑝) does not depend 

on X reflects the assumption that the slope of the MTE curve in 𝑢𝐷 does not depend on 𝑋. 

Crucially, this allows identifying 𝐾(𝑝) across all values of 𝑋𝑖 = 𝑥, instead of within all values 

of 𝑋 = 𝑥, and it therefore only requires unconditional full common support of the propensity 

score (across all values of 𝑋𝑖 = 𝑥), an assumption which is in many applications more 

realistically obtainable than full common support conditional on 𝑋𝑖 = 𝑥.  From equation (22), 

the MTE is then given by 

 MTE(𝑋 = 𝑥, 𝑈𝐷 = 𝑝) =
𝜕𝐸[𝑌|𝑋 = 𝑥, 𝑃(𝑍) = 𝑝]

𝜕𝑝
= 𝑋(𝛽1 − 𝛽0) +

𝜕𝐾(𝑝)

𝜕𝑝
  

As before, estimation of the outcome equation requires a pre-estimated propensity score 

from a first stage estimation in order to estimate the second stage outcome equation given in 

(26). Estimation of MTE then proceeds by making varying degrees of functional form 

assumptions on 𝐾(𝑝). Heckman et al. (2006) propose a semi-parametric estimation method for 

(26). A more parametric approach is to model 𝐾(𝑝) as a polynomial in 𝑝 which nevertheless 

allows for considerably more flexibility than the parametric normal model described in section 

4.1. 

We provide a brief sketch of the semi-parametric and parametric polynomial approaches in 

Appendix B. The semi-parametric, parametric polynomial, and the normal model are all 

implemented in Stata by the user-written margte command and an accompanying Stata Journal 

article is available (see Brave and Walstrum, 2014). Further documentation on estimation 

techniques is also available in the supplementary online material of Heckman et al. (2006).
24

 

                                                 
24

 This is available at http://jenni.uchicago.edu/underiv/ . 

http://jenni.uchicago.edu/underiv/
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4.4 Aggregating the MTE into treatment parameters 

An important advantage of MTE estimation is that the MTE equation (21) can be 

aggregated into weighted averages over X and UD to generate aggregate treatment parameters, 

such as ATE, TT, TUT and PRTE, or the IV effect associated with a given instrument. 

Heckman and Vytlacil (2005, 2007) present weights that aggregate the MTE curve along the 

UD-dimension, conditional on Xi = x, which then recover aggregate treatment parameters 

conditional on Xi = x. One may want to further aggregate these conditional parameters over 

the appropriate distribution of X in order to obtain unconditional aggregate treatment 

parameters. While in theory UD is continuous (and the MTE weights are therefore often 

presented in continuous form), an applied researcher will usually calculate the MTE along a 

grid of values of UD and will therefore in practice face a discrete distribution of UD. Here we 

present unconditional treatment effects computed from a discrete distribution of UD. We 

present the IV weights under the assumptions that potential outcomes are linear in 𝑋𝑖 (i.e., 

𝜇0(𝑋𝑖) = 𝑋𝑖𝛽0 and 𝜇1(𝑋𝑖) = 𝑋𝑖𝛽1) and that the MTE is linearly separable into its observed 

and unobserved part, as in equation (25), where the unobserved part is normalized to a mean of 

zero. These assumptions are in line with the applied MTE literature and the strengthened set of 

assumptions discussed in section 4.3 above. We denote the sample size by N, index individual 

observations by i, denote the propensity score by 𝑝𝑖 and define �̅� as the propensity score 

averaged over all individuals. 

An equally weighted average of the MTE over the full distribution of X and UD yields the 

unconditional average treatment effect (ATE) defined in equation (7): 

𝐴𝑇𝐸 =
1

𝑁
∑𝑋𝑖(𝛽1 − 𝛽0)

𝑁

𝑖=1⏟          
observed component 
of MTE at sample means

 

+
1

100
∑[𝐸(𝑈1𝑖 − 𝑈0𝑖|UD =

𝑢
100⁄ )]

100

𝑢=1⏟                      
equally weighted average over unobserved

component of MTE

, 

 

(27) 

which designates the expected treatment effect for an individual with average Xs picked at 

random from the distribution of UD.  
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On the other hand, the treatment effect on the treated (TT) defined in equation (8) is an 

average of the MTE over individuals whose UD is such that at their given values of 𝑋 = 𝑥 and 

𝑍 = 𝑧 (and thus a given propensity score, 𝑝𝑖), they choose to take the treatment. It can be 

represented by  

𝑇𝑇 =
1

𝑁
∑

𝑝𝑖
�̅�
𝑋𝑖(𝛽1 − 𝛽0)

𝑁

𝑖=1⏟            
observed component of MTE

at means of treated

+ ∑
𝑃(𝑝 > 𝑢 100⁄ )

100�̅�
𝐸(𝑈1 − 𝑈0|UD =

𝑢
100⁄ )

100

𝑢=1⏟                            
weighted average over unobserved component of MTE giving

more weight to low-UD individuals

 

 

(28) 

Note that the observed characteristics 𝑋𝑖 are weighted such that observations with a higher 

propensity score (and thus higher treatment probability) get a higher weight—which 

corresponds to using observed means of 𝑋𝑖 of the treated subpopulation, as implied by equation 

(8). In the unobserved component, the weight of a given value of uD is related to the share of 

observations that have a propensity score higher than uD. Thus, low-uD individuals (with 

unobserved characteristics that make them more likely to be treated) get a higher weight, and 

the weight depends on the distribution of the propensity score (note that while UD is by 

construction uniformly distributed, the distribution of 𝑝 is an empirical question).  

Replacing 
𝑝𝑖

�̅�
 in the observed component by 

1−𝑝𝑖

1−�̅�
 and 

𝑃(𝑝>𝑢 100⁄ )

100�̅�
 in the unobserved 

component by 
𝑃(𝑝≤𝑢 100⁄ )

100(1−�̅�)
 yields the equivalent expression for the TUT defined by equation (9). 

The TUT weights the observed part of the treatment effect more strongly for individuals with a 

low propensity score (and thus low probability of treatment)—which corresponds to using 

observed means of 𝑋𝑖 of the untreated subpopulation, as implied by equation (9). The TUT 

additionally weights the unobserved part more strongly for individuals at the higher end of the 

UD distribution who have a stronger unobserved resistance to treatment. 

Denoting the average propensity score under two policies by �̅�′ and �̅�, the following 

expression recovers the PRTE defined by equation (10) as a weighted difference between the 

ATTs under the two policies: 
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𝑃𝑅𝑇𝐸 =
1

𝑁
∑

(𝑝𝑖
′ − 𝑝𝑖)

�̅�′ − �̅�
𝑋𝑖(𝛽1 − 𝛽0)

𝑁

𝑖=1

+∑𝐸(𝑈1 − 𝑈0|UD =
𝑢
100⁄ )

100

u=1

(
𝑃(𝑝′ > 𝑢 100⁄ ) − 𝑃(𝑝 > 𝑢 100⁄ )

(�̅�′ − �̅�)100
) 

(29) 

Both, observed and unobserved characteristics are weighted proportionately to the policy-

induced change in the probability of being treated for individuals with given characteristics. 

Individual observed characteristics 𝑋𝑖 are weighted proportionately to the change in the 

individual propensity score (𝑝𝑖
′ − 𝑝𝑖), and each value uD of the unobserved characteristic is 

weighted proportionately to the change in the probability of being treated at that value, 

𝑃(𝑝′ > 𝑢𝑑) − 𝑃(𝑝 > ud). 

Finally, it is possible to calculate IV weights, which recover the IV effect when using a 

specific instrumental variable. Denoting the IV weights using J as an instrument conditional on 

X and UD by 𝜔IV
𝐽 (𝑥, 𝑢𝑑), the IV effect can be expressed as 

𝐼𝑉 = ∑𝜔IV
𝐽 (𝑥𝑖)𝑋𝑖(𝛽1 − 𝛽0)

𝑁

𝑖=1⏟              
observed component of MTE at means

of individuals shifted by the instrument

+∑𝜔IV
𝐽 (𝑢 100⁄ )𝐸(𝑈1𝑖 − 𝑈0𝑖|UD =

𝑢
100⁄ )

100

𝑢=1

 (30) 

 

The weights on the observed characteristics are similar to the weights discussed in section 

2.2.2 above and are proportionate to the contribution of individuals with 𝑋𝑖 = 𝑥 to the IV first-

stage covariance – see footnote 12 above. The weights on the unobserved part depend on the 

effect of 𝑍𝑖 on 𝑃(𝑍𝑖) at different levels of 𝑃(𝑍𝑖), weighted by the distribution of 𝑃(𝑍𝑖). More 

detail on the estimation of these weights is provided in Appendix C. 

For the purpose of illustrating the application of MTE we describe two examples from the 

education literature in more detail, a paper analyzing marginal returns to college education by 

Carneiro et al. (2011), as well as our own work on the marginal returns to preschool education 

(Cornelissen, Dustmann, Raute, and Schönberg 2016). The papers find fundamentally different 

selection patterns. 
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5 Two examples from the applied literature 

5.1 Example of MTE applied to returns to college education 

Carneiro et al. (2011) analyze the marginal returns to college attendance for the United 

States, based on a sample of white males from the NLSY aged 28-34 in 1991. The binary 

treatment, 𝐷𝑖, is defined as having ever been enrolled in college by 1991. Hence, 𝐷𝑖=0 for high 

school dropouts and high school graduates and 𝐷𝑖=1 for individuals with some college, college 

graduates as well as postgraduates. The outcome, 𝑌𝑖, is the log wage in 1991. As instrumental 

variables (𝑍𝑖 in our above notation) that enter the selection equation but not the outcome 

equation, the authors draw on four instruments, some binary and some continuous, that have 

been used in previous studies on the returns to college attendance. These are on the one hand 

cost-shifters (i.e., the presence of a four-year college and average tuition fees in public four 

year colleges in the county of residence during adolescents), and on the other hand variables 

capturing local labor market opportunities at the time the education decision is taken (i.e., the 

local average earnings and the local unemployment rate).
25

 The instrumental variables, which 

each identify a different part of the MTE curve, are included simultaneously in order to get 

larger support in the propensity score. Carneiro et al. (2011) further control for individual’s 

socio-economic background and measures of permanent local labor market characteristics (𝑋𝑖 

in our notation).  

In their main specification, the authors invoke the assumption of full independence 

(X, Z)  ⫫ (𝑈0, 𝑈1, 𝑉) , implying that the shape of the MTE curve does not vary with X and the 

MTE can thus be identified over the unconditional (marginal) support of the propensity score 

(see Section 4.3).
26

 They then estimate the MTE using the semi-parametric estimation method 

outlined in Appendix B.1, which allows for a completely flexible shape of the MTE curve.  

                                                 
25

 The number of IVs is further expanded by interacting these variables with an ability measure (Armed 

Forces Qualification Test - AFQT), mother’s years of schooling, and number of siblings. 
26

 The conditional density of the propensity score conditional on values of a linear index in X reveals an 

extremely narrow support of the propensity score at each value of the index (Figure 2 in Carneiroet al., 2011), 

preventing estimation of MTE in the ideal case (see Section 4.1). The unconditional (marginal) support of the 

propensity score, in contrast, encompasses almost the full unit interval (Figure 3 in Carneiro et al., 2011). 
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Part A of Figure 4 depicts the MTE curve 𝑥(𝛽1 − 𝛽0) + 𝐸(𝑈1i − 𝑈0i|UDi = 𝑢𝐷) – see 

equation (25) above – evaluating 𝑥 at mean values in the sample. The figure reveals substantial 

heterogeneity in the returns to college: Whereas individuals with “low resistance” to college 

(i.e., very low UD) enjoy returns of 40%, individuals with “high resistance” to college (i.e., 

very high UD) lose from college by 20%. This large range of heterogeneity in the treatment 

effect due to unobserved characteristics would not be visible if looking only at aggregate 

treatment effects such as ATE. Since these returns refer to individuals with average X, 

heterogeneity in returns will be even greater when variation in X is taken into account. The 

downward sloping shape of the MTE curve highlights high gains for individuals likely to enroll 

in college (low UD) and lower gains, or even losses, for individuals less likely to enrol in 

college (high UD). Thus, individuals positively select into college based on gains, and 

individuals seem to possess information about their idiosyncratic returns and are able to make 

informed choices about college attendance.  

In a second step, Carneiro et al. (2011) weight and aggregate the MTEs to compute various 

treatment effect parameters, as described in Section 4.4. Their preferred estimates are based on 

the normal selection model outlined in Section 4.1, which is less flexible but results in more 

precise estimates similar to the ones from the semi-parametric estimation method. Column (1) 

in Table 1 summarizes these estimates. The average treatment effect on the treated (TT), which 

puts most weight on low UD individuals, shows substantial returns to college of 14 percent for 

the average student selecting into college. In contrast, the returns to college for the average 

individual (i.e., the ATE) are only 6.7 percent and the returns for the average person who does 

not attend college (i.e., the TUT) are close to zero and statistically insignificant. Thus, 

expansion of college to individuals who currently do not attend would not be effective. 

Carneiro et al. (2011) also recover the IV effect from MTE. In their case, the IV estimate is 

between the ATT and the ATE, but clearly masks important heterogeneity in returns to college.  
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5.2 Example of MTE applied to returns to preschool education 

Cornelissen et al. (2016) analyzes heterogeneous treatment effects of a universal child care 

(preschool) program aimed at 3- to 6-year-olds on children’s school readiness. They draw on 

administrative data on children’s outcomes from school readiness examinations for the full 

population of school entry aged children in one large region in Germany for the years 1994-

2002. The authors exploit a reform during the 1990s that entitled every child in Germany to a 

heavily subsidized half-day child care placement from the third birthday to school entry. This 

reform was enacted in response to a severe shortage of child care slots which rationed in 

particular children who wanted to enroll at the earliest possible age (at age 3).
27

 As a result, the 

reform greatly increased the share of children enrolling at the earliest possible age and thus 

attending child care for at least 3 years from 41% to 67% on average over the program rollout 

period. Correspondingly, the treatment, 𝐷𝑖, is defined as attending child care for at least 3 years 

and referred to as “early attendance”. Their main outcome variable, 𝑌𝑖, is a measure of overall 

school readiness (which determines whether the child is held back from school entry for 

another year). As an instrument (denoted by 𝑍𝑖 in our notation above) the authors use the 

supply of available child care slots at the municipality-year level measured by the child care 

coverage rate, a continuous variable.
28

  The control variables (𝑋𝑖 in our above notation) include 

municipality and examination cohort dummies in addition to individual characteristics such as 

ethnic minority status, and average socio-demographic characteristics and child-care quality 

indicators at municipality-year level. 

 Similar to the previous example, the authors also exploit the marginal support of the 

propensity score (rather than the support conditional on 𝑋𝑖 in the ideal case), but based on the 

linear separability assumption described in Section 4.3 above, rather than the full independence 

assumption invoked in Carneiro et al. (2011). Their preferred estimation method is the 

                                                 
27

 Children who wanted to enter at an older age (who may already have waited on the waiting list for one 

year) were generally given priority. 
28

 Linear and squared terms of the instrument are included, and in the main specification both of these terms 

are interacted with a quadratic in age, gender, and ethnic minority status. 
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parametric polynomial approach with a second order polynomial in the propensity score (see 

Appendix B.2). This model restricts the MTE curve to a straight line and thus appears equally 

restrictive as the normal section model (in that it rules out a non-monotonic shape). To rule out 

concerns that this restrictive choice drives their results, the authors show that their main pattern 

of results is robust to estimating more flexible MTE curves by using higher-order polynomials 

or implementing the semi-parametric estimation method. 

Part B of Figure 4 depicts the resulting linear MTE curve, evaluated at mean values of X in 

the sample. In contrast to the previous example, the MTE curve now exhibits an upward 

sloping shape, indicating a pattern of reverse selection on gains. Whereas children with low 

resistance to prolonged child care attendance (low UD) do not gain, improvements in school 

readiness are substantial for children with a high resistance to prolonged child care attendance 

(high UD). In consequence, the TUT—which indicates that early child care attendance would 

boost school readiness of children currently not enrolled in child care by 17.3 percentage 

points—exceeds the ATE and TT, neither of which is statistically significant (see column (2) 

of Table 1).
29

   

As in Carneiro et al. (2011), the linear IV estimate turns out to be similar in magnitude to 

ATE and masks important heterogeneity in returns. Moreover, the linear IV effect estimated by 

2SLS is very similar to the effect obtained when applying the IV weights to the MTE curve, 

which can be considered a specification check for the functional form of the MTE curve.
30

  

The authors confirm a pattern of reverse selection on gains also based on observed 

characteristics. For example, minority children are 12 percentage points less likely to attend 

preschool, but their treatment effect is about 12 percentage points higher than for majority 

                                                 
29

 Kline and Walters (2015) uncover a pattern of reverse selection on gains for Head Start attendance when 

the nontreated state is home care. Aakvik et al. (2005) find reverse selection on gains in the context of a 

Vocational Rehabilitation training program. 
30

 MTE curves derived under different functional form assumptions may yield different weighted IV effects, 

while neither the IV weights nor the 2SLS estimator depend on the functional form of the MTE curve. A large 

discrepancy between the weighted IV effect and the 2SLS IV effect may therefore indicate a specification error in 

the functional form of the MTE curve. 



37 

 

children.
31

 The authors provide additional evidence that high resistance children with a low 

probability of attending early child care come from disadvantaged backgrounds and have larger 

treatment effects because of their worse outcome when not enrolled in child care. 

These findings have important policy implications. They first highlight that early child care 

attendance acts as an equalizer. They also imply that policies which successfully attract high 

resistance children not currently enrolled in early child care may yield large returns. Further, 

programs targeted at minority and disadvantaged children are likely to be more cost effective 

and beneficial than universal child care programs. 

6 Conclusions 

Some recent surveys provide insightful discussions about MTE (e.g. Heckman and 

Vytlacil, 2007; French and Taber, 2011; Blundell and Costa Dias, 2009), and excellent 

technical treatments of MTE can be found in the papers by Heckman and Vytlacil (1999, 

2001b, 2005) and in the application of Carneiro et al. (2011). Drawing on these earlier papers, 

we provide an introduction to the MTE framework, developing it in a way that we believe is 

accessible to the applied economist. 

Our framework of analysis is a generalized Roy model based on the potential outcomes 

framework and a latent variable discrete choice model for selection into treatment, assuming—

as typically done in empirical applications—linear separability in observables and 

unobservables. Within this framework, we first define different treatment effects of interest, 

such as the average treatment effect (ATE) the average treatment effect on the treated (ATT), 

the average treatment effect on the untreated (ATU), and the policy-relevant treatment effect 

(PRTE). Next, we review the well-known case of IV estimation with a discrete instrument and 

highlight that the resulting local average treatment effect (LATE) identified by a binary 

instrumental variable does not necessarily represent a treatment parameter for an economically 

                                                 
31

 Note, however, that because they do not assume full independence of (X, Z) and (𝑈0, 𝑈1, 𝑉), the 

partitioning of the treatment effect into the observed and unobserved components has no causal interpretation, 

meaning  that the higher treatment effect for minority children confounds higher treatment effects that are causally 

due to minority status with those that are due to unobserved characteristics correlated with minority status.  
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interesting group of the population, except in some important specific cases which we discuss. 

In contrast to ATE, ATT, ATU, and PRTE, which are well defined parameters that answer 

economic policy questions, LATE is defined by the instrumental variable used.  

In a next step, we turn to IV estimation with a continuous instrument and demonstrate that 

the 2SLS estimator may be viewed as a weighted average of LATEs obtained from all possible 

pairs of values of the continuous instrument. Not only does this estimator lack a 

straightforward interpretation, but it may also hide interesting information about the pattern of 

treatment effect heterogeneity. We also contrast IV estimation with a control function estimator 

for the correlated random coefficients model, which identifies a more general effect than IV 

(the ATE) and reveals some information on the pattern of selection based on unobserved gains, 

albeit under stronger assumptions.  

We then discuss MTE estimation as an alternative and more informative way of exploiting 

a continuous instrument which, unlike IV and control function estimation, allows the 

identification of a variety of treatment parameters such as ATE, TT, TUT, and PRTE. Instead 

of aggregating the underlying LATEs into one overall effect, MTE estimation aims at 

identifying a continuum of treatment effects along the full distribution of the individual 

unobserved characteristic that drives treatment decisions. We clarify the assumptions 

underlying the MTE framework, distinguishing between an ideal case, in which the data are 

rich enough for non-parametric estimation under a set of assumptions no stronger than the 

general IV assumptions, and a more realistic case in which less ideal data can be exploited 

using semi-parametric and parametric methods (of which we provide a brief sketch) under 

strengthened assumptions. We finally illustrate how MTE estimation is implemented in 

practice, and which additional insights can be gained from MTE estimation compared to 

conventional 2SLS estimation, based on two examples from the applied MTE literature: the 

wage returns to college attendance and on the effects of preschool attendance on school 

readiness. 
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APPENDIX 

A.  Policy-Relevant Treatment Effects 

The policy-relevant treatment effect conditional on 𝑋𝑖, 𝑃𝑅𝑇𝐸(𝑥), is the mean effect of 

going from a baseline policy to an alternative policy per net person shifted: 

 

𝑃𝑅𝑇𝐸(𝑥) =
𝐸[𝑌|𝑋𝑖 = 𝑥,  alternative policy] − 𝐸[𝑌|𝑋𝑖 = 𝑥,  baseline policy]

𝐸[𝐷|𝑋𝑖 = 𝑥,  alternative policy] − 𝐸[𝐷|𝑋𝑖 = 𝑥,  baseline policy]

=
𝐸[𝑌0 + (𝑌1 − 𝑌0)�̃�𝑖|𝑋𝑖 = 𝑥] − 𝐸[𝑌0 + (𝑌1 − 𝑌0)𝐷1|𝑋𝑖 = 𝑥]

𝐸[�̃�𝑖|𝑋𝑖 = 𝑥] − 𝐸[𝐷𝑖|𝑋𝑖 = 𝑥]

=
𝐸[𝑌1 − 𝑌0|𝑋𝑖 = 𝑥, �̃�𝑖 = 1]𝐸[�̃�𝑖|𝑋𝑖 = 𝑥] − 𝐸[𝑌1 − 𝑌0|𝑋𝑖 = 𝑥,𝐷𝑖 = 1]𝐸[𝐷𝑖|𝑋𝑖 = 𝑥]

𝐸[�̃�𝑖|𝑋𝑖 = 𝑥] − 𝐸[𝐷𝑖|𝑋𝑖 = 𝑥]

 

 

= 𝜇1(𝑥) − 𝜇0(𝑥)

+
𝐸[𝑈1𝑖 − 𝑈0𝑖|𝑋𝑖 = 𝑥, �̃�𝑖 = 1]𝐸[�̃�𝑖|𝑋𝑖 = 𝑥] − 𝐸[𝑈1𝑖 − 𝑈0𝑖|𝑋𝑖 = 𝑥,𝐷𝑖 = 1]𝐸[𝐷𝑖|𝑋𝑖 = 𝑥]

𝐸[�̃�𝑖|𝑋𝑖 = 𝑥] − 𝐸[𝐷𝑖|𝑋𝑖 = 𝑥]
 

The corresponding unconditional effect is 

𝑃𝑅𝑇𝐸 =
𝐸[𝑌1 − 𝑌0|�̃�𝑖 = 1]𝐸[�̃�𝑖] − 𝐸[𝑌1 − 𝑌0|𝐷𝑖 = 1]𝐸[𝐷𝑖]

𝐸[�̃�𝑖] − 𝐸[𝐷𝑖|]

=
𝐸[𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖)|�̃�𝑖 = 1]𝐸[�̃�𝑖] − 𝐸[𝜇1(𝑋𝑖) − 𝜇0(𝑋𝑖)|𝐷𝑖 = 1]𝐸[𝐷𝑖]

𝐸[�̃�𝑖] − 𝐸[𝐷𝑖|]
 

+
𝐸[𝑈1𝑖 − 𝑈0𝑖|�̃�𝑖 = 1]𝐸[�̃�𝑖] − 𝐸[𝑈1𝑖 −𝑈0𝑖|𝐷𝑖 = 1]𝐸[𝐷𝑖]

𝐸[�̃�𝑖] − 𝐸[𝐷𝑖|]
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B. Sketch of common estimation methods for the MTE 

B.1 Semi-parametric estimation 

A semi-parametric version of estimating (26) consists in the following steps (see for 

example Appendix B of Heckman et al., 2006, for a more detailed description): 

 

a. Purging 𝑋 and 𝑋�̂� from the effect of 𝐾(�̂�) by regressing each of them in turn on  �̂� 

using local polynomial regression (or a parametric polynomial in �̂�), and predicting 

the residuals. 

b. Regressing 𝑌 on the residualized version of 𝑋 and 𝑋�̂� obtained under a. using a 

linear regression, and predicting the residual. 

c. Regress the residualized version of 𝑌 obtained under b. on �̂� by local polynomial 

regression to identify 𝐾(�̂�). 

d. Obtain the MTE curve as the derivative of 𝐾(�̂�). 

 

Note that in order to identify 𝐾(𝑝) over the full unit interval by this semi-parametric 

method, one still needs full common unconditional support of the propensity score. If the 

support of the propensity score is limited (maybe because of limited variation in the 

instrument), then one possibility is to continue to use the semi-parametric method, but identify 

the MTE only over some sub-range of the unit interval. While this approach reveals useful 

information on the treatment effects and the selection pattern for the range in which the MTE 

can be identified, it precludes calculation of aggregate treatment effects such as the ATE, TT 

and TUT, as they require aggregating over the full unit interval. Alternatively, one can take 

more parametric approaches described below, based on which the MTE curve can be 

extrapolated out of the support of the propensity score. More parametric approaches can also be 

useful when there is full support and nonparametric and semi-parametric approaches are too 

time-consuming or too demanding on the data (e.g., if results are very sensitive to small 

changes in the data or specification). 

B.2 Parametric polynomial estimation 

The parametric polynomial MTE model replaces 𝐾(𝑝) in (26) by a k-th order polynomial 

in 𝑝, so that the outcome equation becomes: 

𝑌 = 𝑋𝛽0 + 𝑋(𝛽1 − 𝛽0)�̂� +∑𝛼𝑘�̂�
𝑘

𝐾

𝑘=2

+ 𝜐,     

and as before the MTE curve is the derivative of this equation with respect to �̂�. The higher the 

degree of the polynomial, the more flexible the MTE curve is estimated. For example, 

choosing a second order polynomial (K=2) restricts the MTE curve to be linear, which may 

hide more flexible patterns, such as a U-shape in the MTE curve. However, strong parametric 

assumptions are powerful. As shown by Brinch et al. (2015), a linear MTE curve can be 

identified with a dummy variable instrument (albeit with an alternative estimation method to 

the conventional LIV method). 
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C. Computation of IV weights in the linear separable model 

𝜔IV
𝐽 (𝑥𝑖) in equation (30) represent the IV weights conditional on X after integrating out UD, 

and 𝜔IV
𝐽 (𝑢 100⁄ ) represent the IV weights conditional on UD after integrating out X. We 

propose the following estimation approach: 

1. Running the 2SLS first stage regression of the treatment 𝐷𝑖 on the covariates 𝑋𝑖 and 

the vector of excluded instruments 𝐽𝑖 and predicting �̂�𝑖 from this regression. 

2. Regressing �̂�𝑖 on the covariates 𝑋𝑖 and predicting the residual �̂� from this 

regression. �̂� aggregates the excluded instruments into one scalar instrument that is 

orthogonal to the covariates 𝑋𝑖. The bivariate IV estimator 𝑎IV =
Cov(𝑌,�̂�)

Cov(𝐷,�̂�)
, using �̂� 

as a single instrument, reproduces the exact same IV estimate as a 2SLS second 

stage regression of Y on �̂�𝑖 and 𝑋𝑖.  

3. Computing 𝜔IV
𝐽 (𝑥𝑖) =

1

𝑁
(𝐷𝑖−�̅�)(�̂�𝑖−�̅�)

Cov(𝐷,�̂�)
, the weight given by each individual’s 

contribution to the first stage covariance Cov(𝐷, �̂�) divided by this covariance 

[rationalized by assuming that 𝑌𝑖 = 𝑎 + 𝑏𝑖𝐷𝑖 and noting that in this case, because 

𝐸(�̂�𝑖) = 0, Cov(𝑌𝑖 , �̂�𝑖) = Cov(𝑏𝑖𝐷𝑖 , �̂�𝑖) = 𝐸(𝑏𝑖𝐷𝑖�̂�𝑖), so Cov̂(𝑌𝑖, �̂�𝑖) =

1

𝑁
∑ 𝑏𝑖𝐷𝑖�̂�𝑖𝑖 . Similarly, Cov̂(𝐷𝑖 , �̂�𝑖) =

1

𝑁
∑ 𝐷𝑖�̂�𝑖𝑖 , meaning that �̂�IV =

Cov̂(𝑌𝑖,�̂�𝑖)

Cov̂(𝐷𝑖,�̂�𝑖)
=

1

𝑁
∑ 𝑏𝑖

𝐷𝑖�̂�𝑖
1

𝑁
∑ 𝐷𝑖�̂�𝑖𝑖

𝑖  and 𝑏𝑖 is weighted by each individual’s contribution to the first stage 

covariance.] 

4. Computing 𝜔IV
𝐽 (𝑢 100⁄ ) as the sample analog of 

1

100

[𝐸(�̂�|𝑝𝑖>
𝑢
100⁄ )−𝐸(�̂�𝑖)]𝑃(𝑝𝑖>

𝑢
100⁄ )

Cov(𝐷,�̂�)
 

(see, e.g., equation (19) and Appendix B.3 in Heckman et al., 2006). 

 

 



Figure 1: Treatment probability as a function of a continuous instrument

Data source: Simulated hypothetical data.

Notes: Based on hypothetical data the Figure shows the effect of a continuous instrument Z on

the probability of treatment in a sample with fixed covariates (E[D=1,Z,X=x]). For example,

the horizontal axis could represent distance to college and the vertical axis could represent the

probability to attend college.



Figure 2: Treatment probability in discrete bins of a continuous instrument

Data source: Simulated hypothetical data.

Notes: Based on hypothetical data, the bins in this figure show the probability of treatment in a

sample with fixed covariates (E[D=1,R,X=x]) as a function of a discrete variable R which has

been generated by grouping the values of the continuous instrument depicted in Figure 1 into 20

equally spaced bins. The dotted line reproduces the function depicted in Figure 1.



Figure 3: Grouped data IV

Data source: Simulated hypothetical data.

Notes: Based on hypothetical data, the Figure plots the average outcome against the average

treatment probability in a sample with fixed covariates for 20 groups which are equal to the

bins depicted in Figure 2 and correspond to 20 equally sized bins of an underlying continuous

instrument. Grouped data IV can be visualised as fitting a line through these points.



Figure 4: MTE curves

Notes: Part A depicts the MTE curve of Carneiro, Heckman and Vtylacil (2011, Figure 4) for the wage returns to college estimated by the semi-parametric

method (see Appendix B.1). Part B shows the MTE curve of Cornelissen et al. (2016, Figure 4, Part A) for the returns to early child care attendance on school

readiness estimated by the parametric polynomial method (see Appendix B.2). In both figures the 90% confidence interval is based on bootstrapped standard

errors.

Part A: MTE curve for returns to college Part B: MTE curve for returns to early child care attendance



Table 1: Treatment effects parameters

(1) (2)

Returns to college
Returns to early child care

attendance

ATE 0.067* 0.059

(0.038) (0.072)

TT 0.143*** -0.051

(0.035) (0.080)

TUT -0.007 0.173**

(0.071) (0.085)

IV 0.095** 0.065

(0.039) (0.133)

Notes: The table reports the average treatment effect (ATE), the

treatment effect on the treated (TT), treatment effect on the untreated

(TUT) as well as the IV estimate from a linear IV specification for the

papers presented in sections 5.1 and 5.2. Column (1) refers to the results

reported in Table 5 in Carneiro, Heckman, and Vtylacil (2011). Column

(2) refers to the results shown in Table 5, column (1) in Cornelissen et al.

(2016). Bootstrapped standard errors are reported in parentheses.

*Statistically significant at 0.10 level, ** at 0.05 level, *** at 0.01 level.


