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Abstract 

We analyzed the DNA methylome of ten subpopulations spanning the entire B-cell 

differentiation program by whole-genome bisulfite sequencing and high-density microarrays. 

We observed that non-CpG methylation disappeared upon B-cell commitment whereas CpG 

methylation changed extensively during B-cell maturation, showing an accumulative pattern 

and affecting around 30% of all measured CpGs. Early differentiation stages mainly displayed 

enhancer demethylation, which was associated with upregulation of key B-cell transcription 

factors and affected multiple genes involved in B-cell biology. Late differentiation stages, in 

contrast, showed extensive demethylation of heterochromatin and methylation gain of 

polycomb-repressed areas, and did not affect genes with apparent functional impact in B cells. 

This signature, which has been previously linked to aging and cancer, was particularly 

widespread in mature cells with extended life span. Comparing B-cell neoplasms with their 

normal counterparts, we identified that they frequently acquire methylation changes in 

regions undergoing dynamic methylation already during normal B-cell differentiation. 
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 The multitude of cell types and tissues of an organism can be defined by their 

particular epigenetic makeup1-2. DNA methylation is an important component of the 

epigenome which is extensively modulated during regulatory and developmental processes, 

both in the context of physiological and pathological conditions3-5. Although recent reports 

have analyzed the DNA methylation profiles of various cell types at the whole-genome scale1,6-

16, the DNA methylome of a single human cell type during its complete differentiation process 

has not been defined so far. The B-cell lineage represents a paradigmatic cellular model to 

study the dynamic epigenome during cell development and specification because major B-cell 

maturation stages have distinct phenotypic and gene expression features and can be isolated 

in sufficient numbers from hematopoietic tissues17-19. 

 B-cell lymphopoiesis is a complex and tightly coordinated process guided by a 

hierarchical expression of different stage-specific transcription factors and 

microenvironmental influences20-21. The process starts in the bone marrow, where 

hematopoietic stem cells differentiate into multipotent progenitors and common lymphoid 

progenitors, which then commit to the B-cell lineage and give rise to precursor B cells. These 

precursors gradually rearrange their immunoglobulin genes and differentiate into mature 

naive B cells, which leave the bone marrow to enter the blood stream. Resting naive B cells 

transit through lymph nodes and, eventually, they are activated by specific antigens via 

activation of the B-cell receptor, which induces the germinal center reaction. Germinal center 

B cells further rearrange and mutate their immunoglobulin genes, rapidly proliferate and 

differentiate. Finally, the germinal center reaction gives rise to plasma cells producing large 

amounts of high-affinity antibodies and memory B cells. Plasma cells exiting the lymph nodes 

migrate to the bone marrow where they can reside for extended periods of time, and long-

lived memory B cells recirculate through the blood and lymphoid organs, providing the basis 
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for enduring humoral immunity22-23. Hence, an interesting feature of the B-cell maturation 

process is that it entails a variety of cells with different functional features, proliferation 

abilities, microenvironmental influences and life spans, providing an exceptional opportunity 

to study the epigenome in the context of different biological processes, and to provide insights 

into the fields of cell differentiation, B-cell biology, cancer and aging. 

 

RESULTS 

Whole-genome DNA methylation maps of B-cell subpopulations 

 We generated unbiased DNA methylation maps of uncommitted hematopoietic 

progenitor cells (HPCs) and five B-cell lineage subpopulations, including pre-B-II cells (preB2Cs), 

naive B cells from peripheral blood (naiBCs), germinal center B cells (gcBCs), memory B cells 

from peripheral blood (memBCs) and plasma cells from bone marrow (bm-PCs), by whole-

genome bisulfite sequencing (WGBS) (Fig. 1a and Supplementary Table 1). We sequenced two 

biological replicates of each subpopulation and a total of 2,217 billion base pairs (bp) of which 

85–95% could be mapped (mean depth of 54-fold per sample) (Supplementary Table 2). On 

average, we measured methylation levels of 22.7 million CpGs per sample (ranging from 21 to 

25 million). Unsupervised principal component analysis (PCA) of CpG methylation levels 

showed that B-cell subpopulations segregate according to their developmental stage (Fig. 1b). 

Globally, B-cell differentiation is accompanied by a gradual widespread demethylation of the 

genome, which was more pronounced at late differentiation stages such as memBC and bm-PC 

(Fig. 1c-e). The global methylation status of CpGs was largely bimodal in all sorted cell 

populations and the level of partially methylated regions increased to 19–24% in advanced 

maturation stages (Fig. 1e). This result contrasts to other WGBS studies using whole tissues, in 

which the proportion of partially methylated regions is usually high24, and highlights the 

importance of using purified cell subpopulations for DNA methylation studies. 
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The results obtained by WGBS were complemented with the analysis of 3 to 9 

replicates of 10 different B-cell subpopulations by high-density DNA methylation microarrays25 

(Fig. 1a). These subpopulations included those analyzed by WGBS as well as pre-B-I cells 

(preB1Cs), immature B cells (iBC), tonsillar naive B cells (t-naiBCs) and tonsillar plasma cells (t-

PCs) (Supplementary Table 1). The biological replicates of each subpopulation analyzed by 

WGBS or microarrays showed high reproducibility (correlation coefficient > 0.95) 

(Supplementary Fig. 1), and both high-throughput techniques were further validated by 

bisulfite pyrosequencing (Supplementary Fig. 2). In line with WGBS, PCA of microarray data 

separated B-cell subpopulations mostly according to their developmental stage (Fig. 1f) and 

we observed a gradual global methylation loss throughout B-cell maturation (Fig. 1g). 

Interestingly, samples clustered into “antigen-inexperienced” and “antigen-experienced” cells 

(Supplementary Fig. 3). This finding indicates that proliferative gcBCs start a massive 

reconfiguration of the DNA methylome18-19 which continues in cell subpopulations with 

extended life span such as memBCs and bm-PCs. 

 

Demethylation of non-CpG sites upon B-cell commitment  

Cytosine methylation in mammals can occur outside CpGs, a phenomenon commonly 

observed in embryonic stem cells (ESCs) and neurons7-8,16. In our study, considering non-CpG 

sites with high-confidence methylation estimates and having ruled out suboptimal bisulfite 

conversion and sequence variants, we did observe non-CpG methylation, which was primarily 

confined to the most undifferentiated cells (i.e. HPCs) and occurred mainly in a CpApC context 

(Fig. 2a-c). Significant non-CpG methylation in HPCs was detected by WGBS at 25,763 sites in 

replicate 1 and 16,838 in replicate 2, with a mean methylation levels of 25.1% and 24.7%, 

respectively. Non-CpG methylation in HPCs frequently targeted the same sites in the two 

biological replicates, fact that was also confirmed by bisulfite pyrosequencing in independent 
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samples (Fig. 2d and Supplementary Fig. 4). Non-CpG methylation in HPCs was preferentially 

located in gene bodies (both introns and exons) and depleted in lamina-associated domains 

(Supplementary Fig. 5). Although the methylation microarrays only measured 3,091 non-CpG 

sites, we could confirm the WGBS results (Fig. 2e,f). Similarly to reports in ESCs 26, methylated 

non-CpGs were flanked by methylated CpGs. However, demethylation of non-CpGs and CpGs 

was not simultaneous. We observed a dramatic demethylation of non-CpGs upon B-cell 

commitment in preB2Cs, but 97% of these demethylated non-CpGs remained flanked by 

methylated CpGs (Supplementary Fig. 6). These data were confirmed by bisulfite 

pyrosequencing (Supplementary Fig. 4) and indicate that non-CpG methylation is passively 

erased from HPCs to preB2Cs without simultaneous demethylation of flanking CpGs (Fig. 2g). 

Although previous studies have reported that high expression of DNMT3A and DNMT3B is 

associated with non-CpG methylation26-27, we did not identify consistent differences in the 

expression levels of DNMTs between HPCs and preBCs (Supplementary Fig. 7).  

 

Identification of dynamic DNA methylation patterns 

Next, we focused our analysis on the modulation of CpG methylation throughout the 

complete B-cell maturation program. We identified dynamic methylation levels in 4.93 million 

CpGs (> 0.25 methylation change in one set of samples and > 0.1 in the other), which represent 

30.6 % of the 16.1 million CpGs with methylation estimates in all 12 samples analyzed. The cell 

subtypes showing the most pronounced methylation changes compared to the preceding 

stage were gcBCs, memBCs and bm-PCs (Fig. 3a and Supplementary Fig. 8). Interestingly, 

multiple genes directly involved in B-cell differentiation (e.g. ARID3A, BCL2, BLK, EBF1 and 

IRF4) show a complex modulation of their DNA methylation profile across the gene length, 

with different regulatory elements losing methylation at distinct maturation stages (Fig. 3b 

and Supplementary Fig. 9). In a previous study, 5.6 million dynamic CpGs were identified to be 
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differentially methylated in a wide range of human cell types and tissues1. Only one third of 

the dynamic CpGs in B-cell differentiation defined in our study overlapped with these CpGs 

(Supplementary Fig. 10). Although this result may in part be caused by differences in coverage 

and bioinformatic pipelines used in the two studies, it suggests that the majority of dynamic 

methylation in B cells may entail CpGs not previously detected to be differentially methylated 

in other cell types and tissues. 

 Similarly to WGBS, although at lower scale, microarray data revealed that 22.4% of the 

measured CpGs showed variable methylation levels during B-cell differentiation (n = 106,562, 

see online methods for details). Due to the more comprehensive set of samples, we used these 

data to define sets of CpGs sharing similar DNA methylation dynamics during B-cell 

differentiation. To that end, we based our next analysis on a linear model of B-cell maturation, 

from HPC to terminal differentiation of gcBC into t-PC and long-lived bm-PC. We defined 20 

major modules containing at least 500 CpGs that could be classified according to four general 

DNA methylation modulation patterns during differentiation: i) methylation levels decrease (9 

modules), ii) methylation levels first decrease and then increase (3 modules), iii) methylation 

levels first increase and then decrease (2 modules) and iv) methylation levels increase (6 

modules) (Supplementary Data 1). Three of these 20 modules covered 57.8% of all dynamic 

CpGs: module 8 defined by CpG demethylation starting in gcBCs and continuing in bm-PCs (n = 

34,604), module 9 showing demethylation only in bm-PCs (n = 13,044) and module 20 

characterized by hypermethylation in bm-PCs only (n = 13,949) (Fig. 3c). These data confirmed 

that DNA hypomethylation mainly occurs in the gcBCs and bm-PCs. Furthermore, it could be 

appreciated that hypermethylation is a late event, mainly occurring in bm-PCs. Overall, we 

may conclude that 84.5% of the dynamic CpGs either gain or lose methylation (DNA 

methylation modulation patterns i and iv, n = 90,070) as B-cell differentiation progresses. 

Hence, each B-cell differentiation stage has its specific DNA methylation pattern, but 

furthermore retains an epigenetic memory of the previous stages. Interestingly, although the 
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methylation levels of the 20 modules are able to separate B-cell maturation stages, we 

performed a complexity reduction step and selected 5 CpGs in genes important for B-cell 

differentiation such as BLK, SEMA4B, ARID3A, AICDA and PRDM1 whose methylation levels 

could accurately classify each maturation stage (Supplementary Fig. 11). 

 

Functional analysis of dynamically-methylated regions 

In general, CpGs losing methylation at any B-cell maturation stage were preferentially 

located in introns, intergenic regions and repetitive elements (e.g. LINEs, SINEs and LTRs), and 

were enriched for genomic areas lacking CpG islands (CGIs) (Supplementary Figs. 12 and 13). 

In contrast, CpGs gaining methylation were enriched for CGIs and promoter regions 

(Supplementary Fig. 12). Additionally, we classified differentially methylated sites using a 

categorization of the genome into different chromatin states in immortalized mature B cells28 

(Supplementary Fig. 14). Both WGBS and microarrays revealed that the majority of dynamic 

CpGs during B-cell differentiation were enriched for enhancer regions (mainly intragenic), 

polycomb-repressed regions or heterochromatin (Fig. 3d,e and Supplementary Figs. 15 and 

16). Demethylation in precursor B cells was mostly related to enhancer elements whereas that 

occurring exclusively from gcBCs onwards was preferentially located in heterochromatic 

regions. Gain of CpG methylation was a rare event in early B-cell differentiation but rather 

frequent in mature B cells, especially in bm-PCs. Such CpG hypermethylation targeted 

preferentially polycomb-repressed regions (Fig. 3d,e). 

Next, we studied the mechanisms underlying enhancer demethylation in the B-cell 

differentiation process. We identified a significant enrichment (FC > 2, P < 0.01) in transcription 

factor binding sites (TFBSs) of key B-cell transcription factors such as BCL11A, EBF1, IRF4, 

MEF2A, MEF2C, PAX5 or TCF3 (E2A) (Fig. 4a, Supplementary Fig. 17 and Supplementary Data 
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2 and 3). As B-cell commitment is associated with the expression of lineage-specific TFs20, we 

analyzed the transition from HPC to preB1C (module 1) in detail and, globally, we observed an 

inverse correlation between TF expression and the methylation levels of their binding sites 

(Fig. 4b,c). We further investigated the association between TF expression and the methylation 

status of their binding sites during the entire differentiation program, and in general, once a 

TFBS becomes demethylated at any B-cell differentiation stage, it remains unmethylated in 

subsequent stages, suggesting an epigenetic memory of TF binding24 (Supplementary Fig. 18).  

 At the functional level, genes within microarray-based methylation modules enriched 

for enhancer elements were involved in multiple immune system-related functions 

(Supplementary Fig. 19 and Supplementary Data 4). In contrast, CpGs in modules enriched for 

heterochromatin or polycomb-repressed regions, targeted genes not involved in the immune 

system but rather affected terms such as development, locomotion or behavior 

(Supplementary Fig. 19 and Supplementary Data 4). Based on this observation, we 

hypothesized that differential methylation in enhancer elements may be globally associated 

with gene expression, while that affecting inactive elements (i.e. heterochromatin or 

polycomb-repressed regions) may not. We initially explored the transcriptome of B-cell 

subpopulations and observed that they clustered separately using an unsupervised approach 

(Fig. 4d). We then calculated the number of genes differentially expressed and differentially 

methylated by comparing adjacent cell subpopulations. Globally, there was a poor association, 

and large transcriptional changes could be related to a minor modulation of the DNA 

methylome and vice versa (Fig. 4e). We further explored the association between DNA 

methylation patterns and gene expression by exploring genes with dynamic methylation in 

enhancers, heterochromatin and polycomb-repressed regions. We observed that both 

variability and mean expression levels of genes containing dynamic CpGs in enhancer elements 

were much higher in comparison with genes showing modulation of CpG methylation in non-

functional chromatin states such as heterochromatin and polycomb-repressed regions (P < 
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0.001; Fig. 4f-h). However, regardless of the DNA methylation pattern throughout B-cell 

maturation, dynamic CpGs target genes with higher expression levels and variation throughout 

the whole B-cell differentiation. Thus, these data suggest that there is no direct correlation 

between DNA methylation and gene expression, as previously shown elsewhere6,10, but rather 

that dynamic CpGs affecting functional elements target immune system-related genes whose 

expression is modulated during B-cell differentiation.  

 Next, we sought to analyze the functions of genes with dynamic enhancer methylation 

in more detail. As B-cell receptor signaling is a key element specific for B-cell differentiation, 

we studied the methylation pattern of 41 genes involved in this function. Out of those, 38 

(93%) had a total of 234 CpGs with dynamic methylation and were preferentially located in 

enhancers (Supplementary Fig. 20). Furthermore, we observed that 38% of all enhancers (P < 

0.001) belonged to a B-cell specific functional gene network29 (Supplementary Fig. 21).  

 As our study comprises cell subpopulations isolated from three different 

compartments (bone marrow, peripheral blood and tonsil), we aimed at detecting particular 

DNA methylation imprints related to these different locations but we did not identify any 

consistent pattern. However, we did observe that naiBCs isolated from different 

compartments (i.e. peripheral blood or tonsils) showed a massive modulation of their 

transcriptome while their methylomes remained virtually identical (Supplementary Figs. 22 

and 23). Based on this observation, we may hypothesize that the gene expression changes in t-

naiBCs are essential to optimize antigen recognition in the tonsil, followed by successful B-cell 

activation. However, when no antigen is found, the t-naiBCs will re-enter the blood stream. 

Hence, the t-naiBCs state has to be reversible, which may be the reason why no changes were 

observed at the level of the DNA methylome. 
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Epigenetic link among long-lived B cells, cancer and aging 

 We observed that long-lived B cells such as memBCs and bm-PCs23 show an extensive 

perturbation of their DNA methylome as compared to gcBCs (Supplementary Fig. 8). 

Remarkably, although bm-PCs and newly generated t-PCs share a similar transcriptome, they 

have different methylomes (Supplementary Fig. 22). The major DNA methylation changes in 

memBCs and bm-PCs affect presumably non-functional elements such as heterochromatin and 

polycomb-repressed regions. Thus, our findings suggest that  part of the epigenetic makeup of 

memBCs and bm-PCs is caused by an epigenetic drift associated with their long life span23. To 

determine whether such drift may be related to the expression of DNMTs, we analyzed 

DNMT1, DNMT3A and DNMT3B by qRT-PCR in sorted gcBCs, memBCs, t-PCs and bm-PCs. 

DNMT1 showed low levels in memBCs, t-PCs and bm-PCs (Supplementary Fig. 7). As these cell 

types are considered to be non-proliferative, our finding implies that demethylation occurs 

either through an active mechanism or passively if these cell types still proliferate at a low 

rate30. Gain of methylation of polycomb-repressed regions has been linked to the activity of 

DNMT3A and DNMT3B31-32. We detected that as compared to gcBCs, DNMT3A was 

upregulated in t-PCs and bm-PCs, and at a lower extent also in memBCs. Thus, these results 

may suggest that minor increases of this enzyme in the context of long-lived cells could result 

in hypermethylation of polycomb-repressed areas. To obtain further insights into the 

mechanisms of chromatin repression by hypermethylation at polycomb-repressed regions, we 

performed bisulfite sequencing of chromatin immunoprecipitated DNA (ChIP-BS) with a 

H3K27me3 antibody33-34. This experiment suggests that in memBCs, H3K27me3 and DNA 

methylation coexist both in CpG-rich and CpG-poor regions, and that the DNA methylation 

levels within nucleosomes containing H3K27me3 were lower than regions outside such 

nucleosomes (Supplementary Fig. 24).  
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 Remarkably, demethylation of heterochromatin (in part bound to the nuclear lamina) 

and hypermethylation of polycomb-repressed regions are among the most frequent epigenetic 

changes in solid and hematological tumors11,35-38. To analyze whether those CpGs showing 

differential methylation in long-lived B cells overlap with those becoming differentially 

methylated in cancer, we used methylation data from various lymphoid neoplasms including 

acute lymphoblastic leukemia39 (ALL, n = 46), chronic lymphocytic leukemia10 (CLL, n = 139), 

diffuse large B-cell lymphoma (DLBCL, n = 40) and multiple myeloma40 (MM, n = 104). We 

analyzed the methylation levels of CpGs losing methylation (modules 8 and 9) and those 

gaining methylation in memBCs and bm-PCs (modules 19 and 20). Indeed, we observed that, 

considering these CpGs, neoplastic cells show a DNA methylation profile similar to memBCs 

and bm-PCs (Fig. 5a-d and Supplementary Fig. 25).  To further evaluate the epigenetic link 

between normal B-cell differentiation and neoplastic transformation, we compared the DNA 

methylome of B-cell neoplasms with their normal cell counterparts, e.g. ALL39 vs. preBCs, 

DLBCL-GCB type vs. gcBCs, and MM40 vs. PCs (Fig. 6a and Supplementary Data 5). The results 

indicate that a large fraction of the CpGs differentially methylated in tumors  are dynamically 

methylated during normal B-cell differentiation, ranging from 53% to 82% for hypermethylated 

and from 29% to 84% for hypomethylated sites (Fig. 6b). Interestingly, we identified that 

hypomethylation in ALL was enriched in enhancers whereas hypomethylation in DLBCL and 

MM predominantly affected heterochromatin (Fig. 6c). Additionally, although ALL cells are 

arrested at the preBCs stage, they acquire hypermethylation in polycomb-repressed regions, 

which is characteristic of more mature differentiation stages (Fig. 6d). MM cells, in contrast, do 

not acquire hypermethylation of polycomb-repressed regions because their cellular origin 

already shows this feature, but, as they downregulate the B-cell program, they acquire 

hypermethylation of B cell-specific enhancers40. 

 Finally, global hypomethylation accompanied by local hypermethylation of polycomb 

targets is also a molecular hallmark of aging41-45. We analyzed DNA methylation values of CpGs 
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within modules 8, 9, 19 and 20 using data from 694 peripheral blood samples from donors 

ranging from 0 to 101 years43-44.  Indeed, we detected a significant correlation with age (P < 

0.01) following the same tendency as in long-lived cells and cancer cells, i.e. methylation of 

heterochromatin diminished with age whereas methylation of polycomb targets increased 

(Fig. 5e-f; Supplementary Fig. 25). We next compared B cells with short and long lifespan 

(naiBCs and memBCs, respectively) isolated simultaneously from individuals of different age 

and we detected that memBCs acquire hypomethylation of heterochromatin and 

hypermethylation of polycomb targets regardless of the chronological age of the donor 

(Supplementary Fig. 26). As the cellular composition of blood changes with age, our results 

imply that a relative increase of long-lived cells in older individuals may represent a 

confounding variable in age-related methylation studies46. 

 

Discussion 

 The B-cell maturation process is an orchestrated program integrating internal and 

environmental signals to finally give rise to plasma cells and memory B cells that play an 

essential role in adaptive immunity. Although previous reports have studied epigenetic 

changes in the context of B-cell differentiation, they only studied partial DNA methylomes 

either of precursor or mature B cells17-19,47. With the exception of few cell subpopulations such 

as transitional B cells, CD5+ B cells and splenic marginal zone B cells, our study comprises all 

major B-cell differentiation stages and represents the first whole-genome epigenetic 

characterization of a complete human cell lineage from progenitor to terminally-differentiated 

cells. The comprehensive nature of our study has allowed us to provide epigenetic insights into 

different scientific fields and offers a resource for researchers working in different areas of cell 

differentiation, B-cell biology and related diseases, cancer and aging, both at single gene and 

genome-wide levels.  
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 Our study points to a massive perturbation of the DNA methylome during B-cell 

differentiation, affecting 30% of all autosomal CpG sites. These changes follow an accumulative 

pattern in which each B-cell maturation stage, although characterized by a particular signature, 

keeps an epigenetic memory of past differentiation stages. In contrast to other reports in 

hematopoietic precursors48-49, we did observe non-CpG methylation in HPCs, which virtually 

disappeared upon B-cell commitment in regions lacking simultaneous CpG demethylation. 

Precursor B cells showed relatively small losses of CpG methylation, which mostly affected 

enhancers containing binding sites of B cell-specific TFs. The functional link between TF 

binding, CpG demethylation and enhancer activation has been recently analyzed during stem 

cell differentiation50-51 as well as in hematopoietic cells52-53, non-hematopoietic cells54 and 

cancer40,55.  

 Interestingly, more than half of all enhancers defined in immortalized mature B cells 

show dynamic DNA methylation throughout the B-cell differentiation process, and 38% of all 

genes with dynamically-methylated enhancers are included in a regulatory network associated 

with human B cells29. Although mainstream research on DNA methylation still remains 

centered on promoter regions, our results imply that DNA methylation changes in enhancers 

seems to be more closely related to cell specification and maturation1,9,56. However, similar to 

other recent studies6,10,57, we rarely observed a direct correlation between gene expression 

and DNA methylation, even in regulatory elements. Our study also suggests that at later stages 

of B-cell differentiation (from naiBC onwards), DNA methylation changes are more guided by 

other mechanisms than the intrinsic program of B-cell TFs. Upon antigen encounter, the 

germinal center reaction is induced and, at this stage, gcBCs start experiencing a wave of 

global demethylation, mostly affecting late-replicating regions such as heterochromatin and 

DNA repeats, and local hypermethylation of polycomb-repressed regions. This finding can be 

partially explained by the high proliferation rate, as normal proliferative tissues tend to lose 

methylation at late-replicating regions58. However, downstream B-cell subpopulations derived 
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from gcBCs, such as non-proliferative memBCs and PCs, which recirculate through the body 

and reside in bone marrow, respectively, acquire additional epigenetic changes in 

heterochromatin and polycomb-repressed regions. We postulate that these additional changes 

may be related to a potential epigenetic drift in the context of longevity that may be mediated 

by downregulation of DNMT1 and slight upregulation of DNMT3A. 

 Hypomethylation of heterochromatin and hypermethylation of polycomb-repressed 

regions have been previously described as an epigenetic hallmark of organismal aging, cellular 

senescence and cancer4,41-44,59-61. Here, we observe that this signature starts in proliferating 

gcBCs and becomes particularly enhanced in non-proliferative long-lived B cells. Based on our 

results, we hypothesize that not all the cells of the organism are subjected to epigenetic drift 

as an influence of time but only those with long life span. At last, one of the most relevant 

implications of our study is related to the field of cancer. We demonstrate that B-cell tumors 

and long-lived cells share in part similar DNA methylation signatures. Furthermore, comparing 

various B-cell tumors with their normal cellular counterparts, we observed that a large 

proportion of the differentially methylated sites overlap with those undergoing dynamic 

methylation during normal differentiation, especially with those changing in memBCs and bm-

PCs. Interestingly, similarly to preBCs, hypomethylation in ALL is enriched for enhancer 

elements whereas in line with gcBCs and bm-PCs, hypomethylation in DLBCL and MM is mostly 

enriched for heterochromatin. In general, this finding suggests that the epigenetic 

configuration of a particular maturation stage influences the DNA methylation changes 

acquired during its clonal expansion and neoplastic transformation. This novel strategy of 

analyzing the DNA methylome of B-cell tumors in the context of the entire differentiation 

program may allow us to provide new insights into the role of DNA methylation in cancer. We 

postulate that changes shared during neoplastic transformation and normal differentiation 

may represent epigenetic passengers whereas those exclusively taking place in tumor cells 

should contain epigenetic drivers with a potential functional impact in the disease.  
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project, http://www.blueprint-epigenome.eu; The R Project for Statistical Computing, 
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(EGA) under the accession numbers EGAD00001001304 and EGAS00001000272. DNA 
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numbers EGAS00001001196 and EGAS00001001197, respectively. Additional published data 

from precursor B cells are available through Gene Expression Omnibus under accession 

number GSE45461. 
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FIGURE LEGENDS 

Figure 1. Analysis of the DNA methylome of different B-cell subpopulations by WGBS and 

microarrays. (a) Description of the B-cell subpopulations and techniques used in this study. (b) 

Unsupervised principal component analysis (PCA) of WGBS data of two biological replicates 

per cell subpopulation. (c) Circular representation of DNA methylation levels for HPC, preB2C, 

naiBC, gcBC, memBC and bm-PC measured by WGBS. CpG methylation levels were averaged in 

10-Mbp genomic windows and represented as histogram tracks. The heatmap indicates the 

DNA methylation change with respect to the sample in the next-innermost track. (d) Boxplot 

summarizing the distribution of DNA methylation levels per sample of the 16.1 million CpGs 

with methylation estimates in all 12 samples. (e) Global methylation status of samples 

measured by WGBS. Percentage of methylated (M, in red), partially methylated (PM, in yellow) 

and unmethylated (UM, in blue) CpGs. (f) Unsupervised PCA of microarray methylation data of 

all samples used in the study. (g) Median values of DNA methylation data measured by 

microarrays. HPC: hematopoietic progenitor cell. preB1C: pre-B-I cell. preB2C: pre-B-II cell. iBC: 

immature B cell. naiBC: naive B cell from peripheral blood. t-naiBC: naive B cell from tonsil. 

gcBC: germinal center B cell. t-PC: plasma cell from tonsil. memBC: memory B cell from 

peripheral blood. bm-PC: plasma cell from bone marrow. In panels d and e, R1 and R2 refer to 

the two biological replicates. 

 

Figure 2. Non-CpG methylation detected during B-cell differentiation. (a) Browser 

representation of non-CpG methylation, which takes place mostly in the CpApC sequence 

context (only chromosome 1 is shown). Methylation in the reverse strand is marked in blue 

whereas that in the forward strand appears in red. (b) Number of non-CpG sites with non-zero 

methylation in different B-cell subpopulations detected by WGBS. Methylated cytosines in the 

CpApC context are marked in dark red and those in other contexts in pale red. (c) Scatter plot 

showing the numbers of methylated non-CpG sites (*using only the 3,437 non-CpGs with 
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methylation estimates in all 12 samples and methylated in at least one of them) and median 

CpG methylation levels. In this analysis, 99% of the non-CpGs methylated in one HPC sample 

were also methylated in the biological replicate. (d) Validation of non-CpG methylation by 

bisulfite pyrosequencing in two independent biological replicates of each subpopulation. For 

this analysis, we used a CpApC site (chr2: 85,933,406) shown to be methylated in HPCs by 

WGBS. (e) Heatmap representation of 26 methylated non-CpGs measured by microarrays 

(mean methylation = 34.7%). (f) Percentage of methylated non-CpGs in distinct sequence 

contexts detected by microarrays. (g) Representation of CpG and non-CpG dynamics upon B-

cell commitment. CpG methylation is marked in blue and non-CpG methylation in green. 

Regions with CpG methylation loss (enhancer region, blue box) and non-CpG methylation loss 

(heterochromatin and polycomb-repressed region, green box) are not coupled. 

 

 

Figure 3. Dynamic DNA methylation during B-cell differentiation. (a) Differentially methylated 

CpGs detected by WGBS considering the two replicates per cell subpopulation (see online 

methods for an explanation of the criteria). (b) Smoothed DNA methylation data generated by 

WGBS across the promoter region and gene body of ARID3A and BLK. The DNA methylation 

pattern of these genes is widely modulated in different B-cell subpopulations, especially in 

enhancer regions. (c) Heatmap representation of 20 major modules of dynamic CpGs, divided 

in 4 different patterns, detected by microarrays. The number of CpGs within each module is 

given in brackets. (d) Chromatin state characterization of differentially methylated CpGs 

identified by WGBS. (e) Chromatin state characterization of the 20 major modules detected by 

microarrays. In panels d and e, numbers indicate the percentage of sites located in enhancers, 

polycomb-repressed regions or heterochromatin. The blue to red color scale represents log2 of 

enrichment values, with respect to the background. Green and blue bars represent 
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percentages of differentially methylated sites that reside in early- or late-replicating regions, 

respectively. RepT: replication timing. 

 

Figure 4. Association between DNA methylation and gene expression in different chromatin 

states. (a) Heatmap representing significant (P < 0.01) enrichments for transcription factor 

binding sites (TFBSs) in different methylation modules identified by arrays. Below the 

heatmap, log2 enrichment for enhancer, heterochromatin and polycomb-repressed regions in 

each differentially methylated group is represented. (b) Correlation between the expression 

levels of TFs and the mean methylation levels of their binding sites using samples with 

available expression and methylation data from the same donors. For this analysis, we 

analyzed methylation data from module 1 (demethylation upon B-cell commitment) and gene 

expression data of precursor cells. The white to brown color scale represents the odds ratio for 

TFBS enrichments. (c) Scatter plots showing the correlation of expression levels of PAX5, EBF1 

and IRF4 with the mean methylation of their binding sites in each sample (the number of TFBS 

associated with CpGs belonging to module M1 is shown below the TF name). (d) Unsupervised 

cluster analysis of gene expression data using the 687 tags (439 genes) with the highest 

variability (SD > 2) across the B-cell differentiation process. (e) Differentially expressed genes 

(upper part) and differentially methylated genes (lower part) in each comparison of adjacent 

cell subpopulations. (f-g) Mean expression levels (f) and expression variability (g) during B-cell 

differentiation of genes containing dynamic CpGs targeting enhancers, polycomb-repressed 

regions and heterochromatin. (h) Heatmaps showing DNA methylation levels (left) and gene 

expression levels (right) of representative genes with dynamic methylation in enhancers, 

heterochromatin and polycomb-repressed regions. 
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Figure 5. DNA methylation changes during B-cell differentiation in the context of cancer and 

aging. (a) Heatmap of a subset of CpGs from module M9 that lose methylation in 

heterochromatin regions. (b) Heatmap of subset of CpGs from module M20 that gain 

methylation in polycomb-repressed regions. (c-d) Scatter plots representing the mean 

methylation levels of CpGs in heterochromatin from M9 (c) and CpGs in polycomb-repressed 

regions from M20 (d) in different B-cell subsets and four types of hematological neoplasms. (e-

f) Mean methylation levels of CpGs in heterochromatin from M9 (e) and of CpGs in polycomb-

repressed regions from M20 (f) in whole blood samples isolated from donors of different age.  

ALL: acute lymphoblastic leukemia. CLL: chronic lymphocytic leukemia. DLBCL: diffuse large B-

cell lymphoma. MM: multiple myeloma. 

 

Figure 6. DNA methylation changes in various B-cell neoplasms as compared to their normal 

counterparts. (a) Differential methylation analysis was performed in three models of lymphoid 

neoplasms that arise from three distinct maturation stages of B-cell development: ALL vs. 

precursor B-cells (i.e. preB1C and preB2C), the GCB subgroup of DLBCL vs. gcBC, and MM vs. 

plasma cells (i.e. t-PC and bm-PC). (b) Barplots showing the proportion of dynamically 

methylated CpGs in B-cell differentiation that are also differentially methylated in 

hematological neoplasias as compared to their normal counterparts. (c) Percentage of 

hypermethylated (upper panels) and hypomethylated (lower panels) CpGs located in 

enhancers (left) , heterochromatin (middle) and polycomb-repressed regions (right). Pale 

orange, gray and burgundy represent fraction of CpGs that are dynamically  methylated during 

B-cell differentiation while dark shades of the same colors correspond to CpGs with stable 

methylation throughout B-cell maturation. (d) Heatmap representing differentially methylated 

CpGs in ALL as compared to precursor B cells in the context of normal B-cell differentiation. 

ALL: acute lymphoblastic leukemia. DLBCL: diffuse large B-cell lymphoma. MM: multiple 

myeloma. Bkgr: background of 450k microarray data. 
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ONLINE METHODS 

Isolation of B-cell subpopulations 

Precursor B cells were isolated from fetal bone marrow (22 week fetuses) using flow cytometry 

sorting. Early progenitors were isolated based on high levels of CD34 protein expression 

(CD34hi) and a lack of expression of the B-cell marker CD19. This population, designated as 

uncommitted hematopoietic progenitors (HPC), contains predominantly multipotent 

progenitors before lineage commitment and also common lymphoid progenitors and 

hematopoietic stem cells. B-cell-committed progenitors were isolated based on their 

expression of CD19 and CD34 (CD19+/CD34+), which were predominantly pre-B-I cells 

(preB1Cs). Two immature B-cell populations expressing CD19 and lacking CD34 were isolated 

and differentiated based on surface IgM (sIgM) expression: pre-B-II cells (preB2Cs) that express 

sIgM−/CD19+ and immature B cells that express sIgM+/CD19+ (iBCs). DNA methylation and 

gene expression data from these 4 subpopulations have been previously published17. 

Peripheral blood B-cell subpopulations, i.e. naive B cell (naiBCs) and memory B cells (memBCs) 

were obtained from buffy coats from healthy adult donors of age ranging between 28 and 66 

years. After Ficoll-Isopaque density centrifugation CD19+ B-cells were isolated by positive 

magnetic cell separation by using AutoMACS system (Milteny Biotec, Auburn, CA). CD19+ cells 

were labeled with anti-CD27, anti-IgD, anti-IgM, anti-IgG and anti-IgA for 15 min at room 

temperature in staining buffer (PBS with 0.5% BSA). naiBCs (CD19+/CD27-/IgD+) and memBCs 

(CD19+/CD27+/IgA+ or IgG+) were obtained by FACS sorting on FACSAriaII (BD Biosciences). 

Plasma cells (t-PCs), germinal centre B cells (gcBCs) and naive B cells (t-naiBCs) were separated 

from tonsils of children undergoing tonsillectomies (ranging in age between 2 and 13), 

obtained from the Clinica Universidad de Navarra (Pamplona, Spain) or Children’s Clinique La 

Sagesse (Rennes, France). Tonsils were minced extensively and after Ficoll-Isopaque density 

centrifugation, enrichment of B cells was performed with the AutoMACS system either by 

positive selection of CD19+ cells or by the B Cell Isolation Kit II (Milteny Biotec, Auburn, CA). t-

PCs (CD20med/CD38high), gcBCs (CD20high/CD38med) and t-naiBCs (CD20+/CD23+) were 

separated by FACS sorting. In part, t-naiBCs were also selected using a slightly different marker 

combination (i.e. CD19+/CD27-/IgD+ or IgD+/CD38low/CD27-). gcBCs were also selected by 

this marker combination: IgD-/CD38hi/CD10+/CXCR4+. t-naiBCs and gcBCs isolated with 

different markers identified the same cell subpopulations, as evidenced by the fact that each 

subpopulation shows homogeneous DNA methylation and transcriptional profiles 

(Supplementary Fig. 22). 

Plasma cells from bone marrow (bm-PCs) were selected from healthy donors ranging from 20 

to 30 years. After density gradient centrifugation, we performed a selective depletion of CD3+, 

CD14+ and CD15+ cells by immunomagnetic selection (Miltenyi Biotec, Germany), followed by 

flow cytometry cell sorting of CD45+/CD138+/CD38+ cells using a FACSAriaII (BD Biosciences) 

device.  

The purity of each of the isolated B-cell subpopulations exceeded 90% in all samples. DNA was 

extracted from purified samples by using a Qiagen kit (QIAamp DNA Mini Kit), following 

manufacturer’s instructions, and was quantified using a Nanodrop ND-100 spectrophotometer. 

DNA samples for WGBS, 450k array and BPS experiments were derived from individual donors 

with the exception of those from bm-PCs, which were pooled from 4 different donors. Total 
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RNA was extracted with TRIzol (Invitrogen) following the manufacturer’s recommendations. 

RNA quality was assessed with the Agilent 2100 Bioanalyzer. 

 

Whole-genome bisulfite sequencing  

We performed the WGBS on two independent sets of biological replicates from six B-cell 

differentiation stages. Briefly, genomic DNA (1–2 μg) was spiked with unmethylated λ DNA (5 

ng of λ DNA per μg of genomic DNA) (Promega). The DNA was shared by sonication to 50–500 

bp using a Covaris E220 and fragments of size 150–300 bp were selected using AMPure XP 

beads (Agencourt Bioscience Corp.). Genomic DNA libraries were constructed using the 

Illumina TruSeq Sample Preparation kit (Illumina Inc.) following the lllumina standard protocol: 

end repair was performed on the DNA fragments, an adenine was added to the 3’ extremities 

of the fragments and Illumina TruSeq adapters were ligated at each extremity. After adaptor 

ligation, the DNA was treated with sodium bisulfite using the EpiTexy Bisulfite kit (Qiagen) 

following the manufacturer’s instructions for formalin-fixed and paraffin-embedded (FFPE) 

tissue samples. Two rounds of bisulfite conversion were performed to assure a conversion rate 

of over 99%. Enrichment for adaptor-ligated DNA was carried out through 7 PCR cycles using 

the PfuTurboCx Hotstart DNA polymerase (Stratagene). Library quality was monitored using 

the Agilent 2100 BioAnalyzer (Agilent), and the concentration of viable sequencing fragments 

(molecules carrying adaptors at both extremities) estimated using quantitative PCR with the 

library quantification kit from KAPA Biosystem. Paired-end DNA sequencing (2x100bp) was 

then performed using the Illumina Hi-Seq 2000. Amounts of sequence reads and the 

proportion of aligned reads are shown in Supplementary Table 2.  

Read mapping and estimation of cytosine methylation levels 

Read mapping was carried out using the GEM aligner (v1.242)62 against a composite reference 

containing two copies of the human GRCh37 reference and two copies of the NCBI viral 

genome database (v35). For both the human and viral references, one copy had all C bases 

replaced by T and the other had all G bases replaced by A. The names of the contigs in the 

combined reference FASTA file were modified by adding #C2T or #G2A to the end of the contig 

names depending on the conversion performed. Before mapping was performed the original 

sequence of each read was stored. The first read of each pair then had all C bases replaced by 

T, and the second read had all G bases replaced by A. Read mapping with GEM was performed 

allowing up to 4 mismatches per read from the reference. After read mapping the original 

sequence of each read was restored. 

Estimation of cytosine levels was carried out on read pairs where both members of the read 

mapped to the same contig with consistent orientation, and there was no other such 

configuration at the same or less edit distance from the reference. After mapping, we restored 

the original read data in preparation for the inference of genotype and methylation status. We 

estimated genotype and DNA methylation status simultaneously using software developed at 

the Centro Nacional de Análisis Genómico, taking into account the observed bases, base 

quality scores and the strand origin of each read pair. For each genome position, we produced 

estimates of the most likely genotype and the methylation proportion (for genotypes 

containing a C on either strand). A phred scaled likelihood ratio for the confidence in the 

genotype call was estimated for the called genotype at each position. For each sample, CpG 

sites were selected where both bases were called as homozygous CC followed by GG with a 
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Phred score of at least 20, corresponding to an estimated genotype error level of <= 1%. Sites 

with >500x coverage depth were excluded to avoid centromeric/telomeric repetitive regions. A 

common set of called CpG sites for all analyzed samples was generated, and all subsequent 

analyses used this common set. 

Microarray-based DNA methylation analysis with 450k arrays 

We used the EZ DNA Methylation Kit (Zymo Research) for bisulfite conversion of 500 ng 

genomic DNA. Bisulfite-converted DNA was hybridized onto the HumanMethylation 450K 

BeadChip kit (Illumina) which covers 99% of RefSeq genes and 96% of CpG islands. The 

Infinium methylation assay was carried out as described previously25,63. Data from the 450k 

Human Methylation Array were analyzed in R using the minfi package64 (version: 1.6.0), 

available through the Bioconductor open source software. To exclude technical and biological 

biases that might produce false results in further analyses, we developed and optimized an 

analysis pipeline with several filters (i.e. CpGs with low detection p values, sex-specific and 

individual-specific methylation or overlapping with SNPs). Taking into account the different 

performance of Infinium I and Infinium II assays we used the subset-quantile within array 

normalization (SWAN)65 that corrects for the technical differences between the Infinium I and 

II assay designs and produces a smoother overall beta value distribution. 

Detection of non-CpG methylation and differential methylation analysis 

Cytosines in non-CpG context were identified as two adjacent nucleotides where the genotype 

of the first nucleotide was called with high confidence as homozygous C and the second was 

called with high confidence as a genotype not containing a G. Non-CpG cytosines were called 

methylated if they had at least two non-converted reads, at least six reads informative for 

methylation status, and a methylation probability greater than twice its standard deviation. 

The significance of the change in methylation levels between samples was assessed using the 

numbers of converted and non-converted reads in both samples with a chi square test, or 

Fisher's exact test when the chi square approximation was not appropriate. 

The difference in methylation levels between different stages of B-cell differentiation was 

calculated using 16.1 million CpGs with methylation estimates in all 12 samples analyzed by 

WGBS. The normal approximation to the binomial was used to test for significant differences 

of individual CpGs between samples. As we sequenced two biological replicates per cell 

subpopulation, we defined consistent DNA methylation changes between two differentiation 

stages if in one set of samples the methylation difference was above 0.25 and in the second 

set was at least a 0.1 difference in the same direction (hyper or hypomethylation). CpGs with 

dynamic methylation were defined as with differential methylation in comparisons of adjacent 

stages and in the comparison between HPCs and bm-PCs.  

To calculate the overlap between dynamically methylated CpGs in B cells and by Ziller et al1, 

we downloaded all the DMRs with dynamic CpGs from that study (GEO number GSE46644) and 

determined how many of the 4.93 million dynamic CpGs in B cells are located within DMRs 

identified by Ziller et al. 

We also defined CpGs that show variable methylation levels throughout B-cell development 

using 450k microarray data for HPC, preB1C, preB2C, iBC, naiBCs, t-naiBCs, gcBC, t-PC and bm-

PCs. From gcBCs on, B-cell differentiation is branched into memBCs or PCs and therefore 

memBCs were not included in this linear analysis. We performed pair-wise comparisons 

between all these subsets of B-cell differentiation. We defined as “dynamic” those CpGs that 
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presented a mean DNA methylation difference above 0.25 in at least one comparison 

(FDR<0.1, Wilcoxon test). Furthermore, we detected CpGs whose methylation shows a similar 

modulation pattern during the entire B-cell differentiation process and we group them into 

distinct modules. To allow for the identification of gradual changes (but consistent in different 

replicates) throughout the differentiation program, we applied a mean methylation difference 

between adjacent subpopulations of 0.1. The modules were grouped into four groups 

depending on their methylation tendency during differentiation (decrease, increase, decrease-

increase and increase-decrease). Differentially methylated sites between specific B-cell tumor 

entities and their normal cellular counterpart were identified by a mean DNA methylation 

difference above 0.25 and an FDR < 0.05. 

 

Bisulfite pyrosequencing studies 

Validation of DNA methylation levels generated by WGBS and 450k microarrays was validated 

by bisulfite pyrosequencing (BPS). Briefly, 500 ng of genomic DNA was bisulfite converted 

using the EpiTect 96 Bisulfite kit or the EpiTect Plus Bisulfite Conversion Kit (Qiagen) according 

to manufacturer’s instructions. PCR amplification of the bisulfite treated DNA was done using 

the specific primers for each of the selected CpGs and non-CpGs (Supplementary Table 3). 

These primers were determined with the PyroMark Assay Design software (Qiagen). BPS and 

DNA methylation data analysis were performed with the pyrosequencer PyroMark Q96 ID and 

PyroMark CpG software (Qiagen). 

 

Genomic and functional annotation of CpG sites 

Both WGBS and 450k microarray data were annotated using the UCSC Genome Browser 

database (hg19). For the location relative to a gene, we used these categories: TSS 1500 (from 

201 to 1,500 bp upstream of the transcriptional start site (TSS)), TSS 200 (from 1 to 200 bp 

upstream of the TSS), 5' UTR, first exon, exon (all exons excluding exon 1), intron, 3' UTR and 

intergenic regions. Owing to the presence of alternative transcription start sites and regions 

containing more than one gene, some of the CpGs were assigned multiple annotations. For the 

location relative to a CpG island (CGI), we used these groups: within CGI, in CGI shore (0–2 kb 

from the CGI edge), in CGI shelf (>2 kb to 4 kb from the CGI edge) and outside CGI. 

We also annotated all CpG probes using a recent categorization of chromatin and 

transcriptional states from the lymphoblastoid B cell line GM1287828 (ChromHMM track of the 

UCSC Genome Browser), which has a DNA methylome similar to memory B cells and plasma 

cells (Supplementary Fig. 14). Regions with chromatin states 1–3 (active, weak and poised 

promoter) were considered as "Promoter regions", states 4–7 (strong and weak enhancer) as 

“Enhancer regions”, state 8 as "Insulator", states 9 “Transcriptional transition”, state 10 

“Transcriptional elongation”, state 11 as "Weak transcription", state 12 as "Polycomb-

repressed regions" and state 13 as "Heterochromatin (nuclear lamina)". 

Replication timing in GM12878 data was obtained from the UW Repli-seq track of the UCSC 

Genome Browser. Replication timing values for all sites from the background was divided into 

3 bins: early-, mid- and late-replicating regions. Only early- and late-replicating regions were 

used for the analysis. 

The annotation of repeat elements was done based on the RepeatMasker Annotation, 

available at the UCSC Genome Browser. 
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B-cell network analysis 

We used the B-cell specific functional interaction network of Lefebvre et al.,29 containing 5,748 

nodes (genes) and 64,600 unique edges (interactions) based on Entrez gene identifiers. We 

selected the 5,668 dynamic enhancer genes and mapped them to Entrez gene identifiers 

resulting in 5,658 unique Entrez gene identifiers. 2,154 of these Entrez genes are contained in 

the B-cell network and 1,993 of them are directly connected in the network by 11,741 edges. 

This subnetwork of 1,993 nodes and 11,741 edges was investigated further. We identified 9 

communities in the subnetwork by using Gephi66 and Louvain’s method67.  

 

Chromatin immunoprecipitation coupled with bisulfite sequencing 

B cells were cross-linked with 1% formaldehyde during 8 min (RT) before FACS separation of 

memBCs. Chromatin preparation and ChIP were performed according to the BLUEPRINT 

Histone ChIP protocol with a anti-H3K27me3 antibody (C15410195, Diagenode). For whole-

genome bisulfite library construction and sequencing the immunoprecipitated DNA (50 ng) 

was sheared on a Covaris™ E220 in order to reach the fragment size of 50–500 bp and size 

selected 150 to 500 bp fragments using AMPure XP beads (Agencourt Bioscience Corp.). 500 

ng of unmethylated λ DNA (Promega) was treated in parallel on Covaris™ E220 and also size 

selected by AMPure XP beads to reach the same fragment sizes as the DNA sample. The 

unmethylated λ DNA was spiked into fragmented and size selected immunoprecipitated DNA 

(5 ng of λ DNA per 1 μg of DNA) and TruSeq Sample Preparation kit (Illumina Inc.) was used to 

prepare the Illumina library in order to add platform specific adaptors. After adaptor ligation 

450 ng of fragmented and size selected unmethylated λ DNA was added to the library. Two 

rounds of bisulfite conversion was performed to reach > 99% conversion following the 

manufacturer's instructions for formalin-fixed and paraffin-embedded (FFPE) tissue samples 

(EpiTect Bisulfite kit; Qiagen). Adaptor-ligated DNA was enriched through ten cycles of PCR 

using the KAPA HiFi Uracil+ polymerase (Kapa Biosystems). The library was run in a fraction of 

a lane of HiSeq2000 flow cell (to reach 35 million paired end reads) with read length of 2x100 

bp, according to standard Illumina operation procedures. Primary data analysis was carried out 

with the standard Illumina pipeline. 

The sequence reads were passed through the same read mapping and genotype/methylation 

calling pipeline as the conventional WGBS samples. In addition, the aligned reads were 

analyzed with the NucHunter package68, to provide predictions of the positions of H3K27me3-

containing nucleosomes. The average methylation of cytosines at all distances from 0-500 bp 

of each peak was calculated, taking into account the strand of the cytosine. The same analysis 

was performed on WGBS data from the same cell type (memBC), to allow comparison of the 

enriched (ChIP-BS) and non-enriched (WGBS) results. This analysis was repeated using only 

predicted nucleosome peaks that fell within predicted polycomb repressed regions from the 

Broad ChromHMM analysis of the ENCODE cell line GM12878. 

 

Gene ontology analysis 

The GOstat package69 available through Bioconductor was used to determine the enrichment 

of individual ontology terms in the different methylation modules as compared to all the genes 

analyzed in the 450k array. In Supplementary Data 4, the top 20 significant terms for each 

module (P < 0.001) are shown. 
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Analysis of transcription factor binding sites 

Transcription factor binding site (TFBS) information was obtained by ChIP-seq data in the 

ENCODE project and available at the UCSC Genome Browser. A total of 79 TFBS were used for 

the analysis. The relative enrichment of each TFBS was calculated as compared to the 

background. A fisher exact test was used and an Odds Ratio and a P value were assigned to 

each comparison. 

Gene expression analyses 

RNA samples of HPCs, preB1Cs, preB2Cs, naiBCs, t-naiBCs, gcBCs, memBCs, t-PCs and bm-PCs 

were hybridized to Affymetrix Human Genome U219 Array Plates according to Affymetrix 

standard protocols. The analysis of scanned images for each probe set of the array was 

obtained with GeneChip Operating Software (GCOS, Affymetrix). Raw CEL files were processed 

and normalized with the robust multichip average (RMA) algorithm using R statistical software 

in conjunction with the Affy library70 available through Bioconductor. The GeneChip Human 

Gene 1.0 ST Array data of progenitor B cells were downloaded through Gene Expression 

Omnibus under accession number GSE45461 and normalized using RMA (these data were only 

used for Fig. 4b,c). 

To evaluate the gene expression variability among B-cell subpopulations, we calculated the 

inter-cell subtype standard deviation per each of the Affymetrix tags. A global measure of the 

variability for a particular set of genes (within modules and chromatin states) was then 

calculated as the average of all the standard deviations. Differential expression between t-

naiBCs and naiBCs was calculated using Limma library available through Bioconductor, using 

the criteria of FC > 1 (log2) between two groups and adjusted P < 0.05. 

Reverse transcription and quantitative PCR for DNMTs expression was done as follows: cDNAs 

from 100 ng RNA samples were synthesized in 20 µl reaction mix using oligo dT primers and 

SuperScript III enzyme according to the manufacturer recommendations (Invitrogen). Primers 

for DNMTs were taken from Fang et al.71 whereas those for the housekeeping EEF2 gene are 

provided in Supplementary Table 3. PCR amplification was carried out with 1 µl of the 1:2 

diluted reverse transcription sample with Power SYBR green PCR master mix according to 

manufacturer recommendations (Applied Biosystems). PCR reactions were run in triplicates on 

a StepOne System (Applied Biosystems). 
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