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Abstract

ERG gene rearrangements are found in about one half of all prostate cancers. Functional analyses do not fully explain the
selective pressure causing ERG rearrangement during the development of prostate cancer. To identify transcriptional
changes in prostate cancer, including tumors with ERG gene rearrangements, we performed a meta-analysis on published
gene expression data followed by validations on mRNA and protein levels as well as first functional investigations. Eight
expression studies (n = 561) on human prostate tissues were included in the meta-analysis. Transcriptional changes between
prostate cancer and non-cancerous prostate, as well as ERG rearrangement-positive (ERG+) and ERG rearrangement-
negative (ERG2) prostate cancer, were analyzed. Detailed results can be accessed through an online database. We validated
our meta-analysis using data from our own independent microarray study (n = 57). 84% and 49% (fold-change.2 and .1.5,
respectively) of all transcriptional changes between ERG+ and ERG2 prostate cancer determined by meta-analysis were
verified in the validation study. Selected targets were confirmed by immunohistochemistry: NPY and PLA2G7 (up-regulated
in ERG+ cancers), and AZGP1 and TFF3 (down-regulated in ERG+ cancers). First functional investigations for one of the most
prominent ERG rearrangement-associated genes - neuropeptide Y (NPY) - revealed increased glucose uptake in vitro
indicating the potential role of NPY in regulating cellular metabolism. In summary, we found robust population-
independent transcriptional changes in prostate cancer and first signs of ERG rearrangements inducing metabolic changes
in cancer cells by activating major metabolic signaling molecules like NPY. Our study indicates that metabolic changes
possibly contribute to the selective pressure favoring ERG rearrangements in prostate cancer.
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Introduction

About one half of all prostate cancers harbor a gene rearrange-

ment [1]. The latter is formed by fusion of 59 regulatory elements

of an androgen-regulated gene to the coding region of a member

of the E twenty-six (ETS) gene family of transcription factors. ETS

rearrangements result in androgen-driven over-expression of ETS

transcription factors [1]. The most common ETS rearrangement is

the translocation of the androgen-regulated transmembrane

protease serine 2 (TMPRSS2) gene, with the v-ets erythroblastosis

virus E26 oncogene homolog gene (ERG) transcription factor

accounting for about 85% of all ETS rearrangement-positive

prostate cancers [2–4]. ERG rearrangement is an early event in

the genesis of prostate cancer. It is already present in local low-

grade prostate cancer [5,6] and persists in metastatic and

castration-resistant types (CRPC) [1,4,7]. The early appearance

and the high frequency of ERG rearrangements indicate the

selective benefit of rearrangement-positive cells in prostate cancer.

Functional analyses performed thus far have not provided

a comprehensive explanation for the selective pressure forcing

ERG rearrangement in early stages of prostate cancer. ERG

rearrangement results in ERG overexpression [1]. The latter was

reported to promote cancer cell migration and invasion as well as

cellular dedifferentiation and transformation [8–11]. The role of
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ETS rearrangement in the progression of prostate cancer has also

not been clarified. While some studies indicate an association

between rearrangement-positive cancers, more aggressive tumors

and a poor prognosis (i.e. [12–14]), others report no such

association (i.e. [15–17]); some even report a favorable prognosis

(i.e. [18,19]). We obviously need more information about ETS

rearrangement-positive prostate cancers in order to understand

the biology of prostate cancer.

A large body of gene expression data has been published since

the procedure of expression analysis using microarrays was

established more than a decade ago [20]. These studies have

reported a variety of alterations in gene expression associated with

various diseases, including prostate cancer. Validation of the large

quantity of data obtained from gene expression experiments is

challenging. Just a small number of the identified candidates have

been functionally validated. These data are far from exhaustive

and still contain a lot of information awaiting exploitation. Meta-

analyses permit combined analyses of individual studies, are less

influenced by local findings, and allow reduction of data to achieve

robust results.

We present a meta-analysis on published gene expression data

with a view to identifying transcriptional changes in prostate

cancer. Our approach included comparison of prostate cancer

versus benign prostate tissue, and ERG rearrangement-positive

(ERG+) to ERG rearrangement-negative (ERG2) prostate

cancers. We validated the results of our meta-analysis using data

from an independent microarray study and confirmed selected

targets by immunohistochemistry. We also performed preliminary

functional investigations for one of the most prominent regulated

genes, namely neuropeptide Y (NPY). Our results indicate that

ERG-rearrangements possibly induce metabolic changes in cancer

cells by activating major metabolic signaling molecules such as

NPY.

Materials and Methods

Sample Cohorts
Tissue samples used for the meta-analysis are described

elsewhere (studies and references in Table 1). Tissue samples for

the validation expression study and immunohistochemical studies

were selected from the Innsbruck prostate cancer biobank. This

biobank was established in the course of the Tyrolean early

detection program for prostate cancer at the Department of

Urology, Innsbruck Medical University [21]. Written consent was

obtained from all patients and documented in the database of the

University Hospital Innsbruck in agreement with statutory

provisions and the requirements of the ethics committee of the

Innsbruck Medical University. The study was approved by the

ethics committee of the Innsbruck Medical University (Study no.

AM 3174, amendment 2). Cohorts analyzed here were the

following: a) Expression analysis validation study; 57 prostate

cancer tissues; GSC 5 n= 1, GSC 6 n= 5, GSC 7 n= 36, GSC 8

n=3, GSC 9 n=11, GSC 10 n= 1; patients’ age, mean 6

standard deviation (SD), 61.766.9 years; patients’ serum prostate

specific antigen (PSA) level, 7.465.0 ng/ml. b) Immunohisto-

chemical study; 93 prostate cancer tissues, GSC 5 n= 19, GSC 6

n=22, GSC 7 n= 32, GSC 8 n=10, GSC 9 n= 10; patients’ age,

mean 6 standard deviation (SD), 60.666.4 years; PSA level,

6.665.4 ng/ml.

Meta-analysis
We selected eight expression studies, comprising 561 human

prostate tissues, for the meta-analysis (Table 1, Figure S1). These

are listed in the databases Gene Expression Omnibus (http://

www.ncbi.nlm.nih.gov/geo) [22], Array Express (http://www.ebi.

ac.uk/arrayexpress) [23], and Oncomine (http://www.oncomine.

org) [24]. All studies were performed using the Affymetrix

microarray technology.

For integrative analysis of microarray data, raw data, as stored

in CEL files, was normalized using gcRMA algorithm [25,26]. For

detailed information about study-specific data preprocessing, see

supplementary methods. To perform a cross-study comparison of

gene expression levels, platform-specific gene probe-set identifiers

were mapped to a common namespace, as previously described

[27,28]. Here the platform-specific identifiers were mapped to

Entrez gene identifiers using the current probeset/Entrez map-

pings from BioMart via the biomaRt package [29]. Wherever

more than one probe-set was mapped to an Entrez gene identifier,

the probe-set with the highest variance was used for analysis. To

identify differentially regulated genes we used a two-step

approach. First, we derived combined p-values across the studies

using Fisher’s inverse chi-squared method [30]. We then

calculated combined (weighted) fold changes. In a previous study,

the authors used a permutation test to assess significance [27]. We,

on the other hand, derived the information from a chi-squared

distribution as suggested in [31]. See supplementary methods for

details about p-values and fold-change calculations. Functional

annotation clustering of the results of meta-analysis was performed

using the DAVID database (http://david.abcc.ncifcrf.gov) [32].

Validation Expression Analysis
An independent microarray data set (GSE32571) previously

generated by coauthors was used for validation of the ERG-

associated gene signature. For the present analyses, prostate cancer

tissues (n = 57) were assigned to the groups ERG+ and ERG2

using a break-apart fluorescent in situ hybridization (FISH) assay,

as described earlier [33]. Tissue samples were isolated by

macrodissection from 10-mm cryosections. Total RNA was

isolated with the EZ1 RNA Mini Kit (Qiagen) according to the

manufacturer’s instructions, checked for quality using the Agilent

2100 Bioanalyzer (Agilent Technologies), and quantified. Total

RNA was prepared for hybridization on Illumina Human Sentrix-

12 BeadChip arrays (Illumina) according to the manufacturer’s

recommendations. Illumina microarray data were processed using

the open source pipeline ‘‘Lumi’’ [34]. After quantile normaliza-

tion, differential expression of genes was determined using the R

package ‘‘LIMMA’’ [35]. Detailed methods and clinical data of

the expression validation study are described elsewhere [36].

Immunohistochemistry
Tissue slides (n = 10) and tissue microarrays (TMAs; n= 92;

diameter 0.6 mm) containing cancer (n = 3) and benign (n= 1)

cores of prostate tissue from prostate cancer patients were used for

immunohistochemical analysis. All tissue samples were stained for

ERG. Nine samples were excluded because of their small quantity

of tumor tissue. 24 tissues showed very weak or heterogeneous

ERG staining, whereas 69 tissues with intermediate to strong or

negative ERG staining were assigned to the groups ERG+ and

ERG2, respectively. 61 tissue samples were used for immunohis-

tochemical comparison of ERG+ and ERG2. Antigen retrieval

and immunohistochemistry were performed using a Discovery XT

automated slide-staining system (Ventana Medical Systems). All

target antibodies were tested on a test tissue microarray containing

different human tissue samples. Immunohistochemical staining

was evaluated by an experienced uropathologist (G.S.). Optimal

antigen retrieval conditions were established for all target

antibodies. Target antibodies, suppliers, article numbers, and

concentrations used were as follows: anti-AZGP1, Sigma, HPA-

Transcriptional Changes in ERG+ Prostate Cancer
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012582, 1:50; anti-ERG, Epitomics, EPR3864, 1:100; anti-

GPR116, Imgenex, IMG-71635, 1:100; anti-neuropeptide Y,

Abcam, ab30914, 1:200; anti-PLA2g7, Sigma, HPA-0035915,

1:400; anti-HPGD, Atlas, HPA004919, 1:75; anti-TFF3, Strategic

Diagnostics, 29940002, 1:5000. Antigen retrieval for all antibodies

was performed by heat pretreatment at 98uC for 1 hour in CC1,

a tris-based buffer with a slightly basic pH. Target antibodies were

incubated for 1 hour at 37uC, followed by iView DAB detection

(diaminobenzidine visualization, Ventana Medical Systems) and

hematoxylin counterstaining. Images were acquired using an Axio

Imager M1 microscope (Zeiss) and TissueFAXS software (Tis-

sueGnostics). Quantitative immunohistochemical analysis was

performed using the HistoQuest immunohistochemistry analysis

software (TissueGnostics), which is a cell-based staining intensity

analysis tool employing a nuclear cellular identification marker (in

this case hematoxylin), followed by quantitative analysis of a given

marker labeled in a different color (in this case cytoplasmatic

staining with diaminobenzidine, DAB, brown).

Cell Culture Experiments
DU145, DUCaP, LNCaP, PC3 and VCaP are derivatives of

prostate cancer metastases. These were purchased from ATCC

and cultured according to ATCC recommendations. EP156T and

RWPE-1 are immortalized benign prostate epithelial cells,

whereas CAF and PM151T are prostate stromal cells [37–39].

Benign and stromal cells were cultured as described earlier [37–

39]. The identity of cancer cell lines was confirmed by forensic

DNA fingerprinting methods employing the AmpFlSTRH SGM

PlusH PCR amplification kit (Applied Biosystems).

Cells were seeded in 24-well plates, serum starved, and treated

with 25 nM recombinant NPY/24 h (Sigma) for a total period of

48 hours. Total cell numbers were determined using the CASY

cell counter and analyzer system (Schärfe System). Glucose levels

were measured in cell culture supernatants using the Gluc Cell

glucose monitoring system (Thermo Fisher Scientific). qPCR and

immunoblot were performed as described earlier [40].

Statistics
Statistical calculations for meta-analysis and validation expres-

sion analysis were conducted using the R (http://www.r-project.

org), packages from Bioconductor open source bioinformatics

database [41] and functions of MADAM [42].

Statistical calculations for immunohistochemistry and cell

culture experiments were performed using SPSS 18 for Windows.

The Kolmogorov–Smirnov test was used to investigate normal

distribution of data sets. Non-normally distributed data and data

with Gaussian (normal) distribution were analyzed using the

Mann–Whitney U-test and Student’s T-test, respectively, in order

to calculate the significance of differences between groups. P

values below 0.05 were considered significant. Error bars in the

histograms represent the standard deviation (SD) of a minimum of

three independent experiments.

Results

Meta-analysis on Published Gene Expression Data for
Prostate Cancer
To investigate changes in gene expression in human prostate

cancer, we performed a meta-analysis of published gene expres-

sion data. Eight independent microarray studies were included in

the meta-analysis, which consisted of 561 prostate tissue samples

(Table 1). The following two issues were investigated: a)

comparison of gene expression in prostate cancer tissues and

benign prostate tissues; and b) comparison of gene expression in

ERG rearrangement-positive (ERG+) and ERG rearrangement-

negative (ERG2) prostate cancers (study plan in Figure 1).

The results of our meta-analysis are shown in Figures 2A–B,

and listed in the Table S1A–B. Results of the meta-analysis and

the individual studies may also be viewed online at http://

Table 1. Gene expression studies included in the meta-analysis.

Study

Cancer (CA) vs. benign
(BE) ERG+ vs. ERG2 Ref. Source* Platform

n** CA n BE n ERG+ n ERG2

1 Bermudo 21 8 [68] AE E-MEXP-1331 Affymetrix GeneChip Human
Genome Focus Array

2 Chandran 57 15 20 19 [69] GEO GSE-6919 Affymetrix GeneChip Human
Genome U95Av2

3 Liu 41 13 14 13 [70] AE E-TABM-26 Affymetrix GeneChip Human
Genome HG-U133A

4 Singh 50 48 17 16 [71] O Singh Prostate Affymetrix GeneChip Human
Genome U95Av2

5 Tsavachidou 23 49 8 7 [72] AE E-MEXP-1327 Affymetrix GeneChip Human
Genome HG-U133A

6 Varambally 7 6 [73] GEO GSE3325 Affymetrix GeneChip Human
Genome U133 Plus 2.0

7 Wallace 68 14 23 22 [74] GEO GSE6956 Affymetrix GeneChip Human
Genome U133A 2.0

8 Wang 138 3 47 46 [75] GEO GSE8218 Affymetrix GeneChip Human
Genome HG-U133A

Total 405 156 129 123

The Affymetrix microarray technology was used in all of the studies.
*AE, Array Express; GEO, Gene Expression Omnibus; O, Oncomine; status 10/2010.
**n, number of samples used for the meta-analysis; samples that did not fulfill the quality criteria were excluded.
doi:10.1371/journal.pone.0055207.t001
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prostatedb.eigenlab.net/. In addition to the less conservative Chi-

squared method, which we applied for deriving a summary p-

value [31], the database also lists a more conservative summary p-

value derived by a permutational approach [27].

We first compared prostate cancer tissues with benign prostate

tissues. With regard to genes, which were at least 1.5-fold

regulated and revealed an adjusted p-value ,0.1, we found that

280 genes were up-regulated (46 of them more than 2-fold) while

275 genes were down-regulated (36 more than 2-fold) in prostate

cancer tissues compared to benign prostate tissues (Figure 2A,

Table S1A). Functional annotation revealed that differentially

regulated genes (fold-change .1.5) code for signaling molecules

(trans-membrane and extracellular signaling proteins), structural

proteins (cytoskeleton and cell adhesion proteins) and proteins

involved in proteolysis and wound healing (Figure 2C). Proteins

known to be associated with prostate cancer (e.g. AMACR [43],

AGR2 [44], CRISP3 [45], HPN [46], HOXC6 [47], OR51E2

[48]) as well as proteins not associated with prostate cancer thus far

(examples PPM1H, SLC4A4, CAMKK2) were identified in the

meta-analysis.

We then compared ERG+ and ERG2 prostate cancer tissues.

No information was available concerning the ERG rearrangement

status of the prostate cancer samples used in the studies of the

meta-analysis. ERG rearrangement results in ERG over-expres-

sion and is observed in about 50% of all prostate cancer tissues

[1,3]. We divided all prostate cancer samples of the studies

included in the meta-analysis into three groups, based on their

ERG expression level: ERG overexpression-positive samples,

ERG intermediate samples, and ERG overexpression-negative

samples (Figure S2). Each group consisted of one third of all

samples of one study. ERG overexpression-positive samples were

assumed to be ERG rearrangement-positive and assigned to the

ERG+ category, while ERG overexpression-negative samples were

assumed to be ERG rearrangement-negative and assigned the

ERG2 category. Samples assigned to the ERG intermediate

group were excluded from the analysis to ensure accurate

comparison of ERG+ and ERG2 prostate cancer samples. The

use of ERG expression as a surrogate for gene rearrangement-

status has been described earlier [49] and was verified in our own

microarray study as described below. The comparative meta-

analysis revealed 109 up-regulated and 58 down-regulated genes

(fold-change .1.5; adjusted p-value ,0.1; 36 genes were more

than 2-fold regulated) in ERG+ as compared to ERG2 prostate

cancer (Figure 2B, Table S1B). Differentially regulated genes were

related to the functional clusters signaling (extracellular signaling

peptides and hormone signaling), adhesion (cell adhesion and

extracellular matrix proteins), and defense response (wound

healing and inflammatory response; Figure 2D).

Our meta-analysis revealed changes in gene expression in

various subgroups during the development of prostate cancer. A

number of studies comprising independent patient cohorts were

included in the analysis. Therefore, the identified alterations in

gene expression signify general population-independent effects

related to prostate cancer.

Meta-analysis Validation by Independent Expression
Analysis
We then validated the results of our meta-analysis. We focused

on a comparison of ERG+ and ERG2 prostate cancers because

these subtypes were described recently and have not been

extensively investigated so far. For validation of the meta-analysis

we used data from an independent expression study performed on

an alternative expression platform (Illumina). The validation study

differs from the meta-analysis studies in the following aspects: a)

independent patient cohort (n = 57) selected from the Innsbruck

prostate cancer biobank; b) alternative gene expression technology

(validation study, Illumina BeadChip arrays; meta-analysis studies,

Affymetrix GeneChip microarrays); and c) ERG+ and ERG2

group assignment (Figure 3A). In the meta-analysis, ERG+ and

ERG2 tissues were assigned according to ERG expression levels.

In the validation study the ERG rearrangement-status was

determined by fluorescence in situ hybridization using a break-

apart assay as described earlier [33] (Figure S3A).

We first confirmed that ERG rearrangement resulted in ERG

over-expression (Figure 3B, Figure S3A–C), thus indicating that

the ERG+ and ERG2 groups were correctly assigned in the meta-

analysis as well as the validation study. We then analyzed the

expression of the 155 genes (12 genes were excluded because of

missing or redundant probe sets) identified as being differentially

regulated in ERG+ and ERG2 tissues in the meta-analysis (FC

.1.5; p,0.1). 49% (76/155) of all genes found to be differentially

regulated in ERG+ and ERG2 prostate cancer in the meta-

analysis were verified in the validation study. When the validation

analysis was confined to genes which were regulated at least 2-fold

in the meta-analysis, these amounted to 84% (27/32) (Figure 3C–

D, Table S2). When we analyzed the validation expression study

as an independent study and investigated all genes in the arrays,

these still amounted to 20% and 41% for FC.1.5 and FC.2,

respectively (Table S2). The concordance between the meta-

analysis and the independent validation study showed that our

meta-analysis generated robust results which were independent of

the sample cohort, sample assignment, and employed gene

expression technology.

Protein Analysis Using Immunohistochemistry
Our study had been focused on mRNA expression levels until

this time. We then investigated whether proteins encoded by the

differentially regulated genes are found in different quantities in

Figure 1. Study protocol. Meta-analysis was performed on eight
independent gene expression studies focusing human prostate tissues.
Two types of comparative analyses were used. Genes showing
differentially regulated ERG+ and ERG2 prostate cancer tissues were
validated using an independent gene expression analysis (first
validation) and immunohistochemical staining (second validation; only
for selected genes).
doi:10.1371/journal.pone.0055207.g001

Transcriptional Changes in ERG+ Prostate Cancer
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Figure 2. Results of the meta-analysis. Genes differentially regulated in prostate cancer and benign prostate tissue (A, C), and ERG+ and ERG2
prostate cancer tissue (B, D). A–B) volcano plots. Differentially regulated genes were highlighted when at least 2-fold down- (green) or up-regulated
(red), and had an adjusted p-value smaller than 0.1. C–D) Graphic diagram of the eight top-ranked functional clusters determined by functional
annotation clustering, using the DAVID database. The size of the clusters correlates with the number of identified proteins associated with functional
annotation (fold-change .1.5). When proteins are present in more than one cluster, the clusters are connected by lines. The thickness of the
connecting lines reflects the number of proteins present in both connected clusters. Data concerning 561 tissue samples were used for the meta-
analysis.
doi:10.1371/journal.pone.0055207.g002

Transcriptional Changes in ERG+ Prostate Cancer
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ERG+ and ERG2 prostate cancer tissues. We selected in-

dependent tissues (not used for expression analysis) from the

Innsbruck prostate cancer biobank in order to further ensure that

our investigation would reveal general ERG+ prostate cancer-

related alterations rather than patient-specific differences.

To assign the tissues to the groups ERG+ and ERG2, we

determined ERG protein levels by immunohistochemistry using

an antibody previously specified for this application [50]. ERG

immunohistochemistry permitted a clear distinction between

ERG+ and ERG2 tissues. In agreement with published data

concerning ERG+ tissues, the staining intensity of ERG varied

from strong to weak (Figure S4A) [50]. Some tissues appeared

heterogeneous for ERG. Both ERG-positive and ERG-negative

cancer cells were present in these tissues (Figure S4B). Staining

controls were performed on a) benign prostate cells, which are

negative for ERG (Figure S4C, left image); b) endothelial cells and

lymphocytes, which stain positive for ERG [50] and constitute an

internal staining control (example in Figure S4C, right image); and

Figure 3. Validation of the meta-analysis. 84% of all genes found to be differentially regulated in ERG+ and ERG2 tissues (fold-change.2) were
verified by an independent expression study. A) Study characteristics. B) ERG expression levels in ERG rearrangement-positive and -negative tissue of
the validation study. ERG rearrangements were determined by fluorescent in situ hybridization. C) Genes differentially regulated in ERG+ and ERG2
tissues. D) Validated regulated genes in the meta-analysis and the validation study. P-value corrected BH; Fisher’s combined p-value, Benjamini-
Hochberg corrected.
doi:10.1371/journal.pone.0055207.g003

Transcriptional Changes in ERG+ Prostate Cancer
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c) cell lines representing ERG+ (VCAP) or ERG2 (Du145)

prostate cancer (Figure S4D). In line with previous reports,

approximately one half (here 60%) of all investigated prostate

tissues appeared ERG-positive (summary of 93 prostate cancer

cases in Figure S4E) [1,3]. To reflect the meta-analysis, tissues with

high to intermediate ERG staining were compared to tissues with

negative ERG staining; tissues with heterogeneous and low ERG

staining were excluded.

Six target genes were subjected to protein validation:

GPR116, NPY and PLA2G7, three genes over-expressed in

ERG+ tissues, and AZGP1, HPGD and TFF3, three genes down-

regulated in ERG+ prostate cancer tissues. In four of the tested

genes, the protein levels reflected the regulation of the mRNAs:

NPY and PLA2G7 were up-regulated in ERG+ tissues while

AZGP1 and TFF3 appeared down-regulated (Figure 4). TFF3

has been reported to be differentially regulated in ERG+ tissues

[51]; therefore only 11 samples were used for comparison. In

line with our data, PLA2G7 was recently reported to be related

to ERG+ tumors [52]. Protein levels of the target genes GPR116

and HPGD were not altered on comparison of ERG+ and

ERG2 prostate cancer (data not shown). It remains unclear

whether the discrepancies observed between mRNA and protein

levels of these two genes reflect biological (different regulation at

mRNA and protein level) or technical (antibody performance)

variations.

ERG-associated Expression of NPY Induces Increased
Glucose Uptake in Prostate Cancer Cells
To gain new insights about the role of ERG-rearrangements in

prostate cancer, we investigated the functions of differentially

regulated genes in ERG+ prostate cancer cells. NPY was selected

for functional analysis. NPY is a small neuropeptide with was

described as a central regulator of energy balance in the human

body (reviewed in [53]). We measured glucose uptake in vitro to

determine whether NPY induces metabolic changes in prostate

cancer cells.

We confirmed NPY overexpression in ERG+ prostate cancer

cell lines using qPCR and immunoblotting. qPCR expression

levels of NPY revealed highest expression of NPY mRNA in the

ERG+ cell lines DUCaP and VCaP compared to other prostate

cell lines (Figure 5A). NPY protein was detectable by immuno-

blotting solely in DUCaP and VCaP (Figure 5B). When we treated

prostate cancer cells which do not express endogenous NPY

(DU145, LNCaP and PC3) with recombinant NPY (48 h, 25 nM),

we observed greater glucose uptake in NPY-treated cells than in

untreated cells (Figure 5C). This effect was not observed in cells

expressing endogenous NPY (VCaP, Figure 5C). To investigate

whether human prostate tissues are potentially NPY responsive,

we finally compared the expression of NPY and the NPY-

responsive receptors NPY1R, NPY5R and NPY2R (NPY affinity

ranked, [54]) in the prostate with those in other human organs,

using the Oncomine database (http://www.oncomine.org) [24].

We found NPY to be more abundant in benign and cancerous

prostate tissue compared to benign and cancerous tissues derived

from other organs while NPYRs were expressed to a similar extent

in prostate and other tissues (representative studies are shown in

Figure S5). Thus, several tissues might be NPY responsive. The

prostate, however, produces significant levels of endogenous NPY.

Taken together our data demonstrate that ERG-rearrangements

in prostate cancer are associated with a variety of transcriptional

changes in cancer cells including the expression of metabolic

sensors like NPY.

Discussion

This study was performed to determine changes in gene

expression in prostate cancer, which are due to general alterations

related to prostate and independent of patient cohorts, technical

variations, and the applied methodology. We focused on

transcriptional changes in ERG rearrangement-positive (ERG+)
prostate cancer, because these tumors constituted a less-charac-

terized subgroup of prostate cancers. We expected the results of

this investigation to yield a publicly accessible database for gene

expression alterations in prostate cancer and provide new insights

into the biology of ERG+ prostate cancers. We observed, for the

first time, that ERG rearrangements are possibly associated with

metabolic changes in prostate cancer cells.

Our meta-analysis consisted of 561 tissues derived from eight

independent studies. We performed two comparisons in the meta-

analysis (cancer vs. benign prostate tissue and ERG+ vs. ERG2

prostate cancer) so that the study would be of interest to a large

scientific community. We validated the investigation using our

own independent gene expression study performed on an in-

dependent patient cohort, employing an alternative gene expres-

sion method. The large numbers of validated genes (84%,

comparison ERG+ vs. ERG2, cutoff of fold change .2) indicated

that our meta-analysis had generated robust results. The

alterations in gene expression in prostate cancer we describe here

represent therefore general population-independent transcription-

al changes in prostate cancer.

Interestingly, we identified many genes differentially regulated

in ERG+ prostate cancer, which proteins were previously

described as diagnostic or prognostic prostate cancer biomarkers,

like AZGP1 [55,56], APOD [57,58], CRISP3 [45], NPY [59] and

TFF3 [60]. Many of these putative prostate cancer markers were

not successfully validated and translated into clinics. Our study

indicates that these proteins possibly present ERG+ prostate

cancer rather than general prostate cancer markers.

Transcriptional changes in prostate cancer probably exceed

those identified in the present meta-analysis. The studies we used

were published several years ago. The authors used gene chip

technologies, which covered just a subset of all human genes. The

stringent conditions required for a valuable meta-analysis led to

further exclusion of several gene probes, which were measured in

just a few studies or demonstrated high background variations.

Finally, the tissue samples used in the studies were taken from

whole tumor tissue, including stromal fractions. High stromal

expression of certain genes may mask regulations occurring in

epithelial tissue. Despite these limitations, published gene expres-

sion studies proved to be a very precious source of data, especially

for meta-analysis. They were also useful for analyzing research

questions the studies were not originally designed to address.

Besides, much more information may yet be obtained from these

studies.

We used the data to advance our current understanding of the

biology of prostate cancer while focusing on the biology of ERG+
prostate cancer. Functional analyses performed thus far have been

unable to fully explain the selective pressure forcing ERG

rearrangement in early stages of prostate cancer. Apart from

a pronounced migratory and dedifferentiated phenotype [8–11],

ERG-related cancer-promoting functions remained largely un-

defined. We observed a variety of lipoproteins, phospholipases (e.g.

APOD, PLA1A, PLA2G4C, PLA2G7), and several small secretory

molecules with described metabolic functions (e.g. NPY, RLN1,

RLN2) in our top-ranked ERG+ regulated genes. We speculated

that ERG rearrangements induce metabolic changes in prostate

cancer cells. We selected NPY, a factor highly overexpressed in
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ERG+ tumors, for functional analysis. NPY has been described as

a potent orexigenic agent (reviewed in [53]). Investigations

concerning the function of NPY in prostate cancer have been

confined to proliferation and migration studies. These report weak

effects of NPY on migration and cell-line-specific differences on

cell proliferation [61–63]. When treating prostate cancer cells with

Figure 4. Immunohistochemistry for proteins coded by differentially regulated genes in ERG+ and ERG2 prostate cancer. A)
Consecutive slides of prostate tissues of two representative patients. B) Quantification of tissue specimens obtained from 61 different prostate cancer
patients using the immunohistochemistry quantification software HistoQuest. HistoQuest does not distinguish between epithelial and stromal cells.
Differences in staining intensity in epithelial cells exceed the differences shown in the box-blots. Bar, 100 mM. Statistics, Mann Whitney U-test;
*,p,0.05; **p,0.01; ***p,0.001.
doi:10.1371/journal.pone.0055207.g004
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NPY, we observed higher glucose uptake in NPY-treated cells.

Our data indicate that NPY mediates metabolic functions in

prostate cancer cells. As NPY is overexpressed in ERG+ prostate

cancer cells, these data provide first signs of the fact that ERG

rearrangements in prostate cancer possibly modulate metabolic

functions through expression of metabolic regulators like NPY.

Apart of its function as an orexigenic agent, NPY was also

shown to be involved in stress response, pain perception and

regulation of bone homeostasis and turnover [64,65]. As prostate

cancer metastasizes preferentially to the bone, the latter is of

special interest. Most prostate cancer bone metastases are

characterized by a disrupted bone homeostasis and bone loss

( = osteolytic phenotype, for recent review see [66]). Disrupted

bone homoeostasis and bone loss caused by reduced osteoblast

activity were also described when elevated levels of NPY are

present in the bone microenvironment (reviewed in [64]). NPY

represses osteoblast activity. Thus, one major factor expressed by

prostate cancer cells and modulating the bone microenvironment

may be NPY. As NPY is highest expressed in ERG+ prostate

cancers it would be interesting to investigate whether ERG+ differ

from ERG2 prostate cancer bone metastases. So far, data on

ERG rearrangement and prostate cancer progression are very

inconsistent, reporting a positive [12–14,67], no [15–17] or even

a negative [18,19] correlation.

In the present studywe investigatedERGrearrangement,which is

themost commontypeofETSrearrangement. Further studieswill be

needed to determine whether other ETS rearrangements involving

ETV1, ETV4, ETV5 or ELK4 exert similar effects as ERG does.

In summary, the present study was focused on population-

independent transcriptional changes in prostate cancer and give

first hints that ERG rearrangement in prostate cancer induces

metabolic changes. Selective pressures favoring ERG rearrange-

ment in prostate cancer presumably include enhanced migration,

invasion, and dedifferentiation of prostate cancer cells, as well as

exert an impact on energy balance, availability and consumption.
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