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1. Abstract 
Human pluripotent stem cells (hPSC) are investigated as a source of au-

thentic human cardiac cells for drug discovery and toxicological tests. 

Cell-based assays performed using an automated fluorescence imaging 

platform and high content analysis are valuable in characterizing hyper-

trophic states that may be induced in hPSC-derived cardiomyocytes upon 

exposure to cardiotoxic compounds. In high-purity populations of hPSC-

derived cardiomyocytes loaded with cell tracer probes and other cell mark-

ers, detailed hypertrophic profiles can be assessed based on information 

captured at cellular and subcellular levels.  

  

Key Words: human pluripotent stem cells, cardiomyocyte, hypertrophy, 

automated high content imaging 

 

2. Introduction. Cardiac hypertrophy is the abnormal enlargement of the 

heart muscle, resulting from a thickening of cardiomyocytes and changes 

in other heart muscle components, such as extracellular matrix, and can 

lead to heart failure. Physiological hypertrophy occurring in pregnancy and 

athletes is not detrimental and results in normal or enhanced heart func-

tion. Causes can also be pathological, as a result of pressure overload in re-

sponse to hypertension or valvular disease.  

 

2.1. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM). 

Human PSC are being investigated as a new source of cells for cardiac dis-

ease modelling. Predominant manifestations of cardiac pathologies inves-

tigated in engineered hPSC-CM are short-term, including depressed cell 

contraction, electrophysiological changes and arrhythmia, or longer-term, 

such as abnormal morphology, hypertrophy and increased susceptibility to 

cell death. While the acute characteristics show close similarities to those 

observed in adult cardiomyocytes, a marked difference in viability is seen 

in the long term survival (months) of hPSC-CM cultures compared to ex 

vivo adult cell cultures (~two days). This of course is one of the main at-

tractions of hPSC-CM as a model system. Pharmaceutical companies are 

showing growing interest in using these cells for drug development and 

toxicology, hoping that these human cell-based platforms will increase 

predictive capabilities and decrease drug development costs.  

 

A number of human induced pluripotent stem cell-derived cardiomyocyte 

(hiPSC-CM) models for genetic diseases have a hypertrophic phenotype, 

including the LEOPARD syndrome and hypertrophic cardiomyopathy 

(HCM) (Table 1). Human iPSC-CM of LEOPARD syndrome display in-

creased cell size along with increased expression of nuclear factor of acti-
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vated T-cells (NFAT) (Carvajal-Vergara et al. 2010). Patient-derived 

HCM hiPSC-CM exhibit increased basal cell size compared to controls 

(Tanaka et al. 2014; Lan et al. 2013). On the other hand, it still remains to 

be determined whether HCM patient-derived cardiomyocytes or control 

cells treated with hypertrophic stimuli are the best model to use for the 

study of hypertrophy. The majority of these disease models originate from 

patient-derived hiPSC, but the trisomy 21 model described by Bosman and 

co-workers utilises patient human embryonic stem cell-derived cardiomy-

ocytes (hESC-CMs) (Bosman et al. 2015). In this study trisomic cells 

showed an increased expression of HCM genes in comparison to those in 

euploid control (Bosman et al. 2015). A greater understanding of hyper-

trophic signalling in hPSC-CM is required to ensure conclusions drawn 

from these models are physiologically relevant. In this chapter we describe 

scalable high content microscopy-based methods for the detection of cell 

growth and hypertrophy in hPSC-CM (using the assay measures such as 

cell area, volume, sarcomere organization, and atrial natriuretic factor 

(ANF) subcellular distribution) that can serve for personalised in vitro car-

diomyocyte screens (Figure 1 and Table 2). 

 

2.2 Intracellular signalling in hPSC-CM hypertrophy 

We have reported an increase in cell size in hESC-CM in response to phe-

nylephrine (PE) (Foldes et al. 2011), attributed to activation of p38 MAPK 

signalling pathways. It was found that a combination of small molecule in-

hibitors such as those targeting the STAT3 pathway can partially restore 

the PE response in hiPSC-CM. However, using pharmacological ap-

proaches, the hypertrophic response in hPSC-CM remains controversial. In 

contrast to hESC-CM, our results showed that hiPSC-CM are unresponsive 

to alpha-adrenergic stimuli, with cell size and ANF expression remaining 

unchanged (Foldes et al. 2014). In other studies, mild increases in hiPSC-

CM size (10% or less) have been seen with alpha-adrenergic PE, and up to 

25% with endothelin-1 (Tanaka et al. 2014). Data are also conflicting for 

the presence of cardiomyocyte hypertrophy in response to β-adrenergic 

stimulation. We found no increase in hiPSC-CM size (Foldes et al. 2014), 

whereas Zhi and colleagues found the opposite in HCM cells (Zhi et al. 

2012). In that model, β-adrenergic stimulation exacerbated cellular hyper-

trophy as well as abnormal calcium handling and arrhythmia (Lan et al. 

2013). Enhanced myofibrillar disarray and NFAT nuclear translocation 

were also reported (Zhi et al. 2012). It has been shown that serum-

containing media causes hypertrophy in hESC-CM and hiPSC-CM, which 

may explain the lack of further cellular growth in response to hypertrophic 

stimuli in some studies (Dambrot et al. 2014).  
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We postulate that the difference between hESC-CM and hiPSC-CM is 

caused by an imbalance in anti-hypertrophic signalling pathways. The pre-

dominant α-adrenergic receptors (AR) in the myocardium are α1-ARs 

(Bruckner et al. 1985), and stimulation with catecholamines induces patho-

logical cardiac hypertrophy (Zhong and Minneman 1999; Rokosh et al. 

1996). We found that the expression of α-ARs in hPSC-CMs shows an ear-

ly and transient up-regulation during differentiation followed by a rapid 

down-regulation of α1A-AR mRNA levels both in hiPSC-CM and hESC-

CM. Conversely α1B-AR was found to be increased in an apparently com-

pensatory manner (Foldes et al. 2014). The analysis of signalling pathways 

identified an EGFR/Src/GSK3β/STAT3 network modulated by α1B-AR 

that could drive the hypertrophic process. 

 

Endothelin-A receptor (ETA) is expressed in the cardiovascular system and 

has a number of roles including vasoconstriction, tachycardia, positive in-

otropy and hypertrophy (Concas et al. 1989; Bupha-Intr et al. 2012; 

Drawnel et al. 2013). We found that ETA as well as angiotensin II (Ang II) 

and cyclic stretch can increase cell size in hESC-CM with corresponding 

increases in ANF expression (Foldes et al. 2014; Foldes et al. 2011). In 

hPSC-CM, ETA also induces expression of hypertrophic genes such as 

BNP and ANF (Foldes et al. 2014). ETA and Ang II did not result in signif-

icant increases in cell size and correspondingly increased ANF and BNP 

expression was only seen in response to ETA activation. Hypertrophic 

modelling in commercially available hiPSC-CM assays relies therefore on 

detection of BNP expression in response to ETA (Shamir and Ewald 2014).  

 

2.3 3D high-content screening and 3D high-content analysis 

Image-based 3D high-content screening is still in its infancy, even though a 

large body of literature has presented a rich set of 3D cell culture tech-

niques in the past decades (Pampaloni et al. 2007; Ansari et al. 2013; 

Shamir and Ewald 2014; Debnath and Brugge 2005). Cell-based 3D high-

content screening can be approached at tumour spheroid (Vinci et al. 2012; 

Kunz-Schughart et al. 2004) or single cell level (Foldes et al. 2014). As-

sessment of complex structural changes in cardiomyocyte hypertrophy, 

such as rearrangements of sarcomere structure and dynamic translocation 

of natriuretic peptides or transcription factors, requires 3D imaging. 3D 

high-content image acquisition requires a plate reader equipped with a high 

resolution microscope capable of optical sectioning (Ketteler and Kriston-

Vizi 2016). We used an Opera LX spinning disk confocal plate reader 

(PerkinElmer) for 3D high-content image acquisition. The specifications of 

computer hardware for 3D high-content analysis (HCA) are similar to the 

2D HCA. General HCA hardware considerations (Copeland and Shamu 
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2016) are applicable, however the extra spatial dimension requires the ad-

ditional memory for image analysis and hard drive space for data storage 

that server-grade workstations can provide. For 3D HCA, third party, 

standalone software is currently preferred over the dedicated software solu-

tions typically shipped with HCA imaging platforms (Ketteler and Kriston-

Vizi 2016).  Although the dedicated analysis solutions tend to be designed 

for the biologist with user friendly interfaces, they are typically intended to 

analyse common 2D assays, and are insufficient for analysis of 3D assays 

(Ghosh et al. 2007). We use ImageJ (Abramoff et al. 2016) for image anal-

ysis, and R (R Core Development Team 2016) for statistical data pro-

cessing. 

 

3. Materials 

3.1. Human pluripotent stem cell-derived cardiomyocytes 
1. Extracellular matrix Matrigel-coated plates as substrates for feeder-

independent human ESC or hiPSC cultures. 

2. Pre-defined stem cell qualified medium such as mTESR1 for culturing 

undifferentiated stem cells. 

3. Serum-free basal medium for hypertrophy experiments: a. DMEM:M199 

medium, in 3:1 ratio. Add 1 ml penicillin/streptomycin, 0.2 g bovine serum 

albumin (0.2% wt/vol), 0.00176 g ascorbic acid, 0.066 g creatine, 0.0626 g 

taurine, 0.03224 g carnitine to 100 ml DMEM/M199 medium. Dilute insu-

lin 1:10 (final concentration 10 mg/ml) and then add 8.2 µl of this to 50 ml 

DMEM/M199 on the day of experiments. Alternatively, RPMI basal medi-

um supplemented with B27 can be used for screening experiments. 

4. For dissociation of cultures into single cardiomyocytes, remove media 

from cells and add TrypLE (0.5 or 1ml, Gibco) at room temperature (RT), 

and incubate for 8 min at 37 oC. Triturate cells 4 times and transfer to a 

15ml tube. Spin 4 min at 240g. Remove media after spin. Add RPMI-B27 

(with insulin) and triturate gently. Plate cells at the density desired (5x105 

for 24-well plate and 750K for 12-well plate) and RPMI-B27 (with insu-

lin). It can take 2-3 days to see beating cells.  

 

3.2. Hypertrophic stimuli 
1. Hypertrophic alpha-adrenoceptor agonist PE (10 µM) for 48 h. Use se-

rum-free basal medium for dilution. Prepare fresh PE solution from powder 

before each experiment. Alternatively, treat cells with angiotensin II (100 

nM) or endothelin-1 (1, 10, and 100 nM) for 48 h or 24 h, respectively. 

2. Cultures of hPSC-CM can be exposed to cyclic equiaxial mechanical 

stretch. Use 0.5 Hz as the frequency of cyclic stretch with pulsation of 10–

25% elongation of cells for 24 h. Cells are stretched by applying a cyclic 

vacuum suction under Bioflex plates with computer-controlled equipment 
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(FX-2000; Flexcell International). Use control cultures on the same plate 

without stretch. 

 

3.3 Screening molecules for effects on cardiac hypertrophy 

In order to determine the effect of protein kinase inhibition on growth in 

cell size of hPSC-CM, use selective small molecule inhibitors, e.g. p38 in-

hibitor SB202190 (1 μM, Sigma), PKG inhibitor KT5823 (1 μM), HDAC 

II inhibitor trichostatin A (0.25 μM), ERK inhibitor PD98059 (10 μM), 

JNK inhibitor SP600125 (1 μM), GSK3β inhibitor 1-azakenpaullone 

(10 μM), CaMK II inhibitor KN93 (10 μM), calcineurin inhibitor cyclo-

sporine A (0.2 μM), mTOR inhibitor rapamycin (10 ng/ml), and calcineu-

rin/FKBP inhibitor FK506 (0.1 μM) in the presence or absence of PE for 

48 hours. Drug discovery methodologies in cardiac hypertrophy may typi-

cally start with a phenotype-based high-throughput screen for small-

molecule inhibitors (McKinsey and Kass 2007). Approaches to validate 

cardiomyocyte hypertrophy responses include gene transduction into iso-

lated cardiomyocytes, use of transgenic and knockout animals, and phar-

macological studies, including human stem cell models.  

 

3.4. Antibodies and vital dyes 
1. Primary antibodies for immunocytochemistry: anti-Ki67 (proliferation 

marker, 1:100), anti-ANF (hypertrophy signalling, 1:300, Santa Cruz), an-

ti-troponin T (sarcomere protein, 1:200, Abcam), anti-alpha-actinin (sar-

comere protein, 1:500, Sigma-Aldrich) and anti-NFAT (transcription fac-

tor, 1:100, ab93628, Abcam) primary antibodies (Figure 2). 

2. Detection of primary antibodies: Alexa 488-, Alexa 647- and Alexa 546-

conjugated secondary antibodies (all 1:400, ThermoFisher Scientific). Di-

lute probes in RPMI medium supplemented with B27.  

  

3.5. Gene expression and proteome profiling 
To assess gene transcriptional changes, TaqMan chemistry based real-time 

PCR assays and microfluidic PCR cards are used. 

 

3.6. Instrumentation for 3D high-content image acquisition and analy-

sis 
1. 3D high-content screening requires a plate reader equipped with high 

resolution microscope (typically confocal) for optical sectioning. At image 

acquisition, we use a spinning disk confocal Opera LX plate reader (Perki-

nElmer) with triple bandpass filters for 488/561/640 nm and UV (365 nm) 

wavelengths. Various objectives can be used in the Opera setup: 4× air 

NA=0.16, 40× air NA=0.6, 60× water NA=1.2. We recommend using ei-

ther of these two types of multiwell plates: BD Optilux (BD Biosciences) 
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96-well plate use the 40× air lens, and skirtless CellCarrier (PerkinElmer) 

clear bottom TC treated 384 well plate use the 60× water lens (see note 

5.1).  

 

2. Hardware specifications of the high-content-analysis computer. Volume 

quantification in a high-content environment is resource intensive and 

computationally demanding. The speed of the analysis can be maximized 

by loading and processing as much image data into the memory as the sys-

tem allows. HCA system server motherboards are designed to accommo-

date a large amount of memory and suitable servers are commercially 

available. Use a Tyan FT48-B8812 barebone computer for high-content 

analysis of the images and quantify cell volume, sarcomere reorganisation 

and ANF redistribution. Our Tyan FT48-B8812 is equipped with 4 pieces 

of twelve-core AMD Opteron 6174 CPUs and 256 GB memory. In total 48 

threads could run in parallel and the overall computational speed can be 

further improved with the use of a 1 terabyte NAND flash memory as solid 

state drive integrated on a PCI express card (Supertalent Raiddrive II). As 

a very fast hard drive it supported 2.4GB/sec read speed through a PCIe 

(Gen.2) x8 interface.  

 

4. Methods 

 

4.1. Cardiomyocyte differentiation  
Differentiation protocols for production of cardiomyocytes from hPSC, in-

cluding embryonic and induced pluripotent stem cells, are now efficient, 

relying on sequential exposure to small molecule modulators that mimic 

early cardiac development (Burridge et al. 2015). One of the most efficient 

protocols is: 

 

day 0. Take a Matrigel-coated 6-well plate and culture hESCs in mTESR1 

(2 ml/ well). Change media to RPMI-B27 without insulin (2 ml) when 

hPSC culture (maintained in mTESR1) is between 75-90% confluency 

(d3-4 after thaw or split). Add selective GSK3β inhibitor CHIR99021 at 

6µM or 8µM to each well (using 10 mM stock). Optimal level and dura-

tion of CHIR99021 can be tested with 6µM or 8µM for both 1 day and 2 

days incubation. CHIR99021 is stable at 4 oC for a minimum of 2-4 weeks. 

day 1. Exchange media to RPMI-B27 without insulin, if CHIR99021 is 

used for one day. 

day 2. Exchange media to RPMI-B27 without insulin if CHIR99021 is 

used for two days. 
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day 3. Add 2ml RPMI-B27 without insulin and with Wnt pathway inhibi-

tor such as C59 (2.5µM). Change media every two days when feeding cells 

with RPMI-B27 without insulin.  

days 11-13. For metabolic selection, replace media with glucose-free 

RPMI basal medium (Life Technologies: 11879-020) supplemented with 

B27. Exposing the cells for 2-4 days with this media selects against prolif-

erating non-cardiomyocytes (see notes 5.2 and 5.3). 

 

4.2 Gene expression assays 
Experiments by the authors and others suggest mRNA levels of natriuretic 

peptides do not usually predict their protein levels. Therefore, a combina-

tion of mRNA levels of ANF versus an imaging-based assessment of ANF 

is expected to work better than either approach alone to clarify disease 

mechanisms. 

1. Lyse undifferentiated and differentiated hESC and hiPSC cultures in 

TriReagent buffer (Sigma Aldrich) for total RNA extraction. As controls, 

obtain total RNA from foetal heart (Clontech) and foetal fibroblast (MRC5 

lung foetal fibroblast line, ATCC). Purify RNA using RNeasy columns 

(Qiagen), quantify, and check for quality.  

2. Use the High Capacity cDNA Reverse Transcription Kit (ThermoFisher 

Scientific) to generate double-stranded cDNA.  

 

For quantifying mRNA levels of ANF in undifferentiated hESC and hiPSC 

cultures, foetal lung fibroblast (MRC5), adult isolated ventricular myo-

cytes, hESC-CM and hiPSC-CM, real-time PCR analyses are performed 

with TaqMan Gene Expression Assays (ThermoFisher Scientific). Use 

GAPDH Endogenous Control (FAM/MGB TaqMan gene expression 

probe, ThermoFisher Scientific) as a housekeeping control. By calculating 

the gene expression stability measure M, which is the mean pair-wise vari-

ation for a gene from all other tested genes, GAPDH is considered as sta-

ble reference gene. GAPDH and ACTB show similar stability, as meas-

ured with coefficient of variation and standard deviation. 

 

4.3 Phospho-kinase assay. Downstream signalling pathways can be as-

sessed by using proteome screening for kinase phosphorylation. In many 

cases, despite the significant functional responses in hypertrophy-related 

parameters, evidence of active signalling was seen in hPSC-CM. Seed 

hPSC-CM in 6-well plates and treat with pro-hypertrophic agents such as 

PE (10 μM) for 48 h. Collect cells by centrifugation and wash once with 
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phosphate buffered saline (PBS). Resuspend cell pellets in lysis buffer and 

incubate for 20 min at 4 °C. Determine protein concentration using the 

Pierce protein assay reagent. Perform screening for different phospho-

kinases in cell lysates with a Human Phospho-Kinase Antibody Array 

(R&D Systems). 

 

 

4.4. High content imaging of hPSC-CM 

 

4.4.1 Live staining and immunocytochemistry.  
1. To perform live staining, use high purity cardiomyocyte populations. 

Add drugs 3 to 5 days after cell plating or recovery from frozen stocks. Af-

ter drug treatment, incubate cells with Cell Tracker Red (ThermoFisher 

Scientific) for 45 minutes at 37 oC with 5% CO2. Place cells in 100µl fresh 

media (RPMI-B27) in 96-well or 384-well plate. Keep labelled cultures at 

37 °C / 5% CO2 and scan using automated microscope. 

2. To characterize detailed hypertrophic properties of hPSC-CM, use 

combinations of immunocytochemistry markers. Fix cells with 4% para-

formaldehyde, permeabilise with 0.2% Triton X-100, block with 4% foetal 

bovine serum in PBS for 1 hour and label with anti-ANF (Santa Cruz, 

sc20518, 1:300), and anti-troponin I (Abcam, ab47003, 1:200) primary an-

tibodies. Use Alexa 488-, and Alexa 546- conjugated secondary antibodies 

(all 1:400, ThermoFisher Scientific, in 3% bovine serum albumin in PBS 

as a carrier solution). Use Hoechst (0.5 μg/ml; Sigma-Aldrich) to visualise 

DNA. 

 

4.4.2 Cell proliferation in fixed cardiomyocytes cultures. Although pro-

liferation rates in hPSC-CM are initially far higher than in adult cardiomy-

ocytes, these drop around one month after differentiation. Cell morphology 

is initially less organised, but can become more ordered with time or ex-

ternal physical cues. As our earlier data show that PE can increase cell size 

independently from cell cycle, use of a cell proliferation assay may serve 

as an internal control.  

1. Fix cells after drug treatment and stain with anti-troponin I or anti-

alpha-actinin with Alexa 488; anti-Ki67 with Alexa 568; and Hoechst. 

2. Quantitate DNA content and visualise DNA intensity as a histogram. 

Quantitate percentage of 2N and 4N DNA content subpopulations. Quanti-

tate the ratio of Ki67-positive (or phospho-Histone H3-positive) nuclei in 

the culture to assess proliferating fraction of the population. 

 

4.4.3 2D image acquisition.  
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1. For 2D acquisition, scan plates on high-content analysis instrument 

platforms using modified bioapplication protocols for morphology assess-

ment or compartmental analysis. Using an automated highly sensitive fluo-

rescence imaging microscope with 10× objective and suitable filter sets, 

the stained cells can be identified with Hoechst, antibody against cardiac 

specific sarcomere protein (such as troponin I or alpha-actinin) 488 and 

ANF.  

2. When the cardiomyocyte undergoes hypertrophy, we expect an orches-

trated induction in cell size, sarcomere alignment and cytoplasmic ANF 

redistribution (Figure 3 shows example images of positive and negative 

controls). As assay readouts, use cell size; sarcomere content; align-

ment/abnormalities and length; ANF intensity and distribution; and nuclear 

translocation of transcription factors such as NFAT (Hinson et al. 2015).  

 

Higher magnification Opera images can be acquired either using a 40× air 

or a 60× water immersion objective. However, with the Opera system one 

encounters plate restrictions when working with a water immersion objec-

tive. The water holder collar on the objective will not fit under the skirt of 

a 96- or 384-well plate. Therefore, the Opera can only image skirtless 

plates with a water immersion objective, and currently those are only 

available in 384-well format. The Opera Phenix system (PerkinElmer) al-

lows the use of water immersion objectives with 96-well plates with skirt 

on a restricted plate area, omitting the edge wells. The skirtless CellCarri-

er-96 Ultra plate (PerkinElmer) will allow the imaging all 96-wells with a 

water immersion objective. It is at pre-release test phase at the time of 

writing the manuscript.  

 

4.4.4 3D image acquisition 

Here we present an image acquisition protocol for both a 40× air objective 

and a 60× water immersion objective, combining the latter with the 

PreScanReScan approach. 

 

40× air objective (96-well plate, BD Optilux, BD Biosciences) 

1. Use Opera LX plate reader for image acquisition. Apply 40× air 

NA=0.6 objective to image the cells seeded into BD Optilux (BD Biosci-

ences) 96 well plates. Apply 30 ms exposure time at the Hoechst channel 1 

(365 nm) for nuclear imaging; 400 ms with 3330 μW laser power at the 

MHC α/β-Alexa 488 in channel 2 (488 nm); and 400 ms with 1600 μW la-

ser power at the ANF-Alexa546 in channel 3 (561 nm). Camera pixels can 

be binned by 2, resulting in a nominal pixel size of 0.32 μm x 0.32 μm 

with 1.0 μm axial resolution of the imaged 6 optical slices. Image 25 fields 

of view (FoV) in the central position of each well. 
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60× water immersion objective with PreScanReScan (384-well plate, 

CellCarrier, PerkinElmer) 

Use the PreScanReScan system (version 0.91 (10/02/2012) by Achim 

Kirsch, PerkinElmer Cellular Technologies Germany GmbH), a set of 

Acapella scripts to (i) prescan with a low magnification objective to identi-

fy the location of cardiomyocytes in each well and (ii) rescan those loca-

tions with high magnification objective and acquire an image stack. The 

PreScanReScan can only be run from the Acapella Player environment, 

and version 0.91 requires Opera software version 2.0 or later. 

 

1. Start the prescan component of the system with imaging the cells, seed-

ed on a CellCarrier (PerkinElmer) clear bottom TC treated 384-well plate.  

Use a 4× air NA=0.16 objective for the prescanning, applying 500 ms ex-

posure time at the Hoechst channel 1 (365 nm) for nuclear imaging; 800 

ms with 3330 μW laser power at the MHC α/β-Alexa 488 in channel 2 

(488 nm); and 800 ms with 1600 μW laser power at the ANF-Alexa546 in 

channel 3 (561 nm)). The camera pixels are not binned resulting in a nom-

inal pixel size of 1.6 μm x 1.6 μm for the imaged  optical slice. This 1 FoV 

(2219 μm x 1677 μm) covers the central region of the well. 

2. Execute the first Acapella script component of the PreScanReScan sys-

tem, “PreScanReScan_Create_Sublayouts_Objects_framelimit.script”, on 

the prescanned images, in order to analyse, identify and record the in-well 

position of the cells. Each detected cell is supposed to fit in the 60x rescan 

FoV. The maximum number of cells can be specified in the “framelimit” 

option. In this example, record the Sublayout of the first 10 cells. 

3. Several input parameters are requested by the script file. Besides trivial 

ones such as “Path to the OperaDB”, “Path to the Images:Illustrations” and 

“Magnification of next lens”(= 60), other parameters need some additional 

effort in optimisation. The “Offset in X direction, [µm]” and “Offset in Y 

direction, [µm]” parameters are two experimentally specified constants 

that represent the offset between the centres of the low and high resolution 

images. Signs indicate directionality, with negative values virtually shift-

ing the 60x FoV left and up in X and Y directions respectively. Use X off-

set = -230 μm and Y offset = -150 μm values, which are surprisingly large 

when we compare the 146 μm x 110 μm size of a whole 60x FoV.  

 

The Image Analysis section specifies the image processing parameters that 

result in the identification of rescan FoVs. The PreScanReScan algorithm 

is designed to identify rescan FoVs based on the location of nuclei. How-

ever, in this study, cells express strong signal at 488 nm; therefore channel 

2, the MHC α/β-Alexa 488 channel, is used ("Channel for Cell Detec-
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tion”), providing an intensity filter at the same time. Use the value 100 for 

size filter (“Minimum Nuclei Size for Rescan”). Instead of nuclei, tune the 

“Nuclei Detection” section for whole cell detection, using the following 

parameters: 

 Nuclei Detection Algorithm = “A”, which is a proprietary segmen-

tation algorithm. 

 Threshold Adjustment = 1.5, which ranges from 0 to 3, and fine 

tunes the segmentation by shrinking (low values) or expanding 

(high values) the mask. 

 Minimum Nuclei Distance = 7, which splits artificially merged 

nuclei by specifying a minimal distance between centres of nuclei. 

 Nuclear Splitting Adjustment = 7, which is another parameter to 

split artificially merged nuclei. 

 Individual Threshold Adjustment = 0.4, which ranges from 0 to 

1.0, and fine tunes the segmentation of nuclei. 

 Minimum Nuclear Area = 100, which is a size filter in terms of 

pixels. Discard objects smaller than the specified value. 

 Discard minimum Nuclear Contrast = 0.35, which ranges from 0 

to 1.0, and is an intensity filter for objects with contrast less than 

the specified value. 

 Parameter SCAN = “None”, which is intended for optimisation of 

the parameters above. 

 

4. Acquire images of the 384-well plate with a 60× water NA=1.2 objec-

tive. A 100 ms exposure time can be applied at the Hoechst channel 1 (365 

nm) for nuclear imaging; 800 ms with 3330 μW laser power at the MHC 

α/β-Alexa 488 in channel 2 (488 nm); and 800 ms with 1600 μW laser 

power at the ANF-Alexa546 in channel 3 (561 nm). Camera pixels are not 

binned, resulting in a nominal pixel size of 0.11 μm x 0.11 μm with 0.5 μm 

axial resolution of the imaged 12 optical slices.  

5. Determine the number and position of image stacks by the PreScan-

ReScan Opera scripts (maximum 10 stacks per well). Use the script collec-

tion PreScanReScan version 0.91-2012-02-10 with Opera software 2.0 to 

identify the location of the cells within each well of the 384-well plate 

prescanned with 4× objective. Segment cells detected in channel 2 and fil-

ter by minimum contrast > 0.35, and area > 100 for rescan at 60× magnifi-

cation (Figure 4).  

 

4.4.4 3D Fluorescence Image Processing 
 

A diagram of the 3D high-content analysis workflow is shown in Figure 5. 
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Hardware 

 Use a server-grade Tyan FT48-B8812 barebone computer; the specifica-

tions are described at section 3.5. 

 

Software 

Perform the image analysis under a 64-bit version of Kubuntu Linux 

10.10, ImageJ version 1.45s and Fiji (Schindelin et al. 2012) with Java 

1.6.0_20.  

 

Acquire the 3-channel, fluorescence, 12-bit depth images as Opera LX 

*.flex files, and analyse after conversion into *.tif format by the Acapella 

FlexToVolocity.script.  

 

Feature extraction 

Extract three features of interest from the images using Fiji: (i) cell vol-

ume; (ii) texture features related to sarcomere reorganisation; and (iii) 

ANF distance from the nucleus related to ANF redistribution.  

 

Cell volume measurement 

Perform cell volume measurement on MHC α/β-Alexa 488 in channel 2 

images. The image resolution does not allow us to separate each individual 

cell; therefore calculate the average cell volume in each well by the total 

volume of the stained voxels divided by the number of nuclei. Perform the 

3D cell volume measurement by a custom Fiji macro. The workflow starts 

with manual selection of a suitable threshold (= 273) that provides optimal 

segmentation results both at the lowest and highest optical slices. The 3D 

Object Counter plugin (Bolte and Cordelieres 2006) implemented under 

Fiji can be used for a 26 neighbour connection, size filter and volume 

measurement of the foreground voxels. The gelatine cover on the well bot-

tom results in an image noise corrected by a size filter that removes objects 

smaller than 166 μm3 (1000 voxel at 40×, 27400 voxel at 60× magnifica-

tion). Record the 3D object map of each image stack for quality control 

purposes. Record the volume of each 26 neighbour-connected 3D object, 

together with its well and field of view identifiers. Measure the nuclear 

number and position by custom ImageJ macros, which create a maximum 

intensity projection of the optical slices, and apply a local maxima finder 

algorithm with noise tolerance = 500. Perform the texture measurement by 

a custom ImageJ macro using the plugin GLCM Texture Too. Determine 

cellular foreground area by applying a 10 pixel radius median filter on the 

maximum intensity projection of a channel 2 image converted to 8-bit, and 
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segment with threshold = 6. Measure texture features on the maximum in-

tensity projection pixel intensities of channel 2 under the binary mask.  

 

3D localisation 

Measure the ANF position in the cell with a custom ImageJ macro that ap-

plies a maximum intensity projection of the channel 3 optical slices, and 

the macro records of the coordinates of local pixel maxima with noise tol-

erance = 200. 

 

4.4.5 Statistical Data Analysis for Widefield and Confocal High Con-

tent Screens 
The volumetric, texture and distributional results of the image analysis are 

stored in ASCII tables and can be evaluated statistically with R, the well-

established, open source statistical software (R Development Core Team 

2016) (http://r-project.org). Use R scripts to calculate single values per 

well for (i) average cell volume, (ii) texture descriptors, and (iii) average 

ANF distance to the centre of the nucleus. Calculate the average cell vol-

ume as a ratio of the total volume of MHC α/β-Alexa and total number of 

nuclei in each well. Calculate the mean value of the texture features in 

each field of view in a separate R script. Quantify the ANF redistribution 

by the mean Euclidean ANF distance from the closest nucleus (Figure 3).  

 

Use the cellHTS2 package (Boutros et al. 2006) in custom R scripts for 

statistical analysis. Normalise the results by a robust Z score method using 

the median and the median absolute deviation (MAD) of the sample wells. 

Following normalisation, calculate the Z score of each well, based on the 

sample workflow described in “End-to-end analysis of cell based screens: 

from raw intensity readings to the annotated hit list” (last retrieved on 

15/02/2016 from the website 

https://www.bioconductor.org/packages/3.3/bioc/vignettes/cellHTS2/inst/d

oc/cellhts2Complete.pdf ).  

 

Regarding replicates, consider biological replicates to be a batch of differ-

entiated cardiomyocytes taken though a complete experiment (a run of 

high content microscopy or real time PCR data) (see note 5.4). Technical 

replicates refer to numbers of repeats within a run for real time PCR and 

number of wells for high content microscopy. Data from each well for the 

2D high content microscopy will be taken from up to 2000 cells, but this is 

only represented as one value for each well. 

 

Conclusion 

https://www.bioconductor.org/packages/3.3/bioc/vignettes/cellHTS2/inst/doc/cellhts2Complete.pdf
https://www.bioconductor.org/packages/3.3/bioc/vignettes/cellHTS2/inst/doc/cellhts2Complete.pdf
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Providing multiple endpoints is a great advantage of high content imaging-

based assays. The assays can therefore readily predict molecular targets as 

well as off-target effects of test compounds, such as cytotoxicity or chang-

es in cardiovascular cell morphology. Toxicology and early stages of drug 

discovery benefit enormously from the advanced 3D high-content screen-

ing systems that were, until recently, primarily employed in low-

throughput research. 

 

 

5. Notes 
5.1. Only a skirtless plate can operate with a water immersion lens, because 

a plate skirt hinders the free access of edge wells of an objective with 

water collar. 

5.2. Regarding differentiation of cardiomyocytes, at day 1 check cell mor-

phology at 20x magnification to predict if differentiated cells are going 

to beat. Cells at the border of the wells should be square and tightly 

joined and look grey where cells in the middle of cultures are triangu-

lar and edged and have gap in between and look “shiny”. On days 9-11 

one can see cardiomyocyte contraction (start depends on hPSC-CM 

line). Once cells start beating, feed them with RPMI-B27 containing 

insulin.  

5.3. Regarding metabolic selection, cardiomyocytes rely on oxidative 

phosphorylation, while the non-cardiomyocytes tend to rely on glycol-

ysis. Using metabolic selection, cells relying on glycolysis die and on-

ly cardiomyocytes survive. 

5.4. This is the typical understanding of biological replicates from a cell 

lines such as HEK or CHO. (For in-house experiments this would usu-

ally include the differentiation of a new batch of hESC or hiPSC-

derived cardiomyocytes, but this may not be possible from commercial 

lines where one is reliant on available batch numbers). In many of the 

experiments here we also have a number of different lines, which can 

also be considered biological replicates. 
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Figure Captions 

 

Figure 1. Schematic drawing of various approaches in hypertrophy model-

ling and drug screening (CRISPR-Cas9 models, pharmacological ap-

proaches, patient-derived hiPSC trials in vitro). 

 

Figure 2. Cultured human pluripotent stem cell-derived cardiomyocytes. 

A Depending on the nature of the stimulus and its intensity (example 

shows PE treatment in the presence of proliferation / cytokinesis inhibitor 

agent blebbistatin, 48 hours), hPSC-CM can undergo hypertrophy, activa-

tion of cell death pathways or progression into cell division. Cells were 

stained with Hoechst,; sarcomere protein troponin I or MHC α/β; atrial na-

triuretic factor ANF; and proliferation marker Ki67. Scale bar 10 μm. B 

Example 3D reconstructions (Volocity) of these cells are also shown. 
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Figure 3. A Whole plate level visualisation of ANF distribution. Mean 

ANF-nucleus distances in μm were calculated with an R script and the re-

sults are shown as a plate heatmap, generated using the Prada (version 

1.42) package from Bioconductor, R (version 3.2.3). Representative imag-

es of the wells that show, B no change in ANF distribution, and C signifi-

cant changes in ANF distribution. 

 

Figure 4. A Illustration of cardiomyocytes imaged with 4x lens at PreScan 

step after image analysis. The identified cells were re-imaged with 60x 

lens in the ReScan step. Yellow rectangles show the contours of the 60x 

field of views. Scale bar 100 μm. B Maximum intensity projection of car-

diomyocytes imaged with PerkinElmer Opera, 60x (NA=1.2) water im-

mersion lens. Cells were stained with Hoechst, MHC α/β-Alexa and ANF-

Alexa546 on blue, green and red channels and imaged in 365 nm, 488 nm 

and 561 nm excitation wavelengths respectively. Scale bar 10 μm.  

 

Figure 5. Illustrative diagram of the high-content analysis workflow ap-

plied. 3D image stack of confocal slices serves as input and a database of 

cell volumes is the output. Overlay images play an important role; the 

workflow quality is checked at every step. 

 

 

Table Captions 

 

Table 1. Human PSC-derived cardiomyocyte models for inherited disor-

ders with hypertrophic phenotype  

 

Table 2. Phenotypic assays to assess cardiomyocyte hypertrophy. 
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Glossary 

ANF  Atrial natriuretic peptide 

BNP  B-type natriuretic peptide 

ESC  embryonic stem cell 

GSK  glycogen synthase kinase 

HCM  hypertrophic cardiomyopathy 

hESC  Human embryonic stem cell 

hESC-CM Human embryonic stem cell-derived cardiomyocyte 

hiPSC  Human induced pluripotent stem cell 

hiPSC-CM Human induced pluripotent stem cell-derived cardiomyo-

cyte 

hPSC  Human pluripotent stem cell 

hPSC-CM Human pluripotent stem cell-derived cardiomyocyte 

MAPK  mitogen activated protein kinase 

NFAT   nuclear factor of activated T-cells 
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Condition Cell 

Source 

Mutation Cardiac phenotype Reference 

LEOPARD syn-

drome 

hiPSC Protein tyrosine 

phosphatase, non-

receptor type 11 

gene (PTPN11) 

Cardiac hypertrophy, 

electrocardiographic 

abnormalities, pulmo-

nary valve stenosis 

(Carvajal

-Vergara 

et al. 

2010) 

Hypertrophic car-

diomyopathy 

(HCM) 

hiPSC Missense mutation 

on exon 18 of the β-

myosin heavy chain 

gene; myosin bind-

ing protein C 

Non-ischaemic cardi-

omyopathy, enlarge-

ment of the cardiac 

cells 

(Lan et 

al. 2013; 

Dambrot 

et al. 

2014) 

Dilated cardiomy-

opathy (DCM) 

hiPSC Point mutation 

R173W in exon 12 

of troponin T2 gene;  

Non-ischaemic cardio-

myopathy, increased 

heterogeneous sarco-

meric organization 

(Sun et 

al. 2012; 

Wu et al. 

2015; 

Kara-

kikes et 

al. 2015)  

Barth syndrome hiPSC Mutation of gene 

encoding tafazzin 

Cardiomyopathy, car-

diolipin abnormalities 

(Wang et 

al. 2014) 

Duchenne muscu-

lar dystrophy 

(DMD) 

hiPSC Mutation in DMD 

gene encoding dys-

trophin 

Muscle degeneration, 

dysorganised sarco-

mere 

(Lin et al. 

2015) 

Down’s Syndrome hESC Trisomy 21 Increased expression 

of hypertrophic cardi-

omyopathy genes 

(Bosman 

et al. 

2015) 

  

Table 1. 
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Hypertrophy Assay Technology Reference 

Mechanical analysis of hy-

pertrophied cells and myo-

cardial tissue constructs 

Cardiac microtissue platform; single cell 

microarray post detectors (mPads); engi-

neered heart tissue; heart-on-chip model; 

muscular thin film; applied stretch for sin-

gle cells with Flexercell 

(Hinson et 

al. 2015; 

Schaaf et al. 

2011; 

Hansen et al. 

2010; Wang 

et al. 2014) 

Imaging intracellular 

changes 

Flow cytometry for troponin/BNP-positive 

cells; spontaneous Ca2+ transient imaging 

and measurements; translocation of tran-

scription factors; extracellular flux analysis 

(Seahorse) to detect altered metabolism; 

traction force microscopy for single cell 

contractility; Cellular impedance monitor-

ing for cell growth 

(Wang et al. 

2014; Wu et 

al. 2015; 

Tanaka et al. 

2014; 

Kijlstra et al. 

2015; 

Tanaka et al. 

2014; 

Drawnel et 

al. 2014) 

Gene profiling / gene regu-

latory networks and related 

pathway analysis 

Real time PCR; TaqMan microfluidic 

cards; Single cell PCR; Small RNA assays; 

Microarray; RNAseq; miRNASeq; GSEA 

pre-ranked analysis 

(Aggarwal et 

al. 2014; 

Hinson et al. 

2015; 

Drawnel et 

al. 2014) 

Production and release of 

hypertrophic factors 

ANF, BNP, ET-1, FABP3, troponin I (Carlson et 

al. 2013; 

Tanaka et al. 

2014; 

Drawnel et 

al. 2014) 

Comparison with engi-

neered or native cells 

Isolated human ventricular myocytes; neo-

natal mouse/rat cells, rat embryonic cardi-

omyocytes (H9C2); CRISPR/Cas9-isogenic 

control 

(Foldes et al. 

2014; Ren et 

al. 2012; 

Hinson et al. 

2015; Wang 

et al. 2014) 

 

Table 2. 
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