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ABSTRACT 

Lipids are potent signaling molecules that regulate a multitude of cellular responses including 

cell growth and death, and inflammation/infection, via receptor-mediated pathways. Derived 

from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic 

acid (EPA) and docosahexaenoic acid (DHA), each lipid displays unique properties, thus 

making their role in inflammation distinct from that of other lipids derived from the same 

PUFA. This diversity arises from their synthesis, which occurs via discrete enzymatic 

pathways and because they elicit responses via different receptors. This chapter will collate 

the bioactive lipid research to date and summarise the major pathways involved in their 

biosynthesis and role in inflammation. Specifically, lipids derived from AA (prostanoids, 

leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins and epoxyeicosatrienoic acids), 

EPA (E-series resolvins), and DHA (D-series resolvins, protectins and maresins) will be 

discussed herein. 
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INFLAMMATION AND ITS ONSET  

Before we discuss lipids and their role in homeostasis and host defence, we will recount the 

essence of the inflammatory response. Inflammation is a reaction of the microcirculation; it’s 

a protective response initiated after infection or injury. While both local and systemic 

responses can be activated, inflammation is an essential biological process with the objective 

of eliminating the inciting stimulus, promoting tissue repair/wound healing and in the case of 

infection, establishing memory such that the host mounts a faster and more specific response 

upon a future encounter. The acute inflammatory response is a complex yet highly 

coordinated sequence of events involving a large number of molecular, cellular and 

physiological changes. It begins with the production of soluble mediators (complement, 

chemokines, cytokines, eicosanoids [including PGs], free radicals, vasoactive amines etc) by 

resident cells in the injured/infected tissue (i.e. tissue macrophages, dendritic cells, 

lymphocytes, endothelial cells, fibroblasts and mast cells) concomitant with the up-regulation 

of cell adhesion molecules on both leukocytes and endothelial cells that promote the 

exudation of proteins and influx of granulocytes from blood(1). Upon arrival these 

leukocytes, typically PMNs in the case of non-specific inflammation or eosinophils in 

response to allergens, primarily function to phagocytose and eliminate foreign 

microorganisms via distinct intracellular (superoxide, myeloperoxidase, proteases, 

lactoferrins) and/or extra cellular (neutrophil extracellular traps) killing mechanisms(2). It is 

likely that the magnitude of the infectious load and its eventual neutralization signal the next 

phase of active anti-inflammatory and pro-resolution(3).  

 

RESOLUTION OF INFLAMMATION 
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It is important to distinguish between inflammatory resolution and inflammatory onset. At 

onset, local release/activation of soluble mediators (e.g. complement, vasoactive amines, 

cytokines, lipids) from histiocytes and stromal cells and up-regulation of cell adhesion 

molecules on the microvascular endothelium collectively facilitate extravascular leukocyte 

accumulation manifesting in Celsus’ cardinal signs of inflammation - heat, redness, swelling 

and pain (Rudolph Virchoff added loss of function in the 19th century)(4). This well-

characterised phase of the inflammatory response is routinely targeted using drugs including 

NSAIDS and anti-TNFα that inhibit or antagonise the action of these inflammatory drivers 

forming the mainstay for treating chronic inflammatory disease. Resolution, however, 

switches inflammation off. In-as-much as onset is orchestrated by a host of sequentially 

released mediators, resolution is an active process that is no longer considered a passive event 

where the response was hitherto thought to simply fizzle out(5, 6). For instance, a critical 

requirement for the inflammatory response to switch off is the elimination of the injurious 

agents that initiated it in the first place. Failure to achieve this first step will lead to chronic 

inflammation as exemplified by chronic granulomatous disease, which results from a failure 

of the phagocytic NADPH oxidase enzyme system to produce superoxide and kill invading 

infections leading to a predisposition to recurrent bacterial and fungal infections and the 

development of inflammatory granulomas(7). Successfully dispensing with the inciting 

stimulus will signal a cessation of pro-inflammatory mediator synthesis and lead to their 

catabolism. This will halt further leukocyte recruitment and edema formation. These are 

probably the very earliest determinants for the resolution of acute inflammation, the outcome 

of which signals the next stage of cell clearance. The clearance phase of resolution, be it 

polymorphonuclear leukocyte (PMN)- or eosinophil-driven or adaptive (lymphocyte 

mediated) in nature, also has a number of mutually dependent steps. The clearance routes 

available to inflammatory leukocytes include systemic recirculation or local death by 
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apoptosis/necrosis of influxed PMNs, eosinophils or lymphocytes followed by their 

phagocytosis or efferocytosis by recruited monocyte-derived macrophages. Once 

phagocytosis is complete, macrophages can leave the inflamed site by lymphatic drainage 

with evidence that a small population may die locally by apoptosis(8).  

 

Eliminating the injurious agent leads to the next phase of pro-inflammatory mediator 

catabolism where levels of cytokines, chemokines, eicosanoids, cell adhesion molecules etc 

must revert back to that expressed during the pre-inflamed state. In terms of chemokines, the 

atypical chemokine receptors such as D6 possess the inability to initiate classical signalling 

pathways after ligand binding thereby acting as a type of scavenging system for pro-

inflammatory signals such that in TPA-induced skin inflammation D6-deficient mice exhibit 

an excess concentration of chemokines resulting in a notable inflammatory pathology with 

similarities to human psoriasis, for review see(9). In addition, the work of Ariel and 

colleagues showed that CCL3 and CCL5 were increased in peritoneal exudates of Ccr5-/- 

mice during the resolution of acute peritonitis. Transfer of apoptotic PMNs resulted in CCR5-

dependent scavenging of CCL3, CCL4 and CCL5. It transpires that CCR5 surface expression 

on apoptotic PMNs was reduced by pro-inflammatory cytokines and was increased by pro-

resolution lipid mediators including lipoxin (Lx)A4(10), which will be discussed in detail 

later. Thus, endogenous systems exist to facilitate pro-inflammatory mediator clearance and 

whose function, when it becomes dysregulated, may lead to chronic inflammation. If all of 

these pathways of stimulus removal, inhibition of granulocyte trafficking, pro-inflammatory 

mediator catabolism, appropriate cell death/efferocytosis (phagocytosis of apoptotic cells) etc 

are followed then acute inflammation will resolve without causing excessive tissue damage 

and give little opportunity for the development of chronic, non-resolving inflammation.  
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Each stage of the resolution cascade represents an opportunity to be harnessed to drive 

ongoing inflammatory diseases down a pro-resolution pathway. Yet, we caution that this will 

not be a panacea for all diseases driven by ongoing inflammation. We suspect that resolution 

processes may vary from tissue to tissue and be dependent of the nature of the injurious 

stimulus. Thus, designing pro-resolution drugs will have to be organ and disease specific. 

With that comes the need for more appropriate animal models of ongoing inflammation that 

best reflect the intended human condition. In addition more studies must be focused on 

examining resolution pathways in healthy and diseased humans.   

 

RESOLUTION: A DYNAMIC PROCESS WITH CHECKS AND BALANCES 

At this stage it must be emphasised that inflammation leading to resolution is not a sequence 

of separate events that occur in isolation, but is a dynamic contiunuum of over-lapping events 

where pro- and anti-inflammation blend seamlessly into pro-resolution. For instance, pro-

inflammatory signals are activated in an immediate and early manner concomitant with anti-

inflammatory signals that serve to temper the magnitude of the early onset phase of acute 

inflammation with PMN influx being a good barometer of inflammation severity. Over the 

course of hours and only after tissues have sensed that the injurious agent has been 

neutralised, is it safe to catabolise pro-inflammatory soluble mediators and switch off pro-

inflammatory signalling pathways. Alongside this is the synthesis of factors that terminate 

further PMN trafficking and prepare the injured tissue for resolution.  

 

In other words, while it is recognized that pro-inflammatory mediators generated in the 

inflamed tissue drive acute inflammation, there is also the systemic and local production of 

endogenous mediators that counter-balance these pro-inflammatory events. These internal 

checks-and-balances have evolved to avert development of pathologies such as those 
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highlighted above. Lipid mediators derived from polyunsaturated fatty acids (PUFA), such as 

arachidonic acid (AA) and the omega-3 PUFA eicosapentaenoic (EPA) and docosahexaenoic 

acid (DHA), are synthesised during normal cell haemostasis or, more often, after cell 

activation and in conditions of stress, functioning as activators of counter-regulatory, anti-

inflammatory and pro-resolution mechanisms.  Interestingly, these immuno-modulatory 

effects are also found with a family of lipids, called prostanoids, which help to drive some of 

the cardinal signs of inflammation (heat, redness, swelling, pain and loss of function). As the 

role of lipids in inflammation is diverse, this review aims to provide an update of 

AA/DHA/EPA-derived signaling molecules that not only drive acute inflammation but also 

counter-regulate its severity and bring about its timely resolution.   

 

AA METABOLISM AND THE INFLAMMATORY RESPONSE 

AA is a 20-carbon fatty acid and the main eicosanoid precursor and is a constituent of all 

cells. Although not freely available, stimulation by various cellular agonists including 

receptor-mediated agonists (i.e. formyl peptide [fMLP], interleukin-8 [IL-8], and platelet 

activating factor [PAF]), microorganisms, phagocytic particles, non-specific stimuli such as 

damage or injury (11) activates several phospholipase enzymes (predominantly PLA2), which 

releases AA from membrane phospholipid stores. Once in the cytosol, AA can be metabolised 

via three principal pathways to form an important family of oxygenated products, collectively 

termed eicosanoids that are released from the source cell and act at nanomolar concentrations 

in an autocrine/paracrine manner on target cells. Prostaglandins (PGs) and thromboxane 

(collectively termed prostanoids), formed by cyclooxygenase (COX); leukotrienes (LTs) and 

lipoxins (LXs) by lipoxygenases (LOX) (12, 13); and epoxyeicosatrienic acids (EETs) by 

cytochrome P450 enzymes (14) are members of the eicosanoid family.  
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CYCLOOXYGENASE  

COX is a bifunctional enzyme that acts successively as a bis-dioxygenase and peroxidase to 

carry out a complex free radical reaction. It begins by catalysing the bisoxygenation and 

cyclisation of AA to form the hydroperoxy arachidonate metabolite PGG2 (15). After which 

the peroxidase element of the enzyme reduces the carbon 15 position hydroperoxide to its 

corresponding alcohol to form PGH2 (16, 17). There are two main isoforms involved in the 

conversion of AA, COX-1 and COX-2.  While COX-1 is constitutively expressed in most 

cells and tissues, COX-2 is rapidly induced when cells are challenged with inflammatory 

stimuli (18). Although not exclusive, it is generally accepted that COX-1 is involved in 

cellular housekeeping functions necessary for normal physiological activity whereas COX-2 

acts primarily at sites of inflammation. Formation of biologically active prostanoids from 

PGH2 occurs through the actions of a set of synthases that are expressed in a tissue and cell 

type-selective fashion. These synthases include prostaglandin D synthase (PGDS) (19) 

prostaglandin E synthase (PGES) (20), prostaglandin F synthase (PGFS) (21), prostaglandin I 

synthase (PGIS) (22), and thromboxane A synthase (TXAS) (23), which form PGE2, PGF2α, 

PGI2 (also known as prostacyclin) and TXA2 respectively. It is the differential expression of 

these enzymes within cells that determines the profile of prostanoid production. For example, 

mast cells predominantly produce PGD2 while macrophages produce PGE2 and TXA2. 

Moreover, alterations in the profile of prostanoid synthesis can occur upon cell activation 

such that resting macrophages produce TXA2 in excess of PGE2, but upon cell activation this 

ratio changes to favor PGE2 (24). Several biochemical mechanisms have been proposed to 

explain this altered synthetic profile. Firstly, it has been suggested that physical 

compartmentalisation of COX-1 and COX-2 with specific terminal synthases could link the 
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activity of these enzymes with the synthesis of specific prostanoid end products (25). 

Secondly, some of the synthases are inducible and their expression may be regulated by 

environmental signals. For example, expression of the glutathione-dependent isoform of PGE-

synthase is enhanced by IL-1β (26). Finally, it has been proposed that differences in substrate 

affinity and kinetics of PGE-synthase and TXA-synthase account for different production 

profiles of resting and activated monocytes (27). There is also evidence that the two COX 

isoforms may preferentially contribute to the synthesis of distinct prostanoids. For instance, in 

primary peritoneal macrophages, expressing all terminal synthases, COX-1 yields a balance 

of prostanoids (i.e. PGE2, PGD2, PGI2 and TXA2) while COX-2 preferentially generates only 

PGE2 and PGI2 (28).  

 

The biological effect of prostanoids is initiated by binding to specific cell-surface receptors. 

Currently there are nine known prostanoid receptors in mice and man: the PGD receptors DP1 

and DP2, the PGE2 receptors, EP1, EP2, EP3 and EP4; the PGF receptor, FP; the PGI 

receptor, IP; and the TXA receptor, TP. In addition, there are splice variants of the EP3, FP 

and TP receptors differentiated only in their C-terminal tails. All belong to the G-protein 

coupled receptor (GPCR) superfamily of seven transmembrane spanning proteins, with the 

exception of DP2 (also known as CRTH2), which is a member of the chemoattractant 

receptor family (29-31). The IP, DP1, EP2 and EP4 receptors signal through Gs resulting in an 

increased intracellular cAMP, whereas the EP3 receptor couples to Gi to reduce cAMP. M 

EP1, FP and TP receptors signal through Gq to induce calcium mobilization. 

 

PROSTANOIDS  

In the mid 1930s potent bioactive compounds in human semen were identified as prostanoids 

(32). Today it is appreciated that prostanoids are generated in most tissues and cells, 
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modulating a wide range of biological processes such as smooth muscle tone (33-35), 

vascular permeability (36, 37), hyperalgesia (38), fever (39-41), and platelet aggregation (42). 

Indeed, the clinical importance of prostanoids is emphasised by the fact that prostanoid 

biosynthesis is the target of non-steroidal anti-inflammatory drugs (NSAIDs), one of the most 

widely used classes of pharmacotherapeutic agents for the treatment of chronic inflammatory 

diseases emphasizes the clinical importance of these lipids  

 

The more widely studied prostanoids, PGE2 and PGI2, both enhance vasodilation(43), oedema 

formation and vascular permeability particularly in the presence of histamine, bradykinin and 

5-HT (44-49). Genetic depletion of their respective receptors (IP, EP2 and EP3) in mice 

significantly reduced pleural exudation after insult with carrageenin or zymosan (50, 51). 

PGE2 is also one of the most potent pyretic agents known with elevated concentrations found 

in cerebrospinal fluid taken from patients with bacterial or viral infections (52). Indeed, a 

number of lines of evidence from EP-deficient mice have shown that the febrile response to 

PGE2 occurs through the action of PGE2 on the EP3 receptor present on sensory neurons in 

the periphery and brain (53-56). This has been postulated to cause an increase in 

thermogenesis through activation of brown adipose tissue and reduced passive heat loss 

through the skin by tail artery vasoconstriction (57-61). Although none of the COX-

metabolites overtly cause pain, PGI2 and PGE2 cause peripheral and central hyperalgesia when 

bound to IP, EP1, EP3 and EP4 receptors, respectively, by reducing the threshold of 

nociceptor sensory neurons to stimulation (34, 38, 62-70).  

 

In addition, prostanoids play an important role in protecting against oxidative injury in cardiac 

tissue (71) and in maintaining cardiovascular (CV) homeostasis.  Indeed, the protective effect 

has been highlighted/demonstrated in clinical studies undertaken with NSAIDs, which found 
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that COX-2-specific inhibitors increase the risk of stroke, myocardial infarction (MI), 

thrombosis, systemic and pulmonary hypertension, congestive heart failure, and sudden 

cardiac death (72, 73). Furthermore, deleting specific prostanoid synthases and receptors 

result in an augmentation of ischemia/reperfusion injury (74) as well as exacerbating the 

decline in cardiac function after MI(75, 76). The maintenance of CV health is dependent on a 

very fine balance between vasodilatory PGI2 and pro-thrombotic TXA2 (77, 78), where PGI2 

functions to counterbalance the actions of TXA2 (73). Indeed, PGI2 released from endothelial 

cells and in synergy with NO prevent TXA2-induced platelet aggregation and thrombosis (42, 

79, 80). TXA2 is derived from platelet COX-1 causing platelet aggregation and vascular 

smooth muscle contraction (81-83). Clinical CV diseases, such as unstable angina, MI and 

stroke can be a result of overproduction of TXA4. Importantly, the cardio-protective 

properties of aspirin can be attributed to the covalent inhibition of COX-1 (84).         

  

As well as having ‘pro-inflammatory’ properties, many prostanoids also exert immuno-

suppressive effects through upregulation of intracellular cAMP (85-87). For example, PGE2 

and PGI2 reduce the ability of inflammatory leukocytes to phagocytose and kill 

microorganisms (88-93), as well as inhibit the production of downstream pro-inflammatory 

mediators (94-100) while, in contrast, enhancing the production of IL-10 and IL-6 (101, 102). 

Indeed, in a number of conditions associated with increased susceptibility to infection, 

including cancer (103), aging (104) and cystic fibrosis (105, 106) overexpression of PGE2 has 

been reported. Interestingly, during the onset phase of inflammation, PGE2 indirectly results 

in pro-resolution effects by switching on the transcription of enzymes required for the 

generation of LXs (107), resolvins (Rvs) and protectins (PDs) (108-111), other classes of 

bioactive lipids that are potent pro-resolution mediators..  
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As well as eliciting immuno-modulatory and anti-inflammatory effects in the same manner as 

described for PGE2 and PGI2 via ligation to DP1, PGD2 can also act independently of DP1 

and DP2 receptor activation when non-enzymatically dehydrated into biologically active 

prostaglandins of the J2 series (e.g. PGJ2, Δ12,14-PGJ2 and 15-deoxy-Δ12,14-PGJ2 [15d-

PGJ2]) (112-116). These so called cyclopentenone PGs form covalent attachments with 

reactive sulphydryl groups on intracellular regulatory proteins, which enables modulation of 

their function (117-119). For instance, 15d-PGJ2 upon ligation to the nuclear receptor PPAR-γ 

(120), decreases pro-inflammatory cytokine release and modifies gene expression (121, 122) 

as well as directly inhibiting the actions of IκB kinase (IKK), which is responsible for the 

activation of NF-κB (123-125). 15d-PGJ2, independently of PPAR-γ, can preferentially 

inhibit monocyte rather than neutrophil trafficking through differential regulation of cell-

adhesion molecule and chemokine expression (8, 126-128); regulate macrophage activation 

and pro-inflammatory gene expression (129); and induce leukocyte apoptosis through a 

caspase-dependent mechanism (8, 115, 130-133). Moreover, it has been shown that PGD2-

derived compounds function as endogenous breaking signals for lymphocytes to stimulate 

resolution (134).   

 

LIPOXYGENASE  

LOX enzymes, including 5-, 12-, or 15-LOX in leukocytes, platelets and endothelial cells, 

respectively, metabolise AA.  The generation of the slow-reacting substances of anaphylaxis 

(LTC4, LTD4 and LTE4: potent mediators of the allergic response) (135) and LTB4, a 

powerful polymorphonuclear (PMN) leukocyte (i.e. neutrophils and eosinophils) 

chemoattractant (136, 137) is elicited by Leukocyte 5-LOX. Due to its involvement in LT 

synthesis, 5-LOX has received the most attention in inflammation research. Therefore, the 

remainder of this section will concentrate specifically on this pathway.  
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Once activated, 5-LOX converts AA into a hydroperoxide by inserting molecular oxygen into 

AA at positions 5 aided by the 5-LOX activating protein (FLAP). Termed 5-

hydroperoxyeicosatetraenoic acid (5-HPETEs), this intermediate is then rapidly reduced to 5-

hydroxyeicosatetraenoic acid (5-HETE). 5-HPETE can also be converted by removal of water 

to an unstable 5,6-epoxide containing a conjugated triene structure called LTA4, which is then 

converted to either LTB4 by insertion of a hydroxyl group at carbon-12 (C-12) through the 

action of LTA4 hydrolase (138, 139) or LTC4 by addition of the glutathionyl group at C-6 by 

γ-glutamyl-S-transferase (140). In most cases LTB4 and 5-HETE are subsequently secreted 

from the cell by an unidentified protein carrier (141). LTC4 is also exported, but by the ATP-

dependent multidrug resistance proteins (142), including MRP1 and MRP2. After export, 

LTC4 is metabolised by the cleavage of glutamic acid by γ-glutamyl transpeptidase to form 

LTD4, which can be further modified by removal of a glycine by cysteinyl glycinase to 

produce LTE4. Unlike COX, 5-LOX is inactive in quiescent cells but becomes enzymatically 

functional after cell activation by increases in intracellular calcium (143) enhanced by ATP 

(144), or by phosphorylation, which can occur without an increase in calcium (145).  

 

Heptahelical receptors of the rhodopsin class located on the outer leaflet of the plasma 

membrane of structural and inflammatory cells mediate the effects of LTs (146, 147). To date, 

four subtypes have been described, B leukotriene receptor 1 and 2 (BLT1 and BLT2), and 

cysteinyl leukotriene receptor 1 and 2 (cys-LT1 and cys-LT2). Once LTs have bound, a signal 

is sent via a G-protein in the cytoplasm to increase intracellular calcium and block formation 

of cAMP, which then alters various cellular activities, ranging from motility to transcriptional 

activation. While Cys-LT1 mediates broncho-constriction, mucus secretion, and oedema 

accumulation in airways (148), Cys-LT2 contributes to inflammation, vascular permeability 
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and tissue fibrosis in lungs (149, 150). Indeed, overexpression of Cys-LT1 is seen in patients 

with asthma or chronic rhinosinusitis who have aspirin sensitivity (151). In contrast, BLT1 is 

a high-affinity receptor for LTB4, mediating all of its chemo-attractant and pro-inflammatory 

properties (147). Although BLT2 acts in a similar fashion to BLT1, LTB4 affinity towards 

BLT1 is much higher.  Interestingly, studies employing both in vitro and a murine model of 

inflammation demonstrate that LTB4 ligates and activates the anti-inflammatory nuclear 

receptor PPAR-α (152-155).    

 

LEUKOTRIENES IN INFLAMMATION 

LTs are generated at sites of infection/inflammation primarily by inflammatory cells, 

including PMNs, macrophages and mast cells and play a critical role in the inflammatory 

response by acting as pro-inflammatory lipid mediators. Physiologically, each of the 5-LOX-

derived compounds has a distinct role in driving different phases of inflammation. For 

example, LTB4 attracts and activates neutrophils, monocytes, and lymphocytes, a hallmark of 

tissue inflammation (147, 156, 157), whereas LTD4 is a potent chemoattractant for 

eosinophils (158). The cysteinyl LTs (LTC4, LTD4 and LTE4) on the other hand increase 

vascular permeability and plasma leakage, leading to oedema that is characteristic of 

inflammation (159-163). Pathologically, LTs contribute to a variety of inflammatory and 

allergic diseases, such as rheumatoid arthritis, inflammatory bowel disease (IBD), psoriasis, 

allergic rhinitis, bronchial asthma, cancer, atherosclerosis and osteoarthritis (164). This can be 

seen in asthmatic patients where antileukotriene therapy (i.e. 5-LOX inhibition by zileuton 

and CysLT1 blockage by montelukast or zafirlukast) resulted in benefitted from improved 

pulmonary function, symptoms, and overall quality of life (165-167).       
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The role of LTs in CV disease has been the subject of intense investigation. In atherosclerotic 

lesions for example, 5-LOX activity/levels are associated with the severity of the lesion (168) 

and plaque instability (169). Furthermore, both LTB4 and cysLTs participate in the 

development of atherosclerotic lesions in animals and in vitro. LTB4 increases recruitment of 

monocytes and their differentiation to foam cells (170), as well as intimal hyperplasia (171). 

CysLTs on the other hand enhance the recruitment of leukocytes into the arterial wall and 

contribute to thrombosis and vascular remodeling (172, 173). Interestingly in humans, the 

incidences of strokes and MI in certain populations has been linked to variants of the genes 

that encode FLAP and LTA4 hydrolase, which cause an overproduction of LTs (174-176). 

Indeed, upon treatment with a FLAP inhibitor (veliflapon), a potent biomarker of 

inflammation, C-reactive protein, was reduced in one population of patients with a history of 

MI and one of the variants mentioned above (177). Despite their pathophysiologic role, it has 

now become apparent that LTs are important participants in the host response against 

infection (178). For instance, 5-LOX-deficient mice or pharmacological inhibition of LT 

synthesis caused increased mortality and reduced microbial clearance after challenge with a 

variety of microbes (e.g. bacteria, mycobacteria, fungi, parasites(179-184). Similarly, LT-

deficient alveolar macrophages also displayed impaired phagocytosis and intracellular killing 

of bacteria, an effect that could be overcome with the exogenous introduction of LTB4 or 

cysLTs (180, 185). Interestingly, LT deficiency is also a feature of a number of clinical 

conditions that are associated with impaired microbial clearance (Human immunodeficiency 

virus [HIV] infection, malnutrition, cigarette smoking, vitamin D deficiency and post-bone 

marrow transplantation) (186-191). It is believed that LTs enhance microbicidal activities in 

leukocytes by upregulating production of nitric oxide (192, 193) and the secretion of 

microbial peptides (194) as well as activating NADPH oxidase to generate ROI (185). 

Recently, it has been demonstrated that LTB4 may also possess anti-inflammatory properties 
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through ligation to PPAR-α in its parent cell (155). It has been suggested that this activation 

in turn leads to its own catabolism thus facilitating resolution of the inflammatory process. 

This hypothesis/theory/stipulation is conceivable  /further demonstrates how inflammation is 

such a finely balanced process that is invoked when required, yet limited and resolved when it 

is no longer needed.    

 

5-OXO-6,8,11,14-EICOSATETRAENOIC ACID 

 5-LOX activity also results in the generation of 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-

ETE), which has potent biological activities that have only recently being appreciated, 

including eosinophil activation and chemoattraction. It is formed by the oxidation of 5S-

HETE by 5-hydroxyeicosanoid dehydrogenase (5-HEDH), a microsomal enzyme widely 

distributed in both inflammatory and structural cells including leukocytes and platelets (195). 

5-HEDH however, cannot generate 5-oxo-ETE without NADP+, which is available in large 

quantities during the respiratory burst, neutrophil apoptosis and oxidative stress (196, 197). 

Other endogenously occurring PUFA (sebaleic acid, Mead acid and EPA) can also be 

converted to analogous 5-oxo-fatty acids following oxidation by 5-LOX forming products 

that are also granulocyte chemoattractants (198-200). Furthermore, both enzymatic and non-

enzymatic pathways can further modify 5-oxo-ETE to produce several additional eicosanoids 

(201).   

 

5-oxo-ETE acts via OXE receptor (OXE-R), a distinct orphan G-protein coupled receptor 

(GPCR) (202, 203) that is most highly expressed in human peripheral leukocytes, lungs, 

kidney, liver and spleen (204, 205). The relative expression of OXE-R in eosinophils, 

neutrophils and macrophages is 200:6:1 (205). OXE-R, once coupled to a Gi/o-protein (197, 

206, 207), activates a number of distinct intracellular signaling pathways including PLCβ 
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(208), PI3K and Akt (206, 208, 209), PKCδ/ζ (210), as well as ERK-1/2 and cPLA2 (210, 

211), which, in turn, could lead to further production of AA-derived metabolites. OXE-R may 

also inhibit the cascade mediated by adenylyl cyclase and cAMP (204).  

 

5-OXO-ETE AND INFLAMMATION 

5-oxo-ETE is produced by eosinophils, neutrophils, basophils and monocytes and like other 

inflammatory lipids it acts in an autocrine manner. In addition to its most potent property as a 

chemoattractant for eosinophils (200), 5-oxo-ETE also induces calcium mobilisation, actin 

polymerisation, CD11b expression, and L-selectin shedding (201). Furthermore, 5-oxo-ETE 

induces degranulation and superoxide production in leukocytes primed with cytokines such as 

granulocyte macrophage-colony stimulating factor (GM-CSF) and TNF-α, an effect not 

mirrored in naive cells (207, 211).  In addition 5-oxo-ETE   stimulates human monocytes to 

secrete GM-CSF (212), which is a potent survival factor for eosinophils. In prostrate tumour 

cells this lipid prevents apoptosis/proliferation (213, 214).   

 

LIPOXINS – BIOSYNTHESIS AND RECEPTORS  

Lipoxins (LXs) are a series of trihydroxytetraene-containing bioactive eicosanoids that were 

first isolated from human leukocytes in the mid 1980’s (13). However, in contrast to LTs and 

5-oxo-ETEs, which are manufactured by intracellular biosynthesis, LXs are generated through 

cell-cell interactions by a process known as transcellular biosynthesis. In different human cell 

types, during the first biosynthetic step of LX biosynthesis, LOX inserts molecular oxygen 

into AA. This can be achieved by two major routes - the first pathway involves the 

oxygenation of AA at C-15 by 15-LOX in eosinophils, monocytes, or epithelial cells (found 

in the respiratory tract, gastrointestinal tract and oral cavity), yielding 15S-HPETE. Following 

secretion, 15S-HPETE is taken up by either PMNs or monocytes and rapidly converted into 
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5,6-epoxytetraene by 5-LOX, which is hydrolysed within these recipient cells by either LXA4 

or LXB4 hydrolase to bioactive LXA4 or LXB4. Interestingly, this process also markedly 

reduces the formation of LTs, which requires 5-LOX to convert AA into LTA4 (215-217). 

Moreover, it has been found that the 15S-HETE synthesised via this pathway can also be 

esterified and stored within the membranes of neutrophils, specifically inositol-containing 

phospholipids. Upon cell stimulation, 15S-HETE is rapidly released and transformed to a 

second signal, such as LXA4, to regulate the function of the neutrophil (218). The second 

major route of LX biosynthesis occurs in a LTA4-dependent manner, involving peripheral 

blood platelet-leukocyte interactions. Leukocyte 5-LOX converts AA into LTA4, which is 

released, taken up by adherent platelets, and subsequently transformed to LXA4 and LXB4 via 

the LX synthase activity of human 12-LOX (219). A third unorthodox route of LX generation 

occurs after the exogenous administration of aspirin (but not other conventional NSAIDs), 

which irreversibly acetylates COX-2 in endothelial cells and other cell types. Rather than 

COX-2 converting AA into PGG2, acetylation causes the transformation of AA into 15R-

HETE (C-15 alcohol carried in the R-configuration). This is then rapidly metabolised in a 

transcellular manner by adherent leukocyte, vascular endothelial or epithelial 5-LOX to form 

15 epimeric-LX (15-epi-LXs) or aspirin-trigged LXs (ATL) that carry their C-15 alcohol in 

the R configuration rather than 15S native LX. ATL’s share many of the anti-

inflammatory/pro-resolution characteristics of the native LXs.  

 

LXA4 and 15-epi-LXs elicit their multi-cellular responses via ALX (FPRL1 receptor), a 

specific G-protein-coupled receptor (GPCR) isolated and cloned in human, mouse and rat 

tissues (220-222). Human ALX was subsequently identified and cloned in several types of 

leukocytes, including monocytes (223) and T cells (224), as well as resident cells such as 

macrophages, synovial fibroblasts (225) and intestinal epithelial cells (226).  One of the 
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functions attributed to ALX is in mediating the multi-cellular responses of LXA4 and 15-epi-

LXs.  Studies in transgenic models have shown its selectivity towards LXA4 and 15-epi-

lipoxin A4 (not for LXB4, LTB4, LTD4 or PGE2) with high affinity (Kd = 1.7nM) [231]. ALX 

also has the ability to interact with other small peptides/proteins such as Ac2-26 and 

glucocorticoid-derived annexin-1, which carry out similar anti-inflammatory effects as LXs 

and 15-epi-LXs. Evidence that the protective effects of LXs and 15-epi-LXs were both 

ligand- and receptor-dependent arose from studies in transgenic mice over-expressing human 

ALX (227-229). In a zymosan-induced peritonitis model, infiltration of neutrophils was also 

substantially diminished in transgenic mice compared to their wild-type equivalents (227) 

with the site of lipoxin action being the leukocyte/endothelial interface mediated by the 

generation of nitric oxide’s anti-adhesive properties (230). 

 

ALX activation inhibits NADPH oxidase assembly, which, in turn, reduces superoxide anion 

generation by neutrophils through accumulation of polyisoprenoid presqualene diphosphate 

(PSDP) (231). Indeed, it has been demonstrated that inhibition of pro-inflammatory genes 

such as neutrophil chemoattractant IL-8 occurs via an ALX-dependent peroxynitrite-mediated 

signaling pathway (232). Moreover, peroxynitrite-induction of IL-8 in response to LPS, TNF-

α or IL-β in human leukocytes occurs via a NFκB and AP-1 dependent pathway (233, 234). 

15-epi-LX analogues also regulate an ALX-dependent p38/MAPK cascade, known to 

promote chemotaxis by inhibiting leukocyte-specific AP-1 phosphorylation and activation 

(235). In addition to ALX, LXs also function as partial agonists to a subclass of rhodopsin 

receptors (CysLT1) more commonly activated by LTs, mediating bioactions in several tissues 

and cell types other than leukocytes (221, 236). At nanomolar concentrations LXA4 has been 

shown to compete for binding with LTD4 on mesangial cells (236) and human umbilical vein 

endothelial cells (HUVECs) (222, 237) as well as opposing the pro-inflammatory effects of 
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LTD4. There is also evidence that another intracellular receptor, the Ah receptor (AhR) 

mediates the bioactions of LXs. This receptor is a ligand activated transcription factor that 

controls several of the biologic actions of LXs, such as increasing the expression of 

suppressor of cytokine signalling 2 (SOCS-2) (238-240).  

 

LIPOXINS IN INFLAMMATION 

Lipoxins are anti-inflammatory at nanomolar concentrations controlling both granulocyte 

(neutrophil and eosinophil) and monocyte entry to sites of inflammation. Yet, while they 

inhibit the transmigration of neutrophils and eosinophils down a chemokine gradient into 

inflamed sites (241-244), they promote non-inflammatory infiltration of monocytes required 

for resolution and wound healing (245), without inducing neutrophil degranulation or release 

of other reactive oxygen species (232). Indeed, the ability of LXs to diminish neutrophil 

trafficking was corroborated when an analogue of 15-epi-LX was intravenously administered 

to BLT1 knockout mice that have dramatically elevated neutrophils in the lungs after high 

limb ischemia-reperfusion (246). Furthermore, research in our laboratory has uncovered in 

humans that 15-epi-LXs regulates PMN influx in forearm blisters, accounting for low-dose 

aspirin’s anti-inflammatory properties (247). Our additional work on resolving inflammation 

has revealed that humans fall into two categories, those who resolved their acute 

inflammatory responses in an immediate manner and those that show a more delayed or 

prolonged healing process, with the severity and duration controlled by endogenous epi-

lipoxins/ALX expression(248).  

 

At sites of inflammation, macrophages are stimulated by lipoxins to ingest and clear apoptotic 

neutrophils (249), which appears to be coupled to changes in the actin cytoskeleton (250). 

Furthermore, lipoxins elevate the levels of the anti-inflammatory cytokine TGF-β1, which, in 
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turn, down-regulates a number of pro-inflammatory pathways (251-253). It is believed that 

these lipids mediators are generated in situ when neutrophils express 5-LOX at the onset of 

resolution as they begin to apoptose (107). LXs may also counteract the fibrotic response and 

thus improve tissue remodelling by reducing the proliferation of fibroblasts and mesanglial 

cells induced by a numbers of factors, including connective-tissue growth factor, platelet-

derived growth factor, TNF-α, LTD4 and TGF-β (254-257). 15-epi-LXs exert the same 

biological effects as endogenously produced LXs, but with additional benefits that increase 

vasorelaxation (258), and induce endothelial cell production of anti-inflammatory nitric oxide 

synthesis (230, 259). Moreover, 15-epi-lipoxin A4 has been found to inhibit TNF-α-induced 

IL-1β in periodontitis in vivo (260, 261), dampen SOCS-2 signalling (262) and inhibition of 

TNF-α-induced IL-8 gene expression (226). Not surprisingly, both LXs and 15-epi-LXs have 

been identified and proven to exert beneficial effects in various experimental models of 

inflammation and human diseases, such as glomerulonephritis (263, 264), 

ischemia/reperfusion injury (246, 254), cystic fibrosis (265), periodontitis (266), acute 

pleuritis (230), asthma (267), wound healing processes in the eye (268), colitis, inflammation-

induced hyperalgesia in rats, various cutaneous inflammation models (269), and microbial 

infection in mice (238, 270, 271).  

 

OMEGA-3 POLYUNSATURATED FATTY ACID PATHWAY  

Omega-3 polyunsaturated fatty acids (ω3-PUFA) have long been known to be important in 

not only in maintaining organ function and health but also in reducing the incidence of 

infection and inflammation (110, 111, 272-275). A clinical trial (GISSI-Prevenzione) 

assessing the benefits of aspirin with and without ω-3 PUFA supplementation in patients 

recovering from myocardial infarctions revealed a significant decrease in mortality in the 

group taking the supplement (276). More recent evaluations have confirmed the importance 
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of ω-3 PUFA in reducing CV disease, and inflammation associated with it (277, 278). It was 

initially hypothesised that fish oils demonstrate their anti-thrombotic, immuno-regulatory and 

anti-inflammatory bioactions by inhibiting PGs and LTs synthesis (279). However, current 

opinion is that it is likely that a series of novel compounds derived from EPA and DHA are 

responsible for eliciting these immuno-modulatory effects. First identified in the resolving 

exudate of a mouse dorsal air pouch or peritonitis model using lipidomic and bio-informatic 

analysis (110, 111, 280, 281), these naturally occurring bioactive lipid mediators are termed 

resolvins, Rvs (derived from ‘resolution phase interaction products’), protectins (PDs) and 

maresins (derived from ‘macrophage mediator in resolving inflammation’). All these ω-3 

PUFA-derived products possess a plethora of stereospecific and potent anti-inflammatory and 

immuno-regulatory actions that are protective in vitro and in vivo (282, 283). 

 

RESOLVINS AND PROTECTINS 

Rvs can be generated from either EPA or DHA and are therefore categorised as either 

members of the E-series (from EPA) or D-series (from DHA). Rvs of both series were first 

isolated in vivo from murine dorsal air pouches treated with aspirin and EPA or DHA. 

Transcellular formation of E-series Rvs can occur with the conversion of EPA to 18R-

hydroxyeicosapentanoic acid (18R-HEPE) by endothelial cells expressing COX-2 treated with 

aspirin. As with 15R-HETE in 15-epi-LX formation, 18R-HEPE can be released from 

endothelial cells to neighboring leukocytes for subsequent conversion by 5-LOX to either 

RvE1 or RvE2, via a 5(6) epoxide-containing intermediate (110, 284). This interaction is 

blocked by selective COX-2 inhibition but not by indomethacin or paracetamol (110). RvE1 

is spontaneously produced in healthy subjects, with levels increasing after treatment with 

either aspirin or EPA (285). D-series Rvs, aspirin-triggered RvD1 (AT-RvD1) and RvD1 are 

synthesised via a pathway involving sequential oxygenations, initiated by 15-LOX or aspirin-
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acetylated COX-2 in the microvascular, respectively, followed by 5-LOX in human 

neutrophils with an epoxide containing intermediate. For AT-RvD1s, DHA is initially 

converted to epimeric 17R-hydroxydocosahexaenoic acid (17R-HDHA). In the absence of 

aspirin, however, DHA is enzymatically converted to 17S-HDHA (108). Interestingly, 

generation of E-series Rvs can also be mediated by microbial and mammalian cytochrome 

P450 enzymes, which convert EPA into 18-HEPE. 18-HEPE can then be transformed by 

human neutrophils into either RvE1 or RvE2 (110). Hence, it is possible that microbes at sites 

of infection may contribute to the production of Rvs in a similar pathway. 

 

DHA also serves as a precursor for the biosynthesis of protectins (PDs) enzymatically 

converted by 15-LOX to a 17S-hydroperoxide-containing intermediate. Subsequently, this 

intermediate is rapidly converted by human leukocytes into a 16(17)-epoxide that is 

enzymatically converted in these cells to a 10,17-dihydroxy-containing compound (108, 286). 

PDs are distinguished by the presence of a conjugated triene double bond and by their potent 

bioactivity. One specific DHA-derived lipid mediator, 10,17S-docosatriene was termed 

protectin D1 (PD1). When generated in neural tissue however, this compound is called 

neuroprotectin D1 (NPD1). Moreover, PD1 exhibits tissue-specific bioactivity as in humans 

this lipid is synthesised by peripheral blood mononuclear cells and Th2 CD4+ T-cells, while 

in mice it has been isolated from exudates and brain cells, human microglial cells (111) and in 

peripheral blood (108).  

 

RESOLVINS AND PROTECTINS IN INFLAMMATION 

One of the broader immunomodulatory properties of RvE1 is its ability to inhibit neutrophil 

and dendritic cell accumulation at sites of inflammation by blocking trans-endothelial 

migration as well as enhancing their clearance from mucosal epithelial cells (110, 285, 287). 
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Other bioactions of RvE1 includes inhibition of neutrophil ROI in response to TNF-α and 

bacterial peptide, fMLP (288), abrogation of LTB4-BLT1 signalling via NF-κB and thus the 

production of pro-inflammatory cytokines and chemokines (251, 289, 290), stimulation of 

macrophages to ingest apoptotic neutrophils (291), enhancement of the percentage of 

phagocytes present in the lymph nodes (292) and upregulation of the CC-chemokine receptor 

5 (CCR5) on late apoptotic neutrophils (10), which terminates chemokine signalling, and 

inhibition of dendritic cells migration. More recently, RvE1 has been demonstrated to regulate 

the leukocyte pro-inflammatory cell surface markers, such as L-selectin, whilst selectively 

disrupting TX-mediated platelet aggregation (293), adding further mechanistic insight into its 

anti-inflammatory/pro-resolution properties. In disease states, RvE1 suppresses 

Porphyromonas gingivalis-induced oral inflammation and alveolar bone loss during 

periodontitis (294), demonstrates protective actions in trinitrobenzene-sulphonic acid-induced 

colitis in mice (272), as well as causing re-epithelisation of mouse cornea after thermal-injury 

(268). Overall, RvE1 initiates resolution of inflammation and causes decreased numbers of 

PMNs at sites of inflammation early during the response, reviewed in (283).  

 

Structure-activity assays have elucidated that RvE1 binds to an orphan G-protein coupled 

receptor belonging to the same cluster as ALX (ChemR23), with a high affinity (Kd = 

48.3nm). This coupling down-regulates the activity of NF-κB and hence TNF-α synthesis, as 

well as initiating signalling pathways involved in initiating mitogen-activated protein kinase 

(MAPK) (285). Indeed, ChemR23 activation has been demonstrated to inhibit one of the most 

prominent RvE1 actions, dendritic cell migration (285). Although it has been found in 

myeloid, gastro-intestinal, kidney, brain, and CV tissue, the percentage of ChemR23 

expression is highly variable. For example, it has been demonstrated that ChemR23 is 

markedly increased on the surface of human monocytes but less so on neutrophils by anti-
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inflammatory mediators such as TGF-β (295). Like ALX, ChemR23 acts as a receptor 

towards peptide ligands, including chemerin that also act as anti-inflammatory mediators 

(296). RvE1 also appears to interact with the LTB4 receptor, BLT1 and act as a partial 

antagonist preventing neutrophil activation (289). Therefore, it can be concluded that RvE1 

couples to two distinct receptors to both suppress pro-inflammatory mechanisms and enhance 

resolution pathways.  

 

RvE2 is a second member of the EPA-derived family of E-series resolvins but is structurally 

distinct from RvE1. In human PMNs, it is generated at higher concentrations than RvE1, but 

is equipotent when given intravenously and additive when administered alongside RvE1 

(292). As with RvE1, RvE2 suppresses PMN migration into the peritoneum after zymosan 

(292). Although it is still unclear what receptor RvE2 couples to, its identification is the 

subject of ongoing research.  

 

D-series Rvs are derived from DHA comprise four bioactive compounds, RvD1, RvD2, RvD3 

and RvD4 (108). Like RvE1, RvD1/D2 exerts both anti-inflammatory and pro-resolution 

properties by blocking neutrophil infiltration, while in contrast enhancing macrophage 

phagocytosis of apoptotic PMNs (297-299). The latter occurs via the binding of RvD1 to 

either ALX or an orphan receptor, GPR32 present on the surface of both PMNs and 

monocytes, the expression of which is upregulated by inflammatory agonists, such as 

zymosan and granulocyte-macrophage-colony-stimulating factor (GM-CSF) (297). 

Interestingly, a member of the D-series Rvs has also been shown to contain microbicidal 

properties in septic mice initiated by cecal ligation and puncture (CLP). RvD2, whose 

receptor is GPR18(300), in addition to blocking peritoneal PMN accumulation markedly 
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reduced bacterial load and pro-inflammatory cytokines, which subsequently led to increased 

survival and improved health (298).  

 

As mentioned above, besides D-series Rvs, DHA also acts as a precursor for the biosynthesis 

of PDs. One member, PD1 has been demonstrated to be synthesised in human brain, 

microglial (111), peripheral blood mononuclear cells and Th2 CD4+ T-cells (108, 286). 

Similarly to Rvs, PD1 exerts potent immuno-regulatory effects that include inhibiting 

neutrophil migration and toll-like receptor-mediated activation (301), suppression of Th2 

inflammatory cytokines and pro-inflammatory lipid mediators (302), as well as the 

upregulation of CCR5 on PMNs (10). PD1 also blocks T-cell migration in vivo and promotes 

T-cell apoptosis (303). In disease states, PD1 has been proven to be protective in experimental 

models of ischemic stroke (109), oxidative stress (304-306), asthma (302), ischemia-

reperfusion renal injury (301) and Alzheimer’s (307). Indeed, Alzheimer’s patients given 

DHA-rich dietary supplements have reduced production of IL-1β, IL-6 and granulocyte-

colony-stimulating factor (G-CSF) in peripheral blood mononuclear cells (308). As with 

RvE2, a receptor is yet to be identified. It is likely however that it couples to a distinct 

receptor to RvE1 as its anti-inflammatory effects are additive with those of RvE1 in vivo.    

 

MARESINS  

Maresins (MaR) were identified in 2008 after 17S-D series Rvs, PDs as well as 14S-

hydroxydocosahexaenoic acid (14S-HDHA) were isolated from the resolution phase of mouse 

peritonitis were added to stimulated resident peritoneal macrophages (281). Macrophages 

then convert these intermediates to novel dihydroxy-containing products, which possesses 

potent anti-inflammatory and pro-resolving properties. Although the exact biosynthetic 

pathway is yet to be elucidated a hypothetical scheme was proposed. It is thought that DHA is 
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converted to 14S-hydroperoxydocosahexaenoic acid (14S-HPDHA; maresin, MaR1) via 12- 

or 15-LOX, followed by either reduction to 14S-HDHA and/or via double dioxygenation (e.g. 

sequential 12-LOX-5-LOX) to generate a metabolome of MaR1, 7S,14S-

dihydroxydocasahexaenoic acid (7S,14S-diHDHA). Though maresins have only been recently 

it has been reported that, as with Rvs and PD1, MaR1 block the infiltration of PMNs, whilst 

stimulating macrophage phagocytosis of apoptotic PMNs/zymosan (281). Its metabolome 

7S,14S-diHDHA was active but less potent.    

 

CYTOCHROME P450  

In the last decade, interest into a third less well-characterised pathway of AA metabolism, 

cytochrome P450 (CYP) has been rekindled. CYP are families of membrane-bound, haeme-

containing enzymes found in the liver, brain, kidneys, lung, heart and the CV system, thought 

initially to be involved in catalysing NADPH-dependent oxidation of drugs, chemical and 

carcinogens (309, 310). It is now well-appreciated that CYPs also catalyse the conversion of 

fatty acids including AA into products which have been denoted epoxyeicosatrienoic acids 

(EETs), hydroxyeicosatetraenoic acids (HETEs) and dihydroxyeicosatrienoic acids (DHETs) 

(311). For instance, AA is metabolised in the vascular endothelium by CYP epoxygenase to 

EETs (312), which can then be converted by epoxide hydrolase to the respective regioisomer 

of DHETs (311). In the vascular smooth muscle, AA is catalysed by CYP hydroxylases to 20-

HETE (313). Indeed, one particular member, CYP4F3 is highly expressed in PMNs 

catalysing the ω-hydroxylation of LTs (314). However, it is unknown whether CYP4F3 is the 

source of 20-HETE produced by PMNs (315). These metabolites play a large and complex 

role in maintaining renal, cardiac, and pulmonary homeostasis by regulating aspects such as 

vascular tone and reactivity, renal and pulmonary functions, ion transport, and growth 
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responses (316-318). Interestingly, they have also been demonstrated to exert potent anti-

inflammatory actions (319-321), detailed below.  

 

CYTOCHROME P450-DERIVED PRODUCTS AND INFLAMMATION  

EETs catalysed by CYPs 2C8, 2C9 and 2J2 prevent the adhesion of PMNs to the vascular 

wall by suppressing the expression of cell adhesion molecules, including intracellular 

adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin 

on the surface of endothelial cells in response to cytokines (TNF-α and IL-1α), and LPS (316, 

321). Mechanistically, this is associated with inhibiting the activation of the transcription 

factor NF-κB via the inhibitor of κB kinase (IKK) (321). As a consequence, EETs may 

therefore have the propensity to down-regulate various cytokine-induced pro-inflammatory 

signalling pathways downstream of NF-κB activation. Indeed, it was recently reported that 

EETs display hyperalgesic bioactions during experimental inflammatory pain (319, 320). It 

was also shown that EETs could directly activate peroxisome-proliferator-activator receptor-

gamma (PPAR-γ) in endothelial cells (322) with EETs-mediated anti-inflammatory effects 

demonstrated to be blocked by PPAR-γ antagonists (322). EETs released from platelets have 

been shown to exert anti-thrombotic properties by inhibiting platelet aggregation induced by 

AA and vascular injury (323-325).  It was also demonstrated that EETs could act in a pro-

fibrinolytic manner by increasing the expression of tissue plasminogen activator in a cAMP-

dependent mechanism, thus suggesting that they could play an important role in controlling 

the fibrinolytic balance in the vessel wall (326). It was suggested that the anti-inflammatory 

properties of EETs occurred through its ligation to a cell surface receptor. It was reported that 

EETs bind with high-affinity to an ‘EET-receptor’ on the surface of a monocytic cell line, 

belonging to a specific class of GPCRs (327). The identity of this receptor and its role, if any, 

in initiating the immuno-modulatory actions of EETs is yet to be determined.       
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CYP hydroxylases metabolites also exhibit anti-inflammatory properties.  Similarly to EETs, 

16-HETE can also block the adhesion of leukocytes to the endothelium (315). In fact, it also 

suppresses the synthesis of LTs as well as inhibiting rises in cerebrospinal fluid pressure 

(index of tissue damage and swelling) in thrombo-embolic model of stroke in rabbits (315). 

Furthermore, 20-HETE and 16-HETE released from PMNs in response to factors that activate 

phospholipase (platelet activating factor, calcium and thrombin) also inhibit TX-induced 

platelet aggregation (328). Therefore, it can surmised that not only do metabolites of CYPs 

maintain renal and CV health, but they also regulate other multiple signalling pathways 

including inflammation, fibrinolysis, platelet aggregation, and cellular injury.            

 

SUMMARY 

Studies on inflammation and its resolution have advanced our understanding of leokocuye 

trafficking, efferocytosis and pro-inflammatory leukocyte clearance as well as immune-

suppressive eicosanoids, specialised immune-regulatory cells and cytokine catabolism. These 

pathways converge on the termination of acute inflammatory responses and contribute to the 

notion that chronic inflammation is avoided and wounds healed in an appropriate 

manner(329, 330). Implicit therein is that tolerance is not compromised making the host 

susceptible to autoimmunity. AA metabolites were once considered pro-inflammatory due to 

the effective usage of NSAIDs in the treatment of chronic inflammatory diseases. While 

NSAIDs have been a valuable treatment in terms of anti-inflammation and pain relief, they 

have recently unmasked beneficial properties of some LOX and COX products. Thus, our 

understanding of eicosanoids in physiology and pathology has come a long way since the 

earliest observations of Kurzrok and Lieb(331). Hence, PGs may drive oedema but prevent 

leukocyte trafficking, while at the same time elevating cAMP and impairing bacterial 
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phagocytosis and killing. However, LTB4/D4 oppose/prevents the immune suppressive actions 

of PGE2, with 5-LOX metabolites thus enhancing macrophage antimicrobial functions/roles, 

including the phagocytosis of IgG-opsonized targets via the FcR. COX/LOX derived 

lipoxins, resolvins and protectins attenuate innate immune responses, aid/ameliorate/promote 

resolution and are proving beneficial in experimental sepsis. Thus, the role of eicosanoids in 

inflammation is most likely dependant on the phase of the response during which they are 

synthesised, tissues affected and the nature of the inciting stimulus with some AA metabolites 

counteracting the bio-action of others but also triggering the synthesis of other families of 

eicosanoids that terminate inflammation. And while eicosanoids act diversely in acute 

inflammation, their role in chronic, non-resolving inflammation may be far more complex. 

That notwithstanding it now appears that not all eicosanoids are bad as some attenuate innate 

immune-mediated functions and accelerate/facilitate their timely resolution. This offers a 

more accurate strategy in treating diseases driven by over-exuberant inflammation.  
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