
PCCP 

Cite this: DOI: 10.1039/c0xx00000x 

www.rsc.org/xxxxxx 

Dynamic Article Links ►

ARTICLE TYPE
 

This journal is © The Royal Society of Chemistry [year] [journal], [year], [vol], 00–00  |  1 

Bond angle variations in XH3 [X=N,P,As,Sb,Bi]: the critical role of 
Rydberg orbitals exposed using a diabatic state model 

Jeffrey R. Reimersab*, Laura K. McKemmish,cd Ross H. McKenzie,e and Noel S. Hushdf 

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 
DOI: 10.1039/b000000x 5 

Ammonia, like water and other first-row molecules, adopts sp3 hybridization (HXH bond angle 107) 
whereas the other members of the XH3 series PH3, AsH3, SbH3, and BiH3 instead prefer octahedral bond 
angles of 90-93.  We use a recently developed general diabatic description for closed-shell chemical 
reactions, expanded to include Rydberg orbitals, to understand the structure, spectroscopy and inversion 
reaction profile of these molecules, fitting its parameters to results from Equation of Motion Coupled-10 

Cluster Singles and Doubles (EOM-CCSD) calculations using large basis sets.  Also, a simplified 3-
parameter effective two-state diabatic model is developed depicting states with electronic configurations 
having doubly occupied either the lone-pair orbital or else the symmetric valence * antibonding orbital.  
Exploiting the close relationships central to the diabatic model that link the properties of the ground state 
with the excited states, we show that the anomalously large bond angle in NH3 arises because the ordering 15 

of the lowest Rydberg orbital and this valence orbital swaps compared to the other molecules.  As a 
result, for NH3 alone, Rydbergization of the * antibonding orbital compresses it to significantly increase 
the resonance energy J  coupling the diabatic orbitals.  The XHX bond angle for the diabatic orbitals is 
found to be a universal constant at acos(-1/5) =  101.5, so that, in the absence of resonance, the expected 
intrinsic HXH bond angle is 86.7.  Depending on the ratio of the resonance energy to the associated 20 

reorganization energy , equilibrium XHX angles can vary from this limiting value up to 120.  The 
diabatic model is also used to reassign bands observed in the one-photon absorption spectrum of NH3 at 
18.3 eV, 30 eV, and 33 eV from Rydberg (formally forbidden) double excitations to (intense) valence 
single-excitation resonances.  Failure of both the traditional and revised versions of the valence-shell 
electron-pair repulsion (VSEPR) theory to explain the ground-state structures in simple terms is attributed 25 

to exclusion of the key physical interactions responsible such as valence orbital compression by the 
Rydberg orbital and the importance of the repulsion of electrons within the same electron pair.

1. Introduction 

In the 1930’s, following very quickly after the introduction of 
quantum mechanics, came what are now known as “diabatic” 30 

models for chemical reactions.1-6  These evoke independent 
diabatic potential-energy surfaces representing reactants and 
products coupled together to make transition states and their 
related non-adiabatic crossing points.7-9  These ideas proved 
extremely valuable in the 1950’s, leading to the modern theory of 35 

electron transfer processes.10-19  A critical feature of the diabatic 
approach has been its ability to unify a large range of ground-
state chemical properties and excited-state spectroscopic 
properties,20 leading to the field of charge-transfer spectroscopy20, 

21 and the subsequent understanding of how primary charge 40 

separation happens during photosynthesis and in  its artificial 
mimics.22  In recent times, diabatic models have been applied to a 
very wide range of chemical processes23, 24 including 
aromaticity25-29 and general chemical reactions,23, 24, 30-32 being in 
particular very successfully applied to proton transfer 45 

processes.33-44  Indeed, it is usual to describe all forms of pseudo 
Jahn-Teller24, 45-47 and Herzberg-Teller48 effects in this form.  

However, general diabatic treatments have traditionally only 

shown partial success compared to the achievements of electron-
transfer theory.  Models have been shown to provide an excellent 50 

description of some significant chemical or spectroscopic 
property24-29 but have failed to address the full range of treatable 
properties using a single set of parameters.  For example, diabatic 
models are extremely successfully used in looking at 
multidimensional reactions involving conical intersections 55 

including the photodissociation of NH3 after excitation to its first 
electronically excited state.49, 50    Such approaches consider only 
the two states of immediate interest, however, excluding the 
manifold of inter-related states, and they are either not 
represented analytically or else involve a large number of 60 

parameters. Two-state diabatic approaches have also been 
described for the inversion reaction of ammonia and the XH3 
series, capturing the key physical insight but not leading to 
comprehensive analyses.51 

Recently, we overcame the fundamental limitation concerning 65 

simple diabatic descriptions by demonstrating that diabatic 
models for electron-transfer fundamentally differ from typical 
chemical processes as they involve radical species rather than 
closed-shell ones.52  The consequence of this is that more than 
one electronic excited state can be made by exciting electrons 70 
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between the critical occupied and virtual orbitals involved in the 
chemical process.  Identifying these critical orbitals is the initial 
challenge facing diabatic analyses, with those specified by 
Valence-Bond theory being a good starting point.53, 54  For the 
ammonia inversion reaction, the NH symmetric bonding (A), 5 

nonbonding (n), and symmetric antibonding (*A) orbitals are 
specified by valence-bond theory, neglecting the degenerate 
bonding (E) and antibonding (*E) valence orbitals, whilst for 
benzene the doubly degenerate HOMO and LUMO orbitals are 
required. For ammonia, we have found that A is only weakly 10 

involved and so can be ignored in the simplest diabatic 
approach,52 justifying this usual and qualitatively very successful 
practice.51, 55  The n to *A interaction thus generates 3 electronic 
states (the ground state g, the n*A singly excited state s, and 
the n*A,n*A doubly excited state d), all of which are 15 

coupled together by the same strong vibronic coupling.  A similar 
but more complex scenario arises also for benzene for which 7 
coupled electronic states are implicated.52   

Having established the importance of including all states in 
quantitative analyses, we also showed that such complex 20 

descriptions can be reduced to effective two-state models.  This 
makes available the wide range of results developed for electron-
transfer theory and widely applied historically to more general 
problems, except that now the two-state model parameters 
become renormalized in a property-dependent fashion.52  This 25 

explains why previous generalized 2-state diabatic approaches 
have failed to be universal as different parameters are required to 
describe say the ground-state structure and the excited-state 
manifold.  Using our modified theory it is possible, for example, 
to deduce diabatic C-C and C=C bond lengths of 1.53 Å and 1.31 30 

Å, respectively, based on the observed value in benzene (1.41 Å) 
and excited-state spectral data only; similarly, we showed that, in 
crude calculations ignoring Rydberg states, it is possible to 
deduce the equilibrium bond angle and well depth for NH3 
inversion from spectroscopic data obtained at the planar geometry 35 

only.52  Conversely, it is possible to estimate spectroscopic 
transition energies knowing only the shape of the ground-state 
potential-energy surface, and herein we analyze the latest full-
dimensional experimentally derived56-59 and theoretical60    
surfaces as well as those produced from high quality calculations.    40 

Our previous work focused on general principles appropriate 
to many reactions, interpreting calculated data obtained using 
minimal basis sets to avoid introducing interfering spectator 
chemical features;52 NH3 was chosen as one of the example 
systems. Here we consider the extended XH3 series of molecules 45 

NH3, PH3, AsH3, SbH3, BiH3,  using high-level computational 
methods.  These methods can quantitatively depict the properties 
of all states of the molecules of interest, providing comprehensive 
insight into the molecular chemical and spectroscopic properties.  
Our original 3-state diabatic model is expanded to a 6-state one, 50 

including all transitions associated with the lowest-lying X s 
Rydberg molecular orbital.  While the calculations depict 
transitions involving many other Rydberg orbitals, inclusion of 
just this single orbital is found to be sufficient to allow for 
quantitative analysis.  This is a significant result as, for NH3 for 55 

example, the energies of the valence states of interest lie above 
not only the lowest (vertical) Rydberg transition n3s, which is 
observed at 6.5 eV61 and leads to the first ionization potential (IP) 
n at 10.9 eV,62 but also the states associated with the IPs 
observed at 16.4 eV and 27.3 eV for the E and A 60 

ionizations, respectively.63 
The simplest method for predicting qualitative molecular 

structure is valence-shell electron-pair repulsion (VSEPR) 
theory.64-66  In its original form,64 this predicts that XH3 

molecules containing a lone pair have 4 valence-shell electron 65 

pairs and thus adopt a basic tetrahedral electron-pair structure.  
However, lone-pairs occupy more angular area than do 
electronegativity-sensitive bonding electron pairs and hence HXH 
bond angles are predicted to be compressed below the tetrahedral 
value of acos(-1/3) = 109.5.  Ammonia is (still) listed as a classic 70 

example of this effect.66  However, substituted molecules like 
N(SiH3)3 can have no barrier66 and be planar with 1200 bond 
angles while PH3, AsH3, SbH3, and BiH3 have bond angles of 
93-90, typical of octahedral coordination.  The observation of 
angles near 900 is interpreted as being accidental and a result of 75 

the hydrogen ligands being equivalently (or even slightly 
excessively) electronegative compared to the central atom.  As a 
result, electrons are drawn to the ligands and hence the bonds 
occupy much smaller solid angles than does the lone pair.  Also 
the planar molecule is similarly attributed to a large 80 

electronegativity difference pushing electrons onto the central 
atom, the problem being that an infinite electronegativity 
difference should generate 4 equivalent electron pairs and hence 
the limiting structure is actually tetrahedral. 

In later developments of the VSEPR theory, the observed near 85 

90 angle was initially attributed to bonding electron pairs not 
repelling until nearly this angle was reached,65 leading to the 
modern version of the theory in which inter-ligand repulsions 
take on a central, semi-quantitative, role.66  In this new approach, 
the bond angles of NH3-BiH3 and N(SiH3)3 are determined purely 90 

by the “ligand radii” of the different XH bonds involved.65  This 
analysis can be summarized simply in terms of an unstated 
principle: lone-pairs always expand to cover as much angular 
domain as possible, subject to the constraints imposed by the 
ligand radii.  The native bonding pattern in this system is 95 

therefore octahedral (rather than tetrahedral as per the original 
VSEPR theory), with inter-ligand repulsions pushing the HXH 
angle out from 90 to 93 for PH3 to 107 for NH3 and finally to 
120 for N(SiH3)3.  This interpretation also explains the 
structures67 of related molecules like SiH3

+ (bond angle 120, no 100 

lone pair electrons so inter-ligand repulsions fully control the 
structure), SiH3

-  (bond angle 93, two lone pair electrons expand 
to fill octahedral coordination sites until the ligand radii are 
engrossed upon), and SiH3

 (bond angle 111, one lone pair 
electron only partially push the ligands back). 105 

While modern VSEPR theory can account for the ground-state 
structures of the XH3 series, this description is complex and 
involves many specifically set parameters.  The theory does not 
consider spectroscopic properties at all, however. Here, we seek 
for a simpler, diabatic, description of the factors controlling 110 

spectroscopy and hybridization.  It is based on the assumption 
that diabatic hybrid sp orbitals of form 21/2(s p) on the central 
X atom change little in nature as a function of the torsional 
bending angle.  Resonance-driven mixing of these orbitals that 
changes as a function of the torsional angle then simultaneously 115 

generates the well-known adiabatic lone-pair and *A orbital 
properties of the system.  Orbital following68 and symmetry then 
demands that the equilibrium structure of the diabatic states has 
HXH angles oriented in the same directions as the XH bonding 
orbitals that form orthogonal to the sp hybrids.  Also, moving an 120 

electron between the diabatic orbitals at this optimal geometry in 
the presence of the hydrogens costs a considerable amount of 
energy, known as the reorganization energy. At its simplest level, 
understanding the properties of the XH3 molecules in the diabatic 
description comes down to the determination of 3 effects: the 125 

resonance energy, the diabatic minimum-energy angle, and the 
reorganization energy.  However, the Rydberg states of NH3 
strongly interfere with the valence states in a process described 
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by Mulliken as “Rydbergization”,69 and its importance in 
determining the ground-state structure and well depth is revealed 
by the diabatic analysis. 

2. Methods 

Ab initio electronic-structure calculations of potential-energy 5 

surfaces are performed using the MOLPRO package.70  Two 
types of state energies are reported, those obtained using 
complete-active space self-consistent field (CASSCF) 
calculations with n electrons distributed amongst m orbitals, 
CAS(n,m),71-73 and those obtained using equations of motion 10 

coupled-cluster singles and doubles theory (EOM-CCSD).74, 75  
The XH bond lengths RXH are optimized for each structure using 
2nd-order Møller-Plesset perturbation theory (MP2)76 for the 
CASSCF calculations and the native CCSD method for the EOM-
CCSD calculations. Some reference single-point calculations are 15 

also performed using perturbative corrections for triples, 
CCSD(T).77  Also, spectroscopic calculations including transition 
moments are evaluated at equilibrium geometries by the SAC-CI 
method,78 which is very similar to EOM-CCSD,79 using 
GAUSSIAN,80 as well as by the semi-empirical complete neglect 20 

of differential overlap (CNDO) methods CNDO/S81, 82 and 
CNDO/2,88, 89 and the intermediate neglect of differential overlap 
(INDO) method INDO/S,83 all using our own multi-reference 
configuration-interaction program.84, 85 

A wide range of basis sets are used for calculations on NH3 25 

including the minimal basis STO-3G,86 6-31G*,87 and the double-
zeta to quad-zeta series cc-pVDZ, cc-pVTZ, and cc-pVQZ,88-90 as 
well as the augmented and doubly augmented sets aug-cc-pVDZ, 
aug-cc-pVTZ, and d-aug-cc-pVDZ.91  Always a compromise 
must be made between basis sets that reproduce experimental 30 

data to very high accuracy and those for which the results are 
easily interpretable.  Mostly we are concerned with the 
description afforded of the valence states and of, in particular, the 
lowest Rydberg state.  As the lowest Rydberg state involves 
considerable mixing with the valence states, it is found to be 35 

described at a useful level even by the 6-31G* basis.  Augmented 
basis sets lead to the calculation of very many orbitals and states 
that are spectators to the processes of interest and therefore make 
analysis difficult.  Hence for all molecules except NH3 we use 
basis sets without augmented functions.  STO-3G is used for P, 40 

As, and Sb and also cc-pVDZ92 and cc-pV(T+d)Z93 for P, and cc-
pVDZ-PP and cc-pVTZ-PP for As, Sb, and Bi.94  Also for, As, 
Sb, and Bi, the relativistic effective core potentials ECP10MDF, 
ECP28MDF, and ECP60MDF are used, respectively.95  In 
addition, for N and As, the STO-3G basis set is augmented by a 45 

single s function with  = 0.07 au and 0.045 au, respectively, in a 
basis we name aSTO3G.  This provides a useful description of 
the nitrogen 3s Rydberg orbital and its associated spectroscopy, 
for example.  High-quality single-point energy calculations on the 
ground states of all molecules are performed using the aug-cc-50 

pwCVQZ basis for H, N, and P, and aug-cc-pwCVQZ-PP for As, 
Sb, and Bi.88, 91, 96 

3. Results 

a) Full diabatic model including Rydberg states 

Previously, we showed that the simplest diabatic model 55 

descriptive of chemical reactions like XH3 inversion, dominated 
by one closed-shell orbital and one unoccupied orbital, involves 3 
parameters depicting the complex adiabatic potential-energy 
surfaces of 3 electronic states.52  Here, the occupied orbital is the 
lone-pair orbital n, which is always the highest-occupied 60 

molecular orbital (HOMO), while the unoccupied orbital is the 

valence *A orbital, which is sometimes the lowest-unoccupied 
molecular orbital (LUMO). These three electronic states may be 
represented equivalently as either coupled localized diabatic 
states with different equilibrium geometries named L, C, and R, 65 

or as coupled delocalized diabatic states representing the 
molecular ground, singly excited, and doubly excited states G, S, 
and D, respectively, 

  
or else as the related uncoupled adiabatic states g, s, and d, 70 

respectively.  Specifically, the L and R diabatic states represent 
XH3 molecules in one bent conformer and in its inverted variant.  
The parameters may be chosen from amongst the (interrelated) 
electronic coupling J, the reorganization energy , the force 
constant k, the localized-diabatic state minimum-energy torsional 75 

angle m, or the delocalized-diabatic vibronic-coupling constant  
depicting the properties of interacting localized harmonic 
potentials in a single reaction coordinate variable.52  This simple 
description assumes that the coupling between G and S is the 
same as that between S and D, which is in general not true, and so 80 

the simplest model capable of quantitative analysis requires two 
more parameters to include this variability.  Further, for very 
large-amplitude motions such as those involved with XH3 
inversion, anharmonicities are important.  The full inclusion of 
anharmonic and non-Condon effects at a consistent level required 85 

6 additional parameters, making an 11 parameter model.52  This 
model can be expressed in terms of a delocalized diabatic 

Hamiltonian 3DH  whose matrix elements in the  , ,G S D   

diabatic-state electronic basis are: 

 3 2 44
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where   is the XH3 improper torsional angle97, 98 that is related to 
the HXH bond angle  by 

   22cos 3sin 1   ,  (2) 
and T is the kinetic energy operator 

  
2

22
T

 





   (3) 100 

with '  the associated moment of inertia (which is coordinate 

dependent), two electronic couplings GJ   and DJ  specify the G-

S and S-D energy gaps of the diabatic states at the planar D3h 
geometry ( 0  ), respectively, G  and D  specify the 

associated G-S and S-D vibronic couplings /G S   H  105 

and /S D   H , respectively, and the higher-order 
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contributions are 4k ,  , G , D , G , and D .  Previously,52 

we found that calculated potential-energy curves contain 
insufficient information to fit all 6 higher order corrections and so 
we proceed by enforcing 
   0G D     ,    (4)     5 

leaving just 8 free parameters to be fitted. 
Applying a simple coordinate-independent transformation to 

the  , ,G S D  delocalized diabatic electronic basis states 

produces the localized diabatic basis states  , ,L C R  in which  

3DH  is equivalently represented as 3LH where 10 

22
3

,

2 3 44
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and 

    and G D
mG mDk k

     .  (6) 

In the 5-parameter model in which all higher order corrections 

4k ,  , G , D , G , and D  are ignored, the L and R 20 

localized diabatic surfaces have minima at 

   
2

mG mD  
   .   (7) 

If only two states (e.g., G and S or S and D) are involved, as is the 
case for electron-transfer reactions, then the localized diabatic 
states would have minima at say  or mG mD     .  It is 25 

therefore convenient to define harmonic reorganization energies 
as 

 
2 2

2 22 2
2  and 2G D

G mG D mD
k k

k k
k k

        . (8) 

However, it is also convenient to define the actual diabatic 
minima for XH3 inversion as the renormalized quantities 30 

  2  and 2dmG mG dmD mD       (9) 

from which related HXH bond angles dmG and dmD  can be 

defined using Eqn. (2).  
Important analytical expressions available for this model 

include those for the second and fourth derivatives of the 35 

adiabatic potential-energy surfaces at the planar D3h geometry, as 
well as these inverted to give JG, JD, G, D, k,  4k ,  , G , 

D , G , and D  analytically in terms of the derivatives and 

associated state energies.52  In this way, realistic descriptions of 
all of the complex anharmonic potential-energy surfaces can be 40 

obtained performing calculations at a single geometry only.  This 

connection is what gives diabatic models their great power.  
Analytical derivatives are also available at the ground-state 
equilibrium geometry of double-welled potentials for use in 
interpreting observed spectroscopic data.52 45 

To include the effect of Rydberg transitions, this 3-state model 
is expanded to include all transitions associated with the lowest-
lying Rydberg molecular orbital which is, for example, the 
nitrogen 3s orbital for NH3: 

 50 

where the n3s Rydberg excitation is named R, the n3s,n3s 
double Rydberg excitation is named DR, and the n*A,n3s 
combined Rydberg + valence excitation is named RV.  Our 
diabatic analysis is performed at the level of electronic states 
rather than at the orbital level, however, and the quantum 55 

chemical calculations reveal already mixed orbitals, meaning that 
this notation, and the Hamiltonian functional form that comes 
with it, is only approximate. Nevertheless, in the expanded 

 , , , , ,G S D R RV DR  delocalized diabatic basis, the electronic 

Hamiltonian H6D is H3D augmented with the matrix elements 60 

   

6
,R

6 6
, ,

6
,

6 6 6
, , ,

2

D
R R

D D
RV RV V V R D G

D
DR DR R R

D D D
R V DR RV D RV RV

H E

H H E J J

H E

H H H V


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  

  

   (10) 

involves three new parameters, the unperturbed Rydberg state 
energy RE , the on-site repulsion R between two electrons 

occupying the Rydberg orbital, and the Rydberg-valence 
interaction energy RVV .  Note that this functional form 65 

represents the electronic interactions for the mixed double 
excitation as the sum of half of those for the double-valence and 
double-Rydberg excitations, averaging the on-site repulsion 
energies.  While this is a crude approximation in general, it 
appear to work very well for the XH3 series and considerably 70 

simplifies identification of the correct assignments of the 
calculated data. 

What results is thus a 6-state diabatic model containing 11 free 
parameters.  Diagonalization of H6D parametrically as a function 
of torsional angle leads to 6 adiabatic Born-Oppenheimer 75 

potential-energy surfaces.  Using parameters appropriate for XH3 
inversion reactions, this process yields 6 surfaces with properties 

similar to those of the original  , , , , ,G S D R RV DR  diabatic 

basis states and so the adiabatic surfaces are accordingly named 
g, s, d, r, rv, and dr. 80 

b) Reduction to an effective 2-state model 

Most commonly, diabatic models are applied as 2-state 
approaches23-31, 33-44 and it was only recently that we showed that 
multi-state treatments are essential for quantitative analysis of 
closed-shell reactions.52  However, a critical concept is the notion 85 

that the ground-state can be considered to have a “twin” state 
whose properties in an effective 2-state model are intricately 
linked to those of the ground state.  This is an old concept25-29 but 
previously the identity of the twin state was incorrectly assigned, 
and our contribution has been to determine just what it is.52  For 90 

XH3 inversion, the twin state is the double valence excitation D. 
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While the inclusion of Rydberg states considerably complicates 
this scenario, the basic qualitative ideas remain sound.  The 
simplest approach is to ignore the introduced perturbations and 
define an effective 2-state Hamiltonian in a localized-diabatic-

state basis  ,L R  as52 5 
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If the ground-state surface is double welled then these parameters 
may be determined from simple properties of the adiabatic 10 

potential-energy surfaces obtained using electronic structure 
computation methods as 
  

 

2

1/2‡ 2
2 2 2

1/22
2

2
2

(0) (0)
,

4

( ) 4 ,  and

2
1

d g

m e

J

E J E J E

J

 



 







        

          

‡ ‡  (13) 

where (0)g  and (0)d  are the values of the ground-state and 15 

doubly excited state energies at the planar D3h geometry =0, 

respectively, and ‡E  and e are the well depth and equilibrium 
geometry of the adiabatic ground-state, respectively.52  If the 
diabatic potentials are harmonic then 2  is also unexpectedly but 

simply given as half of the vertical excitation energy at the 20 

adiabatic equilibrium bond angle, a quantity that can be readily 
accessible both computationally and spectroscopically.52  
Formulae revised to include the diagonal correction to the Born-
Oppenheimer approximation are available99 but the effects are 
negligible for the XH3 series.  Alternatively, for single-welled 25 

ground states, these parameters may be obtained as  
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c)  Calculated ground-state adiabatic potential-energy 30 

surfaces and their relation to experiment. 

Table 1 gives the properties of the ground-state adiabatic 
potential-energy surfaces for the XH3 series evaluated using the 
CAS(2,2) (at MP2 geometries) and CCSD methods with, for 
CCSD, basis sets ranging from minimal to quadruple zeta.  These 35 

are compared therein to available experimental data as well as to 
CCSD(T)/aug-cc-pwCVQZ values.  Results for CCSD at the 
triple-zeta (TZP) level are accurate to 0.03-0.09 eV (0.7-2.1 kcal 

mol-1) for the well depths ‡E for, in order, NH3 to BiH3.  They 
are also accurate to within 1 in the HXH equilibrium bond angle 40 

e for all molecules.  This accuracy is sufficient for our purposes 
as the diabatic-model fits to the ground-state and excited-state 
surfaces (given also in the table) can only reproduce the original 
calculated data to about this accuracy.  Higher-level calculations 
do achieve much greater accuracy,100-106 however, and indeed in 45 

modern times are used in extensive diabatic models to fit entire 
ground-state potential-energy surfaces with high accuracy.  The 
deduced model parameters may be twigged slightly to reproduce 
extensive observed spectroscopic data sets to generate 
“experimental” ground-state surfaces for NH3,

56, 57 PH3,
58 SbH3,

59 50 

and BiH3.
60  At this level of accuracy, the diagonal correction to 

the Born-Oppenheimer approximation must be taken into 
account, but such treatment is not necessary herein. 

d) Calculated vertical excitation energies including new 
assignments for the VUV absorption spectrum of NH3. 55 

In Table 2 are compared calculated and observed spectroscopic 
properties of NH3. In total 7 vertical excitations are considered, 
those to the r (n3s), dr (n3s,n3s), and s (n*A) states 
used in the diabatic model as well as for the valence excitations 
n*E, E*E (which has allowed transitions of both a’ and e 60 

symmetry), and E*A. The observed absorption of NH3 has its 
first maximum at 6.5 eV corresponding to the Rydberg absorption 
r, leading to vertical ionization n at 10.9 eV.62  Observed and 
calculated vertical ionization potentials for all of the XH3 
molecules  are given in Table 3 and these, along with the energy 65 

of the r band, are reproduced quantitatively by the best 
calculations.  In particular, the cc-pVDZ – cc-pVQZ basis sets are 
in error by only 1.2 – 0.6 eV for the energy of r, despite the 
absence of augmented functions in the basis set.  This near-
quantitative agreement is exploited throughout this work to allow 70 

easy description of the effects of the Rydberg transitions on the 
valence states. 

Absorption at 16.3 eV and 25.3 eV is also observed to Rydberg 
bands leading up to the ionization potentials for E and 
A at 16.4 and 27.3 eV, respectively.109  Two other broad 75 

bands are also observed centred at 18.4 eV and 31.5 eV, although 
originally only part of the 18.4 eV band was in the observable 
range and so this band was first assigned at 22 eV whilst the 
higher-energy band was observed partially resolved into 
components at 30 eV and 33 eV.63  Both systems were attributed 80 

to double excitations, despite the typically low oscillator strength 
for such bands in one-photon spectroscopy.63, 109 

The 18.4 eV band was assigned to the dr-type series transitions 
n3s,n? leading up to an observed very weak ionization 
process at 24 eV involving r excitation plus ionization, 85 

n3s,n.112  This would appear feasible as the isolated 
ionization process n occurs at 10.9 eV whilst the r absorption 
n3s occurs at 6.5 eV, summing to 17.4 eV, amidst the observed 
band.  However, the depression of the lowest Rydberg transition 
n3s to 6.5 eV, 4.4 eV lower than the ionization continuum 90 

n, occurs because of the strong interaction between the r and  
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Table 1.  Observed properties of XH3 compared to calculated adiabatic potential-energy surface minima and those from various fits of the angular 
potential to a diabatic form containing # free parameters: RXH- equilibrium XH bond length, e- equilibrium torsion angle, e- corresponding equilibrium 
HXH bond angle (Eqn. 2), ‡E - activation energy for inversion. 

XH3 Method Basis # RXH / Å  e /   e /   ‡E / eV 

    
Obsa 
[BC]f 

Calc  Obsa Calc Fit  Obsa 
[BC]f 

Calc Fit  Obs 
[BC]f 

Calc Fit 

NH3 CAS(2,2) STO-3G 8 1.016 1.055  21.4 25 25  107.5 104 104  0.220b 0.54 0.54 

 CAS(2,5) aSTO-3G 11 [1.010] 1.050  [22.0] 25 23  [106.8] 104 105  [0.231] 0.62 0.65 

 
CCSD STO-3G 8  1.070   28 28   100 100   0.82 0.81 

 
CCSD aSTO-3G 11  1.057   29 27   98 101   1.20 1.24 

 
CCSD 6-31G* 11  1.021   23 21   106 108   0.30 0.41 

 
CCSD cc-pVDZ 11  1.026   25 23   104 105   0.37 0.39 

 
CCSD cc-pVTZ 11  1.013   23 22   106 107   0.27 0.30 

 
CCSD cc-pVQZ 11  1.010   22 23   107 106   0.24 0.24 

PH3 CCSD STO-3G 11 1.420 1.412  32.9 34 33  93.3 92 93  1.38ci 2.90 2.92 

 CCSD cc-pVDZ 11 [1.412] 1.43  [32.5] 33 31  [93.9] 94 96  [1.440] 1.59 1.48 

 CCSD cc-pV(T+d)Zg 11  1.414   33 30   94 97   1.50 1.50 

 
CCSD cc-pV(T+d)Z 11  1.414   33 29   94 99   1.50 1.49 

AsH3 CCSD STO-3G 11 1.520 1.491  33.8 34 33  92.0 92 93  1.38ij 2.42 2.44 

 CCSD cc-pVDZ-PP 11 [1.518] 1.526  [33.5] 34 33  [92.5] 92 93  [1.760] 1.93 1.88 

 
CCSD cc-pVTZ-PP 11  1.518   34 32   93 95   1.82 1.78 

SbH3 CCSD STO-3G 11 1.709 1.677  34.2 33 32  91.5 93 94  1.63di 2.00 2.03 

 CCSD cc-pVDZ-PP 11 [1.711] 1.716  [33.7] 34 33  [92.2] 92 93  [1.916] 2.07 1.97 

 
CCSD cc-pVTZ-PP 11  1.716   34 33   92 93   1.99 1.92 

BiH3 CCSD cc-pVDZ-PP 11 1.788 1.804  35.1 35 35  90.3 91 91  1.67ei 2.75 2.86 

 
CCSD cc-pVTZ-PP 11 [1.797] 1.804  [34.8] 35 33  [90.7] 91 93  [2.549] 2.65 2.55 

a: From Jerzembeck et al.;107  b: From. Yurchenko et al.56 and Huang et al.,57 traditional Swalen and Ibers98 value 0.25 eV; c: From Sousa-Silva et al.;58  d: 
From Yurchenko et al.;59  e: From Yurchenko et al.;60   f: Best calcualtion we perform, CCSD(T)/aug-pwCVQZ but without Born-Oppenheimer 5 

breakdown or spin-orbit corrections.  g: alternative assignemnt with r below s; h: alternatively106 RNH = 1.012 Å,  e = 22.1, e = 106.7; i: 
experimental data only available up to ~ 0.5 eV in the torsional mode; j:From Costain and Sutherland.108 

Table 2:  Comparison of observed and calculated SAC-CI (very similar to EOM-CCSD)79 ground-state vertical excitation energies for NH3, in eV. 

Basis r dr s  n*E E *E (a’) E *E (e) E *NH 

STO-3G - - 14.6 16.0 28.7 25.1 22.2 

cc-pVDZ 7.7 24.4 23.4 20.0 26.1 26.8 29.5 

cc-pVTZ 7.3 23.8 18.6/19.7 20.5 27.6 26.3 24.7 

cc-pVQZ 7.1 23.5 19.0/25.4 18.1 24.3/32.8 23.8/33.0 27.8 

aug-cc-pVDZ 6.5 ~28 25.4 21.4 27.5 27.9 30.8 

d-aug-cc-pVDZ 6.5 ~28 20.6/28.1 23.5/25.5 29.3 

aug-cc-pVTZ 6.5 28.1 16.2/26.7 16.4/23.7 23.6/30.1 22.3/28.7 21.8/31.7 

Observed 6.5 a 
 

18.4b 30 and 33, broadb 

a:  From Robin61; b: From Ishikawa et al.109. 
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Table 3. Observed, calculated EOM-CCSD/VTZ and fitted vertical 
excitation energies to the valence (s), double valence (d), and Rydberg (r) 
states of XH3 molecules, in eV, as well as the CCSD(T)/aug-cc-PVQZ 
calculated and observed vertical ionization potentials, in eV. 

 5 

X 
s  d  r  Vert. IP 

Cal Fit  Cal. Fit  Cal Fit  Cal Obsb 

N 18.6 18.4 
  

43.4 
 

7.3a 7.5  10.9 10.9 

P 7.9c 8.0 
 

19.9 20.2 
 

14.1 13.2  10.6 10.6 

As 7.7 7.6 
  

19.7 
 

13.2 12.4  10.5 10.5 

Sb 7.4 7.1 
 

18.4 18.2 
 

11.3 10.8  9.8 10.0 

Bi 7.3 6.6 
 

16.1 15.7 
 

11.9 11.1  10.0  

a: obs. 6.5 eV;61  for convergent calculations using larger basis sets see 
Table 2. b: From Potts and Price;62  c: Obs. 6.9 eV.110, 111 

s states, and as a result the calculations always place the dr 
excitation n3s,n3s at higher energy than that of the full 
ionization n3s,n.  Hence the calculations do not support the 10 

concept that significant absorption n3s,n? occurs at energies 
6 eV less than the ionization potential of 24 eV.  Also, the 
calculations do not suggest that the transition moment of this 
band could be sufficient to provide the observed absorption. 

The broad bands observed in the 27-35 eV range with possible 15 

maxima at 30 and 33 eV are very intense, comparable with those 
of the strongest Rydberg transitions.  All double excitations 
manifested in the calculations are weak to very weak and could 
not be reasoned to account for the major part of the observed 
absorption. 20 

Originally, the possibility that the unassigned absorption could 
be attributed to resonances associated with valence excitations 
was not considered. All calculations indicate that the n*A 
band s is very weak and therefore unlikely to be directly detected 
in the experiments.  However, the E*E system is predicted to 25 

yield a very strong in-plane (e) transition and a strong axial (a’) 
transition comparable to the intensities of Rydberg bands, while 
E*A is predicted to be of medium strength and the n*E to 
be weak.  Table 2 shows that n*E is predicted to lie near to 
the observed weak band at 18.4 eV, whilst the other bands are 30 

predicted in the vicinity of the intense absorption in the 26-20 eV 
region using valence basis sets. Adding augmented functions to 
these basis sets allows better representation of the Rydberg states 
but basis-set dependent resonances with the valence states are 
predicted, distributing the single-excitation intensity of the 22-33 35 

eV range.  While calculations in which the Rydberg and 
continuum orbitals are represented using say Green’s functions 
(rather than the discrete representation used herein) are required 
for an authoritative assignment, it seems reasonable to reassign 
the 18.4 eV band to the n*E resonance and the 30 eV and 33 40 

eV systems to a E*E and/or E*A resonance combination. 
Specifically, the n*E band is predicted to be at 16 eV by 

STO-3G, changing to 20, 21, and 18 eV as the valence basis set is 
increased from double to quad zeta.  Adding a single set of 
augmented functions pushed the band up by 1 eV but adding a 45 

second set introduces an accidental resonance that splits the band 

into components of which the most obvious appear at quite high 
energy, 23.5 and 25.5 eV.  Considering only the easily 
interpretable results, the calculations appear to support 
assignment of the observed 18.4 eV band to this resonance. 50 

Concerning the development of diabatic models to understand 
the ground-state structure, what Table 2 shows is that the 
conclusion that the dr double excitation n3s,n3s occurs at ca. 
4 times the energy of the single r excitation n3s is maintained 
independent of basis set and is therefore a robust feature of the 55 

calculations.  Similarly, the critical valence excitation s is 
robustly described.  It is upon these properties that the diabatic 
model is based and conclusions concerning why NH3 has a 
qualitatively different bond angle to the other series members are 
drawn.  Tables 1 and 3 combine to show how the calculations 60 

reproduce other experimental data for the whole of the XH3 
series. 

e)  Potential-energy surfaces fitted with the 11-parameter 6-
state diabatic model. 

Table 4 gives the diabatic parameters fitted to a wide range of 65 

electronic structure calculations performed for the XH3 series.   
i. Properties of NH3 evaluated using the STO-3G and aSTO-
3G bases.   

 Fig. 1 shows the calculated and fitted surfaces for NH3 
obtained using small basis sets only.  These small basis sets are 70 

the minimal STO-3G basis that allows for valence excitations 
only plus that augmented by a single N s function to crudely 
introduce the 3s Rydberg transition.  Results are shown for both 
CASSCF and EOM-CCSD calculations.  The EOM-CCSD 
calculations equally include all orbitals but preferentially treat the 75 

ground-state with respect to the single excitation and the single 
excitation with respect to the double excitation, whereas the 
CASSCF calculations treat each state equivalently but non-key 
orbitals are included inconsistently. 

For the STO-3G basis only the simplest CASSCF calculation 80 

CAS(2,2) is needed, whereas CAS(2,5) is used for the aSTO-3G 
basis, including all unoccupied orbitals to allow for orbital 
switching as a function of geometry.  An advantage of the 
CASSCF method is that only a limited number of excited states 
are manifested. The CAS(2,2) calculations produce only the key 85 

3 valence states g, s, and d.  However, the CAS(2,5) calculations 
deliver 7 states whereas only 6 (g, s, d, r, rv, dr)  are anticipated.  
The additional state is the n*E,n*E double excitation and 
is easily identified and eliminated. However, identifying the 
nature of the other 6 states can be difficult as one must decide 90 

which order to place s and r (i.e., is the valence state lower or 
higher in energy than the 3s Rydberg state), with a follow-on 
problem for d, rv, and dr.  We proceed by examining the form of 
the orbitals and the partitioning of the excited-state 
wavefunctions into contributions involving different orbital 95 

excitations.  The *A orbital is characterized by its valence 
antibonding nature whilst the Rydberg orbital is characterized by 
out-of-phase combinations of the Gaussians that dominate the N 
2s and 3s orbitals, making identification straightforward.   

All possible excited states made from single or double 100 

excitations of the CCSD reference are manifested in the EOM-
CCSD calculations, and hence these intrinsically require more 
complex analysis. However, by noting the orbital compositions
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 Table 4.  Diabatic-model potentials containing # free parameters fitted to calculated ground and excited-state potential energy surfaces of XH3 molecules. 

XH3 Method Basis #  JG JD G D k G D k4 ER R VRV 

     eV eV meV/ meV/ meV/2 meV/3 meV/3 eV/4 eV eV eV 

NH3 CAS(2,2) STO-3G 8  6.09 7.64 0.264 0.343 7.61 -0.21 -0.36 -6.68 0 0 0 

CAS(2,5) aSTO-3G 11  8.97 13.45 0.341 0.298 9.17 -0.26 0.12 -4.24 7.48 4.11 4.29 

EOM-CCSD STO-3G 8  5.87 7.12 0.249 0.340 6.27 -0.09 0.02 13.38 0 0 0 

EOM-CCSD aSTO-3G 11  7.27 15.12 0.286 0.407 6.45 -0.26 -1.42 -10.1 6.88 6.52 4.95 

EOM-CCSD 6-31G* 11  12.21 18.11 0.335 0.193 8.00 -0.31 -1.15 -12.56 10.85 3.71 8.3 

EOM-CCSD cc-pVDZ 11  8.33 12.93 0.238 0.378 6.64 -0.17 -1.15 -11.59 10.73 6.50 7.26 

EOM-CCSD cc-pVTZ 11  6.82 12.27 0.224 0.276 6.48 -0.14 -0.45 -6.74 9.08 7.77 4.92 

EOM-CCSD cc-pVQZ 11  5.95 13.42 0.198 0.356 6.33 -0.19 -0.31 -8.70 11.89 1.44 5.70 

PH3 EOM-CCSD STO-3G 8  3.43 4.78 0.273 0.365 8.18 0.03 -0.65 0.02 0 0 0 

EOM-CCSD cc-pVDZ 11  4.29 3.91 0.269 0.177 8.44 -0.22 -0.08 -17.0 9.67 6.22 4.15 

 EOM-CCSD cc-pV(T+d)Za 11  3.74 5.02 0.258 0.291 9.40 -0.22 -0.22 -19.95 7.47 0 2.57 

EOM-CCSD cc-pV(T+d)Z 11  3.37 3.71 0.258 0.217 9.21 -0.22 -0.17 -20.2 7.98 2.89 2.38 

AsH3 EOM-CCSD STO-3G 8  3.62 4.70 0.266 0.349 8.66 0.05 -0.55 -0.50 0 0 0 

EOM-CCSD cc-pVDZ-PP 11  3.75 3.88 0.228 0.180 6.57 -0.13 0.12 -1.70 9.39 5.92 4.73 

EOM-CCSD cc-pVTZ-PP 11  2.93 3.43 0.234 0.171 7.16 -0.17 0.12 -5.40 7.16 3.39 2.25 

SbH3 EOM-CCSD STO-3G 8  3.12 3.97 0.237 0.328 9.04 0.12 -0.55 -0.62 0 0 0 

EOM-CCSD cc-pVDZ-PP 11  2.89 3.39 0.208 0.190 7.09 -0.11 0.04 -5.19 8.49 3.79 4.36 

EOM-CCSD cc-pVTZ-PP 11  1.98 3.14 0.195 0.170 6.65 -0.08 0.13 0.59 5.93 3.06 1.96 

BiH3 EOM-CCSD cc-pVDZ-PP 11  2.74 2.96 0.187 0.185 4.63 0.02 -0.21 5.70 7.7 3.52 4.81 

EOM-CCSD cc-pVTZ-PP 11  1.63 2.63 0.206 0.130 5.71 -0.18 0.05 -6.20 6.07 3.01 2.49 

 
and excited-state descriptions in terms of orbital excitations and 
by following them adiabatically as a function of angle, 
identification of the states of interest can be accomplished.  These 5 

states do undergo accidental resonances with other states and so 
the native properties of the excited states may in practice only be 
traced over restricted torsional bending amplitudes.  As a result, 
the data points shown in Fig. 1 and later figures sometimes 
terminate only partly way along the potential-energy curves.  This 10 

situation also arises during the CASSCF calculations except that 
the interfering states are not directly manifested.  Sometimes the 
state of interest is clearly identifiable both before and after an 
avoided crossing and in such circumstances the actual data points 
in the avoided crossing region are replaced with values 15 

interpolated between the before and after regions to produce 
smooth surfaces for fitting. 

Figure 1 shows the raw calculated surfaces (points) and their 
fit to the 8-parameter (STO-3G basis) or 11-parameter (aSTO-3G 
basis) models, revealing that the diabatic model accurately 20 

interpolates the calculated data.  If the s and r states are 
incorrectly assigned, then poor quality fits usually emerge as the 
model treats valence and Rydberg states intrinsically differently.  
The most striking aspect of the figure is that the shown CASSCF 
and EOM-CCSD surfaces are in good qualitative agreement with 25 

each other, despite their considerable methodological and 

implementational differences. This indicates that the properties of 
ammonia inversion are realistically determined using traditionally 
conservative treatments of electron correlation. 

The effects of inclusion of the Rydberg 3s orbital into the 30 

calculations are evidenced through the comparison of the STO-
3G and aSTO-3G results in Fig. 1. The valence single s and 
double d excitation energies at the planar geometry are ca. 12 eV 
and 26 eV when only valence orbitals are included.  Analysis 
indicates that the non-interacting diabatic Rydberg state R 35 

appears at near 7 eV (model parameter ER, see Table 4) but 
interacts with the diabatic valence state S with a coupling of near 
5 eV (model parameter VRV).  As the description used for the 3s 
orbital in terms of the STO-3G orbitals plus a single additional 
Gaussian function with an arbitrarily chosen exponent is crude, 40 

these results are not expected to provide a quantitative description 
of the Rydberg state.  Rather, they just serve to indicate the 
fundamental physical situation in a simple and easy to interpret 
way.  Significantly, S becomes considerably destabilized, 
resulting in two new adiabatic states at energies near 5 eV (r) and 45 

18 eV (s).  The double valence excitation d is destabilized 
proportionally more, going from ca. 26 eV using STO-3G to ca. 
47 eV using aSTO-3G.  These effects have a profound influence 
on the inversion barrier especially from the EOM-CCSD 
calculations, increasing it from 0.81 eV to 1.24 eV (Table 1).   50 
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ii.  Properties of NH3 evaluated using large valence basis sets.   
While indeed the effect of adding a single 3s Rydberg orbital 

will turn out to be critical to understanding the nature of NH3, the 
EOM-CCSD STO-3G and aSTO-3G well depths of 0.81 and 1.24 
eV, respectively, are far removed from the observed value of 5 

0.220 eV.56, 57 98  Figure 2 (and Tables 1 and 2) show how the 
EOM-CCSD ground and excited-state surfaces change as the 
basis set is increased from aSTO-3G to 6-31G* to cc-pVDZ to 
cc-pVTZ to cc-pVQZ.  Identifying single orbitals and excited 
states as being either *A or N 3s character becomes difficult as 10 

many other orbitals interact to deform the orbital shapes.  In 
particular, the Rydberg orbital gains considerable H 2s character 
as well as valence A bonding character, whilst *A gains both N 

3s and H 2s character. 
Overviewing the results in Table 4, we see that the energy ER 15 

of the diabatic 3s Rydberg state R at the planar geometry is 
consistently near 11 eV, close to where these methods would 
predict the 2p3s transition in the isolated nitrogen atom.  
However, the energy 2JG of the diabatic valence state S decreases 
from 12 eV at the 6-31G* level to 8 eV at cc-pVDZ to 6 eV at cc-20 

pVQZ, back to near its value for STO-3G.  Indeed, 7 of the 8 
valence-state diabatic parameters take on similar values for the 
STO-3G and cc-pVQZ bases, indicating that the genera 
usefulness of STO-3G in describing valence-state properties and 
the need for a sophisticated treatment of the valence shell once 25 

Rydberg orbitals are introduced. However, one diabatic 

 
Fig. 1.   Calculated adiabatic potential energy surfaces (points) and their fits using a diabatic model (lines) for the torsional potential of NH3: black- 
ground state g, red- single valence excitation s, magenta- double valence excitation d, blue- single Rydberg excitation r, brown- Rydberg + valence 

double excitation rv, green- double Rydberg excitation dr.  The inserts highlight the changes in energy vs.  from those at the D3h structure. 

 
Fig. 2.   Calculated EOM-CCSD adiabatic potential energy surfaces (points) and their fits using a diabatic model (lines) for the torsional potential of 

NH3: black- ground state g, red- single valence excitation s, magenta- double valence excitation d, blue- single Rydberg excitation r, brown- Rydberg + 
valence double excitation rv, green- double Rydberg excitation dr.   
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parameter, JD, changes considerably from the STO-3G value once 
Rydberg orbitals are introduced, and this feature will in Section 
4e become a focus for discussion.   
iii.  Properties of the XH3 series evaluated using large valence 
basis sets.   5 

Figure 3 compares the calculated and fitted adiabatic potential-
energy surfaces for the XH3 series obtained using EOM-CCSD 
with correlation-consistent basis sets at the double zeta (VDZ) 
and triple zeta (VTZ) levels.  Examination of the wavefunctions 
indicates that the *A orbital clearly is lower in energy that the 10 

lowest-lying Rydberg orbital for AsH3, becoming progressively 
more stable for SbH3 and BiH3.  For these molecules, fitting the 
diabatic model assuming the diabatic orbitals are alternatively 
ordered leads to fits with mostly low errors but the extracted 
parameters change in unexpected ways.  This effect is significant 15 

enough for it to be possible to determine that the orbital ordering 
has reversed in comparison to that in NH3 independent of 
wavefunction analysis, demonstrating the robustness of the 
diabatic approach.  However, for PH3, neither wavefunction 
analysis nor diabatic fitting provide a decisive qualitative picture 20 

of the orbital ordering.  The *A valence and 4s Rydberg orbitals 
are near degenerate in this molecule.  Tables 1 and 4 present 
results fitted to energies calculated using the triple zeta basis 
assuming both possible orderings, leading to the conclusion that S 
is actually slightly lower in energy than R, and this is the result 25 

depicted in Fig. 3 and other places.  Comparison of the XUV 
absorption bands of Ar, HCl, H2S, PH3, and SiH4 in the gas-phase 
and solid has also led to the conclusion that, whilst strong mixing 
does occur for PH3, the valence state is dominant for Ar, HCl, 

H2S, and PH3 but the Rydberg state is dominant for SiH4.
111, 113  30 

Nevertheless, the lowest-energy observed VUV transition in PH3 
is often called the “Rydberg band”.110 

Overall, Table 1 shows that the HXH equilibrium bond angles 
from the fits are accurate to typically within 2 of the raw surface 
values for all heavy atoms but P for which errors grow to 5.  35 

From this data, the variations found for the XH3 series at the TZP 
level are displayed in Fig. 4a, highlighting the anomaly for PH3.  
This anomaly arises as the S and R diabatic states are near 
degenerate, providing the worst-case scenario for the 
appropriateness of the diabatic Hamiltonian, Eqn. (10). 40 

While even 2 differences are large on the scale to which 
angles and measured and discussed, the resulting differences to 
the potential-energy surfaces are small on the scale of the 
energies accessed by the 6 molecular potential-energy surfaces.   
Hence they are mostly not obvious looking at say Figs. 1-3.  45 

Always the equilibrium angle is fitted to be too large, however, 
suggesting that systematic improvement in the analysis is 
possible.  The fitted well depths are accurate to typically 0.03 eV 
for NH3 increasing to 0.1 eV for BiH3. As highlighted in Fig. 4b, 
this parallels the actual changes in the barrier height which 50 

increases from 0.22 eV to 2.6 eV down the series.  All optimized 
bond lengths RXH at the adiabatic equilibrium geometry are close 
to the experimental and very high quality theoretical estimates 
(Table 1), and the vertical transition energies for key states at this 
geometry differ from the calculated values (Table 3) by on 55 

average just -0.40.4 eV. 

f) Reliability of the diabatic-model parameters 

Fig. 3.   Calculated EOM-CCSD adiabatic potential energy surfaces (points) and their fits using a diabatic model (lines) for the torsional potential of 
XH3 molecules obtained using double-zeta bases (top row) and triple-zeta bases (bottom row): black- ground state g, red- single valence excitation s, 

magenta- double valence excitation d, blue- single Rydberg excitation r, brown- Rydberg + valence double excitation rv, green- double Rydberg 
excitation dr.   
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One measure of the success of the diabatic model is that it is 
able to fit the shapes of 6 potential energy surfaces using just 11 
parameters, less than half the number of parameters that would be 
required in say a Taylor-series expansion involving just 0th, 2nd, 
and 4th order contributions to each curve (later in Section 4d such 5 

Taylor expansions are also shown often to be very inaccurate). 
This indicates that the information contained in the diabatic-
model equations reflects the factors controlling the molecular 
chemistry and spectroscopy.  However, for the parameters to be 
robust and have an identifiable physical meaning, they must vary 10 

in a systematic and chemically sensible way as the basis set and 
heavy atom are varied.  While both of these effects can be 
examined based on the data in Table 4, the effects of changing 
the heavy atom are highlighted in Fig. 4 which shows the 
variation between elements of the 11 diabatic-model parameters 15 

evaluated at the TZP level, properties derived from these 
parameters, related adiabatic properties, and other properties of 
interest. 

 The critical diabatic-model parameters JG and JD (Fig. 4g), 
G, and D (Fig. 4e), and k (Fig. 4f) show systematic variations 20 

and hence have clear physical meaning.  Specifically, the force 
constant k changes little except for P for which the diabatic 
Hamiltonian is challenged owing to the degeneracy of the 
diabatic *A and P 4s orbitals.  Also, the resonance integrals J 
show marked differences between N and P-Bi and as a function 25 

of basis set, but these differences are attributed to actual chemical 
effects and basis set properties.  Similarly, the Rydberg-state 
parameters ER (Fig. 4m), VRV, (Fig. 4n), and R  (Fig. 4n) show 

systematic variations as a function of X, but they show more 
basis-set dependence that is desired.  Figure 4m also compares 30 

the Rydberg-state energy in XH3 to that calculated for atomic X 
using the same methods, showing similar variations (except for a 
small anomaly again owing to the orbital degeneracy in PH3). 
This comparison demonstrates the reliability of the major fitted 
diabatic parameters.   The remaining 3 parameters G (Fig. 4k), D 35 

(Fig. 4k), and k4 (Fig. 4l) show larger variations with basis set 

and should be considered as being used primarily to empirically 
account for non-included effects in the diabatic model, although 
G may be meaningful.  
While the vibronic coupling constants G and D are important 40 

quantities in their own right and can be evaluated analytically by 
codes such as MOLPRO52 (and soon for TD-DFT in Q-
CHEM),114, 115 it is more usual to describe chemical and 
spectroscopic properties in terms of geometries m and 
reorganization energies .  For anharmonic diabatic potentials, 45 

these quantities are not uniquely defined and we choose their 
harmonic components mG , mD , G , and D  defined in Eqns. 

(6) and (8).  Alternatively, these quantities could be extracted 

from the actual properties of the diabatic surfaces  3
,
L

L LH  , 
3
C,C

LH  and 3
R,R

LH  using Eqn. (5), or from the adiabatic equilibrium 50 

geometry.  Table 5 and Fig. 4 present the deduced analytical 
values only along with the implied values of the HXH diabatic-
minimum bond angles mG  and mD  (Eqns. (2) and (6), Fig. 

4d), reorganization energies G , and D  (Eqn. (8), Fig. 4h),  and 

the associated values of the control variables 2J/ (Fig. 4i).  The 55 

best behaved quantity is found to be 2JG/G but, while the other 
properties show more variation with basis set than was found for 
the model parameters themselves, the variations with X shown in 
Fig. 4 are better behaved.  Provided also in Table 5 and Fig. 4 are 
the associated values of the corresponding parameters 2m , 2m ,  60 

2, etc. extracted using the effective 2-state model Eqn. (13).  
These are all well behaved and have properties similar to the 
state-dependent ones, with typically the 2-state model parameters 
sitting between the ones for the G and D interactions.  This gives 
confidence that the parameters are meaningful.  In particular, the 65 

perceived G-D differences and the aforementioned 
uncharacteristic large difference found for only NH3 in the value 
of JD between the STO-3G and cc-pVQZ bases reflect actual 
molecular and method properties. 

 
Fig. 4.   Variation of adiabatic and diabatic XH3 properties, unless otherwise indicated evaluated using EOM-CCSD with triple-zeta bases, 

see text. 
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Table 5.  Properties of XH3 calculated adiabatic potential-energy surface minima and those from various fits of the torsional potential to a diabatic form 
containing # free parameters.  

XH3 Method Basis # m /   m /  J2
a / eV  / eV  2J/ 

    m G m D m 2  mD mD m2  G D 2  2JG/G 2JD/D 2J2/2 

NH3 CAS(2,2) STO-3G 8 35 45 27  91 75 101 6.9 18 31 18  0.67 0.49 0.76 

 
CAS(2,5) aSTO-3G 11 37 31 28  87 94 99 11.2 25 19 28  0.71 1.39 0.79 

 
EOM-CCSD STO-3G 8 40 54 28  84 61 100 6.5 20 37 19  0.59 0.39 0.70 

 
EOM-CCSD aSTO-3G 11 44 63 30  77 46 97 11.2 25 51 31  0.57 0.59 0.72 

 
EOM-CCSD 6-31G* 11 42 24 32  80 104 94 15.2 28 9 35  0.87 3.89 0.87 

 
EOM-CCSD cc-pVDZ 11 36 57 31  89 56 96 10.6 17 43 26  0.98 0.60 0.83 

 
EOM-CCSD cc-pVTZ 11 35 43 30  91 79 97 9.6 15 24 23  0.88 1.04 0.85 

 
EOM-CCSD cc-pVQZ 11 31 56 30  95 58 97 9.7 12 40 23  0.96 0.97 0.85 

PH3 EOM-CCSD STO-3G 8 33 45 27  93 76 101 4.1 18 33 19  0.38 0.29 0.44 

 
EOM-CCSD cc-pVDZ 11 32 21 28  95 108 100 4.1 17 8 15  0.50 1.05 0.54 

 EOM-CCSD cc-pV(T+d)Zb 11 27 31 28  100 96 100 4.4 14 18 16  0.53 0.56 0.56 

 
EOM-CCSD cc-pV(T+d)Z 11 28 24 27  100 105 101 3.5 14 10 13  0.47 0.73 0.53 

AsH3 EOM-CCSD STO-3G 8 31 40 27  96 83 101 4.2 16 28 18  0.44 0.33 0.47 

 
EOM-CCSD cc-pVDZ-PP 11 35 27 27  91 101 101 3.8 16 10 15  0.47 0.79 0.50 

 
EOM-CCSD cc-pVTZ-PP 11 33 24 27  94 105 101 3.2 15 8 13  0.38 0.84 0.48 

SbH3 EOM-CCSD STO-3G 8 26 36 27  102 89 101 3.6 12 24 15  0.50 0.33 0.48 

 
EOM-CCSD cc-pVDZ-PP 11 29 27 27  98 101 101 3.1 12 10 14  0.47 0.67 0.45 

 
EOM-CCSD cc-pVTZ-PP 11 29 26 26  98 103 102 2.6 11 9 12  0.35 0.72 0.43 

BiH3 EOM-CCSD cc-pVDZ-PP 11 40 40 27  82 83 101 2.9 15 15 15  0.36 0.40 0.39 

 
EOM-CCSD cc-pVTZ-PP 11 36 23 26  89 106 102 2.1 15 6 12  0.22 0.89 0.34 

a: JG and JD are given in Table 1, J2   (JG +JD)/2.  b: alternative assignemnt with r below s. 

4. Discussion: Interpretation of the diabatic-model 
parameters 5 

a) m2 as a universal constant 

At the planar D3h geometry ( = 0,  = 120), the diabatic 
orbitals are given simply as the  linear combinations of the two 
critical valence orbitals, as shown in Fig. 5.  The occupied 
adiabatic orbital is a non-bonding X p orbital (the HOMO orbital 10 

n) whilst the unoccupied orbital is an antibonding orbital *A 
involving X s and the hydrogens.  At this geometry, the diabatic 
orbitals simply correspond to the  linear combinations of the two 
adiabatic orbitals so that the contributions from the X atom are of  
sp type containing 50% mixtures of the pz and s orbitals, 21/2(s 15 

p).
52  As the molecule distorts away from planarity, the energy 

gap between the orbitals increases and so the adiabatic orbitals 
are predicted to change to be more like the diabatic ones (Fig. 5) 
through the process of orbital following.68  In this diabatic view 

of the bonding in XH3, one of the four valence orbitals is thus sp 20 

hybridized.  The other three valence orbitals then must each take 
on s1/2p5/2 character, atomic orbitals that orient to the sp orbital at 
a torsional angle of  = atan(1/2) = 26.6 (or using Eqn. (2),  = 
acos(-1/5) = 101.5).  Indeed, adiabatic natural hybrid orbitals for 
ammonia are known to follow this pattern.116 25 

This picture is also vindicated by our calculations but in them 
the nature of the diabatic orbitals is changing adiabatically as the 
torsional angle varies, making the interpretation of parameters 
like m (and m) complex.  Determining which diabatic-model 
properties corresponds to the identified characteristic torsional 30 

angle of 26.6 therefore requires identifying a diabatic scenario in 
which the conserved-orbital-shape argument applies.  This 
requires no mixing of the doubly occupied G and D states, 
something that only happens when JD = 0.  Under this 
circumstance, the torsional angle at the ground-state minimum 35 

becomes m (instead of 21/2m, that obtained if JD = JG using Eqn. 
(7)).  Hence the most fundamental prediction of the diabatic 
model is that m = atan(1/2) = 26.6 so that the diabatic XHX 
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angle becomes m  = acos(-1/5) = 101.5 (Eqn. (2)).  This value 

therefore should be a universal constant independent of basis set 
and composition X.  Indeed, the deduced values of 2m  for all 12 

fits reported in Table 5 for X  N are between 100-102, 
independent of basis set and composition, averaging 101.10.5.  5 

For NH3, the same result holds for the STO-3G basis but the 
addition of the N 3s Rydberg orbital perturbs the picture, with the 
larger basis sets yielding 97.  Nevertheless, the magnitude of this 
anomaly is small and significant understanding of even NH3 can 
be obtained assuming that universality holds.  However, focusing 10 

on this discrepancy, we see that whilst for P-Bi the influence of 
the Rydberg states can be accounted for simply by the extended 
diabatic model, the effects for N are more profound and act to 
change slightly the fundamental nature of the valence orbitals. 

Interestingly, results for semi-empirical CNDO/S, INDO/S, 15 

and CNDO/2 calculations are given in Table 6 and show larger 
deviations from the universal angle m  = 101.5 than do the ab 

initio ones. These methods also suffer from the well-known 
problem that different parameters must be used to describe 
ground-state geometries and reactivity (the “/2” 20 

parameterizations) than are used to describe spectroscopy (the 
“/S” parameterizations). Figure 1 demonstrates this property, 
showing that the CNDO/2 ground-state surfaces closely parallel 
the ab initio ones whilst CNDO/S predicts NH3 to be planar 
(2J2/2 = 1.09).  The diabatic analysis makes the primary cause 25 

for these phenomena clear: explicit inclusion of the key Rydberg 
orbital is required for a fully robust semi-empirical theory. 

Table 6.  Parameters from the effective two-state model fit to semi-
empirical potential energy surfaces for XH3 molecules evaluated using 
CAS(2,2). 30 

 
XH3 Method J2 / eV 2 / eV 2J2/2 m2 /  m2 /  

NH3 CNDO/S 4.9 8.9 1.09 20 99 

PH3 INDO/S 2.9 7 0.84 24 91 

NH3 CNDO/2 4.2 13 0.65 23 94 

PH3 CNDO/2 2.8 10 0.55 22 96 

AsH3 CNDO/2 2.4 10 0.49 23 94 

 

Whilst the effective 2-state model parameter 2m  appears as a 

universal parameter, its analogues mG  and mD , inter-related 

by Eqn. (12) for harmonic diabatic surfaces, show significant 35 

variations.  While 2m  is concerned mostly with the properties of 

the ground-state g and its “twin state” d,52 the other parameters 
are controlled in addition by the properties of the single excitation 
s, the state that directly interacts with the key Rydberg state r.  
Even at the STO-3G level, mG  and mD  are differentiated, 40 

however, with mG  becoming the largest of the pair.  When the 

energy of the diabatic Rydberg state R is lower than that for the 
diabatic valence state S (in Table 5 this is for X=N and for the 
X=P alternate assignment), this difference is enhanced, but when 
the valence state is the lowest then this difference is reversed. 45 

b) The critical importance of 2J/ in linking molecular 
structure to molecular spectroscopy 

That 2m  (or equivalently 2m ) is a universal parameter 

means that only two parameters, say J2 and 2, control the 
ground-state and twin-state properties calculated for each 50 

molecule by each computation method.  However, the critical 
ratio 2J2/2 controls many of these properties including the 
location of the adiabatic ground-state minimum through the 
renormalization implicit in Eqn. (12) and the standard 2-state 
diabatic relationships:52, 117 55 
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         
.  (15) 

Hence now in the effective two-state diabatic description just one 
adjustable quantity controls the equilibrium bond angle.  

As an initial evaluation of the usefulness of this result, we 
predict e from the TZP values of 2J2/2 listed in Table 5 (see 60 

also Fig. 4i).  This ratio decreases dramatically between NH3 and 
PH3 (0.85 to 0.53) but then decreases slowly through AsH3, SbH3, 
and BiH3 (0.48, 0.43, and 0.34).  From Eqn. (15), the anticipated 
equilibrium bond angle e therefore changes from 109 to 95 to 
93 to 92 to 90 for NH3 to BiH3, paralleling the observed (Table 65 

1) values of 107, 93, 92, 92, and 90, respectively.  This 
portrays a deep relationship connecting the ground-state 
equilibrium angle and well depth with the vertical excitation 
energy to the doubly excited twin state d at the planar geometry. 

c) Predicting spectroscopic transition energies knowing just 70 

the ground-state equilibrium torsion angle and well depth.  

To exploit the simplicity of the effective two-state diabatic 
model with only two free parameters, Eqn. (15) can be rearranged 
to determine the critical ratio 2J/ knowing only the observed or 
calculated equilibrium bond angle e: 75 
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.   (16) 

From this, the vertical transition energies to the d state at the 
planar and equilibrium geometries can immediately be obtained if 

the observed or calculated ground-state well depth ‡E  is 
known52 80 
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Fig. 5.  How sp hybridized diabatic orbitals interfere to produce pure 

p and s adiabatic orbitals at the planar geometry, and how the 
adiabatic orbitals decouple back towards sp hybrids as XH3 

molecules distort. 
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Table 7.  Estimates of 2J/ and the energy of the double excitation twin state d  at the planar geometry, 4J , and at the ground-state equilibrium geometry, 
2, based on either observed, CCSD(T)/aug-cc-pwCVQZ, or CCSD/VTZ calculated ground-state equilibrium bond angles e and inversion barrier heights 

‡E  taken from Table 1, assuming m = acos(-1/5) = 101.5; the EOM-CCSD/VTZ multi-state calculated values of  2J2/2 and 4 J2 evaluated without this 
assumption from Table 5 are also provided for comparison. 

XH3 

Observed  CCSD(T)/aug-cc-pwCVQZ 

 

EOM-CCSD/VTZ 

e /  
‡E  

eV 
2J/ 

4J 
eV 

2 
eV 

 
e 
 

‡E  
eV 

2J/ 
4J 
eV 

2 
eV 

e 
 

‡E  
eV 

2J/ 
4J 
eV 

2 
eV 2J2/2 

4J2 
eV 

22 

eV 

NH3 21.4 0.22 0.82 23a 28a  22.0 0.23 0.81 21a 24a  22.8 0.27 0.79 20.4a 26a 0.85 38 45 

PH3 32.9 1.38b 0.48 10b 21b  32.5 1.44 0.50 12 20  32.5 1.5 0.50 12.1 24 0.53 14 27 

AsH3 33.8 1.38b 0.44 8b 17b  33.5 1.76 0.45 11 19  33.5 1.82 0.45 11.0 24 0.48 13 26 

SbH3 34.2 1.63b 0.41 8b 19b  33.7 1.92 0.44 11 16  33.8 1.99 0.44 10.9 25 0.43 10 24 

BiH3 35.1 1.67b 0.36 6b 16b  34.8 2.55 0.38 10 29  34.7 2.65 0.38 10.7 28 0.34 9 25 

a: large errors arise from valence/Rydberg orbital inversion modifying m  combined with the instability of Eqn. (17) as of 2J/1. 5 

b: ‡E extrapolated from observed transitions and/or calculated data only up to 0.5 eV. 

 

Table 7 shows results evaluated using for e and ‡E  values 
taken from either experimentally refined (for NH3,

56 PH3,
58 and 

SbH359} or, for BiH3, high-level full-dimensional potential-10 

energy surfaces, from CCSD(T)/aug-cc-pwCVQZ calculations, or 
from CCSD/VTZ calculations.  In addition, this table also shows 
the analogous calculated quantities 2J2/2 and 4J2 from Table 5 
evaluated using actual excited-state energies from EOM-
CCSD/VTZ  calculations using Eqn. (13).   The three sets of 2J/ 15 

values are in good agreement with each other, although the 
differences are largest for NH3: 0.82 from Eqn. (15) using 
observed data, 0.79 from this equation using CCSD/VTD data, 
and 0.85 from the more general Eqn. (13).  However, reasonable 
agreement for the spectroscopic transition energies is only found 20 

for PH3 to BiH3.  For example, the predicted vertical excitation 
energies  for NH3 are 28 eV from Eqn. (17) using experimental 
data, 24 – 26 eV using calculated data, and 45 eV from the actual 
EOM-CCSD calculations.  This problem arises as Eqn. (17) 
becomes unstable as 2J/1, producing large errors in the 25 

transition energy from small ones in 2J/.  Hence in practice this 
method is only useful for estimating excited-state energies when 
the lone pair is strongly localized on one side of the heavy atom. 

d) Predicting the ground-state torsional potential energy 
surface knowing just the ground-state equilibrium torsion 30 

angle and well depth.  

Figure 6 shows the torsional potentials from the experimentally 
refined (for NH3,

56 PH3,
58 and SbH3

59) or, for BiH3, high-level 
full-dimensional potential-energy surfaces,  as well as 
CCSD(T)/aug-cc-pwCVQZ values.  These are fitted using three 35 

methods:  a 3-paramater diabatic model with m variable 
(unbroken lines), a 2-parameter diabatic model with m = 
atan(1/2) = 26.6 (short-dashed lines), and a two-parameter fit as 
quartic polynomials (long-dashed lines).  The 3-parameter fits 
provide excellent descriptions of the torsional potentials, often 40 

with RMS errors less than 1 meV, but the fitted parameters have 
no obvious physical meaning.52  However, the 2-parameter model 
fits lead to realistic predictions of excitation energies, as 

 
Fig. 6.  Offset CCSD(T)/aug-pwCVQZ(-PP) torsional potentials 

for the XH3 series (solid circles) are compared to results from 
full-dimensional surfaces (open circles) for BiH3 and those as 

refined to fit experimental data for NH3, PH3, and SbH3, and fitted 
by 3-parameter (solid lines), two-parameter (assuming m = atan(-

1/5)= 101.6) (short-dashed line) models as well as quartic 
potentials (long-dashed lines).  Note that only observed torsional 
levels up to ca. 0.5 eV in energy above the minima were available 

for inclusion in the surface refinements. 
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discussed earlier, and for most molecules provide excellent fits of 
the potentials out to large torsional angles.  However, 2-
parameter fits using a quartic Taylor-expansion function produce 
very poor approximations to the vibration frequencies and well 
shape, particularly for small 2J/.  These results show that 5 

assuming the universal diabatic angle leads to simple and 
accurate methods for predicting the ground-state surface knowing 
only the equilibrium torsional angle and well depth. 

e) Why NH3 is so different to PH3 – BiH3. 

Figures 4g and 4h show that the sharp change in 2J2/2 found 10 

between NH3 and PH3 comes from similar sharp changes in the 
individual properties 2J2 and 2, except that the change for 2 is 
smaller than that for 2J2.  Both quantities originate from the 
properties of the diabatic sp orbitals: the resonance integrals scale 
like 15 

  2 s p s pJ H          (18) 

 
where s  and p  are the wavefunctions for the X orbitals, 

whilst  tells the energy of swapping one of the linear 
combinations for the other with the hydrogens placed at the 20 

diabatic angle m.  Naively, one could expect the resonance 
energy to scale like the one-electron integrals, a simple indication 
of which is given by the atomic parameter  used in semi-
empirical theories, and the values developed for PM6118 for N-Bi 
are indicated in Fig. 4c.  Similarly, the reorganization energy 25 

could be expected to scale with bond energies as swapping over 
the diabatic orbitals breaks chemical bonds, and so the 
CCSD/VTZ-calculated atomization energies Eatom are also shown 
in Fig. 4c.  However, neither quantity mimics the behaviour of J2 
and 2.  A quantity that does behave similarly is the atomic 30 

Pauling electronegativities and these are shown in Fig. 4o.  It is 
difficult to establish a connection, however, as the 
electronegativities do not contribute to either J2 or 2 in any 
obvious way.  

More formally, it is possible to write out the full list of 35 

contributions to J2 at the CAS(2,2) level evaluated at the planar 
geometry in terms of standard integrals from Hartree-Fock 
theory. This lists one-electron integrals and many two-electron 
integrals, one of which is the difference in the on-site repulsion 
integral (often called the “Hubbard U”) for two electrons in the n 40 

orbital and for two electrons in the *A orbital.  We focus on this 
contribution. 

Figure 7 shows orbital isodensity surfaces determined using 
HYPERCHEM119 for the *A orbitals of NH3 and AsH3 at their 
planar geometry evaluated using the STO-3G and aSTO-3G bases 45 

(to which 6-31G* results are very similar).  For NH3, the 
antibonding orbital has much hydrogen character and the orbital 
is spatially extended.  The hydrogen orbitals interact with the 
Rydberg orbital in an antibonding way for NH3 and in a bonding 
way for AsH3.  This fundamental change occurs owing to the 50 

reversed orbital ordering: 

*A

3s *A

5s

NH3 AsH3

"Antibonding" with
nodal dividing surface

"Bonding"

 
The antibonding combination found for NH3 introduces a nodal 
surface between the hydrogens and the outer Rydberg shell, the 
effect of which is very apparent in Fig. 7: Rydbergization of the 55 

*A orbital in NH3 compresses the electron density into a tight 
volume which has a profound effect on the orbital energy. 

Placing two electrons into this compressed orbital therefore 
develops a large electron-electron repulsion.  It is this repulsion 
that becomes manifest in the large value of the resonance integral 60 

J2 for NH3.  However, when the valence orbital is lower than the 
Rydberg orbital, the valence-dominated linear combination has 
bonding character, stabilizing the *A orbital to reduce the 
resonance energy.  As Fig. 7 shows, this effect on the large AsH3 
molecular orbital is small, so it is really the Rydbergization-65 

driven orbital compression of NH3 that provides for its unusually 
large HXH bond angle of 107. 

Further evidence supporting this hypothesis comes from 
looking at the JD/JG ratio shown in Fig. 4j: this is roughly 
constant at ~ 1.4 for the STO-3G basis but with triple-zeta bases 70 

it is 1.80 for NH3, 1.10 for PH3, and 1.17 for AsH3.  The large 
jump in the resonance energy explicitly involves double 
occupancy of *A.  This effect was noted earlier in that the 
diabatic parameters for NH3 evaluated using STO-3G and cc-
pVQZ are very similar for all properties except JD, the only 75 

property sensitive to the “Hubbard U” of the *A orbital.  Further, 
the discontinuity in the reorganization energy 2 also flows from 
the orbital compression apparent in Fig. 7: the diabatic orbitals 
made by combining the lone-pair orbital n with *A, and bending 
the compressed orbital in one direction will lead to more bonding 80 

character whist the other direction will lead to more antibonding 
character, increasing the reorganization energy.  The effect is not 
as pronounced as the resonance energy involves the interaction of 
two electrons within the same compressed orbital whereas the 
reorganization energy involves the interaction of the compressed 85 

orbital with its weakly perturbed environment. 

5. Conclusions 

Our general diabatic formalism for closed-shell chemical 
reactions is expanded by inclusion of Rydberg orbitals, allowing 
it to quantitatively analyze the results from high-level 90 

calculations of the ground and excited states of XH3 molecules. 
Generally, this results in a 6-state 11-parameter diabatic model 
that simultaneously fits ground-state and excited-state potential-
energy surfaces down to very small HXH angles of order 70.  In 
addition, our formalism offers a much simpler diabatic 95 

 
Fig. 7.  Isodensity surfaces of the unoccupied *A valence orbital 

of NH3 and AsH3 that controls hybridization, at its planar D3h 
structure, evaluated using the Hartree-Fock method.   
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description in terms of a renormalized effective two-state model 
containing only 3 parameters.  The two states used in this model 
are the ground-state g and its “twin state”, in this case the double 
valence excitation d (n*A, n*A).  The conclusions drawn 
from application of the model are: 5 

(i) Reversal of Rydberg and valence orbital ordering.  The 
most important feature revealed by the diabatic model is that the 
ordering of the lowest Rydberg orbital and the *A valence 
orbital interchanges between NH3 and AsH3, with the two being 
nearly degenerate for PH3 but ordered more like AsH3 than NH3; 10 

for NH3, the Rydberg orbital is the lowest in energy.  As the 
diabatic model uses different functional forms for the properties 
of these orbitals, the near degeneracy for PH3 produces 
homogenized orbitals and therefore presents a worst-case 
scenario for model application.  The results obtained are still 15 

meaningful and useful, however.   
(ii) Rydbergization and reassigned absorption spectra for NH3 

and PH3.  While the electronic-structure calculations used to 
parameterize these diabatic models are required to show balance 
between absolute accuracy and interpretability, their usefulness is 20 

demonstrated by the introduction of new spectral assignments for 
the VUV electronic absorption of NH3.  Bands in the one-photon 
absorption spectrum observed at 18.4 eV and at 30-33 eV 
previously assigned to double excitations involving Rydberg 
transitions are reassigned to the valence single-excitation 25 

resonances n*E and a combination of E*E  and E*A, 
respectively.  The 18.4 eV band had been previously assigned109 
as n3s,n? and presumed to be associated with the IP 
observed at 24 eV that is assigned112 to the double excitation 
n3s,n.  Properties of the diabatic model are key to this 30 

reassignment as the n3s,n3s excitation dr is found to be 
counter-intuitively at higher energies than n3s,n and ca. 
four times the energy of r, the corresponding single excitation 
n3s.  This result arises because of the strong coupling between 
the Rydberg and valence states, an effect described by Mulliken 35 

as “Rydbergization”,69 and the anomalous orbital ordering for 
NH3.  Our theoretical analysis also independently confirms 
previous experimentally based deductions111, 113 that the transition 
commonly still labelled as a Rydberg absorption110 is in  fact 
dominantly valence in nature. 40 

(iii) Universality of the diabatic angle.   The critical prediction 
of the diabatic model, that the fundamental nature of the diabatic 
orbitals is always preserved, is established.  This prediction hold 
well for molecules in which the valence state is lowest in energy 
as independent of composition X or calculation type we m2  = 45 

101.10.5, very close to the value of acos(-1/5) = 101.5 
expected for sp diabatic orbitals. Deviations of a few degrees are 
found when the Rydberg orbital is lowest in energy, indicating 
that this scenario leads to a significant perturbation in the nature 
of the diabatic orbitals. 50 

(iv) 2J/ controls structure and hybridization.  This 
identification of one of the three parameters in the effective two-
state model as a universal constant leaves only two parameters, 
say J2 and 2, left to describe simultaneously the properties of the 
ground state g and its twin state d.  Significantly, the value of the 55 

equilibrium ground-state equilibrium HXH bond angle e then 
becomes controlled only by the ratio 2J2/2.  In the limits of 
2J2/2=0 and 2J2/21 the XHX bond angles then become e = 
86.7 and 120, respectively, using Eqns. (2) and (15).  The 
EOM-CCSD/VTZ calculated values of 2J2/2 quantitatively track 60 

the observed bond angles within this range, including 
reproduction of the anomalously large value for NH3. 

(v) The size of the sp hybrid orbital controls 2J/.   The values 
of J2, 2, and hence 2J2/2 are related to the size of the sp diabatic 

orbital of the central atom.  The reorganization energies  reflect 65 

the cost of interchanging one sp linear combination in a bonding 
configuration with the other in the presence of the hydrogens.  
The resonance energies J reflect the interaction between an 
electron in one of the sp linear combinations with the other.  Both 
properties clearly scale with sp orbital size but the resonance 70 

energy scales quadratically and hence 2J2/2 also scales with size. 
(vi) The Rydberg-valence orbital reordering produces a 

discontinuous change in sp hybrid orbital size.  In any simple 
theory describing the ground-state structure of the XH3 series, the 
most significant question of interest is the large difference 75 

between the bond angle of NH3 and the other molecules.  The 
diabatic model associates this discontinuity with an abrupt change 
in 2J2/2, linking it quantitatively to the analogous discontinuity 
in the well depth and also to the discontinuity in the energies of 
the Rydberg excitations.  Its origin stems from the inversion of 80 

the ordering of the Rydberg and valence orbitals that occurs for 
NH3 that fundamentally changes the nature of the twin state (and 
hence the ground state) from one that is stabilized by 
Rydbergization in PH3-BiH3 to one that is significantly 
compressed and destabilized by it in NH3.  So while the cause of 85 

Rydbergization is the same in NH3 and the other molecules, its 
manifestations are completely different.  In this way, a close link 
is also established between the equilibrium structure and well 
depth in NH3 and the properties of diabatically treated 
photodissociation reactions that directly exploit 90 

Rydbergization.49, 50, 69, 120 
  (vii) Diabatic models unify molecular structural, kinetic, and 

spectroscopic properties.  A tight connection is established 
between the ground-state structure and reactivity of these 
molecules and their spectroscopy, as has been achieved in the 95 

past using diabatic models only for electron-transfer reactions.20  
For example, this allows the details of the grounds state surface 
out to 70, including the equilibrium bond angle and well depth, 
to be determined purely from the properties of the excited states 
evaluated at the 120 planar D3h geometry.  A central concept of 100 

the diabatic approach is that key factors controlling ground-state 
properties can be determined through looking at excited-state 
properties, a technique not available to established chemical 
interpretation approaches such as VSEPR theory.  Conversely, it 
is also possible to predict excited-state transition energies purely 105 

from the shape of the ground-state surface. 
(viii) Answer to the VSEPR riddle- what really is the 

characteristic XHX bond angle?  The description of the XH3 
series by VSEPR is confused.  The traditional approach was that 
molecules with 4 electron pairs were intrinsically tetrahedral 110 

(=109.5) and that electronegativity differences between the 
atoms exploited angular size differences between bonding and 
lone-pair electrons to provide modification.64  Indeed, a 
discontinuity in electronegativity is found between N and P that 
parallels the bond-angle discontinuity (Fig. 4a and 4o).  VSEPR 115 

theory has now been modified to instead view the intrinsic 
geometry as octahedral,65, 66 implying that the lone pair expands 
to fill all uncoordinated sites.  However, actual bond angles are 
determined by evoking minimum ligand radii, completely 
bypassing the electronegativity argument for the XH3 series (at 120 

least).{Gillespie, 2008 #974}  So what is the intrinsic HXH 
angle, 109.5 or 90?  The diabatic model gives a simple answer 
to this basic question, the parameter m2 = acos(-1/5) = 101.5 is a 
universal constant.  This means that the intrinsic HXH bond angle 
in the absence of any resonance interaction is 86.7 (Eqns. (2) 125 

and (9)).  By tuning the resonance energy to reorganization 
energy ratio, any value between that and 120 can be achieved.  
The unusual angle in NH3 arises from the electronegativity-driven 
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discrete change in the ordering of lowest Rydberg orbital and the 
*A antibonding orbital of NH3, an effect that significantly 
changes the repulsion of electrons within an electron pair.  These 
dominate controlling effects are not included within VSEPR 
theory. 5 
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