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Abstract 

It may not always be possible to blind participants of a randomized controlled trial for 

treatment allocation. As a result, estimators of the actual treatment effect may be biased. 

In this paper we will extend a novel method, originally introduced in genetic research, for 

instrumental variable meta-analysis, adjusting for bias due to unblinding of trial 

participants. Using simulation studies, this novel method, “Egger Correction for non-

Adherence” (Egger-CA), is introduced and compared to the performance of the “intention 

to treat”, “as treated”, and conventional “instrumental variable” estimators. Scenarios 

considered (time-varying) non-adherence, confounding, and between study heterogeneity. 

The effect of treatment on a binary endpoint was quantified by means of a risk difference. 

In all scenarios with unblinded treatment allocation, the Egger-CA method was the least 

biased estimator. However, unless the variation in adherence was relatively large, 

precision was lacking, and power did not surpass 0.50. As a comparison, in a meta-

analysis of blinded RCTs power of the conventional IV estimator was 1.00 versus at most 

0.14 for the Egger-CA estimator. Due to this lack of precision and power we suggest to 

use this method mainly as a sensitivity analysis.  

 

Keywords Statistics, Randomized controlled trials, Monte Carlo Method, Bias, Treatment 

Effectiveness, Instrumental Variable 
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Introduction 

Randomized controlled trials (RCTs) are the gold standard to evaluate effects of (medical) 

interventions, with meta-analyses of RCTs often seen as the highest level of evidence(1). 

Such meta-analyses of RCTs frequently include a risk of bias assessment(2), evaluating 

the risk of bias of each included study based on e.g. blinding of participants and outcome 

assessors for the allocated treatment regime. However, blinding may not always be 

feasible. For example, in trials of epidural anesthesia vs. non-epidural anesthesia or no 

anesthesia among women in labor, participants were not blinded for their allocated 

treatment(3).  

 

In RCTs any non-adherence to treatment allocation may lead to a mismatch between the 

effect of treatment allocation and the effect of actual treatment use. In part this may be 

related to “contamination” when subjects switch study interventions. However, non-

adherence may also lead to subjects using different non-study interventions or no 

treatment at all. By blinding RCT participants to allocated treatments any non-adherence 

and possible contamination is expected to be random, and one can estimate the effect of 

allocating treatment on the outcome (i.e., the intention-to-treat [ITT] effect). Depending on 

the degree of non-adherence the ITT effect can be very similar to the effect of actually 

taking treatment (when adherence is close to 100%). In unblinded RCTs, one typically 

cannot assume that non-adherence and contamination are random, and treatment 
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allocation itself may have a “direct effect” on the outcome, independent of its effect on 

treatment (adherence). Hence conventional estimators of the treatment effect (such as the 

ITT estimator) may be biased.  

 

Recently, a novel method was introduced in genetic “Mendelian randomization” [MR] 

studies(4,5) which can possibly be used in RCTs to correct for any bias due to unblinded 

treatment allocation as well. Briefly, in MR studies genetic variation may be seen as 

treatment allocation in the sense that genes are randomly distributed in a population (like 

randomization in a trial), and may be related to a biomarker (i.e., treatment use in RCTs), 

which is associated with a disease. Similar to a blinded RCT, if all the effects of a gene on 

the outcome are mediated by the biomarker, a direct effect of the gene on the outcome is 

absent. However, in many cases a gene has multiple effects on the outcome, possibly 

mediated by different biomarkers, and a direct effect cannot be ruled out. To correct for 

this so-called pleiotropy Bowden et al.,(5) introduced a novel version of the Egger-test(6) 

termed “MR-Egger”.  

 

In this paper, we will extend the MR-Egger method to a meta-analysis of unblinded RCTs 

with the aim to estimate the effect that taking treatment has on the outcome. For this we 

will first review the typical estimators used in a single RCT. Second, we will extend the 

MR-Egger estimator to meta-analyses of RCTs with binary events. Using simulations we 



 

6 
 

will evaluate this novel method and compare its performance to the ITT, as-treated, and 

instrumental variable estimators. Finally, we will apply this method on data from a clinical 

example of epidural anesthesia for women in labor.  

 

Methods 

Notation and outcome model 

In the following we assume that data are collected from an RCT allocating 𝑖 = 1, … , 𝑛 

subjects to a certain treatment, e.g., epidural anesthesia 𝑧𝑖 = 1, or non-epidural anesthesia 

or no anesthesia 𝑧𝑖 = 0, with the intention to investigate its effect on a binary endpoint 𝑦𝑖 =

{1,0}, e.g., caesarian section or vaginal birth. Possibly contrary to treatment allocation, 

subjects either receive epidural analgesia 𝑥𝑖 = 1 or not 𝑥𝑖 = 0. Note that treatment 

allocation occurs at time , 𝑡 =  0, X occurs somewhere between the start of follow-up 𝑡 = 0 

and 𝑡 = 𝑇, the end of follow-up. For now, we consider that 𝑥𝑖 does not change over time; 

we will relax this assumption in a later described scenario. In addition, we assume that 

taking treatment, not only depends on Z, but also depends on unmeasured (confounding) 

factors U which also affects the (binary) outcome Y. This scenario is presented in a causal 

directed acyclic graph (DAG in Figure 1A), representing a blinded RCT, where we note 

that the outcome risk is based on 𝑃𝑟𝑜𝑏(𝒀 = 1|𝑿, 𝑼). Contrary to this blinded RCT, in 

Figure 1B we present a DAG for an unblinded trial were Z has a direct effect on Y, hence 

the outcome risk is based on 𝑃𝑟𝑜𝑏(𝒀 = 1|𝒁, 𝑿, 𝑼). Throughout this paper we assume the 
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interest is in estimating the causal effect of X (treatment) on Y. Capital letters indicate a 

column matrix of the sort 𝑿 = {𝑥𝑖, … , 𝑥𝑛}𝑇.  

 

Intention To Treat estimator 

Most, if not all, RCTs are analyzed using the Intention To Treat (ITT) estimator which 

evaluates if outcomes differ across levels of Z. As such, the ITT effect measures the effect 

of assigning treatment, not the effect of actually taking treatment. In unblinded RCTs 

(Figure 1B) the ITT effect can potentially be decomposed in a direct effect (𝜏̂) of treatment 

allocation on the outcome and an indirect effect (𝛼̂) of treatment allocation on the outcome 

which is mediated through the actual treatment received (i.e., the effect of taking 

treatment). We note that if in an unblinded trial all reasons for treatment compliance were 

observed (i.e., Z and U) one could estimate the direct effect and subtract this from the ITT 

effect to calculate the indirect effect of treatment allocation on the outcome, see equations 

1A and 1B. However, because RCTs are typically initiated because one is unwilling to 

condition on U the above procedure is unlikely sufficient in empirical settings. Instead, by 

blinding participants for their allocated treatment the direct effect is expected to be zero 

and the ITT effect reflects the indirect effect only. If, additionally, adherence is (close to) 

100% this ITT effect will coincide with the effect of actually taking treatment. 

 

The ITT effect: [𝑃𝑟𝑜𝑏(𝒀 = 1|𝒁 = 1) − 𝑃𝑟𝑜𝑏(𝒀 = 1|𝒁 = 0)] =  𝛼̂ + 𝜏̂ [equation 1A], 
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the direct effect: [𝑃𝑟𝑜𝑏(𝒀 = 1|𝒁 = 1, 𝑿 =  𝑥, 𝑼 =  𝑢) −

𝑃𝑟𝑜𝑏(𝒀 = 1|𝒁 = 0, 𝑿 =  𝑥, 𝑼 =  𝑢)] = 𝜏̂ [equation 1B] 

the indirect effect: [𝑃𝑟𝑜𝑏(𝒀 = 1|𝒁 = 1) − 𝑃𝑟𝑜𝑏(𝒀 = 1|𝒁 = 0)] −

[𝑃𝑟𝑜𝑏(𝒀 = 1|𝒁 = 1, 𝑿 =  𝑥, 𝑼 =  𝑢) − 𝑃𝑟𝑜𝑏(𝒀 = 1|𝒁 = 0, 𝑿 =  𝑥, 𝑼 =  𝑢)] = 𝛼̂. 

 

As Treated estimator 

In addition to the ITT effect some RCTs report the “As Treated” (AT) effect which 

estimates the actual effect of taking treatment. Typically, the decision to take treatment X 

depends on covariates (U), therefore the unbiased AT effect equals: 

 

the “conditional” (AT) effect:  𝑃𝑟𝑜𝑏(𝒀 = 1|𝑿 = 1, 𝑼 =  𝑢) − 𝑃𝑟𝑜𝑏(𝒀 = 1|𝑿 = 0, 𝑼 =  𝑢). 

 

Because, U is likely to be only partially unobserved the AT effect is typically implemented 

without conditioning on (all relevant) covariates and is therefore expected to be biased:  

 

the “crude” (AT) effect:  𝑃𝑟𝑜𝑏(𝒀 = 1|𝑿 = 1) − 𝑃𝑟𝑜𝑏(𝒀 = 1|𝑿 = 0). 

 

Instrumental Variable estimator. 

An unbiased AT effect can be estimated without the need to condition on (unobserved) 

covariate U using the instrumental variable (IV) estimator (7):  
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𝑃𝑟𝑜𝑏(𝒀 = 1|𝒁 = 1)−𝑃𝑟𝑜𝑏(𝒀 = 1|𝒁 = 0)

𝑃𝑟𝑜𝑏(𝑿 = 1|𝒁 = 1)−𝑃𝑟𝑜𝑏(𝑿 = 1|𝒁 = 0)
. [equation 2] 

 

This is the ratio of the ITT effect and the degree of allocation compliance, or adherence; 

with the denominator being 1 if there is complete adherence to treatment allocation. We 

note that the denominator can be interpreted as the difference between the proportion of 

subjects who adhere to treatment allocation when Z = 1, and the proportion of 

“contaminated” subjects who received X = 1 despite being allocated to Z = 0. Hereafter, 

we will simply refer to this quantity as adherence (or non-adherence). 

 

This IV effect estimate is unbiased if, amongst other assumptions (see below), there is no 

direct effect of treatment allocation on the outcome. As described before, in an unblinded 

RCT a direct effect 𝜏̂ may be present  (i.e., the exclusion restriction assumption may be 

violated) and in such settings the unbiased IV effect can only be estimated by subtracting 𝜏̂ 

from the numerator of equation 2. However, following equation 1B, 𝜏̂ it self can only be 

estimated unbiasedly if we can condition on U, resulting in the same limitation as the other 

discussed estimators that condition on U.  

 

Formally the IV effect is unbiased if the following 3 assumptions hold: 
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(i). The instrumental variable Z is strongly related to the exposure of interest X. 

(ii). The instrumental variable is independent of potential confounders U.  

(iii). Conditional on X and U, the instrumental variable does not have an effect on Y (i.e., 

the exclusion restriction assumption). 

 

For the IV estimate to reflect the "average causal effect” we need to additionally assume 

that the effect of X on Y is homogeneous(7,8) i.e., the effect of treatment on the outcome 

is the same for all individual subjects. Alternatively, to identify the “local average treatment 

effect” we must assume that participants will not categorically take the opposite treatment 

as indicated by Z (i.e., no ‘defiers’)(9). 

 

We note that besides the ratio estimator, other IV estimators exist (10,11) which make 

similar assumptions. Furthermore, the standard error of these estimators should obviously 

account for variance in both the numerator and the denominator, for example using the 

delta method(12,13). 

 

Estimating the unbiased instrumental variable effect in a meta-analysis of unblinded RCTs 

If results from multiple 𝑗 = 1, … , 𝐽 unblinded RCTs are available, or alternatively from 𝐽 

clusters within a single RCT, the effect of taking treatment can be estimated using a novel 

meta-regression(14) method developed for genetic MR studies(5).  
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Let us assume that for each RCT aggregate estimates are available on the ITT effect 𝜃𝑗 =

𝛼̂𝑗 + 𝜏̂𝑗, and the effect of treatment allocation on actual treatment use (i.e., adherence) 

𝜔̂𝑗 = 𝑃𝑟𝑜𝑏(𝑿 = 1|𝒁 = 1) − 𝑃𝑟𝑜𝑏(𝑿 = 1|𝒁 = 0), and we re-parameterize these such that the 

following restrictions hold: 

 

(a). 𝜃∗
𝑗 = 𝑠𝑔𝑛(𝜔̂𝑗) 𝜃𝑗 with 𝑠𝑔𝑛 equal to the sign function. 

(b). 𝜔̂∗
𝑗 = |𝑃𝑟𝑜𝑏(𝑿 = 1|𝒁 = 1) − 𝑃𝑟𝑜𝑏(𝑿 = 1|𝒁 = 0)|.  

 

Given that an RCT where 𝑃𝑟𝑜𝑏(𝑿 = 1|𝒁 = 1) < 𝑃𝑟𝑜𝑏(𝑿 = 1|𝒁 = 0) (i.e., negative 

adherence) seems unlikely to occur in practice and also does not occur in this paper, we 

drop the starred notation.  

 

Next, by regressing the study effects 𝜃𝑗 on study specific adherence, 𝜔̂𝑗, the unbiased 

effect of taking treatment can be recovered by fitting 

 

𝜃𝑗 = 𝛽0 + 𝛽1𝜔̂𝑗 + 𝜀𝑗 [equation 3],  
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weighted by the inverse of the variance of 𝜃𝑗. Here 𝛽̂1 reflects the unbiased IV estimate of 

taking treatment and 𝛽̂0, the direct effect of treatment allocation on the outcome Y 

independent of X and U, and 𝜖𝑗 the residual variance. The intuition behind this regression 

is that if Z does not have an effect on Y except through its effect on treatment, the effect of 

Z on the outcome when adherence is zero, 𝛽̂0, should also be zero. In other words if 𝛽0 =

0, this means 𝜏 = 0 is zero as well, and there is no direct effect of treatment allocation on 

the outcome (with the usual constraint that proofing the strict null is impossible). Using 

these estimates we can explore,1) if IV assumption (iii) is violated by testing if 𝛽0 = 0, and 

2) if the IV effect adjusted for a possible direct effect, 𝜏𝑗, differs from zero i.e., test if 𝛽1 = 0.  

 

The major assumption of this approach is that the direct effect 𝜏𝑗 does not depend on 

adherence 𝜔𝑗; following Bowden et al., we will call this the InSIDE assumption (Instrument 

Strength Independent of Direct Effect). Under this InSIDE assumption 𝛽̂1 =
𝑐𝑜𝑣(𝜃̂𝑗,𝜔̂𝑗)

𝑣𝑎𝑟(𝜔̂𝑗)
=

𝑐𝑜𝑣(𝛼̂𝑗,𝜔̂𝑗)

𝑣𝑎𝑟(𝜔̂𝑗)
+

𝑐𝑜𝑣(𝜏̂𝑗,𝜔̂𝑗)

𝑣𝑎𝑟(𝜔̂𝑗)
  and the expected value of the numerator in the last term will equal 

zero. This InSIDE assumption is violated for example when treatment allocation Z also 

affects confounders such as U; a slightly different version of IV assumption (ii).  

 

Bowden et al. coined this method MR-Egger, because of the close resemblance to the 

Egger test for small study heterogeneity(6,15). Here we extend this method beyond 
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Mendelian randomization and refer to this method as the Egger Correction for non-

Adherence (Egger-CA). To gain more insight in the Egger-CA method we will briefly 

discuss the Egger test and Egger-CA methods in a graphical manner.  

 

First we note, that the meta-analyzed ITT effect of  𝐽 RCTs can be estimated by fitting a 

linear regression model of the sort 𝜃𝑗 = 𝛿0 + 𝜀𝑗, weighted by the inverse of the variance in 

𝜃𝑗, where 𝛿0 represents the meta-analyzed ITT estimate. Heterogeneity in ITT effects due 

to small sample size studies can be explored by fitting the linear regression model: 

𝜃𝑗/𝑆𝐸(𝜃𝑗) = 𝛿0 + 𝛿1𝑃̂𝑗 + 𝜀𝑗 where 𝑃̂𝑗 = 1/𝑆𝐸(𝜃𝑗), i.e., the precision of the study specific 

estimate of 𝜃𝑗. Hence 𝛿0 reflects the standardized ITT effect in a study without any 

precision and can be used to explore if there is a sample size dependent trend in 

treatment effects, and 𝛿1 reflects the standardized ITT effect in an infinitely large RCT; 

Figure 2, left panel dashed line.  

 

Similarly, by fitting an intercept only model (i.e., weighted average) using the study specific 

IV estimate (equation 2) as the dependent variable, the meta-analyzed IV estimate can be 

obtained (Figure 2, right panel, horizontal line). Finally, the Egger-CA estimate is obtained 

by regressing the ITT effect estimates on the adherence estimates (equation 3), where the 

slope of the regression line estimates the ITT effect if adherence was 100%. This ITT 

effect with perfect adherence is also the only setting when the ITT effect estimate equals 
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the effect of taking treatment (Figure 2 right panel dashed dotted line). Also note that by 

regressing the ITT effect estimates on the adherence estimates and suppressing the 

intercept (i.e., forcing the intercept to be 0) the IV effect of equation 2 is estimated.  

 
Simulation study 

Using simulations, we evaluated the “crude" AT estimator (unconditional on U), the ITT 

estimator (equation 1A), the IV estimator (equation 2), and the Egger-CA estimator [ECA] 

(equation 3). For the ECA method, we evaluated both the treatment effect (i.e., indirect 

effect) and the direct effect estimates. The ECA method was implemented with three 

different variance estimators: 1) dividing the usual OLS standard error estimates by the 

error of the residual variance when this is larger than 1 [ECA-OLS], 2) a standard error 

estimator based on a parametric bootstrap procedure, sampling the ITT and adherence 

estimates from a normal distribution [ECA-PB]. Finally, given that all the observed 

variables considered are categorical, the individual patient data (IPD) can easily be 

reconstructed from the available aggregate data, and 3) the variance of the ECA can also 

be estimated by performing a study specific non-parametric bootstrap [ECA-NPB] in order 

to estimate the percentile confidence intervals(16). Both bootstrap estimators were 

implemented with 1 000 replications.  

 

We note that the ECA-OLS estimator as implemented here entails a multiplicative random 

effects model(17). Bowden et.al., suggest that this multiplicative random effects model 
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may be preferred because it does not up-weight outlying estimates, which may be outlying 

because the InSIDE assumption is more severely violated. Contrary to the more commonly 

used additive random effects model, a multiplicative random effects model has the desired 

property of increasing the standard error without influencing the point estimates. All other 

estimators (including the ECA-PB and ECA-NPB) are fitted assuming a fixed effect model.  

 

Data-generating process 

Data were simulated to mimic an aggregate data meta-analysis of 𝐽 studies, in which the 

number of subjects per study ranged between 400 and 5 000 (𝑛𝑗~𝑢𝑛𝑖𝑓(400, 5 000)), 

randomization followed a 1:1 allocation scheme 𝑧𝑗~𝑏𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.50), a confounder U was 

generated as 𝑢𝑗~𝑏𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.40 + 𝜇𝑧𝑧𝑗), treatment status as  𝑥𝑗~𝑏𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑗), where 𝑝𝑗 =

𝑞0,𝑗(1 − 𝑧𝑗) + 𝑞1,𝑗𝑧𝑗. Non-adherence was generated based on U: 𝑞0,𝑗 = 0 + 𝑢𝑛𝑖𝑓(0, 𝜇0)𝑢𝑗 

and 𝑞1,𝑗 = 1 + 𝑢𝑛𝑖𝑓(𝜇1, 0)𝑢𝑗, with 𝜇1 ≤ 0 and 𝜇0 ≥ 0. In other words 𝜔𝑗 = 𝑞1,𝑗 − 𝑞0,𝑗 =

[1 + 𝑢𝑛𝑖𝑓(𝜇1, 0)𝑢𝑗] − [0 + 𝑢𝑛𝑖𝑓(0, 𝜇0)𝑢𝑗]. Hence the minimum 𝜔𝑗 = 1 + (𝑢1 − 𝑢0)𝐸(𝜇𝑗) and 

the maximum 𝜔𝑗 = 1, see Appendix Table 1 for the scenario specific values. Finally, a 

binary outcome was generated based on X, Z, and U:  𝑦𝑗~𝑏𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜇𝑦,𝑗 + 𝜇𝑦𝑥𝑥𝑗 + 𝜏𝑧𝑗 +

𝜇𝑦𝑢𝑢𝑗). An overview of simulation parameters is given in Table 1.  

 

Simulation scenarios 
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In the following, simulation scenario I is described in full, to increase readability changes 

from preceding scenarios are discussed for the remaining scenarios (with the complete 

scenarios details presented in Table 1 and Figure 3).  

 

In scenario I we simulated 𝐽 =  20 perfectly blinded RCTs with 𝜇𝑦,𝑗~𝑁(0.15,0.0252) 𝜇𝑧 =

0.00, 𝜇𝑦𝑥 = 0.10, 𝜏 = 0.00, 𝜇𝑦𝑢 = 0.10, 𝜇0 = 0.050, and 𝜇1 = {−0.050, −0.200, −0.350}. In 

scenarios II and III unblinded RCTs were simulated by setting 𝜏 to 0.15 or -0.15 

respectively, and additionally for scenario III 𝜇𝑦,𝑗~𝑁(0.35,0.0252) instead of the previously 

defined distribution. In scenario IV 𝜇0 = {0.050,0.200,0.350}, and 𝜇1 = −0.200. In 

scenario V performance under the null hypothesis was evaluated by setting 𝜇𝑦𝑥 = 0.00. 

To evaluate violation of the InSIDE assumption, the following parameter values were used 

in scenario VI: 𝜇𝑧~𝑢𝑛𝑖𝑓(0, 𝜑), with 𝜑 = {0.10,0.25 0.50}, 𝜏𝑗~𝑢𝑛𝑖𝑓(−0.15,0), 𝜇𝑦𝑥 =

−0.10, 𝜇0 = 0.200, and 𝜇1 = −0.200. Between study heterogeneity was simulated by 

𝜇𝑦𝑥,𝑗~𝑁(−0.10, 𝜎𝑦𝑥
2 ) with 𝜎𝑦𝑥 = {0.025,0.03,0.05}, 𝜇𝑧 = 0,and 𝜇𝑦,𝑗~𝑁(0.46,0.0252) 

(scenario VII). To simulate time varying treatments, let 𝑡 = 1, … ,5, 𝜇𝑦𝑥,𝑡 = −0.10/5, 

𝑦𝑗~𝑏𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜇𝑦,𝑗 + ∑ 𝜇𝑦𝑥,𝑡
5
𝑡=1 𝑥𝑗,𝑡 + 𝜏𝑧𝑗 + 𝜇𝑦𝑢𝑢𝑗), where 𝑥𝑗,𝑡 is generated by applying 

𝑥𝑗~𝑏𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) five times and 𝜇𝑦,𝑗~𝑁(0.35,0.0252) in scenario VIII. To evaluate power, 

scenario II was repeated using 𝐽 =  40 scenario IX, 𝐽 =  80 scenario X, and 𝐽 =  20 with 

𝑛𝑗~𝑢𝑛𝑖𝑓(400, 10 000) in scenario XI. Up until here the between study difference in 
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adherence was kept relatively modest (appendix Table 1), in scenario XII we allow 𝜔 to 

vary between 1 and 0.30 by setting 𝜇1/𝜇0  = −0.50/0.50 and increasing the prevalence of 

U from 0.40 to 0.70. 

 

We note that in scenario VII we introduced a between study difference on an additive 

scale. To properly model this we re-analyse results from this scenario using an additive 

random effects model as described by Thompson and Sharp(17). Furthermore, the 

multiple treatment effects in scenario VIII were meta-analysed together resulting in an 

overall effect of treatment on the outcome and an overall effect of treatment allocation on 

adherence.  

 

All simulations were repeated 5 000 times and were performed using the statistical 

package R version 3.1.2 for Unix(18). The number of replications was chosen to ensure 

sufficient precision to detect small deviations from the nominal coverage rate of 0.95 (the 

95% lower and upper bounds are 0.944 and 0.956, given a true coverage of 0.95)(19). 

Please contact the lead author for a copy of the simulation and analysis scripts.  

 

Performance metrics 

Performance of the treatment effect estimators (AT, ITT, IV, EIV) was evaluated based on 

the following metrics. Bias was defined as RD̅̅ ̅̅ − True RD, with RD̅̅ ̅̅  equal to the mean 



 

18 
 

estimated risk difference (𝑅𝐷̂) of the effect of treatment on the outcome; empirical SE 

(ESE), estimated by taking the standard deviation of the distribution of 𝑅𝐷̂; the mean SE; 

the root mean square error 𝑅𝑀𝑆𝐸 = √(RD − True RD)2 + 𝐸𝑆𝐸2; the coverage rate, defined 

as the proportion of times the 95% confidence interval included the true RD; the proportion 

of rejected null-hypotheses (i.e., depending on whether 𝜇𝑦𝑥 equals 0 the type 1 error or 

power; using an alpha of 0.05); and the number of models that did not converge. Given 

that estimation of a direct effect of treatment allocation (𝜏) is usually not of interest we 

evaluate the three ECA intercept tests only on ESE, mean SE, rejection rate, number of 

failed models, and the mean point estimate.  

 

Results of the simulation study 

Figure 4 depicts the bias and coverage in the first three simulation scenarios of a meta-

analysis of 20 RCTs. The top row of Figure 4 depicts the performance of the treatment 

effect estimators in a meta-analysis of perfectly blinded RCTs under different levels of 

adherence. In this scenario, unless non-adherence was minimal, the AT estimator was a 

biased estimators of the effect of taking treatment. Even at low levels of non-adherence 

(e.g., range 𝜔 = 1, 0.96) the ITT was a biased estimator of taking treatment. Instead both 

IV estimators provided an unbiased estimate of the effect of taking treatment. Coverage of 

both the ITT and the AT estimator was lower than 0.95 unless adherence was close to 

perfect, whereas the coverage of the IV and ECA estimators was 0.95 or higher. Precision 
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of the ECA method was, however, much lower than for the IV estimator (a minimal ESE of 

0.004 for the IV estimator versus 0.093 for the ECA estimator). In this scenario the type 1 

error rate of the Egger-CA intercept tests was 0.05 (Appendix Table 2).  

 

The middle and bottom panels of Figure 4, depict performance when allocated treatment 

could not be blinded. In this setting all estimators were biased except for the ECA 

estimator, which had a maximum bias of 0.009 compared to a minimum bias of 0.132 for 

the other estimators. Note that in scenario II bias in the ITT was positive (minimum of 

0.142), indicating the ITT effect overestimated the treatment effect. Coverage was zero for 

all estimators except for the ECA which was close to 0.95 in all scenarios, however 

precision of the ECA estimator was again low (minimal ESE was 0.098 for the ECA 

compared to for example, 0.004 for the ITT estimator in scenario II). Power for the ECA 

(Appendix Tables 3 and 4 “rejection rate”) was at most 0.169, which decreased with 

increasing adherence. The RMSE for the ECA estimate was typically higher than for the 

other estimator, except when adherence was at its lowest (i.e., range 𝜔 = 1, 0.84), in 

which case RMSE 1.098 for the ECA versus a minimal RMSE of 0.132 for the AT 

estimator.  

 

Power to detect a direct effect of treatment allocation (i.e., intercept test) was highest, but 

still low in an absolute sense (scenario II 0.396), at an adherence range of 𝜔 = 1, 0.84 and 
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when using the ECA-NPB method. For the same scenario and adherence, power to detect 

a direct effect was 0.368 for the ECA-PB, and 0.351 for the ECA-OLS. Similar results as 

for scenarios II and III were found in Scenario IV when the non-adherence was the largest 

in the control arms instead of the intervention arm (Appendix Table 5).  

 

Figure 5 depicts the results of scenario V where treatment did not have an effect on the 

outcome. Due to the fact that treatment allocation was not blinded the ITT, AT, and IV 

estimators were all severely biased (minimum bias -0.130), while the ECA estimator 

remained unbiased (maximum bias -0.003). Precision and coverage were similar as in 

previous scenarios. The type 1 error rates (Appendix Table 6) were 1.00 for the ITT, AT, 

and IV estimators, and 0.05 or smaller, for the ECA estimator. Power of to detect a direct 

effect was at most 0.488 for the ECA-NPB (Appendix Table 6).  

 

Violating the InSIDE assumption (Figure 6, Scenario VI Appendix Table 7), did not impact 

bias of the ECA (which was at most -0.001), coverage, however, was reduced to as low as 

0.208 for the ECA-PB or 0.536 for the ECA-NPB. Coverage of the ECA-OLS estimator 

was, however, never lower than 0.90. Bias of the other estimators was of the same 

magnitude as before.  
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Violating the homogeneity assumption (Scenario VII, Appendix Table 8A) markedly 

decreased coverage of all the ECA methods, with the ECA-OLS showing the best 

coverage which did not drop below 0.900. Bias was close to -0.10 for all ECA methods, 

however, bias for the other estimators was always larger (i.e., more negative) than this. 

Using an (additive) random effects model (Appendix Table 8B) improved coverage of both 

the ECA-OLS and ECA-PB estimators to values above 0.90. Coverage of the ECA-NPB 

however remained markedly lower than 0.95 and decreased as adherence decreased.  

 

Similar results as in scenario II-IV were observed when adherence was measured five 

times, i.e., treatment compliance was allowed to change five times, and meta-analysed in 

an average treatment effect (Appendix Table 9).  

 

Power was more comprehensively explored in scenarios IX, X, and XI, (see Appendix 

tables 10-12) showing that even in meta-analyses of 80 studies power to detect a 

treatment effect using the ECA estimators was around 0.55; and only when adherence 

ranged between 1 and 0.84 (Table 2). Increasing the average sample size from 2 700 to 5 

200 subjects per study of a 20 study meta-analysis had similar impact as increasing the 

number of RCTs to 40 studies (with an average sample size of 2 700); both resulted in a 

maximum power of about 0.50. Power to detect a direct effect was more responsive to 

increments in the number of studies or sample size, increasing to 0.60 or higher for all 
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three scenarios when mean adherence ranged between 1 and 0.84, and as high as 0.900 

when 80 studies were included in the meta-analysis. Finally, in scenario XII we let the 

adherence range from 1 to 0.30 and we observed a power of 0.88 or higher for both the 

ECA treatment effect estimator and the direct effect ECA test, Appendix Table 13. 

 

Example - the effect of epidural anaesthesia in labouring women 

To illustrate the Egger-CA method we considered a meta-analysis by Bannister-Tyrrel et 

al.(3) which included RCTs comparing epidural anesthesia to non-epidural anesthesia or 

no anesthesia among women in labor; the primary endpoint was caesarean section 

incidence. Due to the inclusion of a no anesthesia group some of these RCTs may have 

had difficulty blinding participants completely which in turn may bias treatment effect 

estimates. The meta-analysis included 9 RCTs, for which details on non-adherence and 

contamination were reported (Appendix Table 14).  

 

Adherence ranged between 0.42 and 1.00 in this subset of RCTs, with the proportion of 

caesarean sections ranging between 0.04 and 0.16. Of the conventional effect estimates, 

only the as treated (AT) estimate (RD 0.104; 95%CI 0.087;0.121) showed an increased 

risk of caesarean due to epidural anaesthesia, while excluding a potential protective effect 

(Table 3). However, as described above, the AT estimate may be biased. The ECA direct 

effect estimate of 0.0004 seemed to indicate that treatment allocation did not affect the 
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outcome except through its effect on treatment adherence. Indeed, there was minimal 

difference between the ECA and IV estimates: Egger-CA estimate (RD 0.017, 95%CI -

0.086; 0.121) versus the conventional IV estimate (RD 0.018, 95%CI -0.007; 0.044). 

However, the confidence intervals around the direct effect were wide (e.g., -0.064; 0.065). 

Finally, we note that these estimates were dominated by two large studies (see Appendix 

Figure). This empirical example together with an R analysis script is included in 

Appendices 2 and 3.  

 

Discussion 

When interest lies in the effects of actually taking treatment, estimates from unblinded 

RCTs may be biased because treatment allocation may affect the outcome independent of 

the effect of taking treatment. In this study we have extended a method used in genetics 

(5) to a meta-analysis setting of unblinded RCTs. Additionally, we have presented 

simulation results, showing that under various scenarios the Egger-CA method was 

unbiased and had superior performance compared to other more established estimators 

such as the as-treated (AT), intention to treat (ITT), and instrumental variable estimator 

(IV) without Egger adjustment. While bias and coverage of the Egger-CA estimator was 

appropriate, power was usually lower than 0.50, and precision was lacking throughout. 

Finally, we showed that if the Egger-CA assumptions are violated, bias was lower than for 

other estimators, and implementing the Egger-CA using the OLS variance estimator 
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markedly improved performance as compared to (non-) parametric bootstrap variance 

estimators.  

 

While we focussed on unblinded RCTs, the discussed method can be more generally used 

as a sensitivity analysis for instrumental variable analyses. The Egger-CA method not only 

adjusts for the presence of a direct effect of treatment allocation on the outcome, but also 

includes an intercept test to detect such a direct effect. In RCTs it may be known 

beforehand if the instrument (i.e., treatment allocation) has a direct effect on the outcome 

or not (e.g., placebo controlled vs open label), in which case the intercept test is of less 

value. In other settings, such as post marketing surveillance(20), however this distinction 

may be less clear, and the intercept test can be a valuable test to explore the validity of an 

IV analysis.  

 

Bowden introduced the Egger-CA method for a single study with multiple genetic 

instruments. Here we extend this to a meta-analysis of multiple studies (RCTs), each with 

a single instrument (treatment allocation). Given that most contemporary RCTs are 

implemented in multiple centres, the Egger-CA method could also be applied in a single 

study with multiple centres. Returning to the meta-analysis setting for the moment, if the 

included sample of RCTs contains both blinded and unblinded studies, we feel the best 

solution would be to perform a sensitivity analysis excluding unblinded RCTs. By focusing 
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on blinded RCTs one can apply the ITT and IV estimators which have more power than 

the Egger-CA estimator. Instead the Egger-CA estimator is most valuable when an 

intervention is impossible to allocate in a blinded fashion which potentially invalidates the 

other treatment effect estimators. We wish to highlight that both Egger-CA and 

conventional IV methods estimate the effect of taking treatment 100% of the time versus 

never taking the treatment. It should be noted however, that these methods can intuitively 

be used to estimate the effect of any percentage of adherence, which may be more 

relevant for clinical practice where 100% adherence can be unrealistic.  

 

Throughout the Egger-CA method using the OLS variance estimator performed best, 

especially when the InSIDE assumption was violated. This is not surprising because, 

based on Bowden et al., the OLS estimator was implemented under a multiplicative 

random effects model, while (based on the same publication) the (non-) parametric 

bootstrap variance estimators were implemented under a fixed effect model. All three ECA 

variance estimators can be implemented using a fixed effect model, a multiplicative or 

additive (as done in simulation scenario VII) random effects model. The better 

performance of a multiplicative random effects model can be explained by noting that 

violations of the InSIDE assumptions are likely study specific and hence induce between 

study variance. Ignoring the between study variance and incorrectly using a fixed effect 

model will result in a lower than nominal (95%) coverage rate. Modelling this between 
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study variance (due to violations of the InSIDE assumption) using an additive random 

effects model will (correctly) inflate the coverage (and variance) but has the undesired side 

effect of also affecting (biasing) the point estimate. Instead, a multiplicative random effects 

model only influences the variance, not the point estimate, and is therefore more suitable 

in this setting. In applied settings it is often unknown whether between study variance is 

due to violations of the InSIDE assumption or due to other (biological) sources, with the 

latter preferably modelled using an additive random effects model(18). Therefore, we 

recommended to model any between study variance of the ECA estimate using both an 

additive and a multiplicative model. Regarding an additive random effects model we note 

the unexpected low coverage of the non-parametric bootstrap percentile confidence 

interval. Until this issue is resolved we advise applied researcher to preferentially use the 

OLS variance estimator. 

 

In addition to the InSIDE assumption, Bowden et al, (21) recently showed that the ECA 

method is only unbiased when there is negligible sampling error in 𝜔̂𝑗 , or more specifically 

there is no measurement error. This assumption is similar to assuming the predictor 

variable in a regression is measured without error, hence, Bowden coined this the “NO 

Measurement Error” (NOME) assumption. In a two-sample genetic MR setting (when the 

correlation between 𝜃𝑗 and 𝜔𝑗 is zero) Bowden showed that violating the NOME 

assumption increased the type 1 error of the direct effect, while the treatment effect test 
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was unaffected. How this translates to the current one-sample settings remains to be 

explored. Particularly, this future work should focus on evaluating and correcting for the 

NOME assumption violation while accounting for the 𝜔𝑗 and 𝜃𝑗 correlation. Such research 

should also compare performance to the ITT, AT, and IV estimators included here. While 

the IV estimator makes the same NOME assumption as the ECA (albeit with more 

robustness), the AT and ITT similarly assume the exposure variable is measured without 

error. For the ITT, the exposure variable is treatment allocation and one would hope this 

no measurement error assumption is true in most cases. However, for the AT the 

exposure variable is treatment received, and depending on the treatment, measurement 

error of the actual treatment received (e.g., based on self-reported data) may be 

meaningfully large. Finally, in this simulation study we have not adjusted for the 

confounder (U). However, as noted before, likely at least part of the confounders will be 

observed, hence it may be interesting to further explore the behaviour of the ECA when 

adjusting for the observed subset of confounders. An important consideration for this 

future research would be the behaviour of the ECA when the number of observed 

confounders differs between studies. Further relevant parameters include the 

(multivariable) correlation between the observed and unobserved confounders.  

 

Besides the Egger-CA method, several other methods have been suggested to adjust for 

the presence of a direct effect of an instrument on the outcome. Recently, Bowden et 
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al.(22) proposed a weighted median method, which performs better than the Egger-CA 

method if a fraction of the instruments are correct. A similar principle was applied by Kang 

et al.(23), implemented using a penalization method and assuming at least 50% of the 

instrument were correct. Under the same InSIDE assumption Kolesár introduced the 

“modified-biased-corrected-two-stage-least squares” estimator which unbiasedly estimates 

the effect of treatment in a single study with multiple instruments(24).   

 

The simulations presented here are naturally limited and the following points merit 

discussion. First, we evaluated the ITT estimator on its ability to estimate the effect of 

taking treatment, however, it is well known that the ITT effect only equals the effect of 

taking treatment when adherence is 100%. Nevertheless, we evaluated the ITT effect as 

such to underline how different the ITT effect can be from the effect of actually taking 

treatment. We also exemplified a pervasive false believe that the ITT effect always 

underestimates the effect of taking treatment, which has been described before(25). 

Furthermore, as shown analytically and emphasized by our simulation, the ITT effect in an 

unblinded RCT is no longer ensured to be independent of covariables and consequently 

the second term (the direct effect) in equation 1A does not necessarily equal zero. A 

second limitation is that we focussed on the risk difference scale only, and ignored relative 

effect estimators such as the risk ratio or the odd ratio. The rational for this is given by 

Didelez who showed that these relative effect estimators additionally assume that 
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treatment is normally distributed conditional on the instrumental variable and 

confounders(11). Given that potential confounding variable are typically unobserved this 

assumption is difficult to evaluate in empirical data, hence we decided against using these 

effect estimators. Furthermore, relative effect measures are often seen as less informative 

for determining an individual’s harm or benefit form an intervention(26). Additionally, the 

marginal and conditional effects do not generally agree when using non-collapsible effect 

estimators such as the odds ratio and hazard ratio(27). Our interest here is to estimate the 

unconditional (marginal) treatment effect, hence simulating a conditional effect that does 

not equal the marginal effect will complicate matters. Third, in scenario VIII we allowed 

treatment adherence to differ at 5 time points and meta-analysed the effect of treatment 

allocation on treatment adherence; implicitly assuming the same effect across time on 

treatment adherence. This equal effect across time is likely unrealistic in empirical settings, 

where it seems plausible that the effect of treatment allocation on treatment adherence 

changes over time (e.g., decreases with time). Time-varying effects can be estimated, 

within study, using for example, mixed effect models(28). Fourth, in most simulations the 

minimum adherence (Appendix Table 1) was typically not smaller than 0.70 and 

sometimes even limited to the range 1, 0.96, which may not reflect potential greater 

variability found in empirical data (see e.g., the motivating example). Because perfect 

adherence does not result in unbiased treatment effect estimates in unblinded RCTs, we 

felt it important to also evaluate performance when variation in adherence was minimal. 
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However, if in empirical settings variation in adherence is larger, higher power and 

precision may be expected, for example similar to scenario XII. Even though perfect 

adherence does not guarantee an absence of bias, we named this procedure “Egger 

Correction for non-Adherence” reflecting that some degree of non-adherence is necessary 

for this method to provide estimates. Fifth, the risk difference parameters used in the 

simulations were admittedly large, and perhaps larger than what would be found in most 

empirical studies. These parameters where nevertheless chosen to emphasize difference 

between estimators. Finally, while applying a random effects models in the presence of 

between study variance has desirable statistical properties, we wish to echo Greenland’s 

comment(29) in the sense that this heterogeneity in treatment effects should be explored 

not ignored. If, however, this heterogeneity cannot be explored, e.g., because of a lack of 

individual participant data, using a random effects method is preferred over using a fixed 

effect method. In the presence of unexplained heterogeneity the effect estimate can no 

longer be interpreted as the “average causal effect”, instead, in the absence of “defiers” 

(i.e., subjects the always defy allocated treatment), the “local average treatment effect”(11) 

can be identified.  

 

In conclusion we introduced a novel effect estimator, Egger-CA, which unbiasedly 

estimates the effect of taking treatment in meta-analyses of unblinded RCTs. In this setting 

the as treated, intention to treat, or the conventional instrumental variable effect estimators 
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are all potentially biased. Unless variation in adherence is large, power and precision is 

expected to be low, hence we recommend using the Egger-CA as a sensitivity analyses, 

not as a replacement for the more traditional effect estimators.  
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Figure captions 

 

Figure 1 Directed acyclic graphs of (A) a blinded and (B) an unblinded randomized controlled 
trial. 
 
[Figure 1 here] 
 
Nb. Node Z represents treatment allocation, node X treatment, node U unmeasured confounders of 
the X to Y relation, and Y the outcome.  
 
Figure 2 Graphical representation of the Egger test, and the IV and the Egger-CA estimates.  
 
[Figure 2 here] 
 
Nb. Dots represent study specific estimates. Left graph, the dashed line indicates the standardized 
ITT effect “corrected” for small study heterogeneity (i.e., results from an Egger analysis). Right 
graph, the dashed dotted line represents the IV effect corrected for a possible direct effect of 
allocation on the outcome (i.e., results from an Egger-CA analysis), the long dashed line represents 
the IV estimate uncorrected for this possible direct effect.  
 
Figure 3 Directed acyclic graph of an unblinded randomized controlled trial with treatment 
allocation Z affecting confounder U.  
 
[Figure 3 here] 
 
Nb. Node Z represents treatment allocation, node X treatment, node U unmeasured confounders of 
the X to Y relation, and Y the outcome. 𝜇𝑧 is the effect of treatment allocation Z on U, 𝜔𝑗 represents 

the effect of Z on treatment (X), 𝜏 is the direct effect of Z on Y (the outcome), 𝜇𝑦𝑥 represents the 

treatment effect on the outcome and 𝜇𝑦𝑢 the U effect on Y.  

 
 
 
Figure 4 Bias and coverage of different treatment effect estimators in a meta-analysis of 
randomized controlled trials (simulation scenarios I, II, and III).  
 
[Figure 4 here] 
 
Nb. AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the 
Instrumental Variable effect estimator; ECA, Egger Correction for non-Adherence estimator. In the 
bar plot the dark grey bar depicts coverage under an adherence range of 1,0.96, the lighter grey for 
adherence range of 1,0.90, and the lightest grey bar an adherence range of 1,0.84.  Simulations 
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were repeated 5,000 times. In scenario I treatment allocation was blinded, in scenarios II and III 
treatment allocation was unblinded and allocation had a direct effect on the outcome.   
 
 
Figure 5 Performance of different treatment effect estimators where treatment has no effect 
on the outcome in a meta-analysis of randomized controlled trials (simulation scenario V).  
 
[Figure 5 here] 
 
Nb. AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the 
Instrumental Variable effect estimator; ECA, Egger Correction for non-Adherence estimator. In the 
bar plot the dark grey bar depicts coverage under an adherence range of 1,0.90, the lighter grey for 
adherence range of 1,0.84, and the lightest grey bar an adherence range of 1,0.78. Simulations 
were repeated 5,000 times.   
 
Figure 6 Performance of different treatment effect estimators when the InSIDE assumption is 
violated in a meta-analysis of randomized controlled trials (simulation scenario VII).  
 
[Figure 6 here] 
 
AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental 
Variable effect estimator; ECA, Egger Correction for non-Adherence estimator. In the bar plot the 
dark grey bar depicts coverage under a violation of the InSIDE assumption of 0.05, the lighter grey 
0.125, and the lightest grey 0.25. Simulations were repeated 5,000 times. 
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Appendix Table 1 adherence range (i.e., 𝝎). 
 

Sub-scenario 1 Sub-scenario 2 Sub-scenario 3 

Scenario I 

Scenario II 

Scenario III 

Scenario IV 

Scenario V 

Scenario VI 

Scenario VII 

Scenario VIII 

Scenario IX 

Scenario X 

Scenario XI 

Scenario XII 

1, 0.96 

1, 0.96 

1, 0.96 

1, 0.90 

1, 0.90 

1, 0.86 

1, 0.84 

1, 0.84 

1, 0.96 

1, 0.96 

1, 0.96 

1, 0.30 

1, 0.90 

1, 0.90 

1, 0.90 

1, 0.84 

1, 0.84 

1, 0.83 

1, 0.84 

NA 

1, 0.90 

1, 0.90 

1, 0.90 

NA 

1, 0.84 

1, 0.84 

1, 0.84 

1, 0.78 

1, 0.78 

1, 0.78 

1, 0.84 

NA 

1, 0.84 

1, 0.84 

1, 0.84 

NA 
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Appendix Table 2 simulation results for scenario I assessing performance of different treatment effect estimators in a 
meta-analysis of blinded RCTs. 

 Treatment effect  Direct effect 

Adherence range (𝝎) 1, 0.96 1, 0.90 1, 0.84  1, 0.96 1, 0.90 1, 0.84 

        

Risk difference 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.100 
0.098 
0.100 
0.087 
0.087 
0.087 

 
0.096 
0.095 
0.100 
0.094 
0.094 
0.094 

 
0.093 
0.092 
0.100 
0.098 
0.098 
0.098 

  
 
 
 

0.013 
0.013 
0.013 

 
 
 
 

0.006 
0.006 
0.006 

 
 
 
 

0.002 
0.002 
0.002 

Bias 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.000 
-0.002 
0.000 
-0.013 
-0.013 
-0.013 

 
-0.004 
-0.005 
0.000 
-0.006 
-0.006 
-0.006 

 
-0.007 
-0.008 
0.000 
-0.002 
-0.002 
-0.002 

    

Coverage 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.946 
0.910 
0.946 
0.960 
0.952 
0.979 

 
0.823 
0.723 
0.951 
0.956 
0.945 
0.957 

 
0.489 
0.397 
0.954 
0.962 
0.950 
0.957 

    

Rejection rate 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
1.000 
1.000 
1.000 
0.046 
0.053 
0.028 

 
1.000 
1.000 
1.000 
0.078 
0.093 
0.083 

 
1.000 
1.000 
1.000 
0.169 
0.174 
0.186 

  
 
 
 

0.039 
0.049 
0.022 

 
 
 
 

0.044 
0.054 
0.044 

 
 
 
 

0.037 
0.052 
0.043 

Mean SE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.004 
0.004 
0.004 
0.460 
0.452 
NA 

 
0.004 
0.004 
0.004 
0.167 
0.165 
NA 

 
0.004 
0.004 
0.004 
0.099 
0.097 
NA 

  
 
 
 

0.450 
0.443 
NA 

 
 
 
 

0.159 
0.157 
NA 

 
 
 
 

0.091 
0.089 
NA 

ESE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.004 
0.004 
0.004 
0.442 
0.442 
0.442 

 
0.004 
0.004 
0.004 
0.161 
0.161 
0.161 

 
0.004 
0.004 
0.004 
0.093 
0.093 
0.093 

  
 
 
 

0.433 
0.433 
0.433 

 
 
 
 

0.153 
0.153 
0.153 

 
 
 
 

0.085 
0.085 
0.085 

RMSE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.004 
0.004 
0.004 
0.442 
0.442 
0.442 

 
0.005 
0.006 
0.004 
0.161 
0.161 
0.161 

 
0.008 
0.009 
0.004 
0.093 
0.093 
0.093 

    

Number of failed models 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

  
 
 
 
0 
0 
0 

 
 
 
 

0 
0 
0 

 
 
 
 

0 
0 
0 

AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental Variable effect estimator; 
ECA, Egger Correction for non-Adherence estimator. The ECA estimator was implemented using 3 standard error estimators: 
the Ordinary Least Square (OLS) variance estimator, estimated by dividing the standard errors of the slope coefficient by min(1, 
"residual standard error”); the parametric bootstrap estimator (PB); the nonparametric bootstrap (NPB) estimator which was 
used to estimate the percentile confidence interval instead of the standard error.  
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Appendix Table 3 simulation results for scenario II assessing performance of different treatment effect estimators in a 

meta-analysis of unblinded RCTs, where treatment allocation has a direct effect on the outcome (𝝉 = 𝟎. 𝟏𝟓). 
 Treatment effect  Direct effect 

Adherence range (𝝎) 1, 0.96 1, 0.90 1, 0.84  1, 0.96 1, 0.90 1, 0.84 

        

Risk difference 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.247 
0.248 
0.253 
0.109 
0.109 
0.109 

 
0.239 
0.245 
0.258 
0.098 
0.098 
0.098 

 
0.232 
0.242 
0.263 
0.101 
0.101 
0.101 

  
 
 
 

0.142 
0.142 
0.142 

 
 
 
 

0.152 
0.152 
0.152 

 
 
 
 

0.149 
0.149 
0.149 

Bias 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.147 
0.148 
0.153 
0.009 
0.009 
0.009 

 
0.139 
0.145 
0.158 
-0.002 
-0.002 
-0.002 

 
0.132 
0.142 
0.163 
-0.001 
-0.001 
-0.001 

    

Coverage 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.000 
0.000 
0.000 
0.959 
0.950 
0.977 

 
0.000 
0.000 
0.000 
0.960 
0.948 
0.961 

 
0.000 
0.000 
0.000 
0.962 
0.955 
0.959 

    

Rejection rate 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
1.000 
1.000 
1.000 
0.044 
0.056 
0.028 

 
1.000 
1.000 
1.000 
0.074 
0.097 
0.079 

 
1.000 
1.000 
1.000 
0.152 
0.165 
0.169 

  
 
 
 

0.055 
0.062 
0.034 

 
 
 
 

0.145 
0.162 
0.160 

 
 
 
 

0.351 
0.368 
0.396 

Mean SE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.004 
0.004 
0.004 
0.485 
0.477 
NA 

 
0.004 
0.004 
0.004 
0.177 
0.174 
NA 

 
0.004 
0.004 
0.004 
0.104 
0.103 
NA 

  
 
 
 

0.475 
0.467 
NA 

 
 
 
 

0.168 
0.165 
NA 

 
 
 
 

0.096 
0.095 
NA 

ESE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.004 
0.004 
0.004 
0.467 
0.467 
0.467 

 
0.004 
0.004 
0.004 
0.169 
0.169 
0.169 

 
0.005 
0.004 
0.005 
0.098 
0.098 
0.098 

  
 
 
 

0.457 
0.457 
0.457 

 
 
 
 

0.161 
0.161 
0.161 

 
 
 
 

0.090 
0.090 
0.090 

RMSE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.147 
0.148 
0.153 
0.467 
0.467 
0.467 

 
0.139 
0.145 
0.158 
0.169 
0.169 
0.169 

 
0.132 
0.142 
0.163 
0.098 
0.098 
0.098 

    

Number of failed models 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

  
 
 
 
0 
0 
0 

 
 
 
 

0 
0 
0 

 
 
 
 

0 
0 
0 

AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental Variable effect estimator; 
ECA, Egger Correction for non-Adherence estimator. The ECA estimator was implemented using 3 standard error estimators: 
the Ordinary Least Square (OLS) variance estimator, estimated by dividing the standard errors of the slope coefficient by min(1, 
"residual standard error”); the parametric bootstrap estimator (PB); the nonparametric bootstrap (NPB) estimator which was 
used to estimate the percentile confidence interval instead of the standard error.  
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Appendix Table 4 simulation results for scenario III assessing performance of different treatment effect estimators in a 

meta-analysis of unblinded RCTs, where treatment allocation has a direct effect on the outcome (𝝉 = −𝟎. 𝟏𝟓). 
 Treatment effect  Direct effect 

Adherence range (𝝎) 1, 0.96 1, 0.90 1, 0.84  1, 0.96 1, 0.90 1, 0.84 

        

Risk difference 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
-0.047 
-0.052 
-0.053 
0.091 
0.091 
0.091 

 
-0.046 
-0.055 
-0.058 
0.095 
0.095 
0.095 

 
-0.046 
-0.058 
-0.063 
0.099 
0.099 
0.099 

  
 
 
 

-0.141 
-0.141 
-0.141 

 
 
 
 

-0.145 
-0.145 
-0.145 

 
 
 
 

-0.149 
-0.149 
-0.149 

Bias 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
-0.147 
-0.152 
-0.153 
-0.009 
-0.009 
-0.009 

 
-0.146 
-0.155 
-0.158 
-0.005 
-0.005 
-0.005 

 
-0.146 
-0.158 
-0.163 
-0.001 
-0.001 
-0.001 

    

Coverage 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.000 
0.000 
0.000 
0.955 
0.949 
0.977 

 
0.000 
0.000 
0.000 
0.952 
0.945 
0.955 

 
0.000 
0.000 
0.000 
0.958 
0.947 
0.954 

    

Rejection rate 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
1.000 
1.000 
1.000 
0.048 
0.056 
0.027 

 
1.000 
1.000 
1.000 
0.076 
0.083 
0.075 

 
1.000 
1.000 
1.000 
0.138 
0.154 
0.153 

  
 
 
 

0.051 
0.061 
0.032 

 
 
 
 

0.123 
0.133 
0.125 

 
 
 
 

0.307 
0.332 
0.342 

Mean SE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.004 
0.004 
0.004 
0.525 
0.512 
NA 

 
0.004 
0.004 
0.004 
0.191 
0.188 
NA 

 
0.004 
0.004 
0.005 
0.112 
0.110 
NA 

  
 
 
 

0.514 
0.502 
NA 

 
 
 
 

0.181 
0.179 
NA 

 
 
 
 

0.103 
0.102 
NA 

ESE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.004 
0.004 
0.004 
0.507 
0.507 
0.507 

 
0.004 
0.004 
0.005 
0.185 
0.185 
0.185 

 
0.004 
0.004 
0.005 
0.107 
0.107 
0.107 

  
 
 
 

0.497 
0.497 
0.497 

 
 
 
 

0.176 
0.176 
0.176 

 
 
 
 

0.099 
0.099 
0.099 

RMSE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.147 
0.152 
0.153 
0.507 
0.507 
0.507 

 
0.146 
0.155 
0.158 
0.185 
0.185 
0.185 

 
0.146 
0.158 
0.163 
0.107 
0.107 
0.107 

    

Number of failed models 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

  
 
 
 
0 
0 
0 

 
 
 
 

0 
0 
0 

 
 
 
 

0 
0 
0 

AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental Variable effect estimator; 
ECA, Egger Correction for non-Adherence estimator. The ECA estimator was implemented using 3 standard error estimators: 
the Ordinary Least Square (OLS) variance estimator, estimated by dividing the standard errors of the slope coefficient by min(1, 
"residual standard error”); the parametric bootstrap estimator (PB); the nonparametric bootstrap (NPB) estimator which was 
used to estimate the percentile confidence interval instead of the standard error.  
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Appendix Table 5 simulation results for scenario IV assessing performance of different treatment effect estimators in a 

meta-analysis of unblinded RCTs, where treatment allocation has a direct effect on the outcome (𝝉 = −𝟎. 𝟏𝟓). 
 Treatment effect  Direct effect 

Adherence range (𝝎) 1, 0.90 1, 0.84 1, 0.78  1, 0.90 1, 0.84 1, 0.78 

        

Risk difference 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
-0.046 
-0.055 
-0.058 
0.096 
0.096 
0.096 

 
-0.038 
-0.058 
-0.063 
0.102 
0.102 
0.102 

 
-0.030 
-0.061 
-0.068 
0.101 
0.101 
0.101 

  
 
 
 

-0.147 
-0.147 
-0.147 

 
 
 
 

-0.152 
-0.152 
-0.152 

 
 
 
 

-0.151 
-0.151 
-0.151 

Bias 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
-0.146 
-0.155 
-0.158 
-0.004 
-0.004 
-0.004 

 
-0.138 
-0.158 
-0.163 
0.002 
0.002 
0.002 

 
-0.130 
-0.161 
-0.168 
0.001 
0.001 
0.001 

    

Coverage 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.000 
0.000 
0.000 
0.962 
0.950 
0.962 

 
0.000 
0.000 
0.000 
0.960 
0.947 
0.960 

 
0.000 
0.000 
0.000 
0.958 
0.949 
0.956 

    

Rejection rate 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
1.000 
1.000 
1.000 
0.067 
0.084 
0.069 

 
1.000 
1.000 
1.000 
0.116 
0.123 
0.127 

 
0.986 
1.000 
1.000 
0.169 
0.185 
0.196 

  
 
 
 

0.121 
0.139 
0.128 

 
 
 
 

0.229 
0.234 
0.248 

 
 
 
 

0.413 
0.427 
0.455 

Mean SE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.004 
0.004 
0.004 
0.191 
0.189 
NA 

 
0.004 
0.004 
0.005 
0.141 
0.139 
NA 

 
0.004 
0.004 
0.005 
0.100 
0.099 
NA 

  
 
 
 

0.181 
0.179 
NA 

 
 
 
 

0.129 
0.128 
NA 

 
 
 
 

0.089 
0.088 
NA 

ESE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.004 
0.004 
0.005 
0.181 
0.181 
0.181 

 
0.004 
0.004 
0.005 
0.138 
0.138 
0.138 

 
0.005 
0.004 
0.005 
0.095 
0.095 
0.095 

  
 
 
 

0.172 
0.172 
0.172 

 
 
 
 

0.127 
0.127 
0.127 

 
 
 
 

0.084 
0.084 
0.084 

RMSE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.146 
0.155 
0.158 
0.181 
0.181 
0.181 

 
0.138 
0.158 
0.163 
0.138 
0.138 
0.138 

 
0.130 
0.161 
0.168 
0.095 
0.095 
0.095 

    

Number of failed models 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

  
 
 
 
0 
0 
0 

 
 
 
 

0 
0 
0 

 
 
 
 
0 
0 
0 

AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental Variable effect estimator; 
ECA, Egger Correction for non-Adherence estimator. The ECA estimator was implemented using 3 standard error estimators: 
the Ordinary Least Square (OLS) variance estimator, estimated by dividing the standard errors of the slope coefficient by min(1, 
"residual standard error”); the parametric bootstrap estimator (PB); the nonparametric bootstrap (NPB) estimator which was 
used to estimate the percentile confidence interval instead of the standard error.  
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Appendix Table 6 simulation results for scenario V assessing performance of different treatment effect estimators in a 

meta-analysis of unblinded RCTs, where treatment has no effect on the outcome (𝝁𝒚𝒙 = 𝟎. 𝟎𝟎). 
 Treatment effect  Direct effect 

Adherence range (𝝎) 1, 0.90 1, 0.84 1, 0.78  1, 0.90 1, 0.84 1, 0.78 

        

Risk difference 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
-0.146 
-0.150 
-0.158 
-0.003 
-0.003 
-0.003 

 
-0.138 
-0.150 
-0.163 
-0.001 
-0.001 
-0.001 

 
-0.130 
-0.150 
-0.168 
-0.001 
-0.001 
-0.001 

  
 
 
 

-0.147 
-0.147 
-0.147 

 
 
 
 

-0.149 
-0.149 
-0.149 

 
 
 
 

-0.149 
-0.149 
-0.149 

Bias 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
-0.146 
-0.150 
-0.158 
-0.003 
-0.003 
-0.003 

 
-0.138 
-0.150 
-0.163 
-0.001 
-0.001 
-0.001 

 
-0.123 
-0.150 
-0.168 
0.001 
0.001 
0.001 

    

Coverage 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.000 
0.000 
0.000 
0.955 
0.951 
0.955 

 
0.000 
0.000 
0.000 
0.955 
0.946 
0.956 

 
0.000 
0.000 
0.000 
0.962 
0.949 
0.960 

    

Rejection rate 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
1.000 
1.000 
1.000 
0.045 
0.049 
0.045 

 
1.000 
1.000 
1.000 
0.045 
0.054 
0.044 

 
1.000 
1.000 
1.000 
0.038 
0.051 
0.040 

  
 
 
 

0.135 
0.151 
0.143 

 
 
 
 

0.238 
0.259 
0.262 

 
 
 
 

0.449 
0.460 
0.488 

Mean SE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.004 
0.004 
0.004 
0.181 
0.179 
NA 

 
0.004 
0.004 
0.004 
0.134 
0.132 
NA 

 
0.004 
0.004 
0.004 
0.094 
0.094 
NA 

  
 
 
 

0.172 
0.170 
NA 

 
 
 
 

0.123 
0.122 
NA 

 
 
 
 

0.084 
0.083 
NA 

ESE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.004 
0.004 
0.004 
0.175 
0.175 
0.175 

 
0.004 
0.004 
0.004 
0.131 
0.131 
0.131 

 
0.005 
0.004 
0.005 
0.090 
0.090 
0.090 

  
 
 
 

0.166 
0.166 
0.166 

 
 
 
 

0.121 
0.121 
0.121 

 
 
 
 

0.080 
0.080 
0.080 

RMSE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.147 
0.150 
0.158 
0.175 
0.175 
0.175 

 
0.138 
0.150 
0.163 
0.131 
0.131 
0.131 

 
0.131 
0.150 
0.168 
0.090 
0.090 
0.090 

    

Number of failed models 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

  
 
 
 
0 
0 
0 

 
 
 
 

0 
0 
0 

 
 
 
 

0 
0 
0 

AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental Variable effect estimator; 
ECA, Egger Correction for non-Adherence estimator. The ECA estimator was implemented using 3 standard error estimators: 
the Ordinary Least Square (OLS) variance estimator, estimated by dividing the standard errors of the slope coefficient by min(1, 
"residual standard error”); the parametric bootstrap estimator (PB); the nonparametric bootstrap (NPB) estimator which was 
used to estimate the percentile confidence interval instead of the standard error.  
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Appendix Table 7 simulation results for scenario VI assessing performance of different treatment effect estimators in a 
meta-analysis of unblinded RCTs, where treatment allocation has an effect on the outcome and on a confounder. 

 Treatment effect  Direct effect 

Average effect of Z on confounder U 
(𝝁𝒛) 

0.05 0.125 0.25  0.05 0.125 0.25 

        

Risk difference 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
-0.171 
-0.169 
-0.185 
-0.100 
-0.100 
-0.100 

 
-0.170 
-0.167 
-0.184 
-0.100 
-0.100 
-0.100 

 
-0.168 
-0.165 
-0.184 
-0.101 
-0.101 
-0.101 

  
 
 
 

-0.077 
-0.077 
-0.077 

 
 
 
 

-0.076 
-0.076 
-0.076 

 
 
 
 

-0.074 
-0.074 
-0.074 

Bias 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
-0.071 
-0.069 
-0.085 
0.000 
0.000 
0.000 

 
-0.070 
-0.067 
-0.084 
-0.000 
-0.000 
-0.000 

 
-0.068 
-0.065 
-0.084 
-0.001 
-0.001 
-0.001 

    

Coverage 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.000 
0.000 
0.000 
0.903 
0.208 
0.557 

 
0.000 
0.000 
0.000 
0.914 
0.226 
0.551 

 
0.000 
0.000 
0.000 
0.908 
0.223 
0.536 

    

Rejection rate 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
1.000 
1.000 
1.000 
0.113 
0.790 
0.106 

 
1.000 
1.000 
1.000 
0.104 
0.790 
0.465 

 
1.000 
1.000 
1.000 
0.113 
0.799 
0.489 

  
 
 
 

0.106 
0.792 
0.452 

 
 
 
 

0.101 
0.783 
0.467 

 
 
 
 

0.112 
0.774 
0.467 

Mean SE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.004 
0.004 
0.004 
0.309 
0.052 
NA 

 
0.004 
0.004 
0.004 
0.281 
0.047 
NA 

 
0.004 
0.004 
0.004 
0.239 
0.039 
NA 

  
 
 
 

0.283 
0.048 
NA 

 
 
 
 

0.255 
0.042 
NA 

 
 
 
 

0.215 
0.035 
NA 

ESE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.011 
0.012 
0.013 
0.347 
0.347 
0.347 

 
0.011 
0.012 
0.013 
0.312 
0.312 
0.312 

 
0.011 
0.012 
0.013 
0.266 
0.266 
0.266 

  
 
 
 

0.318 
0.318 
0.318 

 
 
 
 

0.283 
0.284 
0.284 

 
 
 
 

0.239 
0.239 
0.239 

RMSE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.072 
0.070 
0.086 
0.347 
0.347 
0.347 

 
0.071 
0.068 
0.085 
0.312 
0.312 
0.312 

 
0.069 
0.066 
0.085 
0.266 
0.266 
0.266 

    

Number of failed models 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

  
 
 
 

0 
0 
0 

 
 
 
 

0 
0 
0 

 
 
 
 

0 
0 
0 

AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental Variable effect estimator; 
ECA, Egger Correction for non-Adherence estimator. The ECA estimator was implemented using 3 standard error estimators: 
the Ordinary Least Square (OLS) variance estimator, estimated by dividing the standard errors of the slope coefficient by min(1, 
"residual standard error”); the parametric bootstrap estimator (PB); the nonparametric bootstrap (NPB) estimator which was 
used to estimate the percentile confidence interval instead of the standard error.  
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Appendix Table 8A simulation results for scenario VII assessing performance of different treatment effect estimators 
in a fixed effect meta-analysis of unblinded RCTs. 

 Treatment effect  Direct effect 

Between study standard deviation 
in 𝝁𝒚𝒙 

0.025 0.030 0.050  0.025 0.030 0.050 

        

Risk difference 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
-0.239 
-0.243 
-0.264 
-0.104 
-0.104 
-0.104 

 
-0.239 
-0.243 
-0.264 
-0.102 
-0.102 
-0.102 

 
-0.241 
-0.244 
-0.266 
-0.111 
-0.111 
-0.111 

  
 
 
 

-0.147 
-0.147 
-0.147 

 
 
 
 

-0.149 
-0.149 
-0.149 

 
 
 
 

-0.142 
-0.142 
-0.142 

Bias 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
-0.139 
-0.143 
-0.164 
-0.004 
-0.004 
-0.004 

 
-0.139 
-0.143 
-0.164 
-0.002 
-0.002 
-0.002 

 
-0.141 
-0.144 
-0.166 
-0.011 
-0.011 
-0.011 

    

Coverage 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.000 
0.000 
0.000 
0.919 
0.551 
0.783 

 
0.000 
0.000 
0.000 
0.914 
0.455 
0.721 

 
0.000 
0.000 
0.000 
0.904 
0.219 
0.572 

    

Rejection rate 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
1.000 
1.000 
1.000 
0.116 
0.487 
0.266 

 
1.000 
1.000 
1.000 
0.115 
0.590 
0.315 

 
1.000 
1.000 
1.000 
0.107 
0.780 
0.460 

  
 
 
 

0.160 
0.554 
0.344 

 
 
 
 

0.150 
0.626 
0.377 

 
 
 
 

0.115 
0.786 
0.468 

Mean SE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.004 
0.004 
0.005 
0.206 
0.088 
NA 

 
0.004 
0.004 
0.004 
0.232 
0.079 
NA 

 
0.004 
0.004 
0.004 
0.346 
0.058 
NA 

  
 
 
 

0.190 
0.081 
NA 

 
 
 
 

0.213 
0.073 
NA 

 
 
 
 

0.318 
0.053 
NA 

ESE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.008 
0.007 
0.008 
0.225 
0.225 
0.225 

 
0.009 
0.008 
0.009 
0.257 
0.257 
0.257 

 
0.014 
0.012 
0.013 
0.387 
0.387 
0.387 

  
 
 
 

0.207 
0.207 
0.207 

 
 
 
 

0.236 
0.236 
0.236 

 
 
 
 

0.356 
0.356 
0.356 

RMSE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.139 
0.143 
0.164 
0.225 
0.225 
0.225 

 
0.139 
0.143 
0.164 
0.257 
0.257 
0.257 

 
0.141 
0.144 
0.166 
0.387 
0.387 
0.387 

    

Number of failed models 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

 
9 
9 
9 
9 
9 
9 

  
 
 
 

0 
0 
0 

 
 
 
 

0 
0 
0 

 
 
 
 

9 
9 
9 

AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental Variable effect estimator; 
ECA, Egger Correction for non-Adherence estimator. The ECA estimator was implemented using 3 standard error estimators: 
the Ordinary Least Square (OLS) variance estimator, estimated by dividing the standard errors of the slope coefficient by min(1, 
"residual standard error”); the parametric bootstrap estimator (PB); the nonparametric bootstrap (NPB) estimator which was 
used to estimate the percentile confidence interval instead of the standard error.  
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Appendix Table 8B simulation results for scenario VII assessing performance of different treatment effect estimators 
in a random effects meta-analysis of unblinded RCTs. 

 Treatment effect  Direct effect 

Between study standard deviation 
in 𝝁𝒚𝒙 

0.025 0.030 0.050  0.025 0.030 0.050 

        

Risk difference 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
-0.239 
-0.242 
-0.264 
-0.099 
-0.099 
-0.099 

 
-0.238 
-0.242 
-0.264 
-0.102 
-0.102 
-0.102 

 
-0.239 
-0.242 
-0.264 
-0.099 
-0. 099 
-0. 099 

  
 
 
 

-0.151 
-0.151 
-0.151 

 
 
 
 

-0.148 
-0.148 
-0.148 

 
 
 
 

-0.151 
-0.151 
-0.151 

Bias 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
-0.139 
-0.142 
-0.164 
-0.001 
-0.001 
-0.001 

 
-0.138 
-0.142 
-0.164 
-0.002 
-0.002 
-0.002 

 
-0.139 
-0.142 
-0.164 
0.001 
0.001 
0.001 

    

Coverage 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.000 
0.000 
0.000 
0.933 
0.936 
0.834 

 
0.000 
0.000 
0.000 
0.923 
0.925 
0.791 

 
0.000 
0.000 
0.000 
0.933 
0.934 
0.649 

    

Rejection rate 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
1.000 
1.000 
1.000 
0.099 
0.095 
0.221 

 
1.000 
1.000 
1.000 
0.098 
0.092 
0.253 

 
1.000 
1.000 
1.000 
0.079 
0.076 
0.361 

  
 
 
 

0.144 
0.143 
0.309 

 
 
 
 

0.125 
0.125 
0.323 

 
 
 
 

0.097 
0.097 
0.397 

Mean SE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.007 
0.007 
0.007 
0.211 
0.213 
NA 

 
0.008 
0.008 
0.008 
0.237 
0.239 
NA 

 
0.012 
0.011 
0.012 
0.349 
0.351 
NA 

  
 
 
 

0.194 
0.196 
NA 

 
 
 
 

0.218 
0.220 
NA 

 
 
 
 

0.322 
0.323 
NA 

ESE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.007 
0.007 
0.008 
0.220 
0.220 
0.220 

 
0.008 
0.008 
0.009 
0.248 
0.248 
0.248 

 
0.012 
0.011 
0.013 
0.363 
0.363 
0.363 

  
 
 
 

0.202 
0.202 
0.202 

 
 
 
 

0.229 
0.229 
0.229 

 
 
 
 

0.334 
0.334 
0.334 

RMSE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.139 
0.143 
0.164 
0.220 
0.220 
0.220 

 
0.139 
0.143 
0.164 
0.249 
0.249 
0.249 

 
0.139 
0.143 
0.164 
0.363 
0.363 
0.363 

    

Number of failed models 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

 
12 
12 
12 
12 
12 
12 

  
 
 
 

0 
0 
0 

 
 
 
 

0 
0 
0 

 
 
 
 

12 
12 
12 

AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental Variable effect estimator; 
ECA, Egger Correction for non-Adherence estimator. The ECA estimator was implemented using 3 standard error estimators: 
the Ordinary Least Square (OLS) variance estimator, estimated by dividing the standard errors of the slope coefficient by the 
residual standard error; the parametric bootstrap estimator (PB); the nonparametric bootstrap (NPB) estimator which was used 
to estimate the percentile confidence interval instead of the standard error.  
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Appendix Table 9 simulation results for scenario VIII assessing performance of different treatment effect estimators in a fixed effect meta-analysis of unblinded RCTs, with 5 
measurements of treatment adherence.  

 Risk difference Bias Coverage Rejection rate Mean SE ESE RMSE Number of failed 
models 

Treatment effect 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
-0.227 
-0.242 
-0.263 
-0.101 
-0.101 
-0.101 

 
-0.127 
-0.142 
-0.163 
-0.001 
-0.001 
-0.001 

 
0.000 
0.000 
0.000 
0.955 
0.952 
0.948 

 
1.000 
1.000 
1.000 
0.114 
0.138 
0.138 

 
0.002 
0.004 
0.002 
0.127 
0.125 
NA 

 
0.004 
0.004 
0.004 
0.122 
0.122 
0.122 

 
0.127 
0.142 
0.163 
0.122 
0.122 
0.122 

 
5 
5 
5 
5 
5 
5 

         

Direct effect 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
-0.149 
-0.149 
-0.149 

   
0.256 
0.274 
0.293 

 
0.117 
0.115 
NA 

 
0.113 
0.113 
0.113 

  
5 
5 
5 

         
Adherence range 
(𝝎): 1, 0.84 

        

AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental Variable effect estimator; ECA, Egger Correction for non-Adherence estimator. The ECA 
estimator was implemented using 3 standard error estimators: the Ordinary Least Square (OLS) variance estimator, estimated by dividing the standard errors of the slope coefficient by min(1, 
"residual standard error”); the parametric bootstrap estimator (PB); the nonparametric bootstrap (NPB) estimator which was used to estimate the percentile confidence interval instead of the 
standard error.  
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Appendix Table 10 simulation results for scenario IX assessing performance of different treatment effect estimators in 
a meta-analysis of unblinded RCTs, including 40 studies instead of 20.  

 Treatment effect  Direct effect 

Adherence range (𝝎) 1, 0.96 1, 0.90 1, 0.84  1, 0.96 1, 0.90 1, 0.84 

        

Risk difference 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.247 
0.248 
0.253 
0.106 
0.106 
0.106 

 
0.239 
0.245 
0.258 
0.098 
0.098 
0.098 

 
0.232 
0.242 
0.263 
0.098 
0.098 
0.098 

  
 
 
 

0.144 
0.144 
0.144 

 
 
 
 

0.152 
0.152 
0.152 

 
 
 
 

0.152 
0.152 
0.152 

Bias 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.147 
0.148 
0.153 
0.006 
0.006 
0.006 

 
0.139 
0.145 
0.158 
-0.002 
-0.002 
-0.002 

 
0.132 
0.142 
0.163 
-0.002 
-0.002 
-0.002 

    

Coverage 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.000 
0.000 
0.000 
0.958 
0.950 
0.977 

 
0.000 
0.000 
0.000 
0.953 
0.946 
0.956 

 
0.000 
0.000 
0.000 
0.958 
0.951 
0.957 

    

Rejection rate 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
1.000 
1.000 
1.000 
0.054 
0.067 
0.033 

 
1.000 
1.000 
1.000 
0.121 
0.138 
0.127 

 
1.000 
1.000 
1.000 
0.283 
0.300 
0.296 

  
 
 
 

0.072 
0.083 
0.050 

 
 
 
 

0.264 
0.285 
0.293 

 
 
 
 

0.662 
0.665 
0.699 

Mean SE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.003 
0.003 
0.003 
0.325 
0.315 
NA 

 
0.003 
0.003 
0.003 
0.119 
0.116 
NA 

 
0.003 
0.003 
0.003 
0.070 
0.069 
NA 

  
 
 
 

0.319 
0.309 
NA 

 
 
 
 

0.113 
0.110 
NA 

 
 
 
 

0.065 
0.064 
NA 

ESE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.003 
0.003 
0.003 
0.315 
0.315 
0.315 

 
0.003 
0.003 
0.003 
0.115 
0.115 
0.115 

 
0.003 
0.003 
0.003 
0.067 
0.067 
0.067 

  
 
 
 

0.309 
0.309 
0.309 

 
 
 
 

0.110 
0.110 
0.110 

 
 
 
 

0.062 
0.062 
0.062 

RMSE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.147 
0.148 
0.153 
0.315 
0.315 
0.315 

 
0.139 
0.145 
0.158 
0.115 
0.115 
0.115 

 
0.132 
0.142 
0.163 
0.068 
0.068 
0.068 

    

Number of failed models 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

  
 
 
 
0 
0 
0 

 
 
 
 

0 
0 
0 

 
 
 
 

0 
0 
0 

AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental Variable effect estimator; 
ECA, Egger Correction for non-Adherence estimator. The ECA estimator was implemented using 3 standard error estimators: 
the Ordinary Least Square (OLS) variance estimator, estimated by dividing the standard errors of the slope coefficient by min(1, 
"residual standard error”); the parametric bootstrap estimator (PB); the nonparametric bootstrap (NPB) estimator which was 
used to estimate the percentile confidence interval instead of the standard error.  
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Appendix Table 11 simulation results for scenario X assessing performance of different treatment effect estimators in 
a meta-analysis of unblinded RCTs, including 80 studies instead of 20.  

 Treatment effect  Direct effect 

Adherence range (𝝎) 1, 0.96 1, 0.90 1, 0.84  1, 0.96 1, 0.90 1, 0.84 

        

Risk difference 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.247 
0.248 
0.253 
0.102 
0.102 
0.102 

 
0.239 
0.245 
0.258 
0.100 
0.100 
0.100 

 
0.217 
0.242 
0.263 
0.098 
0.098 
0.098 

  
 
 
 

0.149 
0.149 
0.149 

 
 
 
 

0.150 
0.150 
0.150 

 
 
 
 

0.152 
0.152 
0.152 

Bias 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.147 
0.148 
0.153 
0.002 
0.002 
0.002 

 
0.139 
0.145 
0.158 
0.000 
0.000 
0.000 

 
0.132 
0.142 
0.163 
-0.002 
-0.002 
-0.002 

    

Coverage 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.000 
0.000 
0.000 
0.957 
0.946 
0.975 

 
0.000 
0.000 
0.000 
0.958 
0.949 
0.961 

 
0.000 
0.000 
0.000 
0.957 
0.949 
0.956 

    

Rejection rate 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
1.000 
1.000 
1.000 
0.071 
0.084 
0.046 

 
1.000 
1.000 
1.000 
0.228 
0.239 
0.228 

 
1.000 
1.000 
1.000 
0.532 
0.548 
0.541 

  
 
 
 

0.101 
0.115 
0.080 

 
 
 
 

0.484 
0.505 
0.520 

 
 
 
 

0.929 
0.934 
0.946 

Mean SE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.002 
0.002 
0.002 
0.223 
0.216 
NA 

 
0.002 
0.002 
0.002 
0.082 
0.080 
NA 

 
0.002 
0.002 
0.002 
0.048 
0.047 
NA 

  
 
 
 

0.219 
0.212 
NA 

 
 
 
 

0.078 
0.076 
NA 

 
 
 
 

0.045 
0.044 
NA 

ESE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.002 
0.002 
0.002 
0.220 
0.220 
0.220 

 
0.002 
0.002 
0.002 
0.079 
0.079 
0.079 

 
0.002 
0.002 
0.002 
0.047 
0.047 
0.047 

  
 
 
 

0.215 
0.215 
0.215 

 
 
 
 

0.075 
0.075 
0.075 

 
 
 
 

0.043 
0.043 
0.043 

RMSE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.147 
0.148 
0.153 
0.220 
0.220 
0.220 

 
0.139 
0.145 
0.158 
0.079 
0.079 
0.079 

 
0.132 
0.142 
0.163 
0.047 
0.047 
0.047 

    

Number of failed models 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

  
 
 
 
0 
0 
0 

 
 
 
 

0 
0 
0 

 
 
 
 

0 
0 
0 

AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental Variable effect estimator; 
ECA, Egger Correction for non-Adherence estimator. The ECA estimator was implemented using 3 standard error estimators: 
the Ordinary Least Square (OLS) variance estimator, estimated by dividing the standard errors of the slope coefficient by min(1, 
"residual standard error”); the parametric bootstrap estimator (PB); the nonparametric bootstrap (NPB) estimator which was 
used to estimate the percentile confidence interval instead of the standard error.  
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Appendix Table 12 simulation results for scenario XI assessing performance of different treatment effect estimators in 
a meta-analysis of unblinded RCTs, including 20 studies with an expected sample size of 5,200 subjects instead of 
2,700.  

 Treatment effect  Direct effect 

Adherence range (𝝎) 1, 0.96 1, 0.90 1, 0.84  1, 0.96 1, 0.90 1, 0.84 

        

Risk difference 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.247 
0.248 
0.253 
0.088 
0.088 
0.088 

 
0.239 
0.245 
0.258 
0.097 
0.097 
0.097 

 
0.232 
0.242 
0.263 
0.099 
0.099 
0.099 

  
 
 
 

0.162 
0.162 
0.162 

 
 
 
 

0.153 
0.153 
0.153 

 
 
 
 

0.150 
0.150 
0.150 

Bias 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.147 
0.148 
0.153 
-0.012 
-0.012 
-0.012 

 
0.139 
0.145 
0.158 
-0.003 
-0.003 
-0.003 

 
0.132 
0.142 
0.163 
-0.001 
-0.001 
-0.001 

    

Coverage 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.000 
0.000 
0.000 
0.960 
0.951 
0.971 

 
0.000 
0.000 
0.000 
0.960 
0.952 
0.958 

 
0.000 
0.000 
0.000 
0.956 
0.952 
0.950 

    

Rejection rate 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
1.000 
1.000 
1.000 
0.049 
0.054 
0.039 

 
1.000 
1.000 
1.000 
0.107 
0.119 
0.123 

 
1.000 
1.000 
1.000 
0.266 
0.280 
0.298 

  
 
 
 

0.062 
0.074 
0.055 

 
 
 
 

0.250 
0.263 
0.278 

 
 
 
 

0.600 
0.600 
0.642 

Mean SE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.003 
0.003 
0.003 
0.365 
0.364 
NA 

 
0.003 
0.003 
0.003 
0.130 
0.128 
NA 

 
0.003 
0.003 
0.003 
0.076 
0.076 
NA 

  
 
 
 

0.358 
0.357 
NA 

 
 
 
 

0.123 
0.122 
NA 

 
 
 
 

0.070 
0.069 
NA 

ESE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.003 
0.003 
0.003 
0.350 
0.350 
0.350 

 
0.003 
0.003 
0.003 
0.124 
0.124 
0.124 

 
0.004 
0.003 
0.004 
0.072 
0.072 
0.072 

  
 
 
 

0.343 
0.343 
0.343 

 
 
 
 

0.118 
0.118 
0.118 

 
 
 
 

0.067 
0.067 
0.067 

RMSE 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.147 
0.148 
0.153 
0.351 
0.351 
0.351 

 
0.139 
0.145 
0.158 
0.124 
0.124 
0.124 

 
0.132 
0.142 
0.163 
0.072 
0.072 
0.072 

    

Number of failed models 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

  
 
 
 
0 
0 
0 

 
 
 
 

0 
0 
0 

 
 
 
 

0 
0 
0 

AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental Variable effect estimator; 
ECA, Egger Correction for non-Adherence estimator. The ECA estimator was implemented using 3 standard error estimators: 
the Ordinary Least Square (OLS) variance estimator, estimated by dividing the standard errors of the slope coefficient by min(1, 
"residual standard error”); the parametric bootstrap estimator (PB); the nonparametric bootstrap (NPB) estimator which was 
used to estimate the percentile confidence interval instead of the standard error.  
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Appendix Table 13 simulation results for scenario XII assessing performance of different treatment effect estimators in a fixed effect meta-analysis of unblinded RCTs, including 20 
studies with an expected sample size of 2,700 subjects, with a higher variation in adherence.  

 Risk difference Bias Coverage Rejection rate Mean SE ESE RMSE Number of failed 
models 

Treatment effect 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.200 
0.215 
0.320 
0.100 
0.100 
0.100 

 
0.100 
0.115 
0.220 
0.000 
0.000 
0.000 

 
0.000 
0.000 
0.000 
0.959 
0.948 
0.948 

 
1.000 
1.000 
1.000 
0.881 
0.879 
0.907 

 
0.004 
0.004 
0.006 
0.032 
0.031 
NA 

 
0.007 
0.005 
0.013 
0.030 
0.030 
0.030 

 
0.100 
0.115 
0.221 
0.030 
0.030 
0.030 

 
0 
0 
0 
0 
0 
0 

         

Direct effect 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.150 
0.150 
0.150 

   
0.999 
1.000 
1.000 

 
0.021 
0.021 
NA 

 
0.020 
0.020 
0.020 

  
0 
0 
0 

         
Adherence range 

𝑬(𝝎): 1, 0.30 
        

AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental Variable effect estimator; ECA, Egger Correction for non-Adherence estimator. The ECA 
estimator was implemented using 3 standard error estimators: the Ordinary Least Square (OLS) variance estimator, estimated by dividing the standard errors of the slope coefficient by min(1, 
"residual standard error”); the parametric bootstrap estimator (PB); the nonparametric bootstrap (NPB) estimator which was used to estimate the percentile confidence interval instead of the 
standard error.  
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Appendix Table 14 Adherence and caesarian section incidence in randomized controlled trials of epidural anesthesia compared to non-epidural anesthesia or no anesthesia (control 
group) during labor. 

 Allocated epidural Allocated control 

Author 
Received 
epidural 

Did not receive 
epidural 

Caesarian 
sections 

Received 
epidural 

Did not receive 
epidural 

Caesarian 
sections 

Bofill 1997 (1) 47 2 5 12 39 3 

Clark 1998 (2) 147 9 15 84 78 22 

Halpern 2004 (3) 124 0 12 51 67 12 

Head 2002 (4) 53 3 10 2 58 7 

Jain 2003 (5) 43 2 9 0 83 11 

Nafisi 2006 (6) 197 0 24 0 198 19 

Ramin 1995 (7) 432 232 41 103 563 25 

Sharma 1997 (8) 243 115 13 5 352 16 

Volmanen 2008 (9) 24 1 1 3 24 1 

Based on data presented by Bannister-Tyrrell et.al. (10) 
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Figure meta-analysis of epidural anesthesia compared to non-epidural anesthesia or no anesthesia (control group) during labor on caesarian 
section incidence.  

 
Nb. Dots (scaled by precision) represent study specific estimates. The dashed dotted line represents the IV effect corrected for a possible direct effect of 
allocation on the outcome (i.e., results from an Egger-CA analysis), the long dashed line represents the IV estimate uncorrected for this possible direct effect.  
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Table 1 Simulation scenarios on a meta-analysis of randomized controlled trials with different levels of non-adherence, and a potential direct effect of treatment allocation 
on a binary outcome*. 

Parameters Scenario I Scenario II Scenario III Scenario IV Scenario V Scenario VI Scenario VII Scenario VIII 

Number of studies 𝐽  20 20 20 20 20 20 20 20 

𝐸(𝑛𝑗) sample size  2 700 2 700 2 700 2 700 2 700 2 700 2 700 2 700 

Effect of Z on outcome Y 

(𝜏) 

0.00 0.15 -0.15 -0.15 -0.15 ~𝒖𝒏𝒊𝒇(−𝟎. 𝟏𝟓, 𝟎) -0.15 -0.15 

Effect of Z on 

confounder U (𝜇𝑧) 

0.00 0.00 0.00 0.00 0.00 ~𝒖𝒏𝒊𝒇(𝟎, 𝝋)  

𝝋 = {𝟎. 𝟏𝟎, 𝟎. 𝟐𝟓 𝟎. 𝟓𝟎} 

0.00 0.00 

Mean effect of X on 

outcome Y (𝜇𝑦𝑥) 

0.10 0.10 0.10 0.10 0.00 -0.10 -0.10 𝟓 ∗ −𝟎. 𝟎𝟐 

Between study standard 

deviation in 𝜇𝑦𝑥 

NA NA NA NA NA NA {0.025, 0.030, 

0.050} 

NA 

𝑃𝑟𝑜𝑏(𝑋 = 1|𝑍 = 1) 

(min/max)  

{0.95/1.00,0.80

/1.00,0.65/1.00

} 

{0.95/1.00,0.80

/1.00,0.65/1.00

} 

{0.95/1.00,0.80

/1.00,0.65/1.00

} 

0.80/1.00 0.80/1.00 0.80/1.00 0.80/1.00 0.80/1.00 

𝑃𝑟𝑜𝑏(𝑋 = 0|𝑍 = 1) 

(min/max) 

0.00/0.05 0.00/0.05 0.00/0.05 {0.00/0.05,0.00

/0.20,0.00/0.35

} 

{0.00/0.05,0.00

/0.20,0.00/0.35

} 

0.00/0.20 0.00/0.20 0.00/0.20 

Non-adherence 

coefficient per treatment 

arm (𝜇1/𝜇0)  

{-0.050, -

0.200, -

0.350}/0.050 

{-0.050, -

0.200, -

0.350}/0.050 

{-0.050, -

0.200, -

0.350}/0.050  

-0.200/{0.050, 

0.200,0.350} 

-0.200/{0.050, 

0.200,0.350} 

-0.200/0.200 -0.200/0.200 -0.200/0.200 

Effect of U on outcome 

Y (𝜇𝑦𝑢) 

0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

Mean baseline risk of Y 

(𝜇𝑦,𝑗) 

0.15 0.15 0.35 0.35 0.35 0.35 0.46 0.35 

Between study standard 

deviation in baseline 

risk. 

0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 

* Changes from the previous scenario (on the left) are presented in bold.NA = not applicable.  
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Table 2 Empirical power of different effect estimators of the effect of treatment on an outcome,  
and effect estimators of the direct effect of randomization on an outcome.  
 Scenario IX 

𝑘 = 40;  𝐸(𝑛𝑗) = 2 700 

Scenario X 

𝑘 = 80;  𝐸(𝑛𝑗) = 2 700 

Scenario XI 

𝑘 = 20;  𝐸(𝑛𝑗) = 5 200 

 Treatment effect 

Adherence range (𝝎): 1, 0.96 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
1.000 
1.000 
1.000 
0.054 
0.067 
0.033 

 
1.000 
1.000 
1.000 
0.071 
0.084 
0.046 

 
1.000 
1.000 
1.000 
0.049 
0.054 
0.039 

Adherence range (𝝎): 1, 0.90 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
1.000 
1.000 
1.000 
0.121 
0.138 
0.127 

 
1.000 
1.000 
1.000 
0.228 
0.239 
0.228 

 
1.000 
1.000 
1.000 
0.107 
0.119 
0.123 

Adherence range (𝝎): 1, 0.84 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
1.000 
1.000 
1.000 
0.283 
0.300 
0.296 

 
1.000 
1.000 
1.000 
0.532 
0.548 
0.541 

 
1.000 
1.000 
1.000 
0.266 
0.280 
0.298 

 Direct effect 

Adherence range (𝝎): 1, 0.96 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.072 
0.083 
0.050 

 
0.101 
0.115 
0.080 

 
0.062 
0.074 
0.055 

Adherence range (𝝎): 1, 0.90 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.264 
0.285 
0.293 

 
0.484 
0.505 
0.520 

 
0.250 
0.263 
0.278 

Adherence range (𝝎): 1, 0.84 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.662 
0.665 
0.699 

 
0.929 
0.934 
0.946 

 
0.600 
0.600 
0.642 

AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental Variable effect estimator; ECA, Egger Correction for non-Adherence estimator. The 
ECA estimator was implemented using 3 standard error estimators: the Ordinary Least Square (OLS) variance estimator, estimated by dividing the standard errors of the slope 
coefficient by min(1, "residual standard error”); the parametric bootstrap estimator (PB); the nonparametric bootstrap (NPB) estimator which was used to estimate the percentile 
confidence interval instead of the standard error. Simulations were repeated 5 000 times.  
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Table 3 Treatment and direct effect risk difference estimates (95%CI) of epidural anesthesia compared to non-epidural 
anesthesia or no anesthesia (control group) during labor on caesarian section incidence in a meta-analysis of 9 
randomized controlled trials.  
 Treatment effect Direct effect 

adherence range(𝝎): 1.0, 0.42 
AT 
ITT 
IV 
ECA-OLS 
ECA-PB 
ECA-NPB 

 
0.104(0.087;0.121) 
0.011(-0.005;0.027) 
0.018(-0.007;0.044) 
0.017(-0.086;0.121) 
0.017(-0.088;0.123) 
0.017(-0.080;0.123) 

 
 
 
 

0.0004(-0.064;0.065) 
0.0004(-0.066;0.067) 
0.0004(-0.066;0.061) 

AT, the As Treated effect estimator; ITT, the Intention to Treat effect estimator; IV, the Instrumental Variable effect estimator; ECA, 
Egger Correction for non-Adherence estimator. The ECA estimator was implemented using 3 standard error estimators: the 
Ordinary Least Square (OLS) variance estimator, estimated by dividing the standard errors of the slope coefficient by min(1, 
"residual standard error”); the parametric bootstrap estimator (PB); the nonparametric bootstrap (NPB) estimator which was used to 
estimate the percentile confidence interval instead of the standard error.  
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