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Article summary point 

Using whole-genome sequencing, in two UK hospitals, patients with diarrhea, toxigenic 

Clostridium difficile, but a negative fecal toxin result, were potential sources for 3% of 

infections; toxin-positive cases were potential sources for 10%, and another 6% were linked 

to both groups.  

 

 

 
 

 

 

 

 

mailto:david.eyre@ndm.ox.ac.uk


 
 

3 
 
 

Abstract  

 

Background 

The role of symptomatic patients who are toxigenic strain-positive (TS+) but fecal toxin-

negative (FT-) in transmission of Clostridium difficile is currently unknown. 

 

Methods 

We investigated the contribution of symptomatic TS+/FT- and TS+/FT+ patients in C. difficile 

transmission in two UK regions. From two-step testing, all glutamate dehydrogenase (GDH)-

positive specimens, regardless of fecal toxin result, from Oxford (April2012-April2013) and 

Leeds (July2012-April2013) microbiology laboratories underwent culture and whole-genome 

sequencing (WGS), using WGS to identify toxigenic strains. Plausible sources for each 

TS+/FT+ case, including TS+/FT- and TS+/FT+ patients, were determined using WGS, with 

and without hospital admission data. 

 

Results 

1447/12772(11%) fecal samples were GDH-positive, 866/1447(60%) contained toxigenic C. 

difficile and fecal toxin was detected in 511/866(59%), representing 235 Leeds and 191 

Oxford TS+/FT+ cases. TS+/FT+ cases were three times more likely to be plausibly acquired 

from a previous TS+/FT+ case than a TS+/FT- patient. 51(19%) of 265 TS+/FT+ cases 

diagnosed >3 months into the study were genetically-related (≤2 single nucleotide 

polymorphisms) to ≥1 previous TS+/FT+ case or TS+/FT- patient: 27(10%) to only TS+/FT+ 

cases, 9(3%) to only TS+/FT- patients, and 15(6%) to both. Only 10/265(4%) were 

genetically-related to a previous TS+/FT+ or TS+/FT- patient and shared the same ward 

simultaneously or within 28 days. 

 

Conclusions 

Symptomatic TS+/FT- patients were a source of C. difficile transmission, although they 

accounted for less onward transmission than TS+/FT+ cases.  Although transmission from 

symptomatic patients with either fecal toxin status accounted for a low overall proportion 

of new cases, both groups should be infection control targets. 
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Background  

Clostridium difficile infection (CDI) remains a significant concern for patients and healthcare 

providers, despite recent falls in incidence in some settings, including the UK.[1] Three UK 

studies using whole-genome sequencing (WGS) have shown, in endemic settings with 

routine infection control policies, only a minority of cases are acquired from other, known, 

cases: 35% of cases in Oxford[2] and Leeds[3], and 37% of ribotype-027 cases in Liverpool[4] 

were genetically-linked to a previous case. Only a subset of these cases also shared time on 

the same hospital ward. Studies using other genotyping techniques have found similar 

results.[5-7] Such findings question the sources of C. difficile responsible for most CDIs.  

 

While hospitalized asymptomatically colonized patients are a potential source,[7-9] another 

group of patients with enhanced potential to transmit C. difficile are symptomatic patients 

who are toxigenic-strain positive (TS+), but fecal toxin negative (FT-).  These patients are 

identified by two-step algorithms for CDI diagnosis.[10] An initial screen (e.g. glutamate 

dehydrogenase (GDH) enzyme immunoassay (EIA), or toxin gene nucleic acid amplification 

test [NAAT]) detects the presence of C. difficile; the second confirmatory step detects fecal 

toxin using either EIA or a cell cytotoxin assay (CCT). In the UK TS+/FT- patients are usually 

regarded as being colonized with C. difficile but not infected, based on a large multi-center 

prospective study showing only patients with detectable fecal toxin had adverse 

outcomes.[11] However, outside the UK, such patients, typically identified with NAATs, are 

often,[12] but not universally,[13] regarded as having CDI, and NAAT testing has been 

recommended in some guidelines.[14] Resolving the disease state of TS+/FT- patients is not 

a focus of this study; instead we investigated their contribution to onward transmission of C. 

difficile. 

 

We undertook WGS of consecutive C. difficile GDH-positive fecal samples, irrespective of the 

subsequent fecal toxin assay result, in two UK centers, over 9-12 months. WGS, combined 

with hospital admission and ward movement data, were used to assess the contribution of 

C. difficile TS+/FT- and TS+/FT+ patients to onward transmission. 
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Methods 

Samples and setting 

Consecutive hospital and community samples submitted for C. difficile diagnostic testing 

were obtained from the microbiology laboratories of 2 UK teaching hospitals following the 

introduction of two-step testing: Leeds Teaching Hospitals, serving Leeds (population 

750,000, 07-July-2012 to 06-April-2013), and Oxford University Hospitals, serving 

Oxfordshire (population 600,000, 01-April-2012 to 31-March-2013). In Leeds and Oxford, 

repeat samples from the same patient ≤14 and ≤28 days, respectively, following a toxin-

positive sample were not routinely processed. Patient admissions and hospital ward 

movements were obtained from hospital administration systems. Inclusion of community 

samples allowed cases diagnosed in the community, but potentially acquired in hospital, to 

be identified. 

 

In Leeds, any patient with ≥1 episode of unexplained diarrhea was isolated and a fecal 

sample sent for C. difficile testing. TS+/FT+ cases were isolated for the duration of hospital 

admission. Ward staff could isolate TS+/FT- patients if they were considered a transmission 

risk. In Oxford, patients with unexplained diarrhea (≥3 unformed stools in 24 hours) were 

isolated and treated empirically with oral vancomycin. TS+/FT+ cases remained isolated 

until 48 hours following resolution of diarrhea. Treatment and isolation were discontinued 

in TS+/FT- patients unless clinical suspicion of CDI remained high. 

 

Diagnostic testing and WGS 

Leeds samples were tested with GDH EIA, C. diff Chek (Techlab, Blacksburg, VA), and when 

GDH-positive an in-house cell cytotoxicity assay, and Oxford samples with Premier C. difficile 

GDH and GDH-positive samples with Premier Toxins A&B EIA (Meridian Bioscience, 

Cincinnati, OH). At both centers, GDH-positive samples were cultured as described 

previously[15] and whole-genome sequenced using Illumina technology. In Leeds, isolates 

were confirmed as C. difficile with MALDI-TOF mass-spectrometry; in Oxford WGS was used. 

Sequences were mapped to the 630 reference genome[16], and assembled de novo[17] (see 

Supplementary Methods for details). Multi-locus sequence types, STs,[15] were determined 

in silico. 
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Toxigenic strains were identified using BLAST searches of de novo assemblies (≥1000 

nucleotide identities with toxin A or B genes). Non-toxigenic strains were excluded (n=249, 

most common STs ST15(n=66,27%), ST26(n=66,27%), ST7(n=51,20%), and ST3(n=11,4%); the 

remainder were recognized non-toxigenic STs).  

 

Definitions 

Patients with toxigenic C. difficile were classified according to fecal toxin result: as TS+/FT+ 

and TS+/FT-. In patients diagnosed with more than one C. difficile strain, as defined by WGS 

(see below), each was considered separately. Some patients had several samples with the 

same strain, and could be consistently fecal toxin-negative, consistently toxin-positive, or 

have both fecal toxin-negative and toxin-positive samples. Each TS+/FT+ CDI’s origin was 

determined using standard surveillance definitions.[18] Cases were defined as healthcare-

associated if sampled >48 hours after admission or discharged within ≤4 weeks, as 

indeterminate if discharged 4-12 weeks previously, and as community-associated if 

discharged >12 weeks prior to sampling, or without any hospital admission. 

 

Analysis 

Single nucleotide polymorphisms (SNPs) between sequences were determined from 

maximum likelihood phylogenies constructed with phyML[19] after correction for 

recombination with ClonalFrameML.[20] Sequences related to a previous sequence within 

≤2 SNPs were considered consistent with plausible direct transmission; ≤2 SNPs is expected 

between transmitted strains obtained ≤123 days apart.[2] Results for sequences related to 

previous sequences within varying thresholds (0-10 SNPs) were generated as a sensitivity 

analysis. In patients with multiple samples, sequences >10 SNPs different to a previous 

sequence from the same patient were considered to represent acquisition of a new strain; 

10 SNPs is considerably more variation than would be expected from within-host diversity 

and mutation over the one year study period.[2]  

 

Where the only possible genetically-related sources of a TS+/FT+ case were TS+/FT- 

patients, the origin was attributed to TS+/FT- patients; similarly, if all possible genetically-
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related sources were TS+/FT+ cases, the origin was attributed to TS+/FT+ cases. Where a 

TS+/FT+ case was genetically-linked to either a TS+ patient with both fecal toxin-positive 

and toxin-negative samples, or several patients including ≥1 TS+/FT+ case and ≥1 TS+/FT- 

patient, the origin was denoted as either a TS+/FT+ case or TS+/FT- patient. 

 

Patients with toxigenic C. difficile who shared time on the same ward following the 

diagnosis of the first patient and before the diagnosis of the second were considered to 

have had ward contact. Patients admitted to the same ward, but up to 28 days apart, were 

considered related by possible ward contamination if the first patient was diagnosed before 

their ward discharge, and the second patient following their admission to the same ward.[5] 

Patients who shared time in the same hospital, but had no ward or ward contamination 

contact, were considered to have hospital contact. A sensitivity analysis assumed ward 

contamination persisted for 365 days. 

 

Logistic regression was used to test for associations between ST and the proportion of 

TS+/FT+ cases genetically-related to a previous TS+/FT+ case or TS+/FT- patient, for the 9 

most common STs (all with ≥10 cases). 

 

Ethics 

The study was approved by the Berkshire Research Ethics Committee (10/H0505/83) and 

the Health Research Authority (8-05(e)2010). 

 

Results 

8068 hospital and community samples were submitted for C. difficile testing in Leeds, and 

4704 samples in Oxford. 771(10%) and 637(14%) samples were GDH-positive respectively, 

and, of these, 488(63%) and 372(58%) contained toxigenic C. difficile by WGS (Figure 1). 

Leeds samples were obtained from 367 patients (220 female,60%), median (interquartile 

range, IQR) 72(52-82) years old, representing 382 genetically distinct 

infections/colonizations, and Oxfordshire samples from 297 patients (167 female,56%), 

78(62-86) years old, 302 genetically distinct infections/colonizations. 
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In both laboratories, 59% of samples containing toxigenic C. difficile had fecal toxin detected 

despite using different assays, EIA in Oxford (218/372) and CCT in Leeds (289/488). These 

samples represented 235 distinct TS+/FT+ cases in Leeds, with 3.7 healthcare-

associated/indeterminate cases per 10000 bed-days and 7.9 community-associated cases 

per 100000 person-years, and 191 distinct TS+/FT+ cases in Oxfordshire, 3.2/10000 bed-

days and 7.0/100000 person-years, respectively (Figure 1). 

 

There was considerable genetic diversity amongst the C. difficile causing the 426 TS+/FT+ 

cases, with 52 different STs identified. The 10 most frequently isolated STs (common 

ribotype equivalents) accounted for 285(67%) of cases, and were (in rank order) 

ST2(014/020), ST8(002), ST6(005), ST11(078), ST10(015), ST5(023/069), ST44(015), 

ST3(001/072), ST14(014), ST17(018). The epidemic ST1(027/NAP1) strain was only found in 

three (Leeds) cases.  

 

Genetic relationships between infections/colonizations 

Samples were compared with all prior samples from the same center over the study 

periods, but potential sources were sought only for new TS+/FT+ infections from 3 months 

into the study at each center (Leeds n=142, Oxfordshire n=123), to ensure sufficient time for 

their possible sources to have been sampled. Using a threshold of ≤2 SNPs to determine 

genetic relatedness, overall 51/265(19.2%, 95%CI, 14.7-24.5%) TS+/FT+ cases were 

genetically-related to ≥1 sequenced previous TS+/FT+ case or TS+/FT- patient (Table 1). 

9/265(3.4%, 1.6-6.3%) of TS+/FT+ cases were genetically linked only to TS+/FT- patients and 

not to previous TS+/FT+ cases. In contrast, 27/265(10.2%, 6.8-14.5%) TS+/FT+ cases were 

genetically linked to other TS+/FT+ cases, and 15/265(5.7%, 3.2-9.2%) to both TS+/FT+ cases 

and TS+/FT- patients. There was no evidence of a difference in sources between Leeds and 

Oxford (Table 1; exact p=0.27).  

 

Considering the source of C. difficile for all patients, TS+/FT- patients as well as TS+/FT+ 

cases, results were similar (Table S1; exact p=0.85 comparing all patients vs. TS+/FT+ cases 

alone): 75/433(17%) patients could be linked to a previously sequenced TS+/FT+ case or 
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TS+/FT- patient, 16(4%) to only TS+/FT- patients, 36(8%) to only previous TS+/FT+ cases and 

23(5%) to both.  

 

There were 13 ST44 infections, none of which were genetically-related to a prior TS+/FT+ 

case, the remaining 8 most common STs were compared with all other STs as the reference 

group. Within the limits of the relatively small numbers of TS+/FT+ cases within each ST, 

there was no evidence that CDI caused by any of these STs were more or less likely, to be 

genetically-related to a previous TS+/FT+ case or TS+/FT- patient (p≥0.18; Table 2), or that 

CDI source was associated with patient age, sex or healthcare/community-associated 

disease (Table 3). 

 

Over the whole study period at both centers, considering all 684 TS+/FT+ cases and TS+/FT- 

patients, 535 were not related to any other TS+/FT+ case or TS+/FT- patient within ≤2 SNPs. 

The remaining 149 TS+/FT+ cases and TS+/FT- patients were clustered: sequences included 

in a cluster were related to ≥1 other sequence within ≤2 SNPs in the cluster, but not 

necessarily to all of them. Most clusters contained 2 or 3 patients; 14(9%) patients were in 

clusters consisting of exclusively TS+/FT- patients, 45(30%) were in exclusively TS+/FT+ 

clusters, and 90(60%) were in clusters with both TS+/FT- patients and TS+/FT+ cases (Figure 

3). 

 

Epidemiological relationships between genetically-related infections/colonizations 

Only a subset of TS+/FT+ cases and plausible TS+/FT+ or TS+/FT- sources related within ≤2 

SNPs shared a hospital-based epidemiological link. Considering all 265 TS+/FT+ cases from 

both Leeds and Oxfordshire from 3 months into the study, 27(10%) were genetically-related 

to only previous TS+/FT+ cases. However, only 6(2%) were genetically-related and shared 

time on the same ward. A further 4(2%) were genetically-related and were inpatients on the 

same ward at different times within 28 days. 8(3%) were not admitted to the same ward 

within 28 days, but were admitted to the same hospital at the same time (Table 1).  

 

Another 9(3%) TS+/FT+ cases were genetically-related to only previously TS+/FT- patients: 

5(2%) sharing time on a ward, 1(0.4%) the same ward at different times within 28 days, and 
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1(0.4%) time in the same hospital as above. There was a trend towards potential TS+/FT- 

sources being more likely to share time on the same ward as the subsequent TS+/FT+ case, 

compared with potential TS+/FT+ sources (5/9 vs. 6/27, exact p=0.10). An additional 15(6%) 

TS+/FT+ cases were genetically-related to both a TS+/FT- patient and a TS+/FT+ case, but 14 

had no hospital-based links with the genetically-related sources, suggesting these patients 

may share a common indirect source rather than direct hospital-based contact. No 

additional epidemiological links between genetically-related TS+/FT+ cases and TS+/FT+ 

cases or TS+/FT- patients were identified if ward contamination could persist for up to 365 

days. 

 

To test the robustness of our observations to the SNP threshold used to define plausible 

direct transmission, the number of TS+/FT+ cases genetically-related to a previous TS+/FT+ 

case or TS+/FT- patient within varying SNP thresholds from 0 to 10, and any associated 

hospital-based epidemiological links, were determined (Figure 3). As expected, as the 

number of SNPs used to define plausible direct transmission increased, the percentage of 

TS+/FT+ cases genetically-related to a previous TS+/FT+ or TS+/FT- patient increased. 

However, the number of TS+/FT+ cases genetically-related and with plausible 

epidemiological contact, i.e. sharing hospital wards, remained relatively constant from 2 

SNPs onwards, supporting the 2 SNP threshold used for the main analysis. 

 

Discussion 

We used WGS and ward admission data to investigate the proportion of CDI cases 

potentially acquired from symptomatic patients with toxigenic C. difficile, but with no 

detectable fecal toxin. TS+/FT+ CDI cases were three times more likely to be genetically-

related to a previous TS+/FT+ case (27/265) than a TS+/FT- patient (9/265). Considering the 

subset of potential sources that also shared time on the same ward, or were admitted to 

the same ward within 28 days, i.e. the most probable of the genetically-plausible 

transmission events, CDI cases were 1.7 times more likely to be related to a previous 

TS+/FT+ case compared with a TS+/FT- patient (10/265 vs. 6/265). However, this finding 

could be explained by the observation that the overall ratio of TS+/FT+ to TS+/FT- cases in 

the study was also 1.7. This suggests that the rate of transmission, on a per patient basis, 
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from each TS+/FT+ or TS+/FT- patient is likely to be very similar. By contrast, 

asymptomatically colonized patients are likely less infectious. Using national databases and 

a transmission model, individual hospitalized CDI cases have been estimated to transmit C. 

difficile at a rate 15 (95%CI 7.2-32) times that of hospitalized asymptomatically colonized 

patients.[21] However, as asymptomatic carriage is more common than CDI (e.g. 8-fold in 

hospitals[9]), colonized patients, as a group, could still account for a substantial amount of 

transmission. In a Canadian study, isolation of all asymptomatically colonized patients 

reduced CDI incidence by 62% compared with historic controls.[9] 

 

The overall number of our TS+/FT+ CDI cases potentially attributable to the combination of 

TS+/FT+ cases and TS+/FT- patients with diarrhea was low: 19% of TS+/FT+ CDI cases were 

genetically-related to a previous TS+/FT+ or TS+/FT- patient, only 6% also shared a hospital 

ward at the same time or within 28 days, and only 10% had any form of hospital contact. 

This supports previous WGS-based studies, at both our hospitals[2,3] and others[4], that 

found that only a minority of CDIs are acquired from other cases in endemic settings. The 

proportion in the present study is lower than the 35-37% identified previously. The most 

likely explanation is the very small number of infections with the epidemic ST1(027/NAP1) 

strain, reflecting falling UK incidence[22,23], and the burden of transmissions attributable to 

ST1 in previous studies.[3] 

 

Our study has several limitations. Only patients with diarrhea were sampled, and at the 

discretion of individual practitioners. However, the ratio of toxin-positive stools sequenced 

to samples tested was 3.6%(289/8068) in Leeds, and 4.6%(218/4704) in Oxford, suggesting 

rates of testing were high, including compared with the UK average from 2008 of 6.45%, 

when testing was principally based on toxin detection.[24]  Of those tested, some patients 

with C. difficile will have been missed by the GDH assay (sensitivity 92.3-97.1%[11,25]). In 

addition, 2.6% of isolates failed WGS and were excluded. We therefore may have missed 

some links between TS+/FT- or TS+/FT+ patients and TS+/FT+ CDI cases, modestly 

underestimating the frequency with which this occurs.[5] However, if cases were missed at 

random, we believe the relative amount of transmission attributable to TS+/FT+ cases and 

TS+/FT- patients has been robustly estimated. We did not gather data on factors that might 
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influence a TS+/FT- patient’s potential to transmit C. difficile, including duration and severity 

of diarrhea, antibiotic exposure, or the timing and duration of isolation. In addition, 

systematic serial sampling was not undertaken to allow an assessment of the duration of 

detectable C. difficile. Our study was performed in a setting where the majority of CDI arises 

from a diverse range of endemic strains; findings may vary in higher incidence settings, 

including where the epidemic ST1(027/NAP1) strain dominates. 

 

Despite these limitations, we demonstrate that patients with toxigenic C. difficile without 

detected fecal toxin account for a quarter or more of potential within hospital transmission 

events from symptomatic patients. More intensive infection control interventions around 

such cases, including routine isolation, should be considered to mitigate transmission risk. 

Compared with asymptomatically colonized patients, TS+/FT- patients represent a good 

initial target for expanding infection control efforts, as they are less numerous, and, as 

discussed above, appear more infectious[21] on a per patient basis. However, ultimately if 

the findings of [9] can be replicated, isolation of asymptomatically colonized patients, who 

are each less infectious, but more numerous, may result in greater reductions in 

transmission. Substantially greater resource requirements limit the later approach. Some 

GDH-positive fecal toxin-negative patients may carry non-toxigenic C. difficile and not pose 

an infection control risk. Patients with toxigenic C. difficile could be identified by screening 

with a toxin gene NAAT, or using a three-step strategy (GDH-positive, fecal toxin-negative 

samples tested with a toxin gene NAAT).  

 

The results of this and previous studies in both Oxford and Leeds suggest CDI cases, and also 

symptomatic patients with toxigenic C. difficile with a negative fecal toxin result, are not 

sources for the majority of CDI. Major unanswered questions remain, including what 

proportion of CDI cases can be explained by healthcare-associated and community contact 

with asymptomatically colonized people, and the extent to which other possible sources 

including food[26,27] and the environment[28] contribute to CDI. In addition to reducing 

the risk of CDI through antimicrobial stewardship,[23] understanding the relative 

importance of each of these reservoirs across a range of settings is required to develop 

rational control polices and reduce the incidence of CDI. Meanwhile, efforts to reduce 
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hospital transmission from symptomatic patients with toxigenic C. difficile with a negative 

fecal toxin result should be implemented. 
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Tables 

 
  Epidemiological links between genetically linked cases, 

   No. (% n, % genetically linked) 

Possible transmission source Genetically 
linked ≤2 

SNPs (% n) 

Shared time 
on same ward 

Shared same 
ward within 28 

days 

Shared time in 
same hospital only 

Leeds (CDI cases, n = 142)         

Prior TS+/FT+ cases 17 (12) 2 (1, 12) 2 (1, 12) 7 (5, 41) 

TS+/FT- patients 5 (4) 2 (1, 40) 1 (1, 20) 1 (1, 20) 

Both 11 (8) 0 (0, 0) 0 (0, 0) 1 (1, 9) 

Total 33 (23) 4 (3, 12) 3 (2, 9) 9 (6, 27) 

Oxford (CDI cases, n = 123)     

Prior TS+/FT+ cases 10 (8) 4 (3, 40) 2 (2, 20) 1 (1, 10) 

TS+/FT- patients 4 (3) 3 (2, 75) 0 (0, 0) 0 (0, 0) 

Both 4 (3) 0 (0, 0) 0 (0, 0) 0 (0, 0) 

Total 18 (15) 7 (6, 39) 2 (2, 11) 1 (1, 6) 

Combined (CDI cases, n = 265)         

Prior TS+/FT+ cases 27 (10) 6 (2, 22) 4 (2,15) 8 (3, 30) 

TS+/FT- patients 9 (3) 5 (2, 56) 1 (1, 11) 1 (1, 11) 

Both 15 (6) 0 (0, 0) 0 (0, 0) 1 (1, 7) 

Total 51 (19) 11 (4, 22) 5 (2, 10) 10 (4, 20) 

 

Table 1. Proportion of toxigenic strain-positive, fecal toxin-positive (TS+/FT+) CDI cases 

genetically (≤2 SNPs) and epidemiologically related to prior TS+/FT+ cases and TS+/FT- 

patients. 
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  Genetically-related to prior TS+/FT+ case or TS+/FT- patient 

ST n Total (% n) Odds ratio (95% CI) P value 

All other STs 114 24 (21) 1 - 

2 33 9 (27) 1.41 (0.58, 3.42) 0.45 

5 17 4 (24) 1.15 (0.34, 3.86) 0.82 

6 23 2 (9) 0.36 (0.08, 1.63) 0.18 

8 21 3 (14) 0.63 (0.17, 2.30) 0.48 

10 14 1 (7) 0.29 (0.04, 2.32) 0.24 

11 20 5 (25) 1.25 (0.41, 3.78) 0.69 

14 10 3 (30) 1.61 (0.39, 6.69) 0.51 

44 13 0 (0) - - 

 

 

Table 2. Association between ST and proportion of CDI cases genetically-related to prior 

TS+/FT+ cases and TS+/FT- patients. Each ST in the table was compared to all other STs (the 

reference group) by logistic regression. 
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No 

genetically 
linked 
source 

TS+/FT-
source 

TS+/FT+ 
source Both 

p 
value 

p value, any source 
vs no genetically-

linked source 

Classification (row %)     0.99 0.83 

Community-
associated 

53 (83%) 1 (2%) 7 (11%) 3 (5%)   

Indeterminate 22 (85%) 1 (4%) 2 (8%) 1 (3%)   

Healthcare-
associated 

139 (79%) 7 (4%) 18 (10%) 11 (6%)   

Age     0.76 0.59 

Median 75 82 79 78   

IQR 54 - 83 69 - 86 24 - 85 58 - 84   

Sex (row %)     0.5 0.35 

Female  115 (79%) 4 (3%) 17 (12%) 10 (7%)   

Male 98 (84%) 5 (4%) 9 (8%) 5 (4%)   

 

Table 3. Patient demographics according to CDI source (n=265). Age and sex were not 

recorded for 2 patients.  Exact p values are shown for classification and sex; p values for age 

were calculated with the Kruskal-Wallis rank test. 
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Figure legends 

 

Figure 1. Samples and patient demographics for Leeds (panel A) and Oxfordshire (panel B). 

Each percentage uses the row above as denominator. Distinct infection is one >10 SNPs 

distinct to any previous infection in the same patient. HA, healthcare-associated. CA, 

community-associated. MALDI-TOF MS, matrix assisted laser desorption time of flight mass 

spectrometry. Age and sex were not recorded for 3 Oxfordshire patients. 

 

Figure 2. Numbers of patients in clusters related within ≤2 SNPs. Clusters consisting 

exclusively of toxigenic strain-positive, fecal toxin-negative (TS+/FT-) patients are shown in 

blue, clusters consisting exclusively of TS+/FT+ cases in red, and clusters with both TS+/FT- 

patients and TS+/FT+ cases in orange. 

 

Figure 3. Proportion of Leeds and Oxfordshire CDI cases genetically-related to a previous 

toxigenic strain-positive, fecal toxin-positive (TS+/FT+) case or TS+/FT- patient within 

varying SNP thresholds. Bars are shaded according to the fecal toxin status of the 

genetically-related potential sources of infection.  

 


