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Abstract 

This report describes the first Aerosol Assisted Chemical Vapour Deposition (AACVD) of 

photocatalytic titanium dioxide thin films embedded with synthetic hydroxyapatite, 

[Ca10(PO4)(OH)2], nanoparticles.  The hydroxyapatite nanoparticles were prepared using a low 

temperature continuous hydrothermal flow synthesis method; analysis of the hydroxyapatite 

powder showed that it was phase pure and that the as-prepared material was made up of nano-

needles as expected.  The nanoparticles were then embedded into TiO2 coatings using the 

AACVD technique by suspending them in a solution of the titania precursor (titanium tetra-

isopropoxide). Results showed that the hydroxyapatite, although present in very low 

concentrations in the coatings (not detectable by XRD or Raman spectroscopy), heavily 

affected their morphology, depending on their concentration in the precursor solution.  Tests of 

the photocatalytic activity of the composite films showed that the inclusion of the 

hydroxyapatite led to an increase in the photodegradation (up to 50 % higher for methylene 

blue degredation) and that the materials were photostable.  
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This study shows that TiO2 coatings embedded with hydroxyapatite nanoparticles have 

potential as highly efficient photocatalysts.  
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Introduction 

 Photocatalytic materials are of interest due to their potential application for environment 

remediation and for self-cleaning structures. Under appropriate light irradiation, such materials 

can generate active species (electrons (e-), holes (h+), reactive oxygen species (ROS)), which 

can degrade organic molecules, including pollutants [Rauf, 2009].  Titanium dioxide (TiO2) is 

the most common photocatalytic material and can exist in three different forms – anatase, rutile 

and brookite.  The anatase form is particularly efficient as photocatalyst, with a band gap of 3.2 

eV [Makwana, 2016]. TiO2 can also be mixed / combined with different compounds, in 

multiphase systems as a route to achieving simultaneous multifunctional properties. For 

example, there are literature reports of TiO2 combined with ZnO, PbO, SnO2 or SiO2 where the 

presence of the additional phase led to higher photocatalytic activity and/or photoactivity using 

a visible light source [Rajbongshi, 2014; Bhachu, 2014; Chadwick, 2014; de Chiara, 2015]. 

Improved and/or additional functional properties were also achieved with the incorporation of 

nanoparticles (NPs) into a titanium dioxide matrix; in the majority of cases, such composite 

systems were prepared using preformed metallic NPs, such as Au, Ag and/or other noble metals 

[Pedrueza, 2011; Kowalska, 2015; Li, 2016].  

 Hydroxyapatite (HAp), [Ca10(PO4)6(OH)2], is a calcium phosphate mainly known for 

its applications in bone replacement [Kolmas, 2016]. Literature data, however, suggests that 

some forms of HAp also have photocatalytic activity [Nishkawa, 2003; Piccirillo, 2013]; 

moreover, its combination with TiO2 looks particularly promising; TiO2-HAp biphasic 

composites have been shown to possess superior photocatalytic activities compared to the 

corresponding individual phases [Giannakopoulou, 2012; Anmin, 2006; Mitsionis, 2011]. 

Despite the large volume of literature on the photoactivity of titania-based multiphase films, to 

the best of our knowledge, no study has ever looked at photocatalytic properties of HAp-

embedded TiO2 films. 

Hydroxyapatite can be made via a number of ways such as batch co-precipitation or 

flow methods [Sadat-Shojai, 2013].  In flow methods such as Continuous Hydrothermal Flow 

Synthesis (CHFS), supercritical water can be used as a reagent to drive the rapid synthesis of 

HAp [Chaudhry, 2013], as well as a wide range of metal oxides [Kriedemann, 2015; Naik, 

2015; Litwinowicz, 2014; Dunne, 2014]. CHFS made HAp nanoparticles and doped variants 

were also prepared [Chaudhry, 2008; Chaudhry, 2013; Gimeno­Fabra, 2015]. More recently, 

lower temperature flow methods for HAp nanoparticle synthesis have also been developed 

which do not require high pressures [Anwar, 2014]. 
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TiO2 thin films for photocatalysis or other applications can be prepared using several 

methods [Blanco, 2015; Espino­Estévez, 2015; Lubas, 2014; Simonsen, 2012], including 

Chemical Vapour Deposition (CVD). The Aerosol Assisted Chemical Vapour Deposition 

(AACVD) technique in particular, is very versatile for the synthesis of TiO2, as by using 

appropriate deposition solvents and process temperatures, it has been possible to tailor phase 

composition [Edusi, 2012]; moreover, different deposition precursors can affect the 

morphology of films [Romero, 2014].  NP­containing multiphasic TiO2­based coatings can also 

be deposited using the AACVD process [Palgrave, 2006; Bhachu, 2014].  

 Herein, we report the synthesis of a composite coating of HAp-embedded in a TiO2 

matrix (HAp@TiO2) using the AACVD technique. HAp nanoparticles were first prepared using 

a plastic flow reactor and then the freeze dried HAp powder was mixed at different loadings 

with a Ti-precursor (in toluene solution) that formed the feed for the AACVD process; this 

resulted in needle like HAp being embedded in TiO2 films. The deposited thin films were 

characterised using several analytical techniques such as powder X-Ray Diffraction (XRD) and 

electron microscopy, to assess their composition and morphology. The photocatlytic activity of 

the coatings was also evaluated, to see whether the inclusion of HAp nanoparticles had any 

effect on such properties.  

 

Materials and methods 

Preparation of HAp NPs 

HAp NPs were prepared using a continuous plastic flow synthesis (CPFS) reactor as 

described elsewhere by Anwar et al. (Figure 1) [Anwar, 2014]. This simple, single step 

synthesis method was used for HAp synthesis under near ambient conditions, with affordable 

and readily available reagents. The CPFS system consists of two HPLC Gilson pumps (Gilson 

Model 307 Pumps with 25 SC Pump heads). The first and the second pumps (P1 and P2) 

supplied the calcium and phosphate precursors respectively. The two feeds met in a 1/4’’ tee 

and the resulting mixture flowed through a first coil made of 9 m of 1/4’’ PTFE tubing 

(Polyflon, UK), which was submerged in a hot oil bath. Upon exiting the first coil, the product 

flowed through a second coil, made of  2 m of 1/4'’ PTFE tubing submerged in an ice bath. The 

product was collected at the exit of the second coil.  Both pumps P1 and P2 were set at a flow 

rate of 12.5 mL/min, resulting in a combined outlet flow rate of 25 mL/min. The residence time 

in the first coil, i.e. the time between the mixing of the two precursor feeds and the entry of the 
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product in the second coil in the ice bath, was 5 minutes. The residence time in the second coil 

was ca. 1 minute.  

The samples were prepared by setting the oil bath temperature to 90 °C with P1 pumping 

a solution of 0.55 M calcium nitrate hexahydrate and pump P2 delivering a solution of 0.3 M 

ammonium phosphate dibasic. Ammonium hydroxide was added to both precursor solutions (2 

vol% for calcium source and 7 vol% for phosphate source) to obtain a product with a pH > 9. 

All chemicals used were ACS reagent grade and purchased from Sigma Aldrich (Dorset, UK). 

The temperature at the outlet of the first coil was of 80 °C and of 15 °C for the second coil. The 

nanoparticles from the product slurry were recovered by centrifugation (model Sigma 4k-15) 

at 4300 RCF for 10 minutes. The concentrated sediment was re-dispersed in 50 mL of methanol 

and the centrifugation/re-dispersion steps were repeated twice. The cleaned wet solids were 

vacuum dried at 40°C overnight. A sample of the nanoparticles was then heat-treated at 1000 

oC for 1 hour (heating ramp 10 oC/min) in order to then test it later via XRD for phase purity.  

Only the as-prepared samples were used to deposit films. 

 

Film deposition 

AACVD deposition experiments were performed using a cold-wall horizontal reactor; 

a detailed description of the apparatus was previously given [Piccirillo, 2007].  To deposit 

Titania coatings embedded with hydroxyapatite (HAp@TiO2), the hydroxyapatite NPs were 

suspended in 40 mL of dry toluene (Aldrich); different quantities of NPs were used depending 

on the experiments (see Table 1). The suspension was sonicated with ultrasound for 2 hours, 

using a Sonic VCX 130 ultrasonic processor. After the sonication, titanium tetra-isopropoxide, 

TTIP (Aldrich), was added to the suspension.  

An aerosol was generated from the suspension using an Asiamist 1308 ultrasonic humidifier; 

this was carried to the deposition reactor using N2 (99.9 %, BOC) as inert carrier gas, with a 

flow rate of 1.0 L/min. As deposition substrate, float glass sheets were used (Pilkington Glass 

Plc.), with dimensions of 15 x 4.5 x 0.4 cm; the glass had a 50 nm thick SiO2 layer to suppress 

the diffusion of the ions from the glass. The deposition temperature was 450 oC for all 

experiments; the substrates were heated through a Tempatron model 4800 thermostat, while the 

temperature was controlled by a Pt-Rh thermocouple. The depositions were continued until all 

the precursor solution was consumed, which normally took up to 50 minutes. The system was 

then cooled down to room temperature under a gentle N2 flow. All experiments were performed 

in duplicate to check the reproducibility of the system.  
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Characterisation of powders and films 

HAp powders were analysed with powder X-Ray Diffraction (XRD) and Raman 

spectroscopy to determine their composition. XRD was performed with a Bruker D4 

Diffractometer (Cu Kα1, λ = 1.540598 Å). Raman spectra were collected with a Renishaw 

inViva Raman microscope, using a laser excitation at 514.5 nm. TEM images were taken using 

a JEOL JEM-2100 Transmission Electron Microscope (200 keV accelerating voltage). 

The deposited coatings were characterised with XRD, using a Bruker D8 diffractometer, 

using filtered radiation on the reflection mode, with a glancing angle incidence of 1.5 o. Raman 

spectroscopy was also performed, using the same equipment described above. The crystallite 

size of the deposits was estimated from the full width half maximum (FWHM) of the (101) 

peak (2 = 25.3 o) of the XRD patterns using the Scherrer equation [Dinnebier, 2008]; a shape 

factor of 0.9 was used.  The morphology of the coatings was studies with Scanning Electron 

Microscopy (SEM), using a Hitachi S-4100, at 15 kV. Before the analysis, the films were 

covered with sputtered gold. 

High resolution X-ray photoelectron spectroscopy (XPS) was performed on a Thermo 

monochromated aluminium k-alpha photoelectron spectrometer, using a monochromatic Al-

Kα radiation. Survey spectra were collected at pass energy of 160 eV, whilst narrow scans 

acquired at pass energy of 40 eV.  The data were analysed using CasaXPSTM software and 

calibrated to the C(1s) signal at 284.1 eV, attributed to adventitious Carbon 

 

Functional properties of the films 

The photocatalytic activity of the deposits was tested by monitoring the degradation of 

methylene blue (MB) dye under UV light irradiation; a model XX-15 BL lamp (UVP, USA) ( 

= 365 nm, irradiation density 1.86 mW/cm2) was used as a UV radiation source. Samples of 1.0 

cm2 were placed in a 10-3 M methylene blue solution in closed transparent plates; samples were 

shaken in the dark for 30 minutes, to account for the MB adsorbed on their surface. At regular 

interval, the concentration of the MB in the solution was measured by monitoring the decrease 

in the UV absorption at  = 660 nm, using a UV Nicolet Evolution 100 spectrometer. The 

degradation rate was expressed as C/C0, i.e. the ratio of the concentration at a certain time (C) 

over the initial MB concentration (C0). A control experiment was performed with a solution of 

MB only, to monitor the degradation of the dye due to just UV light exposure. To test the 
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photostability of the coatings, two successive experiments were performed using the same 

films. To do this, at the end of the first test the sample was removed from the dye solution and 

washed using water and ethanol. It was then dried at room temperature and then reused for a 

second test.  

 

Results 

Characterisation of HAp NPs 

 Figure 2(a) shows the XRD patterns of the NPs, both as prepared and after a 1000 oC 

heat-treatment. Both patterns are similar to the HAp reference pattern (JCPDF 01­072­1243, 

see bottom of the figure); moreover, in both cases, no other phases apart from HAp can be 

detected. The data confirm that single-phase HAp was produced with the plastic flow system 

and that the 1000 oC heat-treatment did not lead to the formation of other phases, which suggests 

the material is stoichiometric (i.e. the Ca:P ratio of 1.67). As expected, PXRD data for the 

powder heat-treated at 1000 oC also suggested a much higher level of crystallinity.   

 In Figure 2(b) the Raman spectrum of the heat-treated powder is shown; peaks 

corresponding to 429, 590, 961 and 1045 cm­1 can be detected with that at 961 cm­1 being the 

most intense. These are signals are characteristic of HAp, due to the vibration of the PO4 group 

[Demnati, 2012]. The data therefore confirm that HAp was the only phase present in the 

nanopowders.  

 TEM images of the HAp NPs are shown in Figure 3. They particles were found in the 

form of nanoneedles and nanoflakes, with diameters and lengths in the ranges ca.10 to 30 nm 

(average ca. 19 nm) and ca. 50 to 100 nm (average ca. 71 nm), respectively, the width increasing 

with length to maintain an elongated nature. The nanoflakes were polycrystalline in nature and 

formed along several elongated nanocrystals; some much smaller nanocrystals in the range 10 

to 20 nm in length (average about 15 nm and a few nm thick) were also seen in the TEM images. 

It is suggested that HAp nanocrystals formed nanoflakes through a recrystallisation process 

(i.e., Ostwald ripening) and that the smaller nanocrystals were either from broken nanoflakes, 

or did not originally dissolve and recrystallize to form larger nanoflakes. In any case, there are 

only a few of these smaller nanocrystals, and they were a very small part of the total volume of 

HAp.  

Characterisation of the coatings 

 Table 1 lists all the prepared samples. For all experiments, a uniform transparent and 

pale brown coating was formed on the bottom glass directly in contact with the heated graphite 
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block and about three quarters of the substrate was coated. The films showed good adhesion, 

passing the Scotch tape test. The top glass, on the other hand, was uniformly covered by HAp 

NPs in a powdery form, which had no adhesion at all to the glass ­ indeed it could be removed 

by wiping with a towel. This was possibly due to thermophoresis taking place inside the 

deposition reactor, which has previously been reported for AACVD of NPs [Warwick, 2010]. 

Below the NP powder layer, film deposition could be observed only in some parts of the glass, 

with a very irregular pattern. Because of these characteristics, the coatings on top glass plates 

were not considered further, with all analyses and tests being performed on the bottom glass 

coatings. 

 Figure 4(a) shows the normalised XRD patterns of all deposits; it can be seen that in all 

samples, TiO2 can be detected, in its anatase form (A). This is in agreement with literature, 

since deposition with TTIP under these experimental conditions leads to formation of anatase 

[Romero, 2015]. The data indicate that the presence of HAp NPs does not have an effect on the 

nature of the deposited compound. The only exception is sample HAp1, which does not show 

a clear diffraction pattern, suggesting that the deposit was amorphous. From Figure 4(a), no 

other phase could be detected in all samples.  This, however, did not necessarily mean that NPs 

were not included in the coatings. Previous CVD experiments have shown that NPs can be 

incorporated in concentrations below the detection limit of XRD, and still affect the coating 

characteristics and properties [Qureshi, 2007; Warwick, 2010; Warwick, 2011].   

 The shape of the peaks of the diffraction patterns shown in Figure 4(a) indicates that the 

NPs present during deposition, had a significant effect on the crystallinity of the deposits. This 

was confirmed by the values of the crystallite sizes, estimated by application of the Scherrer 

equation to selected PXRD peaks [Dinnebier, 2008] and this is listed in Table 2. It can be seen 

that sample HAp0 had crystallite size of ca. 36 nm, indicating a crystalline material. Sample 

HAp1, as already stated, had an amorphous structure; because of this, it was not possible to 

apply the Scherrer equation to the PXRD data. Sample HAp2, on the other hand, showed a 

more crystalline structure, but with much smaller crystallite than of sample HAp0 (about 7 nm). 

Increasing the NP concentration in the deposition solution, led to a progressive increase to the 

crystallinity of the films; this could be seen by the higher values of the crystallite size for 

samples HAp3, HAp4 and HAp5 ­ 18, 19 and 27 nm, respectively.  

 All samples were also analysed with Raman spectroscopy to confirm their phase 

composition; the spectrum of sample HAp3 is shown as an example in Figure 4(b). It can be 

seen that the peaks characteristics of TiO2 (A) were detected, at 145, 198, 394, 513 and 636 

cm­1, in agreement with literature [Piccirillo, 2013]. The spectra of the other samples showed 
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similar features (data not shown). As for the XRD data, the Raman measurement did not show 

the presence of any other phases; this confirmed that HAp NPs must be present in relatively 

low concentrations. 

 The microstructure of the films was studied using SEM, and Figure 5 shows the 

micrographs of all the coatings. It can be seen that the surface features of the deposits were 

heavily affected by the NPs used during the deposition, since there was a wide variation in 

microstructure between the coatings. The SEM image for sample HAp0 (Figure 5(a)] showed 

a plate-like morphology, the plates appearing to be needles if viewed edge-on. The majority of 

these plates did seem to be edge-on to the surface, with the top and bottom faces perpendicular 

to the substrate. These plates had dimensions of hundreds of nanometres (400-600 nm) and 

thicknesses of around 100 nm. Growth / nucleation centres can be observed on the top and 

bottom faces of the plates, where new crystals can be seen to be growing. For sample HAp1 

[Figure 5(b)], a completely different morphology was observed, with rounded, irregular grains 

of dimensions in the range 300 to 600 nm, and no plate-like structure at all. Sample HAp2 

[Figure 5(c)] showed a completely different structure again, which was more similar to that of 

HAp0, with plates forming. However, these were much smaller in size (up to 300 nm long and 

tens of nm thick), and with a less-regular spatial arrangement – they were not all edge-on to the 

surface. Moreover, no smaller nucleation sites leading to the growth of smaller crystals on the 

upper and lower faces was observed. In sample HAp3 (Figure 5(d)), a needle-like structure 

seemed to form, but these needles were in fact longer, thinner plates, and they appeared to be 

oriented with more faces perpendicular to the surface, leading to a more needle-like appearance. 

The plates formed herein were sharp and thin, with thickness similar to those seen for sample 

HAp2, but they were more elongated, up to 500 nm long.  

Increasing the concentration of HAp NPs, led to further changes in the morphology, 

with a loss of the platy structure. Sample HAp4 [Figure 5(e)] showed ovoid-shaped grains of 

ca 100-120 nm length, elongated in one axis but not plate-like, and with much smaller lengths. 

A similar morphology was observed for sample HAp5 [Figure 5(f)], but with grains of an even 

smaller size in all dimensions.  

These results suggested that in the pure TiO2 films (HAp0), the grains formed as 

elongated plates, as is commonly seen in anatase, but that further grain growth occurred by 

crystallisation of smaller TiO2 crystallites on the flat faces of these plates, and not on their 

edges. Hence, growth would be expected to continue in this axial direction, the plates becoming 

thicker rather than longer. It is not surprising that the flat nanoflakes of the HAp NPs would be 

attracted to these flat faces rather than the edges of the TiO2 plates, depriving the TiO2 of new 



10 

 

nucleation sites for crystallisation and growth. This limits the growth of the TiO2, and results 

in the small, irregular, non-platy grains as observed in sample HAp1. However, another effect 

was observed in samples HAp2 and HAp3; it was suggested that in these samples, the HAp 

nanoflakes had completely covered the available nucleation sites on the faces of the TiO2, 

causing crystallisation on the edges of the TiO2 plates to now be favoured. This led to the 

extended thin plates as seen in these samples, with elongation in the plane of the plate, but no 

significant increase in thickness, as there was no growth allowed on the top and bottom faces. 

This process was more extreme in sample HAp3, with a greater quantity of HAp nanoflakes 

present. Then, finally there was another change in morphology, resulting the non-platy, smaller 

ovoid grains observed in samples HAp4 and HAp5. The authours postulate that this was 

because the increased quantity of HAp nanoflakes that were now also blocking nucleation sites 

on the edges of the plates, preventing growth in this direction as well, effectively limiting 

growth in all dimensions and resulting the smaller grains as observed. No individual HAp 

nanoflakes were observed in any SEM images. 

 EDS data confirmed the presence of titanium and oxygen in all samples, but neither 

calcium nor phosphorus were detected; this indicated that HAp NPs may be present in the 

deposits with concentration below EDS detection limit. 

   To confirm the incorporation of HAp NPs into the TiO2 coatings, XPS analysis were 

performed; samples HAp1 and HAp2 were not investigated further, considering their low 

crystallinity level. Figure 6 shows examples of the XPS spectra of samples HAp0 and HAp3. 

Considering the titanium region [Figure 6(a)], two peaks can be observed for energies of 458.8 

and 464.0 eV; these correspond to Ti 2p3/2 and Ti 2p1/2 respectively [Yao, 2010; Luches, 1992]. 

No other peaks or shoulders were detected in this region, confirming a single titanium 

environment. Figure 6(b) reports the O1s region; it can be seen that two distinct environments 

are present: the first peak corresponds to the titanium dioxide, at 529.8 eV [Leinen, 1993]; a 

second peak, broader and with much lower intensity, was detected centred at 531.4 eV, could 

be attributed to the oxygen in phosphate group [Delichère, 1998]. This would confirm HAp 

presence. It has to be highlighted, however, that since the peak is so broad, it is likely to result 

from several different environments, including hydroxyls groups, both present in the HAp 

structure and/or from surface adsorbed water [Briggs, 1993].   

 Considering the Ca 2p energy region (Figure 6(c)), no signal at all can be observed for 

HAp0; for HAp3, on the other hand, two clear even if noisy peaks can be detected. These 

correspond to the binding energy of calcium in its +2 oxidation state – 347.4 and 350.8 eV, 

belonging to Ca 2p3/2 and Ca 2p1/2 respectively [Wang, 2015]. Samples HAp4 and HAp5 had 
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profiles comparable to that of sample HAp3. Table 3 shows the elemental composition of such 

coatings. The phosphorus region was broad and very noisy (data not shown), indicating that 

small and unquantifiable amounts of the element were present. This is unsurprising, as it is 

known that phosphorous has a very low sensitivity factor in XPS and must generally be present 

in reasonable quantities (> ~2 at.%) in order to provide reliable quantification data [Briggs, 

1993]. 

 

Photocatalytic activity 

 Figure 7(a) shows the results of the photocatalytic activity of some selected samples – 

HAp0, HAp3, HAp4 and HAp5; the activity was measured by monitoring the degradation of 

MB. Sample HAp0 was chosen as reference (i.e. unmodified TiO2 prepared by AACVD), while 

samples HAp3, HAp4 and HAp5 were selected due to the detection of HAp NPs in the 

structure. Data in the figure showed that both samples HAp3 and HAp4 had higher 

photocatalytic activity than the unmodified TiO2. Sample HAp0, in fact, only degraded about 

50 % of the dye after 4 hour irradiation; both samples HAp3 and HAp4, on the other hand, 

degraded 75% of the MB, a 50% increase in performance.  In Figure 7(b) two successive tests 

with the sample HAp3 are reported. It can be seen that the degradation efficiency is practically 

the same as for the first test, that the sample was very photostable and would be expected to be 

resuable and stable. 

 

Discussion 

 The use of HAp NPs during TiO2 deposition by AACVD showed to have a significant 

effect on the characteristics of the coatings; in fact, although the phase composition did not 

change, features such as crystallinity and morphology of the titania were heavily affected.   

  Regarding the crystal structure, overall the use of HAp NPs during the deposition led 

to a decrease in crystallinity of the titania coatings. It is interesting to highlight, however, that 

the effect was very different, depending on the concentration of the NPs. In fact sample HAp1, 

deposited with the lowest NP concentration, showed no crystallinity; this was in agreement with 

the more irregular structure shown by this film (Figure 5(b)). The use of higher NP 

concentrations corresponded to a higher level of crystallinity (see Table 2); even for sample 

HAp5, however, the average crystallite size was smaller than for unmodified TiO2.  

Such differences in morphology and crystallinity indicated different growth mechanisms taking 

place during the deposition. Without any NPs (sample HAp0), SEM showed smaller crystals 
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nucleating on the top and the bottom of the platy crystals, but not on their edges; this led to 

them to grow thicker rather than longer and/or wider. The addition of a relatively small quantity 

of HAp NPs (sample HAp1) seemed to stop such nucleation and growth of TiO2; a possible 

reason for that is that the NPs may have occupied the sites of TiO2 nucleation / growth. This led 

to a coating with an irregular morphology and no preferential growth of TiO2 along any 

particular direction. Higher NP concentrations (sample HAp2) seemed to prevent the 

nucleation even more and growth of TiO2 on the top / bottom of the TiO2 grains, but instead 

appeared to promote some growth of TiO2 on the edges; this corresponded to the formation of 

thin elongated plates. This effect seemed even more enhanced with higher HAp NP 

concentrations; in fact, sample HAp3 showed plates which were sharper and more aligned in 

the same direction. TiO2 with similar morphology was previously observed in coatings prepared 

by AACVD (in presence of WO3 nanoparticles) [Qureshi, 2007]. With even higher NP 

concentrations (sample HAp4), a structure with smaller grains of TiO2 was observed; this could 

have been caused by an inhibition of the growth of TiO2 in the lateral direction. This could be 

explained considering that all available sites for the HAp NPs on the top / bottom of the crystals 

are already occupied; hence, these NPs now also occupy sites at the edge, reducing the 

possibility for lateral growth of TiO2. This occurrence seems even more enhanced for sample 

HAp5, which was prepared using higher HAp NPs quantities.  

 Although composite HAp-TiO2 materials were previously prepared, this was the first 

time that HAp NPs were embedded into a TiO2 matrix. The results herein showed that 

HAp@TiO2 systems had better photocatalytic performance than single-phase TiO2. This can be 

due the effect NPs have on titania structure, making it more textured; the synergic effect 

between the two materials, however, already observed in other biphasic systems, surely also 

played a key role [Anmin, 2006; Giannakopoulou, 2012]. It is interesting to note, however, that 

the improvement in the photocatalytic activity was never reported for such small amount of 

HAp in biphasic materials. This shows that HAp NPs in a TiO2 coating was a very effective 

way to positively affect the photocatalytic activity. It is important to say, however, that the 

enhanced properties of the HAp@TiO2 system were observed only in some cases, i.e. for 

samples HAp3 and HAp4; this indicated that appropriate deposition conditions had to be 

selected to obtain materials with specific features.  

XPS data show that calcium concentration, and hence also HAp NPs content, was 

comparable for samples HAp3, HAp4 and HAp5. The different activities of the coatings, 

therefore, could be due to HAp concentration, but it was more likely to be linked to the way 

HAp NPs were included into the TiO2 matrix. Indeed, literature reports suggest that for films 
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including photocatalytic NPs, the photoactivity can be affected by several parameters and not 

just the concentration of the NPs [Warwick, 2011]. The smaller grains of sample HAp5 may 

mean that HAp NPs were closer to each other; this may have favoured recombination of the e-

/h+ charges and hence, have a detrimental effect on the photocatalytic activity [Liu, 2013]. Due 

to the low concentration of HAp NPs, it was not possible to detect them by SEM in the coating 

and see possible differences in their distribution in the films.  

 For a material to be used as a photocatalyst, its stability under light irradiation and 

possible loss in photocatalytic activity is a crucial parameter to be assessed. It is known that 

TiO2 is generally a photostable material; in some cases, however, some decrease in the 

photoactivity has previously been seen where possible changes in titanium oxidation state 

and/or to the formation of oxygen vacancies on the surface of the material [Pan, 2013]. The 

results herein show that the incorporation of HAp NPs into TiO2 coatings did not affect its 

stability; in fact the photocatalytic activity for sample HAp3 did not decrease when the material 

was reused for a second test [Figure 7(b)]. 

 

Conclusions 

 Composite thin films of anatase titanium dioxide with needle-like hydroxyapatite 

nanoparticles incorporated in the structure were prepared using Aerosol Assisted Chemical 

Vapour Deposition. Characterisation of the films showed that the quantity of NPs in the 

precursor solution affected the morphology and crystallinity of the films. Choosing appropriate 

deposition conditions, allowed coatings with superior photocatalytic activity to be prepared; 

selected materials also showed photostability, i.e. no loss of photocatalytic activity was 

observed when reused. This work showed that the inclusion of HAp NPs into a TiO2 matrix can 

improve performance as photocatalyst; hence the incorporation of HAp NPs with different 

shape/features should also be considered.  
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Table 1. Description of the composition of the deposition solution of the samples. 

Sample name HAp NPs quantity 

(mg) 

TIIP quantity 

(mL) 

HAp/Ti 

(mmol/mmol) 

HAp0 ­ 1 0 

HAp1 50 1 14.75 

HAp2 75 1 22.15 

HAp3 100 1 29.50 

HAp4 100 0.5 59.00 

HAp5 120 0.46 77.95 

N.B. In all cases the deposition solvent was dry toluene (40 mL).  

 

Table 2. Crystallite size estimated with the Scherrer equation. 

Sample name Size (nm) 

HAp0 36 

HAp1 - 

HAp2 7 

HAp3 18 

HAp4 19 

HAp5 27 

 

Table 3. Elemental composition of the coatings (atomic %). 

Sample name Ti Ca 

HAp0 17.58 ­ 

HAp3 16.11 0.22 

HAp4 16.36 0.12 

HAp5 14.40 0.18 

 


