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ABSTRACT 13 

 We took an area of ~150 km
2
 around the town of Cremona to be an analogue for hydrogeological and 14 

hydrochemical conditions in arsenic-polluted and arsenic-free groundwaters across the Po Plain of northern Italy. 15 

We investigated anthropogenic influences on ground and surface water in the area using Cl/Br ratios, δ
18

O/δ
2
H and 16 

other hydrochemical data from 32 groundwater wells, 9 surface waters, a sewage outfall and a rainwater sample. 17 

 The deep aquifer (160–260 m below ground level), which is tapped widely for public supply, is partly 18 

recharged by seepage from overlying aquifers (65–150 m below ground level) that are As-polluted (up to 144 µg/L 19 

As), producing a trend of increasing As with time. This threatens drinking water quality across the Po Plain where 20 

natural As-pollution of groundwater in aquifers at intermediate depth (50–120 m below ground level) is a basin-21 

wide problem.  22 

 Groundwater quality in deep aquifers appears free of anthropogenic influences. In contrast, shallow 23 

groundwater and surface water are strongly affected by such pollution, although in some areas, quality remains 24 

unaffected. Outfalls from sewage-treatment plants and black water from septic tanks firstly affect surface waters, 25 

which then locally infiltrate shallow aquifers under high channel stages. Wastewater permeating shallow aquifers 26 

carries with it NO3 and SO4 which suppress reduction of iron oxyhydroxides in the aquifer sediments and so 27 

suppress the natural release of As to groundwater.  28 
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1. Introduction  31 

 32 

 Human settlements on alluvial plains commonly use groundwater for domestic consumption, industrial use, 33 

and irrigation. Natural and/or anthropogenic pollution in such settings may lower groundwater quality and so limit 34 

exploitation, as is the case in the Po Plain of northern Italy (Onorati et al., 2006). The Po Plain is Italy’s largest 35 

alluvial basin and one of the larger in Europe, covering an area of 46,000 km
2
. The plain is crossed by the Po River, 36 

which flows 652 km from W to E collecting water from 141 total tributaries and hundreds of irrigation channels. 37 

These channels discharge into the Po River the excess of irrigation water which is originally diverted from other 38 

Alpine rivers that flow from N to S. The Po Plain is home to around 20 million inhabitants and is the most important 39 

economic area of Italy. As a consequence, human activities affect both the 75% of its area that is agricultural land 40 

and also the 10% that is urban development (Falcucci et al., 2007). 41 

 Groundwater abstracted from the Po Basin is used for irrigation, domestic supply, and industrial processes 42 

(AdBPo, 2006). Irrigation in the Po Plain uses ~10 billion of m
3
/y taken from rivers (67%, and distributed to the 43 

field by channels), groundwater (22%) and springs (11%) (Zucaro, 2011). In order to avoid human impacts, 44 

groundwater for public supply was initially taken from depths > 150 m. In some areas, such deep abstraction 45 

encounters natural contamination by As (Carraro et al., 2015; Molinari et al., 2012; Rotiroti et al., 2014b). To avoid 46 

this As-pollution, abstractions were deepened 200 – 300 m below ground level (m bgl) where As concentrations are 47 

low, possibly because As is sequestered in neoformed sulphide minerals (Carraro et al., 2015; Rotiroti et al., 2014b). 48 

Groundwater from depths > 200 m is up to ~54,000 years old and its exploitation may constitute mining of resource 49 

that is replenished only slowly (Martinelli et al., 2014) by leakage from overlying aquifers that are As-polluted 50 

(Rotiroti et al., 2014b) and/or by upconing from underlying aquifers that are saline (Conti et al., 2000; Martinelli et 51 

al., 2014). Such migration is driven only by the hydraulic gradients caused by abstraction (Vassena et al., 2012). 52 

Deep abstraction may even induce land subsidence (Martinelli et al., 2014). 53 

 Given the long-term threat to the sustainability of deep-groundwater posed by groundwater abstraction, we 54 

have set out primarily to (a) asses the source of recharge to deep aquifers tapped for domestic supply and (b) for 55 

deep groundwater in aquifers used for public supply, to test the potentially adverse effects on water quality in that 56 



 

3 

aquifer posed by influx of As-polluted groundwater and saline groundwater from adjacent. We also examine sources 57 

of recharge to shallow aquifers and evaluate, if any, their degree of anthropogenic contamination and develop a 58 

conceptual model of As release in the Po Plain. 59 

 60 

2. Materials and Methods  61 

  62 

2.1. Po Plain Aquifer Geology and Architecture 63 

 The alluvial systems of the Po Plain are underlain by Pliocene marine deposits and comprise Pleistocene 64 

sediments prograded from W to E and were then overlain by Holocene fluvial sediments (Garzanti et al., 2011; 65 

Marchetti, 2002). Alpine glaciations significantly increased the rate of glacio-fluvial aggradation and yielded gravel 66 

and sand units that are intercalated into units of silt/clay. The thickness of the silt/clay units increases from north 67 

(the Alpine foothills) to south (the Po River), reflecting the waning transport energy of glacial rivers (Ori, 1993). 68 

This geological setting is particularly evident in Lombardy Region (Figure 1), where monolithic aquifer of gravel 69 

and sand in the northern part of the plain (the higher plain) passes southwards into a multilayer system around the Po 70 

River (the lower plain) (Bonomi, 2009; Cavallin et al., 1983; Perego et al., 2014). 71 

 In the multilayer system of lower plain, the deeper aquifers have a sluggish circulation and so longer 72 

residence times for groundwater under natural conditions of flow (Martinelli et al., 2014). The long residence times, 73 

and confinement of the deeper aquifers, promote reducing conditions and the mobilization of As, Fe, Mn and NH4 74 

driven by degradation of organic matter buried in peat sediments (Carraro et al., 2013; Francani et al., 1994; Rotiroti 75 

et al., 2014b; Zavatti et al., 1995).  76 

 77 

2.2. Study Area 78 

 This work refers to a 150 km
2
 area around the town of Cremona (lower Po Plain, N Italy; ~70,000 79 

inhabitants). The details of aquifer architecture and aspects of groundwater quality, including As-pollution have 80 

been presented in Rotiroti et al. (2015a, 2015b, 2014a, 2014b) so only a summary is given here. 81 

 This multilayer aquifer comprises 5 aquifer units at differing depth ranges, where U means unconfined, S 82 

means semi-confined, and C means confined: U (0–25 m); S (30–50 m); C1 (65–85 m); C2 (100–150 m); C3 (160–83 

260 m). Aquifers underlying C3, classified as Aquifer Group B (Carcano and Piccin, 2002), are not exploited in this 84 
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area since they are saline (Conti et al., 2000). Flow in aquifers U and S is from north to south owing to a strong 85 

topographic control. Flow direction in the deeper confined aquifers (C1, C2, C3) is from NW to SE, which is also 86 

the direction of regional groundwater flow (Vassena et al., 2012). The minimum hydraulic head is seen in C2 87 

(Rotiroti et al., 2014b), resulting in convergent flow into aquifer C2 from both above and below. However, the 88 

presence of well-fields for public water supply tapping aquifer C3 locally induces a fall of hydraulic heads (up to 6 89 

m) (Cambi et al., 2005) such as to induce a reversal of flow to C3. 90 

 In aquifer U, redox condition range from reducing to oxidising in response to local factors. In other 91 

aquifers, groundwater is anoxic and contains As, Fe, Mn and NH4 in concentrations that commonly exceed 92 

regulatory limits (10, 200, 50 and 500 µg/L, respectively). 93 

 The Adda and Po Rivers flow across the area (Figure 1). In addition, multiple shallow irrigation channels 94 

both direct river water to fields for irrigation and act as drains at times of excess outflow when water tables are high 95 

i.e. from May to August. Two main collector channels, the Morbasco and Cerca channels (Figure 1) were sampled 96 

for this work. The Morbasco is ~32 km long and flows into the Po River. It receives treated sewage from the 97 

municipal sewage-treatment plant of Cremona as well as untreated discharges from unsewered sanitation. The Cerca 98 

Channel (~6 km long) flows into the Morbasco Channel and is the tail of the Naviglio Civico di Cremona Channel, a 99 

~57 km long canal fed by Adda and Oglio Rivers.      100 

 The public water supply to Cremona comprises groundwater from two well-fields, one of 9 wells that lies 101 

100 m west of Cremona (Figure 1, box B) and another of 10 wells that lies east 200 m of Cremona (Figure 1, box 102 

A). Both tap aquifer C3, which is the deepest aquifer. Before addition to the public supply, the groundwater is 103 

treated to reduce concentrations of As, Fe, Mn and NH4 (Sorlini and Gialdini, 2014). 104 

 Rainfall in the study area is typically 750 mm per year (Bonomi et al., 2008), falling mostly in spring 105 

(April/May) and autumn (October/November) (Ginocchi et al., 2016). The study area is mostly agricultural, with 106 

prevailing maize cultivation (Bartoli et al., 2012). From May to August maize is grown under surface (border) 107 

irrigation. Irrigation water in Lombardy Region derives from rivers (96.8%), feeding an extensive channel network, 108 

groundwater (0.7%) and other sources as springs, lakes, etc. (2.5%) and counts a total volume of ~8 billion of m
3
/y 109 

(Zucaro and Corapi, 2009). This type of irrigation started as early as the 12
th

 Century with the construction of the 110 

first important channels (Marchetti, 2002), and it has been practised on its present scale since the 50s/60s. Irrigation 111 
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constitutes an important source of recharge for shallow aquifers, together with precipitation, so much that their 112 

hydraulic heads have an increase generally from April to September (Facchi et al., 2004). 113 

 An important economic activity in the area that could have implications on water quality is livestock 114 

farming, in particular, piggery. Pig manure is often used as soil fertilizer, instead of synthetic compounds such as 115 

ammonium sulphate, so that this area was classified as nitrate-vulnerable zone (91/676/EEC).   116 

 117 

2.3. Water Quality Data  118 

 We collected 32 groundwaters from private and public supply wells, 9 surface waters (5 river and 4 119 

channel), one sample of rainwater and a sample of outfall from Cremona’s municipal wastewater treatment plant 120 

from July 2012 to October 2014 (Figure 1). In addition, the water supply company of Cremona provided 121 

unpublished historical data on water quality (data for 115 groundwaters from 37 wells over the period 2001-2011). 122 

 Samples were analysed for major ions, trace elements (As, B, Bi, Br, Cd, Cr, Co, Cu, Fe, I, Mn, Mo, Ni, Pb, 123 

Se, Sb, V, and U), dissolved organic carbon (DOC), δ
18

O and  δ
2
H in water, δ

13
C in dissolved inorganic carbon 124 

(DIC) and δ
15

N in NH4. Water sampling and laboratory analyses were performed using standard methods, details are 125 

reported in Table S1 together with method quantitation limits and the full list of measured parameters. 126 

 127 

2.4. End-member Mixing Models 128 

 To identify the influence of salt, as a proxy for human influence on ground and surface waters, we use a 129 

mixing model of Cl/Br mass ratio against Cl concentration (Alcalá and Custodio, 2008; Davis et al., 2004, 1998; 130 

Hoque et al., 2014; Katz et al., 2011; McArthur et al., 2016, 2012; Panno et al., 2006; Vengosh and Pankratov, 131 

1998). To investigate whether aquifers were being salinized by deep brine injection or flushed of brine by 132 

freshwater, we used the mixing-model approach of Ravenscroft and McArthur (2004), which uses B and Cl to 133 

identify ion-exchange of B through these processes. For these models, the end-members were as follows:  134 

(a) uncontaminated groundwater represented by our two most dilute groundwaters, Well 68 with 1.3 mg/L 135 

Cl, 19.1 g/L B, and Cl/Br of 150, and Well 64, with 1.7 mg/L Cl, B 13.8 µg/L and Cl/Br of 151;  136 

(b) river water with 14.8 mg/L Cl and Cl/Br of 297, the average composition of our 10 river samples; 137 

(c) sewage effluent, with 98.2 mg/L Cl and Cl/Br of 981; 138 

(d) road salt from the local highway company, which has 60.4% Cl and Cl/Br of 7545; 139 



 

6 

(e) domestic salt, with 59.7% Cl and Cl/Br of 3970, the average composition of 14 samples of table, 140 

cooking and dishwasher salts obtained from retail outlets in Cremona (Table S2); 141 

(f) a deep brine of Monticelli (Boschetti et al., 2010), with 73,015 mg/L Cl, 17,673 g/L B, and a Cl/Br of 142 

152, and a deep brine of Cremona, end member brine with Cl/Br of 177 and a Cl of 19,500, the Cl/Br 143 

being derived from the slope of a linear regression of Br on Cl for aquifer C3 (Figure S1, r = 0.999). 144 

 145 

3. Results  146 

  147 

3.1. Water Quality  148 

 Measured water quality data are reported in Table S1. The compositions are similar to groundwater 149 

compositions from the area reported before (Rotiroti et al., 2014b). In particular, concentrations of As, Fe, Mn and 150 

NH4 are high. Concentrations of B, Ba, Cd, Cr, Co, Cu, Mo, Ni, NO3, Pb, Se, Sb, SO4, V, and U are less than WHO 151 

and Italian regulatory limits. Depth profiles of conservative and redox-sensitive species measured in October 2014 152 

are shown in Figure 2, and other relevant parameters in Figure S2.  153 

 The EC is higher in shallow aquifers (U and S; mean value of 947 µS/cm) than in deep aquifers (C1, C2 154 

and C3; mean of 516 µS/cm) aquifers. Concentrations of Cl and B have similar profiles, with highest concentrations 155 

in aquifer U (up to 52 mg/L and 238 µg/L, respectively), a downward decrease to a minimum in C2 with the 156 

underlying aquifer C3 having slightly higher concentrations (up to 28.8 mg/L and 87.6 µg/L, respectively).  157 

 Nitrate is detectable only in aquifer U, with concentrations ≤ 42.8 mg/L. Concentrations of Fe and Mn are 158 

highest in reduced parts of aquifer U (≤ 5.41 and ≤ 0.98 mg/L, respectively) and decrease downward to aquifer C3. 159 

Concentrations of SO4 are highest in aquifer U (≤ 171 mg/L) and a decrease downward, being at or below the 160 

detection limit (0.05 mg/L) in the deep aquifers. Concentrations of DOC have no clearly identifiable depth-trend and 161 

range between 2.8 and 7.6 mg/L, with one outlier of 14.1 mg/L in aquifer U (Well 4). 162 

 The profiles of Br and I comprise higher values in U (up to 132.8 and 13.1 µg/L, respectively), a downward 163 

decrease and a peak in C3 (up to 166.1 and 25.6 µg/L, respectively). Concentrations of As, NH4 and PO4 and H4SiO4 164 

increase downwards to S and C1 (≤ 168 µg/L, 2.0, 1.4, and 42 mg/L, respectively) but decrease downwards 165 

thereafter.  166 
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 Duplicated sampling of groundwater for some wells after 27 months shows little difference in composition 167 

(Figure S3). Concentrations of As, Fe, Mn and NH4 from July 2012 are slightly higher than those from October 168 

2014 but not statistically difference at the 5% significance level (Mann-Whitney U test; p-value of 0.21, 0.67 and 1 169 

for As, Fe and Mn, respectively). A small but significant difference in NH4 (p-value of 0.03) might reflect the fact 170 

that samples collected in October 2014 were filtered through 0.2 µm whilst those collected in July 2012 were not.     171 

 For surface waters, Br and I apart, all concentrations were higher in channel waters than in river water 172 

(Table S1 and Figure 2). For Br and I, the converse was true, with Br being 50 µg/L in rivers and 37 µg/L in 173 

channels whilst I was 4.0 in rivers and 1.6 in channels.  174 

 No surface-water sample exceed the Italian regulatory limits for surface waters (D. Lgs. 152/06). River 175 

water quality results quite stable over the two monitoring dates (July and October 2014) whereas channel waters had 176 

higher mean concentrations for all measured species in October 2014 with respect to July 2014. 177 

 Rainfalls in Cremona during 3 days before the surface water sampling were 3.6 mm in July 2014 and 0.0 in 178 

October 2014; the daily average stage of Po River at Po3 location during the sampling was 28.56 m above sea level 179 

(a.s.l.) in July (22/07/14) and 28.26 m a.s.l. in October (07/10/2014) (ARPA Lombardia). On the basis of these data 180 

and visual observation in the field, it can be considered that channels had higher stages in July 2014 and lower 181 

stages in October 2014 whereas the Po River had comparable stages during the two sampling dates. 182 

  183 

3.2. Stable Isotopes 184 

 Values of δ
2
H vs δ

18
O (Figure 3a) plot on or close to the local meteoric water line (LMWL) of northern 185 

Italy (Longinelli and Selmo, 2003) and of Cremona (Francani et al., 1994) showing that evaporation has not affected 186 

our groundwaters during their time as recharge. The groundwaters cluster between the more enriched values for 187 

local precipitation and the more depleted values for the Po River, the latter reflecting the strong influence of water 188 

from the Western Alps (Marchina et al., 2015). Depth profiles of δ
18

O show little by way of trends (Figure 3b), with 189 

groundwaters from shallow and deep aquifers having similar values, except for 3 shallow wells (5, 11 and 26) that 190 

are more enriched. The δ
18

O values of shallow groundwaters fall between those of the Po River (-10.1 to -9.2; 191 

Marchina et al., 2016, 2015) and local precipitations (-7.73 to -5.95 ‰; Longinelli and Selmo, 2003). Values of δ
18

O 192 

for deep groundwaters fall within the range reported for deep aquifers of the Po Plain by Pilla et al. (2006) of -9.0 to 193 

-8.2 ‰ and nearby sites at Lodi (-8.93 to -8.33 ‰; Guffanti et al., 2010), Pavia (~ -8.7 to ~ -8.5 ‰; Pilla, 1998), 194 
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Milano (~ -9.8 to ~ -8.3 ‰; Avanzini et al., 1994), Piacenza ( -9.42 to -7.38 ‰; Martinelli et al., 2014) and Parma (-195 

9.86 to -7.05 ‰; Martinelli et al., 2014). 196 

 Measured δ
13

C values range from -9.3 to -14.9 ‰, an interval that reflects supersaturation with respect to 197 

calcite and dolomite (Rotiroti et al., 2015b). The values of δ
15

N measured in NH4 range from 4.09 to 7.81 ‰. These 198 

data fall within the range of NH4 produced by the mineralization of soil organic nitrogen and peat (from ~ +2 to ~ +8 199 

‰; Kendall, 1998), of sewage and septic tanks (~ +4‰; Gooddy et al., 2016) and of wastewaters outfalls (~ +4 to ~ 200 

+16 ‰; Hood et al., 2014), but are distinct from the NH4 isotopic composition of synthetic fertilizers (-7.4 to 201 

+3.6‰; Vitòria et al., 2004b), of pig manure (+8 to +15‰; Vitòria et al., 2004a) and of landfill leachate (from ~ +7 202 

to ~ +10 ‰; Gooddy et al., 2014). 203 

 204 

3.3. Cl/Br Ratio 205 

 On a cross-plot of Cl/Br against Cl (Figure 4) that includes both our data and historical, most groundwaters 206 

from the shallow aquifers (U and S) fall close the river-sewage mixing line or are more enriched in Cl. One sample 207 

(Well 3) is enriched in Br. Only one groundwater (Well 32) plots towards the unpolluted field marked by low Cl/Br 208 

and low Cl (McArthur et al., 2012 and reference therein). 209 

 Deep groundwaters show no anthropogenic influences. The deep aquifers (C1, C2 and C3) mostly plot 210 

along a mixing line between our dilute groundwater end-member and a deep brine end-member. At lower Cl 211 

concentrations, some addition of Br from organic decay may have pulled many of the more dilute groundwaters 212 

below brine-mixing lines. The Cl/Br value of 177 is consistent with the Cl/Br of 152 measured in the Monticelli 213 

brine (Boschetti et al., 2010), substantiating the hypothesis that salinity in aquifer C3 can be mainly governed by a 214 

mixing between dilute groundwater and deep brine. The sample from Well 50, and in a minor way that from Well 215 

66, shows higher Cl/Br with respect to the others measured in deep aquifers.      216 

 River and channel data cluster separately, the former having lower Cl/Br. Po River waters (Po1, Po3 and 217 

Po4) are similar and show little difference between sampling dates (average Cl/Br of 327). Waters Ad1 and Po2 218 

have similar Cl/Br (mean of 280 in July 2014 and 223 in October 2014). Water Po2 likely reflects the composition 219 

of the Adda rather than the Po as it was collected ~500 m downstream of the confluence of the Adda and Po Rivers 220 

before the rivers mixed fully. Channel samples plot close to the river-sewage mixing-line. Those collected in 221 
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October 2014 have an average Cl/Br of 451 that overlaps values for the shallow aquifers. Those collected in July 222 

2014 have an average Cl/Br of 478 and plot slightly apart from shallow aquifers. 223 

 The sample of rainwater plots at low Cl but has a highish Cl/Br of 213. Similar high values were found for 224 

rain in south-eastern France at Gard (Cl/Br 201) and Hérault (Cl/Br 269) (Ladouche et al., 2009). The sample 225 

collected from Cremona’s sewage-treatment plant has a Cl/Br of 981; this is slightly higher than values for sewage 226 

effluent from Israel (410 – 873; Vengosh and Pankratov, 1998) and the USA (300 – 600; Davis et al., 1998) but is 227 

within the range of septic-tank effluent in West Bengal, India (690 – 2530; McArthur et al., 2012). 228 

 229 

4. Discussion 230 

   231 

4.1. Recharge to shallow aquifers 232 

 Groundwater quality of most shallow groundwaters are contaminated by human activity as shown by the 233 

high EC and Cl/Br values up to 1174 µS/cm and 624, respectively. Nevertheless, rare instances of uncontaminated 234 

groundwater occur e.g. Well 32, with Cl/Br of 197, a value close to that of 214 found in our spot rainwater sample. 235 

Such rare exceptions apart, the high Cl/Br of most shallow groundwater and channel waters arises from inputs of 236 

raw and treated sewage effluents with Cl/Br up to 981 (Figure 4). The Morbasco Channel, in particular, receives the 237 

outflow of 3 wastewater treatment plants and some untreated effluents from domestic unsewered sanitation.  238 

 Shallow groundwaters do not fall on the mixing line between effluent and uncontaminated groundwater, a 239 

fact that suggests direct contamination of groundwater by effluent is uncommon, rather, shallow groundwaters fall 240 

on a mixing line between channel waters and sewage effluent, a concordance that suggests effluent recharge aquifers 241 

indirectly as a component of channel water after dilution with natural channel flow. Our Cl/Br data therefore 242 

confirms the findings (Facchi et al., 2004; Pilla et al., 2006) that irrigation channels in the Po Plain mainly act as 243 

loosing streams and are an important source of recharge to shallow aquifers. Notwithstanding that, point-source 244 

contamination by untreated domestic sewage has been reported from parts of the Po Plain (Delconte et al., 2014; 245 

Sacchi et al., 2013). 246 

 The tendency of some shallow groundwater 
18

O/
2
H values toward those of local precipitation (Figure 3) 247 

suggests that rainfalls are also an important source of recharge for shallow aquifers.  248 
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 A minority of shallow groundwaters plot in a scatter array towards the low Cl/Br of groundwater from Well 249 

3. These lower Cl/Br suggest inputs of Br from organic degradation may locally contribute Br preferentially to Cl 250 

and so lower Cl/Br. Groundwater from Well 3 contains 4.0 mg/L of Fe, which attests to the reducing capacity of 251 

aquifer U at this point and supports the suggestion that, locally, degradation of buried peat may be driving redox 252 

(Rotiroti et al., 2015b, 2014b). Such degradation would contribute additional Br to groundwater. Conformation of 253 

this suggestion derives from the TANGRAM
©
 database (Bonomi et al., 2014) which shows that 4 m of the total 6-m 254 

screen-length of Well 3 straddles a peaty sand unit. Nevertheless, given the strong human impact on shallow 255 

groundwaters, we cannot say definitively that street runoff (Vengosh and Pankratov, 1998) and/or brominated flame 256 

retardants (Winid, 2015) are not the cause of the lower Cl/Br array in shallow groundwaters. 257 

 The generally higher Cl in shallow groundwaters than in channel water is probably not due to evaporation 258 

of channel water before and during infiltration because the δ
18

O and δ
2
H of shallow groundwaters show no 259 

evaporative trend (Figure 3). The data fall within a narrow range (–9.1 and –8.4 for δ
18

O; –58.9 to –55.5 for δ
2
H) 260 

and plot close to the LMWL for the area (Figure 3). The higher Cl concentrations in groundwaters compared to 261 

channel waters is therefore attributed to time-biased sampling of channel water that vary their Cl concentration 262 

through the year in response to changing inputs of sewage effluent and its dilution by natural flow.  263 

 Shallow groundwaters have higher Cl/Br than river waters (Figure 4), and a different 
18

O/
2
H (Figure 3), 264 

proving that the study area’s main rivers, the Po and the Adda, do not directly recharge shallow aquifers. This 265 

finding confirms similar conclusions of others (Marchina et al., 2016; Martinelli et al., 2014; Rotiroti et al., 2014b) 266 

that the Po River is mainly a gaining river fed by groundwater in the study area, rather than a losing river sourcing 267 

groundwater, despite widespread abstractions of groundwater for industrial and domestic use. 268 

 The high concentrations of SO4 found in shallow groundwater (≤ 171 mg/L) must have an anthropogenic 269 

source, given the human impact on shallow groundwater revealed by Cl/Br values and SO4/Cl mass ratios up to 7.2 270 

and may derive from the use of manure fertilizer (Menció et al., 2016). Concentrations of NO3 are generally low, 271 

owing to the prevalence of reducing conditions, and so nitrate reduction, in much of the shallow aquifers (U and S) 272 

around Cremona, as is the case for most of the lower Po Plain (Balestrini et al., 2016; Sacchi et al., 2013). In rare 273 

oxic parts of the shallow aquifers nitrate persists at high concentrations (Well 5, 43 mg/L NO3) in association to high 274 

SO4, further confirming its anthropogenic source. 275 

 276 
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4.2. Recharge to deep wells 277 

 Deep groundwaters with δ
18

O in the range -9.0 to -8.2 ‰, a range similar to ours, have been traced to 278 

recharge areas in the high Po Plain and Alpine foothills (Pilla et al., 2006), with elevations of 150-250 m asl, so our 279 

deep groundwaters likely are also recharged at similar locations. 280 

 Concentrations of Cl in the deep aquifer C3, the most exploited for public supply, range up to 90 mg/L. 281 

With the exception of groundwater from Well 66, the fresher groundwater samples with Cl < 10 mg/L plot below 282 

the mixing line for brine with Cl/Br of 177 (Figure 4). This suggests excess Br from organic decay may be 283 

influencing these dilute samples. The suggestion is confirmed by a close co-variance of excess Br with both NH4 284 

(Figure S4a) and DOC (Figure S4b), all three of which are products of microbial fermentation of sedimentary 285 

organic matter, which is known to increase Br in groundwater at the expense of Cl: degradation of lignite and peat 286 

gave groundwaters in the Hula Valley of Israel values of Cl/Br as low as 4 (Nissenbaum and Magaritz, 1991). 287 

Degrading organic matter in soils of Western Australia were reported with Cl/Br between 6 and 10 (Gerritse and 288 

George, 1988), with similar low values in peats from Chile and Germany (Biester et al., 2012; Biester et al., 2006). 289 

A quantification of the relation between excess Br and DOC was achieved by Desbarats et al. (2014). 290 

 Deep groundwaters from aquifer C3 with Cl concentrations above 10 mg/L plot close to a mixing line with 291 

Cl/Br of 177 (Figure 4). Deep brines are common in the Po Plain, e.g. the Monticelli brine with a Cl/Br of 152 292 

(Boschetti et al., 2010). Monticelli is located on the same buried thrust that underlies the study area of Cremona 293 

(Bonini, 2007). Buried thrust may channel uprising deep brines (Pilla et al., 2015) and impose a degree of 294 

uniformity to their composition. The higher Cl concentrations in our C3 groundwater therefore are assumed to come 295 

from minor mixing with such deep brines, which have Cl/Br considerably below the seawater value of 288. 296 

 This mixing appears to have been historical, and is now in reverse, as aquifer C3 is being flushed of brine. 297 

Six indicators attest to this flushing: (a) the high concentrations of B in groundwater from aquifer C3 (≤ 87 g/L) 298 

release by ion-exchange; (b) mass ratios of Na/Cl mostly above 2 and ranging up to 8.9, compared to 0.54 for 299 

seawater, showing the presence of excess Na over Cl; (c) a strong correlation between B and Na (Figure S5a); (d) a 300 

strong inverse correlation between Ca and Na (Figure S5a); (e) groundwater compositions that plot along the 301 

exchange line as defined by Re et al. (2013) (Figure S5b), and (f) compositions that plot in the freshwater–flushing 302 

field of a B vs Cl cross plot (Ravenscroft and McArthur, 2004) (Figure S5c).  303 
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 Iodine concentrations in aquifer C3 range up to 26 g/L, giving Cl/I mass ratios between 890 and 2020 304 

(Table S1; mean 1258). These values are well below the marine value of ~300 000 (Skinner and Berger, 2003). Such 305 

low Cl/I have been reported before for deep groundwater of the Po Plain (Boschetti et al., 2010; Conti et al., 2000) 306 

and must result from the input to groundwater of I from organic degradation.   307 

 The above discussion points out that at least part of groundwater abstracted from C3 seems to be replaced 308 

from underlying aquifers in Wells 67 and 110 and from overlaying aquifers in Well 66. 309 

 310 

4.3. Temporal trends of groundwater composition 311 

 Our discussion above shows that aquifer C3 is being flushed of saline contamination but not at what rate. 312 

Development of aquifer C3 for most public supply in the area raises the question as to how sustainable the resource 313 

might be, how quickly groundwater composition is changing with time, and whether the quality is increasing or 314 

decreasing i.e. flushing is continuing now.  315 

 Our repeat-sampling interval of 27 months is too short to do other than place an upper limit on rate of 316 

change of groundwater composition. Nevertheless, we attempt to do so using the average concentration of As and Cl 317 

in C3 over the sampling dates available. These are reported in Figure 5. We use average concentration, rather than 318 

the time-series for each well because the available sampling dates are a few, and wells were not all sampled on the 319 

same dates. The average compositions suggest that no discernible trend is shown by Cl concentrations, but that As 320 

concentrations show a slight increase with time. The increase of As in C3 cannot result from upward leakage of As-321 

rich groundwater in underlying aquifers (Conti et al., 2000) as that would be accompanied by Cl, which is not seen; 322 

indeed, the aquifer is freshening. The change in As concentration may result from continuing slow reduction of 323 

sedimentary iron oxyhydroxides with concomitant release of As to groundwater (Rotiroti et al., 2015b). Such an 324 

hypothesis is compatible with the near absence of SO4 in groundwater in aquifer C3, reduction of which had it been 325 

present might have sequestered As from solution in neoformed pyrite. Anyhow, the As release via iron 326 

oxyhydroxides reduction coupled to organic matter degradation seems to have a minor contribution to As-pollution 327 

in C3 since here excess Br and As are uncorrelated (Figure S4c). Finally the increase in As concentrations might 328 

result from leakage downwards of As-polluted groundwater from overlying aquifers C1 and C2 in response to 329 

abstraction. This seems confirmed by the October 2014 data since Well 66, which has the highest As concentration 330 

in C3 (59.8 µg/L), is the sole from C3 that plots above the mixing line for brine. 331 
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 332 

4.4. Strengthening the conceptual model for As release 333 

 In anoxic aquifers worldwide, natural pollution by arsenic arises from the reductive dissolution of 334 

sedimentary iron oxyhydroxides. This mechanism has been invoked to explain such pollution in the USA (Korte, 335 

1991; Korte and Fernando, 1991; Matisoff et al., 1982), the Bengal Basin (Nickson et al., 1998, 2000 et seq.), the 336 

Red River Basin, Vietnam (Berg et al., 2001; Postma et al., 2007), alluvial aquifers in Pakistan (Husain et al., 2012; 337 

Nickson et al., 2005), the Po Plain of Italy (Carraro et al., 2013; Rotiroti et al., 2014b), the Mekong River Basin of 338 

Cambodia (Rowland et al., 2007 et seq.) and other worldwide locations (see Gulens et al., 1979; Ravenscroft et al., 339 

2009 for reviews). The reduction of sedimentrary iron oxyhydroxides is driven by microbial metabolism of organic 340 

matter (Banfield and Nealson, 1997; Chapelle and Lovley, 1992; Chapelle, 2000; Lovley, 1997; Nealson, 1997). In 341 

the multilayer aquifers around Cremona, the reduction has been postulated to be driven by the degradation of peat 342 

incorporated into semi-permeable silty and clayey aquitards (Rotiroti et al., 2015b; Rotiroti et al., 2014b). 343 

 In groundwaters that show little anthropogenic influence (aquifers C1, C2, C3 and well 32 tapping aquifer 344 

S) concentrations of As, PO4, and NH4 co-vary, albeit weakly (Figure S6). The covariance provides confirmation of 345 

the strong co-absorption onto iron-oxyhydroxides of As and PO4 and their concomitant release on its reduction 346 

(Ravenscroft et al., 2001). Microbial metabolism of organic matter in anoxic waters not only reduces iron 347 

oxyhydroxides but also generates NH4 from amino acids, so the positive correlation between As and NH4 (Figure 348 

S6b) although weak, provides some confirmation that these process co-occur. Moreover, the measured values of 349 

δ
15

N, together with other indicators (Francani et al., 1994; Rotiroti et al., 2015b), suggest that NH4 derives from 350 

natural organic matter. Therefore, the assumption that peaty aquitards are probably the main source of organic 351 

matter driving As release in this system seems reasonable. 352 

 Reduction of SO4 can generate neoformed pyrite that sequesters As. Concentrations of As are highest in 353 

aquifers S and C1 but their concentrations of SO4 differ markedly (Table S1). These observations suggest that the 354 

process of SO4-reduction, if it occurs at all in these aquifers, does not to reduce As concentrations to zero.  355 

 The release of As to shallow aquifers in Cremona is suppressed by anthropogenic inputs of NO3 and 356 

possibly SO4 from wastewater, as occurs in the Bengal basin. (McArthur et al., 2016, 2012). Reduction of iron 357 

oxyhydroxides is suppressed by NO3 because NO3 is reduced more easily than Fe
3+ 

by microbial processes. In 358 

addition, the presence of SO4 allows co-precipitation of As in sulphides formed by SO4-reduction. A weak negative 359 
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correlation between Cl/Br, indicative of wastewater discharges high in NO3 and SO4 and concentrations of As 360 

(Figure S7) appears to confirm the suppressant effect of waste waters on As-pollution in the study area. Increasingly 361 

stringent regulations on the use of N-based fertiliser in the Po Plain (91/676/EEC), and so the designation of large 362 

areas of the Po Plain as nitrate-vulnerable zones (Sacchi et al., 2013) therefore has the potential to decrease NO3 363 

inputs to the shallow aquifers, thereby allowing the wider development of anoxia and so an increase in As-pollution. 364 

 365 

5. Conclusions 366 

 367 

 This study dealt with the assessment of the recharge to shallow aquifers and the source of water to deep 368 

wells used for drinking water supply in the As-affected multilayer aquifer in Cremona, considered as an analogue 369 

for the aquifers of the lower Po Plain. Our findings are that: 370 

a) shallow aquifers receive considerable recharge from irrigation/drainage channels that are polluted by 371 

sewage effluent, giving rise to high Cl/Br values in shallow groundwaters. Nevertheless, in some areas 372 

shallow aquifers are still free from such an influence; 373 

b) shallow groundwater is not much affected by As-pollution because of the high NO3 and SO4 concentrations 374 

in channel water due to sewage effluents. Reduction of NO3 suppresses As-pollution by suppressing 375 

reduction of iron oxyhydroxides. Reduction of SO4 generates pyrite that can sequester As from solution and 376 

so lower concentrations of pollutant As;  377 

c) deep groundwater abstractions from aquifers C2 and C3 supply much of the regions domestic supply, 378 

especially for the town of Cremona. The supplies are unaffected by anthropogenic pollution but have 379 

concentrations of Cl that are increased by historical mixing with deep brines. The deep aquifers are 380 

currently being flushed of this Cl-contaminated water by fresher water, as evidenced by strong ion-381 

exchange loss of Ca from recharging waters, with concomitant increase in B and Na; 382 

d) the As-pollution of deep aquifers is likely;  383 

e) over a 27-month period, As-pollution in the deep aquifers may have increased slightly as a result of 384 

drawdown of As-rich groundwater from overlying aquifers. If confirmed, the increases pose some threat to 385 

the treatment plants currently dealing with purification of groundwater for public supply, since treatment 386 

may be based on an assumed constant composition of groundwater;  387 
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f) to assess this risk, routine monitoring for As on a monthly basis should be instituted. 388 

These findings related to the Cremona area could have implications on drinking supply management in the whole 389 

lower Po Plain (5-10 million inhabitants) since here natural As contamination in intermediate aquifers is a regional 390 

problem and many wells that serve drinking supply are tapped in deep aquifers underlying the peak of As 391 

concentration.  392 

 393 
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Figure Captions 

 

Figure 1. Study area with rivers, channels and sampling points labelled with ID number; wells are classed for each 

tapped aquifer; total 14 groundwater and 1 surface water samples were collected in July 2012, 9 surface water and 1 

rain samples were collected in July 2014 and 28 groundwater, 9 surface water and 1 sewage samples were collected in 

October 2014; Uox: zone with oxidising conditions in aquifer U; Ured: zone with reducing conditions in aquifer U; 

Umix: zone with mixing conditions in aquifer U; S: aquifer S; C1: aquifer C1; C2: aquifer C2; C3 aquifer C3. 

 

Figure 2. Groundwater and surface water concentrations of conservative and redox-sensitive species measured in 2014 

over depth; symbol length corresponds to well screen interval; Uox: oxidized zone of aquifer U; Ured: reduced zone of 

aquifer U; S: aquifer S; C1: aquifer C1; C2: aquifer C2; C3: aquifer C3. 

 

Figure 3. (a) Plot of measured and reference δ
2
H vs δ

18
O in groundwater, Po River water and precipitation; LMWL: 

local meteoric water line by 
a
Longinelli and Selmo (2003) and 

b
Framcani et al. (1994); also plotted are weighted-means 

of precipitation by 
c
Longinelli and Selmo (2003) in 4 stations at Mantova, Milano, Parma and Piacenza, all near 

Cremona and values of the Po River in Cremona by 
d
Marchina et al. (2015, 2016). (b) Measured δ

18
O over depth; 

symbol length corresponds to well screen interval; sampling points labelled with ID number are cited in the text; dashed 

boxes represent reference range values (see Section 3.2 for range values). U: aquifer U; S: aquifer S; C1: aquifer C1; 

C2: aquifer C2; C3: aquifer C3. 

 

Figure 4. Plot of Cl/Br vs Cl for our data and legacy data, together with mixing lines between end-members given in 

Section 2.4; sampling points labelled with ID number are cited in the text; percentages indicated on mixing lines 

represent the fraction of the high-Cl end-member over the low-Cl end-member; Uox: oxidized zone of aquifer U; Ured: 

reduced zone of aquifer U; S: aquifer S; C1: aquifer C1; C2: aquifer C2; C3: aquifer C3. 

 

Figure 5. Average concentration of As and Cl in C3 over the sampling dates available (May 2006, October 2006, 

November 2007, April 2010 and February 2011 from unpublished historical data provided by the water supply company 

of Cremona and October 2014 from this study). 
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