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Abstract. We prove a Tverberg type theorem: Given a set A ⊂
Rd in general position with |A| = (r − 1)(d + 1) + 1 and k ∈
{0, 1, . . . , r − 1}, there is a partition of A into r sets A1, . . . , Ar

(where |Aj | ≤ d+ 1 for each j) with the following property. There
is a unique z ∈

⋂r
j=1 aff Aj and it can be written as an affine

combination of the element in Aj : z =
∑

x∈Aj
α(x)x for every j

and exactly k of the coefficients α(x) are negative. The case k = 0
is Tverberg’s classical theorem.

1. Introduction and main result

Assume A = {a1, . . . , an} ⊂ Rd where n = (r − 1)(d + 1) + 1 and
r ≥ 2, d ≥ 1 are integers. Suppose further that the coordinates of
the ai (altogether dn real numbers) are algebraically independent. A
partition A = {A1, . . . , Ar} of A is called proper if 1 ≤ |Aj| ≤ d+ 1 for
every j ∈ [r]. Here and in what follows [r] stands for the set {1, . . . , r}.
We will show later (Proposition 1.1) that in this case the intersection of
the affine hull of the Ajs is a single point z, that is, {z} =

⋂r
j=1 aff Aj.

Equivalently, the following system of linear equations has a unique
solution:

(1.1) z =
∑
x∈Aj

α(x)x and 1 =
∑
x∈Aj

α(x) for all j ∈ [r].

One form of Tverberg’s classical theorem [Tve66] puts extra con-
ditions on the coefficients α(x) (consult [Mat03] and the references
therein for an introduction to the subject).

Theorem 1.1 (Tverberg’s theorem). Under the above conditions there
is a proper partition of A into sets A1, . . . , Ar such that α(x) ≥ 0 for
all elements x ∈ A. In other words, {z} =

⋂r
j=1 conv Aj.

This means that the unique solution to (1.1) has α(x) > 0 for all
x ∈ A. Can we require here that exactly one (or two or more) of the
α(x) are negative? A partial answer comes from the following theorem,
which is the main result of this paper.
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Theorem 1.2. Assume k ∈ {0, 1, . . . , r − 1}. Under the conditions of
Theorem 1.1 there is a (proper) partition of A into r parts so that in
the unique solution to (1.1) α(x) < 0 for exactly k elements x ∈ A.

Of course the same holds for any set A of n points in Rd, we only
have to relax the condition α(x) < 0 to α(x) ≤ 0 for k elements x ∈ A
and α(x) ≥ 0 for the rest. Actually, the general position condition (on
A) is used in order to avoid cases when α(x) = 0 for some x ∈ A.

It is not clear for what other values of k, k ∈ [n], the theorem holds.
Since the sum of the coefficients for each Aj is one, at least one is
positive. This implies the upper bound k ≤ n− r.

The case d = 1 is very simple. Then n = 2r − 1 and there is no
r-partition with r or more negative coefficients, so the trivial bound
k ≤ n − r = r − 1 is tight. In the case d = 2, r = 3 and n = 7
Theorem 1.2 gives a suitable partition for k = 0, 1, 2. A careful case
analysis shows that the statement holds for k = 3 as well, and an
extensive computer aided search did not find any example where it
fails to hold for k = 4.

The case of r = 2, that is, Radon (plus minus) partitions can be
checked directly. Then |A| = d + 2 and the outcome is that for
any k ∈ {0, 1, . . . , bd+2

2
c} there is a partition with exactly k negative

α(x). Further, there are examples showing that this does not hold for
k > bd+2

2
c. In this case everything is governed by the unique affine de-

pendence of the vectors in A, just as in the proof of Radon’s theorem.
We omit the details.

We will see in Corollary 3.1 in Section 3 that, for a strange reason,
if both d and r are even, then Theorem 1.2 holds with k = 1

2
[(r −

1)(d + 1) + 1] as well. This makes us wonder if Theorem 1.2 holds for
all integers k ≤ 1

2
[(r − 1)(d+ 1) + 1].

We are going to prove Theorem 1.2 in a stronger form: to some
extent we can prescribe the subset of A where the coefficients in (1.1)
are negative.

Theorem 1.3. Under the conditions of Theorem 1.1 let M ⊂ A be a
set of size at most r − 1 such that conv M ∩ conv (A \M) = ∅. Then
there is a partition A = {A1, . . . , Ar} of A such that in (1.1) α(x) < 0
if and only if x ∈M .

We prove this theorem in Section 3 where we state a slightly stronger
result whose proof is in Section 6. Examples showing the necessity of
the condition on M are given in Section 2. In Section 4 we discuss
coloured variations of Theorem 1.2. In Section 5 we prove the following
fact.

Proposition 1.1. Assume A = {a1, . . . , an} ⊂ Rd, the coordinates of
the ai are algebraically independent and r ≥ 2, d ≥ 1 are integers. If the
partition A = {A1, . . . , Ar} of A is proper and n = (r−1)(d+1)+1, then⋂r
j=1 aff Aj is a single point. If n ≤ (r−1)(d+1), then

⋂r
j=1 aff Aj = ∅.
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The last statement holds even if the partition is not proper. The
first part must be known, see for instance [PS14] or [DV77] for similar
statements. The second part is proved in [Tve66]. We give a simple
proof in Section 5.

2. The condition on M

The condition on M in Theorem 1.3 simply says that M and A \M
can be separated by a hyperplane.

Example 1. We give an example showing the necessity of this
condition. Let V = {v1, . . . , vd+1} be the set of vertices of a regular
simplex ∆, and let c be the centre of ∆ and write Fh for its facet
opposite to vh. For every h ∈ [d + 1] let Uh ⊂ vh + εB be an (r − 1)-
element set. Here ε > 0 is small and B is the Euclidean unit ball in
Rd centred at the origin. Define A = {c} ∪

⋃d+1
h=1 Uh. We assume A is

in general position which can be clearly reached by choosing the sets
Uh suitably. Set M = {c} so the separation condition fails. We claim
that there is no proper r-partition of A such that in (1.1) only α(c) is
negative, α(x) > 0 for all other x ∈ A.

Assume the contrary and let A1, . . . , Ar be a proper partition with
z ∈

⋂r
j=1 aff Aj so that α(c) < 0 and α(x) > 0 for all other x ∈ A in

(1.1).
Given a convex compact set C in Rd and a point u ∈ Rd \ C we

let S(u,C) denote the shadow of C from u which is the set of point
{tu+ (1− t)c : c ∈ C, t ≤ 0}, see Figure 1.

u u

C S(u,C)

Figure 1. Construction of S(u,C). Notice that C ⊂ S(u,C).

For every h ∈ [d + 1] there is a j = j(h) ∈ [r] such that Aj(h) and
Uh are disjoint, simply because each Uh has r − 1 elements and the
number of sets Aj is r. It follows that Aj(h) ⊂ Fh+ εB ⊂ S(c, Fh+ εB)
if c 6∈ Aj(h), and then z ∈ conv Aj(h) ⊂ S(c, Fh + εB). If c ∈ Aj(h),
then in the equation z =

∑
x∈Aj(h)

α(x)x only the coefficient α(c) is

negative, so z ∈ S(c, Fh + εB). Therefore
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z ∈
d+1⋂
h=1

S(c, Fh + εB).

However,
⋂d+1
h=1 S(c, Fh+εB) = ∅ as long as ε < diam∆

2d
. See Figure 2 for

an illustration. This follows from the fact that the shadows S(c, Fh +
εB) for h ∈ [d + 1] are convex and their union covers the boundary
of ∆. If they had a point in common, then their union would cover
∆. Since none of them contains c, this is impossible. This gives us the
contradiction we were seeking.

S(c, F1)

S(c, F2)

S(c, F3)

Figure 2. The shadows of the sides of a triangle from
its centre do not intersect.

The proof above does not use the fact that c is the only point
near the centre of the simplex. If we consider U0 ⊂ c + εB any set
and declare U0 = M , the same arguments as above show that there
is no partition with the desired properties. Therefore, the condition
conv M ∩ conv (A \M) = ∅ cannot be removed even if we allow A to
have more than (r − 1)(d+ 1) + 1 points.

Example 2. This example shows a construction where M satisfies
the separation condition, |M | = r and the conclusion of the theorem
fails. We work with the same simplex ∆ and Uh ⊂ vh + εB is the same
(r − 1)-element set as before for h ∈ {2, . . . , d + 1} but for h = 1 it is

an r-element set in v1 + εB. This time A =
⋃d+1
h=1 Uh and M = U1. We

assume of course that A is in general position. Now M is separated
from A \M and has exactly r elements.

We claim that A has no partition into r parts with the required
properties.

Proof. Assume the contrary and let A1, . . . , Ar be a proper partition
with z ∈

⋂r
j=1 aff Aj such that in (1.1) α(x) < 0 if x ∈M an α(x) > 0

if x /∈M . For h ∈ {2, . . . , d+1} let Gh be the convex hull of V \{v1, vh};
this is a (d−2)-face of ∆. Set β =

∑
x∈Aj∩U1

α(x), and note that β > 0
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if Aj ∩ U1 is nonempty. Define uj = 1
β

∑
x∈Aj∩U1

α(x)x if Aj ∩ U1 is

nonempty, and uj = v1 otherwise.
Note again that for each h ∈ {2, . . . , d+ 1} there is a j(h) ∈ [r] such

that Uh and Aj(h) are disjoint. Then Aj(h)\U1 ⊂ Gh+εB. This and the
sign condition in (1.1) imply that for every h > 1 with Aj(h) ∩ U1 6= ∅,

z ∈ S(uj(h), Gh + εB).

This holds even if Aj(h) ∩ U1 = ∅ since then uj(h) = v1 and z ∈
conv Aj(h) ⊂ Gh + εB ⊂ S(v1, Gh + εB). Thus

z ∈
d+1⋂
h=2

S(uj(h), Gh + εB).

But again, the shadows on the right hand side have no point in common,
as one can check easily. �

3. Proof of Theorem 1.3

We are going to use the colourful Carathéodory theorem [Bár82]. It
says that given sets S1, . . . , Sn+1 ⊂ Rn with the condition that 0 ∈⋂n+1
i=1 conv Si, there is a transversal, that is, a choice si ∈ Si for every

i ∈ [n+ 1], such that 0 ∈ conv {s1, . . . , sn+1}.
Proof of Theorem 1.3. We use a modification of Sarkaria’s argu-

ment [Sar92], in the form given by [BO97]. It starts with an artificial
tool: let v1, . . . , vr be the vertices of a regular simplex in Rr−1 centred
at the origin. The important property here is that, apart from scalar
multiples, their unique linear dependence is v1 + . . .+ vr = 0.

Assume A = {a1, . . . , an} where n = (r − 1)(d+ 1) + 1. Recall that
M ⊂ A, |M | = k < r, and M and A\M are separated by a hyperplane.
Define

bi = (ai, 1) if ai /∈M and bi = (−ai,−1) if ai ∈M.

where (ai, 1) ∈ Rd+1 is vector ai appended with an (d+1)-th coordinate
equal to one, and similarly for (−ai,−1). For i ∈ [n] we set

Si = {v1 ⊗ bi, v2 ⊗ bi, . . . , vr ⊗ bi}.

Here vj ⊗ bi is the usual tensor product, which is the same as the
matrix product of the (r − 1)-dimensional column vector vj and the
(d+ 1)-dimensional row vector bTi : vjb

T
i , where we consider our vectors

as vertical matrices. So this product is an (r − 1)× (d+ 1) matrix, or
equivalently a vector in Rn−1. Observe that 0 ∈ conv Si for every i,
so the colourful Carathéodory theorem applies and gives a transversal
s1, . . . , sn whose convex hull contains the origin, that is, there are non-
negative coefficients β1, . . . , βn whose sum is 1 such that

∑n
i=1 βisi = 0.

Here each si is of the form vj⊗ bi for a unique j = j(i) ∈ [r]. We define
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Aj = {ai ∈ A : j(i) = j} for all j ∈ [r]. The sets A1, . . . , Ar form an
r-partition of A. With the new notation

0 =
n∑
i=1

βisi =
n∑
i=1

βivj(i) ⊗ bi

=
r∑
j=1

∑
ai∈Aj

βivj ⊗ bi =
r∑
j=1

vj ⊗

 ∑
ai∈Aj

βibi

 .

Define now αi = −βi if ai ∈ M and αi = βi otherwise. The last
equation becomes

(3.1) 0 =
r∑
j=1

vj ⊗

 ∑
ai∈Aj

αi(ai, 1)

 .

There is a vector u ∈ Rr−1, orthogonal to v3, v4, . . . , vr with 〈u, v1〉 = 1,
where 〈·, ·〉 denotes the dot product. The condition v1 + . . . + vr = 0
implies that 〈u, v2〉 = −1. As (3.1) is a matrix equation, multiply-
ing it from the left by the (r − 1)-dimensional row vector uT gives∑

ai∈A1
αi(ai, 1) =

∑
ai∈A2

αi(ai, 1). By symmetry we have

(3.2) z :=
∑
ai∈A1

αi(ai, 1) =
∑
ai∈A2

αi(ai, 1) = . . . =
∑
ai∈Ar

αi(ai, 1).

There are two cases to be considered.

Case 1: when Aj = ∅ for some j ∈ [r]. Then z = 0 and some Ah,
say A1, is nonempty and not all coefficients αi with ai ∈ A1 are zero.
Thus

∑
ai∈A1

αi(ai, 1) = 0. Then αi ≤ 0 for all ai ∈ A1∩M and αi ≥ 0
for all ai ∈ A1 \M . Setting

γ :=
∑

ai∈A1∩M

αi =
∑

ai∈A1\M

−αi,

it follows that γ > 0. Consequently conv (A1 ∩M) and conv (A1 \M)
have a point in common, namely

1

γ

∑
ai∈A1∩M

αiai =
1

γ

∑
ai∈A1\M

(−αi)ai,

contradicting the separation assumption.

Case 2: when Aj is nonempty for all j ∈ [r] . Reading the last
coordinate of (3.2) gives that

γ :=
∑
ai∈A1

αi =
∑
ai∈A2

αi = . . . =
∑
ai∈Ar

αi.

Since |M | < r, there is a j ∈ [r] such that αi > 0 for all ai ∈ Aj,
implying that γ > 0. Then the point 1

γ
z is in the affine hull of every

Aj. The construction guarantees that αi < 0 if and only if ai ∈M . �
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Actually, this proof gives a stronger statement. In Case 2, the posi-
tivity of γ is guaranteed by the condition |M | = k < r. Not assuming
k < r, γ can be negative or zero. When γ < 0 equation (3.2) implies
again that 1

γ
z is in the affine hull of every Aj, but this time α(x) > 0

exactly when x /∈M . We will exclude the case γ = 0 using the general
position condition. The proof of this is given in Section 6 because it
uses the content of Section 5. So we have the following result.

Theorem 3.1. Under the conditions of Theorem 1.1 let M be a subset
A such that conv M ∩ conv (A \ M) = ∅. Then there is a partition
A = {A1, . . . , Ar} of A such that in (1.1) either

• α(x) < 0 if and only if x ∈M , or
• α(x) < 0 if and only if x /∈M .

The second example in Section 2 shows that in some cases only the
second alternative holds.

Corollary 3.1. Assume r, d are both even and positive integers, A ⊂
Rd is in general position, |A| = (r−1)(d+1)+1, and k = 1

2
[(r−1)(d+

1) + 1]. Then A has a proper r-partition such that in (1.1) exactly k
of the coefficients α(x) are negative.

The proof is easy. Under the above conditions there is a subset M
of A of size k that is separated from A\M . According to Theorem 3.1,
A has an r-partition such that in (1.1) either α(x) < 0 if and only if
x ∈M , or α(x) < 0 if and only if x ∈ A \M . In both cases, exactly k
coefficients are negative. �

Remark. The same result can be proved using Tverberg’s original
method of moving the points. The main idea is to start with a set of
points which have a partition with the required conditions. Then, as
one moves one point continuously, if the partition stops working, one
can show that points may be swapped in the partition in order to still
satisfy the conclusion of the theorem. The proof given above is shorter
and simpler.

4. Colourful Tverberg plus minus

Once a Tverberg type theorem with conditions on the signs of co-
efficients of the affine combinations has been established, it becomes
natural to try to extend it to the coloured versions of Tverberg’s the-
orem, as in [BL92].

Given disjoint sets F1, . . . , Fn of r points each in Rd, considered as
colour classes, we say that A1, . . . , Ar is a colourful partition of them
if |Fi∩Aj| = 1 for all i ∈ [n], j ∈ [r]. In such a case, we can denote the
points by xi,j = Fi ∩ Aj. The coloured Tverberg theorem is concerned
about the existence of colourful partitions for which the convex hulls
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of the sets Aj intersect. In other words, we seek a colourful partition
and a point z ∈ Rd for which there is a solution to the equations

z =
n∑
i=1

α(xi,j)xi,j for all j ∈ [r](4.1)

subject to 1 =
n∑
i=1

α(xi,j) for all j ∈ [r], and(4.2)

α(xi,j) ≥ 0 for all i ∈ [n], j ∈ [r].(4.3)

The question then becomes, given M ⊂ [n], find a solution where we
exchange (4.3) for

α(xi,j) ≤ 0 for all i ∈M, j ∈ [r], and(4.4)

α(xi,j) ≥ 0 for all i ∈ [n] \M, j ∈ [r].(4.5)

In other words, we aim to prescribe negative coefficients, but we also
require that the same restrictions hold accross the colour classes. We
obtain a partial result in this direction.

Theorem 4.1. Let n = (r− 1)d+ 1 and F1, . . . , Fn be disjoint subsets
of Rd whose union is algebraically independent, each of cardinality r
and M ⊂ [n]. Then, there is a colourful partition of F1, . . . , Fn into r
sets and solutions to equations (4.1) and (4.2) such that either

• α(xi,j) > 0 for all i ∈M and α(xi,j) < 0 for all i ∈ [n] \M , or
• α(xi,j) < 0 for all i ∈M and α(xi,j) > 0 for all i ∈ [n] \M .

Moreover, the affine combinations use the same coefficients for the
colour classes. In other words, for all i ∈ [n] and j, j′ ∈ [r], α(xi,j) =
α(xi,j′).

Proof. We use the main result of [Sob15]. It says that for n = (r−
1)d+ 1 and the sets F1, . . . , Fn, there are solutions to equations (4.1),
(4.2) and (4.3) where α(xi,j) = α(xi,j′) for all i ∈ [n], j ∈ [r], j′ ∈ [r].
Then, we apply this result to the sets

Gi =

{
Fi if i ∈M
−Fi otherwise.

Let B1, . . . , Br be the colourful partition we obtain of G1, . . . , Gn, with
yi,j = Gi ∩ Bj for all i, j. We denote by β(yi,j) the coefficients we
obtain satisfying equations (4.1), (4.2) and (4.3). We rename them as
β(yi,j) = βi, since they do not depend on j. Let xi,j = ±yi,j and αi =
±βi where the sign is positive (negative) if i ∈M (i /∈M), respectively.
Let γ =

∑n
i=1 αi. Let us see what happens if γ 6= 0. By construction,

if we consider A1, . . . , Ar the partition induced by the points xi,j and
α(xi,j) = αi/γ for all i, j, they satisfy all the requirements for the
conclusion of the theorem. The two cases in Theorem 4.1 correspond
to the possibilities for the sign of γ.
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We have to verify that the general condition assumption we have on
F1, . . . , Fn implies γ 6= 0. This part of the proof is technical, and it
relies on the modification of Sarkaria’s trick from [Sob15]. Given a set
F = {z1, . . . , zr} ⊂ Rd, a permutation σ : [r] → [r] and v1, . . . , vr ∈
Rr−1 as in Section 3, we can define

F⊗σ =
r∑
j=1

zj⊗vσ(j) ∈ Rn−1, S(F ) = {F⊗σ : σ is a permutation}

The existence of β1, . . . , βn follows from applying the colourful Carathéodory
theorem to the sets S(G1), . . . , S(Gn) in Rn−1. However, if the original
set of points ∪ni=1Fi is algebraically independent, then no transversal to
S(F1), . . . , S(Fn) would have a non-trivial affine dependence in Rn−1,
so γ 6= 0, as required. �

As mentioned, Theorem 4.1 has equal coefficients accross the colour
classes. Removing this condition leads to the following problem.

Open problem 4.1. If we remove the equal coefficients condition, does
Theorem 4.1 hold with n = d+ 1?

The answer is affirmative with r = 2. If M = ∅ this is the main
conjecture from [BL92].

5. Proof of Proposition 1.1

We write the equation (1.1) in matrix form Mα = b. The (n+ d)×
(n+d) matrix M is made up of blocks. The block corresponding to Aj
is a d× |Aj| matrix Nj whose columns are the vectors in Aj. The row
immediatley below block Nj has a 1 in each column containing a vector
from Aj and zeroes everywhere else. There are r further blocks, each
one is −Id, the negative d × d identity matrix. They are in the last d
columns of M , with a row of zeroes between them. These submatrices
are arranged in M as shown on Table 1. All other entries of M are
zeroes. The ith column of M corresponds to the vector ai. Note that
M = M(A) depends on A and on the partition A = {A1, . . . , Ar} as
well.

The variables are α = (α1, . . . , αn, z1, . . . , zd)
T ∈ Rn+d and the right

hand side vector is b ∈ Rn+d that has coordinate zero everywhere except
in positions d+ 1, 2(d+ 1), . . . , r(d+ 1) where it has one. The original
system (1.1) is the same as

(5.1) Mα = b.

As we have seen,
⋂r
j=1 aff Aj is a single point if and only if the linear

system (1.1), or what is the same, the equation (5.1) has a unique
solution which happens if and only if detM 6= 0. Here detM is a
polynomial with integral coefficients in the coordinates of the ai. If this
polynomial is zero at some algebraically independent points a1, . . . , an,
then it is identically zero. So it suffices to show one example where it is
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N1 −Id

1 1 . . . 1

N2 −Id

1 1 . . . 1
. . .

Nr −Id

1 1 . . . 1

Table 1. The matrix M , the empty regions indicate zeros

non-zero or, what is the same, one example where
⋂r

1 aff Aj is a single
point.

The example is simple. Suppose |Aj| = d + 1 − mj for all j ∈ [r]
and m1 ≥ m2 ≥ . . . ≥ mr. As A is a proper partition, 0 ≤ mj ≤ d.
Let Hj be the subspace of Rd defined by equations xi = 0 for i =∑j−1

h=1mh + 1, . . . ,
∑j

h=1mh. Since n = (r − 1)(d+ 1) + 1,
∑r

1mj = d,
implying that

⋂r
1Hj is a single point, namely the origin. For each

p ∈ [r] choose |Aj| affinely independent points in Hj. Their affine hull
is exactly Hj, finishing the proof of the first part.

For the second part we can assume that Aj is nonempty for all j,
and also that |Aj| ≤ d + 1 as otherwise one can delete some elements
of Aj while keeping its affine hull the same. We suppose further that
n = (r − 1)(d + 1) by adding extra (and algebraically independent)
points to some suitable Ajs. Then

⋂r
j=1 aff Aj 6= ∅ if and only if the

corresponding linear system (5.1) has a solution. Now M is an (n +
1) × n matrix. Adding b to M as a last column we get a matrix
that we denote by M∗. The system (5.1) has a solution if and only if
rank M = rank M∗. The previous argument shows that rank M = n−1
and so we have that, as a polynomial, detM∗ is identically zero. Again
it suffices to give a single example where

⋂
aff Aj = ∅. We use the

same example as before except that this time
∑r

j=1 mj = d + 1 so we

can add the equation
∑d

i=1 xi = 1 to the ones defining H1 if m1 < d
and then

⋂
Hj = ∅, indeed. If m1 = d then H1 = 0 and m2 = 1 and

we define H2 by the single equation x1 + x2 = 1, and again
⋂
Hj = ∅.

The sets Aj are constructed the same way as above. �
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6. Proof of Theorem 3.1

Proof. As we have seen we only have to show that γ 6= 0. As-
sume γ = 0. This happens if and only if the homogeneous version of
equation (5.1), that is

(6.1) Aα = 0

has a nontrivial solution, which happens again if and only if detM =
0. This is impossible if the partition is proper (as we have seen in
the previous section). Note that z 6= 0 and no Aj is the emptyset,
this follows from Case 1 of the proof of Theorem 1.3. So assume the
partition is not proper. Then Aj has more than d+1 elements for some
j. Assume that |A1| > d+ 1, say. This means that∑

x∈A1

α(x)(x, 1) = (z, 0).

The vectors (x, 1), x ∈ A1 are affinely dependent, implying that there
is a non-trivial affine dependence

∑
x∈A1

β(x)(x, 1) = (0, 0). Then for
all t ∈ R ∑

x∈A1

(α(x) + tβ(x))(x, 1) = (z, 0),

We choose here t = t0 so that α(x) + t0β(x) = 0 for some x = x0 ∈ A1.
Set α′(x) = α(x) + t0β(x) when x ∈ A1 and α′(x) = α(x) otherwise.

We change now the partition A1, . . . , Ar to another one A′1 . . . , A
′
r as

follows. Set A′1 = A1 \ {x0} and choose some Aj with |Aj| ≤ d and
set A′j = Aj ∪ {x0}. All other Ah remain the same. Let M ′ be the
corresponding matrix.

We claim now that detM ′ = 0. The linear system (6.1) has a non-
trivial solution, namely α(x) = α′(x) with z 6= 0 unchanged. So indeed,
detM ′ = 0.

Repeating this step finitely many times gives a proper partition such
that (6.1) has a nontrivial solution. But the previous section shows
that for a proper partition, (6.1) has no non-trivial solution. �
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