
RESEARCH ARTICLE

Identification of the Functional Variant(s) that

Explain the Low-Density Lipoprotein Receptor

(LDLR) GWAS SNP rs6511720 Association with

Lower LDL-C and Risk of CHD

Roaa Hani Fairoozy1☯*, Jon White2☯, Jutta Palmen1, Anastasia Z. Kalea1, Steve

E. Humphries1☯

1 Centre for Cardiovascular Genetics, BHF Laboratories, Institute of Cardiovascular Science, University

College London, London, United Kingdom, 2 University College London Genetics Institute, Department of

Genetics, Environment and Evolution, London, United Kingdom

☯ These authors contributed equally to this work.

* roaa.fairoozy.12@ucl.ac.uk

Abstract

Background

The Low-Density Lipoprotein Receptor (LDLR) SNP rs6511720 (G>T), located in intron-1 of

the gene, has been identified in genome-wide association studies (GWAS) as being associ-

ated with lower plasma levels of LDL-C and a lower risk of coronary heart disease (CHD).

Whether or not rs6511720 is itself functional or a marker for a functional variant elsewhere

in the gene is not known.

Methods

The association of LDLR SNP rs6511720 with incidence of CHD and levels of LDL-C was

determined by reference to CARDIoGRAM, C4D and Global lipids genetics consortium

(GLGC) data. SNP annotation databases were used to identify possible SNP function and

prioritization. Luciferase reporter assays in the liver cell line Huh7 were used to measure the

effect of variant genotype on gene expression. Electrophoretic Mobility Shift Assays

(EMSAs) were used to identify the Transcription Factors (TFs) involved in gene expression

regulation.

Results

The phenotype-genotype analysis showed that the rs6511720 minor allele is associated

with lower level of LDL-C [beta = -0.2209, p = 3.85 x10-262], and lower risk of CHD [log

(OR) = 0.1155, p = 1.04 x10-7]. Rs6511720 is in complete linkage. Rs6511720 is in complete

linkage disequilibrium (LD) with three intron-1 SNPs (rs141787760, rs60173709,

rs57217136). Luciferase reporter assays in Huh7 cells showed that the rare alleles of both

rs6511720 and rs57217136 caused a significant increase in LDLR expression compared to

the common alleles (+29% and +24%, respectively). Multiplex Competitor-EMSAs (MC-
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EMSA) identified that the transcription factor serum response element (SRE) binds to

rs6511720, while retinoic acid receptor (RAR) and signal transducer and activator of tran-

scription 1 (STAT1) bind to rs57217136.

Conclusion

Both LDLR rs6511720 and rs57217136 are functional variants. Both these minor alleles cre-

ate enhancer-binding protein sites for TFs and may contribute to increased LDLR expres-

sion, which is consequently associated with reduced LDL-C levels and 12% lower CHD risk.

Introduction

Elevated plasma lipid levels promote atherosclerosis and increase the risk of coronary heart

disease (CHD). Low-density lipoprotein cholesterol (LDL-C) is taken up from the blood by

the LDL-Receptor (LDL-R). LDLR is located on chromosome 19 at p13.1-p13.3 and it encodes

a cell surface glycoprotein predominantly expressed in hepatocytes. LDL-R mediates the

removal of cholesterol-carrying LDL-C particles from the blood via ApoB-100 [1–3]. The 45kb

gene comprises 18 exons and 17 introns [4]. Mutation in the LDLR gene leads to the mono-

genic disorder, familial hypercholesterolemia (FH), and to date over 1,200 mutations have

been reported in the LDLR gene that cause FH [5]. The vast majority of these mutations are

located in the exonic regions, and thus affect protein structure and function, while 10% are in

the intronic region (exon boundary), and these are predicted to affect correct splicing, and 2%

in the promoter region, which are predicted to prevent gene transcription. A single nucleotide

polymorphism (SNP) within LDLR exon 12, rs688 is associated with both LDL-C and CHD in

a gender-independent mode [6, 7]. It also acts as a modulator of alterative exon splicing, which

can lead to a shift in the reading frame and an altered gene transcript [8–11]. Non-coding

SNPs in LDLR have also been reported to be functional, for example, in the promoter region

c.-139C>G [12], c.-101T>C, c.-121T>C [13], and -49C>T [14], and rs17248720 in the inter-

genic region [15] are involved in regulation of gene expression and have been reported to

cause FH.

In the last decade, genome-wide association studies (GWAS) have identified numerous loci

that harbor common signal nucleotide polymorphisms (SNPs) which have relatively small

effects on lipid traits, including at the LDLR locus where SNPs are associated with LDL-C lev-

els. The majority of common variants that have been discovered in GWAS are in non-coding

regions and their functional implications are unknown [16]. Interpretation of the molecular

mechanisms of non-coding variants is a huge challenge because of linkage disequilibrium

(LD) and the diversity of non-coding functions, including transcriptional, mRNA splicing and

control of translation [17, 18]. The T allele of the LDLR SNP rs6511720 (G>T) [MAF = 0.10 in

a European population, (1000 Genomes Project Phase 3)] has been identified as being associ-

ated with lower plasma levels of LDL-C (size effect: -0.15 to -0.26 mmol/L) and a lower risk of

CAD [19–21], myocardial infarction (MI) [22] and abdominal aortic aneurysm (AAA) [23].

Between-study similarities have provided confidence that the LDLR SNP rs6511720 is either

functional or may be a marker for a functional variant elsewhere in the gene. In addition, Tal-

mud et al. (2013) constructed a weighted LDL-C-raising gene score of 12 common LDL-C-

raising SNPs previously identified by the Global Lipids Genetics consortium, including the

LDLR SNP rs6511720 [19] in two patient groups (FH without an identified mutation, FH with

an identified mutation) and one control group. They found that the mean weighted SNP score
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for both mutation-negative and mutation-positive FH patients was significantly higher than in

control subjects. The difference between mutation-negative and mutation-positive also was

significant. They proposed that these common LDL-C-raising SNPs explained the hypercho-

lesterolemia phenotype in at least 80% of patients with a clinical diagnosis of FH but with no

identified mutation [24], however, the functional roles of many of these SNPs are unknown.

The rs6511720 SNP is located in intron-1 of the LDLR gene, where cis-acting gene regula-

tory sites are commonly found [25]. Cis-regulatory elements physically interact with the pro-

moter region of a gene to initiate DNA transcription [26–28]. Such SNP could be a part of an

enhancer element due to a modification of the transcription factor-binding site (TFBS) that in

turn recruits co-activators and chromatin regulators to facilitate the transcription of the LDLR
gene [29]. However, the analysis of the genetic function of such variants is complex because of

the LD between SNPs, which are co-inherited with a causal variant. Thus, all SNPs in LD with

the functional variant may carry some or all of the associations with the trait of interest,

although they have may have not any relevant function.

This study uses a range of methods to identify functional variants and their role in gene reg-

ulation. We employed SNP selection and prioritization methods based on the data from bioin-

formatics databases. Three SNPs (rs57217136, rs141787760 and rs60173709) in addition to

GWAS hit SNP rs6511720 were selected for functional analyses. A number of functional study

techniques were performed including conventional electrophoretic mobility shift assays

(EMSA), reporter assay and multiplex competitor electrophoretic mobility shift assays

(MC-EMSA) to identify the regulatory role of selected SNPs.

Methods

Statistical analysis

The summary estimates for the log odds Ratio (OR) and its standard error of rs6511720 on

CHD were taken from CARDIoGRAM [30] and C4D [31] (http://www.cardiogramplusc4d.

org/downloads/) and were combined by fixed effects meta-analysis. We obtained an estimate

of the regression coefficient for rs6511720 on LDL-C from Global lipids genetics consortium

(GLGC) [32] (http://csg.sph.umich.edu/abecasis/public/lipids2013/). All analyses were con-

ducted using the statistical computing environment R version 3.2.0.

SNP annotation

Several SNP annotation databases were used to identify possible SNP functions. The UCSC

genome browser [33] was used as the source of genome-wide maps of the chromatin state of

the region of interest of the gene. Locuszoom [34] (http://csg.sph.umich.edu/locuszoom/),

SNAP [35] (https://www.broadinstitute.org/mpg/nsnap/ldplot.php) and HaploReg V2-V4 [36,

37] (http://compbio.mit.edu/HaploReg) were used to identify LD SNPs with the LDLR GWAS

hit SNP rs6511720. HaploReg and MatInspector [38] (Genomatix Software GmbH, Germany)

were used to create the SNP profile. Three SNPs in complete LD (r2 = 1) with GWAS hit SNP

rs6511720 (rs57217136, rs141787760 and rs60173709) were selected for further analyses.

Functional assessment of LDLR intron-1 SNPs

Electrophoretic mobility shift assays (EMSAs) were used to investigate the effect of variants’

genotype on DNA-protein binding. Probes of 31 bp sequences that encompassed the common

or rare variant of each of the four SNPs were employed (probe sequences are available upon

request). Probes were labeled using the biotin 3’-end DNA labeling kit (Pierce, Rockford, IL,

USA) as recommended by the manufacturer. Each binding reaction consisted of 10μl of 2X
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binding buffer (16% Ficol, 40mM HEPES, 100mM KCl, 2mM EDTA, and 1mM DTT), 0.8ng

of poly(dI.dC), 50mM of MgCl2, 0.8mg of BSA and 2nmol of Huh7 (a human hepatocellular

carcinoma cell line) nuclear extract, corrected with dH2O to a final volume of 20μl. The reac-

tion mixture was incubated at 25˚C for 30 min, followed by the addition of 6X loading buffer.

Samples were electrophoresed on a 6% polyacrylamide gel for 180–240 min at 120V and then

transferred to a nylon membrane using Southern transfer. The images were obtained using a

chemiluminescent nucleic acid detection module (Pierce, Rockford, IL, USA) according to the

manufacturer’s instructions. Multiplex competitor electrophoretic mobility shift assay

(MC-EMSAs) were carried out to identify the TFs that are involved in expression differentia-

tion between alleles of rs6511720 and rs57217136 SNPs. The MC-EMSAs were performed

using seven sets of cocktails, each with ten unlabeled dsDNA consensus sequences for well-

characterized TFBS [39]. These TF cocktails were incubated with the binding reaction mix

comprising Huh7 nuclear extract for 15 min and then a labeled probe was added and incu-

bated at 25˚C for 30 min. When a particular set of TFs eliminated the band shift, as a result of

binding the unlabeled competitor, the individual competitor from this set was examined by an

additional EMSA, in order to specify the TF that bound to the allele of the variant.

Luciferase reporter assays were performed to determine whether the four LDLR intron-1

SNPs influenced gene expression. The Phusion1 High-Fidelity PCR Kit (New England Bio-

Labs Inc) was used to amplify DNA fragments of interest including the LDLR promoter

(594bp), and the LDLR SNPs rs6511720 (883bp), rs57217136 (814bp), rs141787760, as well as

rs60173709 (643bp), as recommended by the manufacturer (primer sequence available upon

request).

For cloning, the In-Fusion1 HD Cloning Kit (Clontech Laboratories, Inc.) was used follow-

ing the manufacturer’s instructions. The LDLR promoter DNA fragment was inserted into a

pGL3-basic luciferase reporter vector to generate a LDLR-luciferase-construct (promoter

only) reporter plasmid. The insertion was upstream of the Luciferase gene (luc+) at the pro-

moter site. Then, the LDLR intron-1 SNP sequences encompassing the SNP allele were indi-

vidually inserted into the enhancer site of the LDLR-luciferase-construct after the SV40

polyadenylation signal. These constructs were then transformed in E-coli cells.

Using a quikChange Site-Directed Mutagenesis kit (Stratagene, La Jolla, CA, USA), the

rs6511720 G>T variant was created at position 79, rs141787760 (C>-) and rs60173709 (T>-)

deletions were generated individually at positions 41 and 247, respectively, and rs57217136

C>T mutation was created at position 401. Both original and mutated LDLR-luciferase-con-

structs were transfected into Huh7 cells along with the pRL-TK plasmid as a renilla luciferase

control reporter vector. When the Huh7 cells were 80% confluent, they were plated into a

96-well plate (2x104 cells/well) and incubated for 24 hours. Transfection was carried out using

Opti-MEM1 reduced serum medium and lipofectamine 2000 (Invitrogen). Luciferase activity

was measured using the dual Luciferase Reporter Assay System kit (Promega), following the

manufacturer’s instructions. The mean relative expression difference between variants’ geno-

type was determined by a two-sample t-test.

Results

Association of rs6511720 genotype with LD-C and CHD

The meta-analysis of the CARDIoGRAM and the C4D data showed that the rs6511720 minor

allele was associated with lower risk of CHD [log (OR) = −0.1155; SE = 0.0217; p = 1.04 x10-7]

(S1 Table). The GLGC (N = 170,607) showed that rs6511720 minor allele is associated with

lower levels of LDL-C [beta = −0.2209; SE = 0.0061; p = 3.85 x10-262] (S2 Table). This suggests

LDLR SNPs Functional Analysis
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that individuals carrying one or more copies of the minor LDL-C lowering T allele of

rs6511720 would be at lower lifetime risk of CHD.

SNPs annotation and prioritization

To identify potentially functional SNPs at the LDLR locus, we considered variants with strong

LD (r2 = 0.8) with the LDLR GWAS hit SNP rs6511720. This SNP is in strong LD with 48

other SNPs: three SNPs are located in intron-1 and the others are located�1.5kb upstream of

LDLR locus (see LD plot, S1 Fig). To further prioritize variants for a functional analysis follow-

up, genome-wide maps of the chromatin state of relevant cell types (HepG2, human liver hepa-

tocytes) were examined. Variant position was evaluated for evidence of the histone modifica-

tion mark H3K4me1, H3K27Ac and H3K4me3, as well as for DNase I hypersensitivity sites

and for formaldehyde assisted isolation of regulatory elements (FAIRE). The post-translational

chromatin mark H3K4me1, and H3K27Ac are often associated with enhancer regions [40],

while H3K4me3 associated with promoter regions [41, 42]. DNase I and FAIRE are established

methods for the identification of nucleosome regulatory regions [43] (Fig 1). In addition, TFs

occupancy in chromatin was assessed using genome wide ChIP-seq data sets (UCSC genome

browser accessed 01-03-2016). Of the 48 variants meeting the LD threshold (r2<0.8), four

SNPs were found to have strong chromatin signals and interesting TF binding profiles (S1

Table) including three SNPs in complete LD (r2 = 1) with rs6511720 (rs57217136 (T>C),

rs141787760 (C>deletion) and rs60173709 (T>deletion). The four selected SNPs are located

in intron-1 of LDLR within� 1200bp of each other.

In-silico tools, MatInspector and HaploReg, showed different DNA-protein binding profiles

of these SNPs (S1 Table). The MatInspector software identified a sequence around the minor

allele of rs6511720 that was predicted to bind to GATA and the snRNA activating protein/

proximal sequence element (SNAP/PSE) complex, but HaploReg did not predict any protein

binding around this SNP. SNAP/PSE has a role in gene transcription initiation [44–46].

MatInspector did not find any binding site for either rs141787760 and rs60173709, while Hap-

loReg software predicted that the minor allele of rs141787760 would bind to TFs that have

roles in chromatin modulation through general transcription regulation and a known LDLR
transcription regulator SP1 (specificity protein 1). Rs60173709 was also predicted as a binding

Fig 1. Genome-wide maps of chromatin state of LDLR intron-1. Schematic presentation of the LDLR

intron-1 chromatin status (https://genome-euro.ucsc.edu). The area of interest in intron-1 is highlighted in

light-blue color. Promoter/ Enhancer histone marker of seven cell lines (GM12878, H1-hESC, HSMM,

HUVEC, K562, NHEK, and NHLF). FAIRE: formaldehyde assisted isolation of regulatory elements.

doi:10.1371/journal.pone.0167676.g001
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site for some proteins, but not any that have a clear role in LDLR gene regulation. For

rs57217136 HaploReg predicted that the major allele would bind to TFs such as forkhead

box protein A (FOXA1, FOXA2), which are liver transcription activators, and sterol regulatory

element-binding protein 1 (SREBP1), while the minor allele would bind to SP1.

Allele-specific protein binding of LDLR intron-1 SNPs in Huh7 cells

The in-silico analysis suggested that the LDLR intron-1 selected SNPs are sites for TF bind-

ing. To assess whether the alleles of the SNPs differentially affect protein-DNA binding in
vitro, EMSAs for the four intron-1 SNPs were carried out using Huh7 nuclear lysates. As

shown in Fig 2, all four SNPs demonstrated allele-specific binding. The rare alleles of

rs57217136, rs141787760 and rs60173709 demonstrated a new DNA-protein complex, while

the rs6511720 T allele formed a different protein complex, which moved more slowly than

the major G allele complex.

Allele-specific enhancer activity of LDLR intron-1 SNPs in Huh7 cells

Luciferase reporter assays were carried out to determine the influence of the four SNPs on the

transcriptional activity of the LDLR promoter. Generating a fragment comprising all four

SNPs was not possible because intron-1 of the LDLR has 20 Alu repeats [47]. Therefore, three

fragments were generated to exclude Alu repeats; the first fragment contained rs6511720, the

Fig 2. DNA binding properties of LDLR intron-1 SNPs. Conventional EMSA analysis of the LDLR intron-1 SNPs (rs6511720, rs141687760,

rs60173709, and rs57217136). Binding of SREBP1 was used as the control (lane 1 and 2). The lanes with a labeled probe showed a specific band

indicated by arrows, while when the unlabeled probe was added the band disappeared. These four SNPs have allele-specific binding, indicated by arrows.

(-) = deletion and (*) = minor allele.

doi:10.1371/journal.pone.0167676.g002
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second fragment rs141787760/rs60173709, and the third fragment rs57217136. These frag-

ments were inserted individually into the enhancer site of the LDLR-luciferase-construct and

transfected into Huh7 cells (Fig 3A). Luciferase activity measurements showed that the

rs141787760/rs60173709 transfected construct led to a significant reduction in LDLR promoter

expression when compared to the promoter alone: -24% (p = 0.006) for the major allele and

-29% (p = 4.0x10-8) for the minor allele, but with no significant difference between the alleles.

In contrast, the rare allele of rs6511720 functioned as an enhancer, whilst the rare alleles of

both rs6511720 and rs57217136 increased LDLR promoter expression activity significantly by

+29% and +24% (p = 0.026, and p = 0.002), respectively, when compared to the common

alleles (Fig 3B).

Identification of allele-specific transcription factor binding

MC-EMSAs were carried out to identify the specific TFs that bind to rs6511720 and

rs57217136 variants. The results showed that the serum response element (SRE) is bound to a

sequence around the protective allele (T) of rs6511720 (S2B Fig), while the retinoic acid recep-

tor (RAR) and signal transducer and activator of transcription-1 (STAT1) are bound to a

sequence around the C allele of rs57217136 (S2D Fig).

Discussion

Several GWAS have reported that the LDLR SNP rs6511720 (G>T) is associated with lower

plasma levels of LDL-C and a lower risk of CHD [19–21]. Data from the GLGC consortium

Fig 3. LDLR luciferase constructs and SNP luciferase activity in Huh7 cell line. A) Schematic

presentation of LDLR-luciferase-construct (promoter only) and LDLR-luciferase-enhancer-constructs. The

constructs were transfected into Huh7 cells. B) Results of luciferase reporter assays showing relative

expression of LDLR-luciferase-enhancer constructs of LDLR SNPs relative to the LDLR-luciferase (no

enhancer) construct. (-) = deletion and (*) = minor allele.

doi:10.1371/journal.pone.0167676.g003
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showed that The LDLR rs6511720 minor (T, Forward strand) allele is carried by approximately

10% of the population and have confirmed the allele is protective, being associated with lower

levels of LDL-C. This association is consistent and of sufficient strength to suggest that com-

mon variation in LDLR has implications for health, and that determining the precise molecular

mechanism of the effect is relevant. The lead hit SNP has strong LD with 48 SNPs, thus to pri-

oritize candidate variants, genome-wide maps of regulatory elements were used, which are

useful resources to identify variants differentially affecting transcriptional activity. We found

four promoter-proximal intron-1 variants (rs6511720, rs57217136, rs141787760 and

rs60173709), which had strong chromatin signals in liver cells: these SNPs are in complete LD

(r2 = 1) with the GWAS hit SNP. In-silico tools, MatInspector and HaploReg, showed different

DNA-protein binding profiles of these SNPs, The LDLR SNP rs6511720 was predicted to be a

strong enhancer, and the other three SNPs were predicted to be promoter-activators [48].

Although, the inconsistent prediction between in-silico tools prevented finding an interesting

TF to test, the data shed light on candidate SNPs that have a strong regulatory profile, and

which were worthy of further investigation using functional assays.

The in-silico findings were confirmed by EMSAs, where the four SNPs all showed allele-spe-

cific protein binding to the rare alleles. This finding suggested that these proteins may up-regu-

lating LDLR expression. To determine whether the different genotypes have an influence on

LDLR expression, gene reporter assays were used. Data from the luciferase reporter assays

showed that LDLR intron-1 SNPs are indeed affecting LDLR gene expression, as the minor

alleles of rs6511720 and rs57217136 showed significant higher expression, while rs141787760

and rs60173709 showed significant lower expression but no difference between the alleles. It is

important to consider the combined effect on expression of these four SNPs, given that the

rare alleles of all four are always present together. It is likely that the lowering effect of the

minor alleles of rs141787760 and rs60173709 partially repress the raising effect of the rare

alleles of rs6511720 and rs57217136 SNPs. If the combined effect of the minor alleles of four

LDLR intron-1 SNPs was estimated by summation, we would predict that the haplotype will

show ~ 29% higher expression. This would lead to up-regulation of LDL-R numbers on the

surface of hepatocytes and this in turn would explain the lower levels of LDL-C in individuals

carrying the rs6511720 minor allele haplotype.

The actual mechanism of this effect is only partially unraveled by our work. Both minor

alleles of SNPs rs6511720 and rs57217136 are predicted to create enhancer-binding protein

sites for TFs that would contribute to increased LDLR expression. MC-EMSAs showed

rs6511720 minor allele (T) was bound to the serum response element (SRE) transcription fac-

tor. The SRE contains a binding site for serum response factors (SRF), which have a role in

LDLR gene expression stimulation [49]. It also showed that rs57217136 was bound to RAR

and STAT1. The Retinoic Acid receptor is a member of a family of nuclear receptor proteins

actively involved in retinoic acid mediated transcriptional regulation of genes that controls

lipid metabolism, through dimerization with other proteins to initiate transcription [50].

STAT1 is involved in lipid metabolism via JAK/STATs through several pathways. A phosphor-

ylated STAT1 is inter-nuclear and binds to sis-inducible element (SIE) sequence in the pro-

moter region and regulates gene expression [51, 52].

Limitations

Our results suggest that a cis-regulatory element near rs6511720 and rs57217136 SNPs acts in

the liver cell line. However, in our study we did not examine other LD distal SNPs that may

have a role in transcription regulation and therefore further studies are needed in this direc-

tion. In this study, we used luciferase reporter assays and EMSAs, which are techniques used

LDLR SNPs Functional Analysis
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to measure the difference of allelic expression and to determine DNA-protein interaction in
vitro. An in vitro study may not fully represent what is occurring in vivo, where open chroma-

tin structure and epigenetics have a potential role in gene regulation, and where transfection of

a small fragment of DNA into a cell line cannot accurately reflect the natural situation. Finally,

since we studied the effect of these SNPs only in liver cells we cannot determine whether or

not they also influence LDLR gene expression in other tissues. However since the major site of

expression of the LDLR is the liver, where clearance of LDL-C from the plasma occurs, this is

not a major limitation.

In conclusion, integration of bioinformatics with GWAS disease-associated variants helps

to elucidate gene-regulatory variants underlying association signals. Both rs6511720 and

rs57217136 were identified as part of a cis-regulatory complex in a liver cell line that altered

transcriptional activity through binding SRE, RAR, and STAT1. However, more studies are

needed to define the spatial organization of the gene, which has a fundamental role in control-

ling gene expression [53–56], by the chromatin looping that brings enhancers and promoters

into close spatial proximity to interact and initiate transcription. To identify the interaction

between the functional SNPs and the LDLR promoter, chromosome conformation capture

(3C) would be a useful technique [57, 58] or chromosome conformation capture carbon copy

(5C) [59].

Supporting Information

S1 Fig. LDLR rs6511720 LD plot. A LD plot was generated using Locuszoom (http://csg.sph.

umich.edu/locuszoom/). SNPs are plotted with the meta-analysis p value of LDL-C association

(as–log10 values) as a function of genomic position. The lead SNP (rs6511720) is represented

by a diamond, while LD SNPs are represented by circles. The LD SNPs are color coded to rep-

resent the r-squared between SNP and the putative associated variant, where red indicates a

strong LD r2�0.8 and dark blue indicates a weak LD r2�0.2. A blue line indicates estimated

recombination rates and dark blue arrows indicate gene annotations. LD and recombination

rates are based on HapMap Phase II (CEU, YRI and JPT+CHB) or 1000 Genomes (CEU) and

gene information from the UCSC browser.

(TIF)

S2 Fig. DNA binding and expression of the transcription factors of the LDLR SNPs:

rs6511720 and rs57217136. MC-EMSA analysis. Nuclear proteins from the Huh7 cell line

were incubated with 7 cocktails of unlabelled DNA competitors (70 well-characterized DNA-

binding proteins) for 15 minutes, then a 5’ end-biotinylated allele-specific probe was added.

The multiplex competitors compete out any specific interactions with a labeled probe, elimi-

nating or reducing any positive shift result. A) LDLR rs6511720 MC-EMSA for both alleles of

the SNP, T allele (rare) specific bands were eliminated by cocktail 4. B) The single competitors

from cocktail 4 (a) were run individually in a further EMSA, showing SRE resulted in competi-

tion. C) LDLR rs57217136 MC-EMSA for C allele, the C allele (rare) specific bands were elimi-

nated by cocktail 4. D) The single competitors of the cocktail 4 (c) were run individually in a

further EMSA, showing competitors RAR and STAT1 resulted in competition.

(TIF)

S1 Table. Association of rs6511720 genotype and CHD risk in CARDIoGRAM and C4D.

(PDF)

S2 Table. Association of rs6511620 genotype and lipid treats from data in Global lipids

genetics consortium (GLGC).

(PDF)
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S3 Table. Predicted regulatory element and protein binding of LDLR selected SNPs. �

minor allele.

(PDF)
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