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Abstract

Magnetoencephalography (MEG) is a neurcimaging technique which gives direct non-
invasive measurements of neuronal activity with high temporal resolution. Given its
increasing use in cognitive and clinical research, it is important to characterize, and
ideally improve upon, its advantages and limitations. For example, it is conventionally
assumed to be insensitive to deep structures because of their distance from the

sensors. Consequently, knowledge about their signal contribution is limited.

One deep structure of particular interest is the hippocampus which plays a key role in
memory and learning, and in organising temporal flow of information across regions.
A large body of rodent studies have demonstrated quantifiable oscillatory
underpinnings of these functions, now waiting to be addressed in humans. Due to its
high temporal resolution, MEG is ideally suited for doing so but faces technical
challenges. Firstly, the source-to-sensor distance is large, making it difficult to obtain
sufficiently high signal-to-noise ratio (SNR) data. Secondly, most generative models
(which describe the relationship between sensors and signal) include only the cortical
surface. Thirdly, errors in co-registering data to an anatomical image easily obstruct
or blur hippocampal sources.

This thesis tested the hypotheses that a) identification and optimisation of acquisition
parameters which improve the SNR, b) inclusion of the hippocampus in the generative
model, and c) minimisation of co-registration error, together enable reliable inferences

about hippocampal activity from MEG data.

We found the most important empirical factor in detecting hippocampal activity using
the extended generative model to be co-registration error; that this can be minimised
using flexible head-casts; and that combining anatomical modelling, head-casts, and
a spatial memory task, allows hippocampal activity to be reliably observed. Hence the
work confirmed the overall hypothesis to be valid. Additionally, simulation results
revealed that for a new generation of MEG sensors, ~5-fold sensitivity improvements

can be obtained but critically depend on low sensor location errors.

These findings set down a new basis for time-resolved examination of hippocampal

function.
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Thesis hypotheses and objectives

The over-arching hypothesis addressed in this thesis is that it is possible to improve
the detection of hippocampal activity in MEG data. This hypothesis is two-fold: 1) It is
possible to improve data acquisition by improving the signal-to-noise ratio (SNR)
through the use of head-casts to stabilize the relationship between MEG sensors and
the brain. 2) It is possible to improve data analysis by including more anatomical and

electrophysiological information about the hippocampus.

The general aim of this thesis has therefore been to construct, critically evaluate, and
apply hippocampal source models to MEG data. Adding anatomical detail to the
generative model allows us to explicitly test how well this can help us explain variance
in MEG data. Further, it enables us to directly quantify when and how empirical
obstacles such as poor SNR and co-registration error impede this ability (Experiment
1). Knowledge of these obstacles nevertheless leaves open questions. One of the
starkest is perhaps “but does it work?” To address this, we therefore empirically
validate the new generative model using a task that has been repeatedly

demonstrated to engage hippocampus (Experiment 3).

In parallel, another aim is to increase the SNR during data acquisition to get less noisy
and more spatially accurate, precise, and reproducible signals from the hippocampus.
First, we develop flexible head-casts to be used in combination with conventional MEG
recording (Experiment 2), and later, through data-based optimization of the sensor
configuration for hippocampal activity, we optimise the SNR with a new generation of

room-temperature MEG sensors (Experiment 4).

Experiment 1: Probabilistic statements about simulated hippocampal activity using

generative models

Hypothesis: If the hippocampus is explicitly incorporated into the generative MEG
source model, then it is possible to test whether or not it is active at a certain time and
within a certain frequency band. The validity of this hypothesis can be tested using
simulated data (where the ground truth is known), making it possible to identify the
extent to which different empirical acquisition factors - such as co-registration error

and SNR - hinder the detection of hippocampal activity.
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Experiment 2: Flexible head-cast design for high spatial precision MEG

Hypothesis: If the co-registration error and head movement can be minimized during
acquisition, then the SNR will be significantly improved, leading to much better quality
data with more consistency and less variability both across and within recording
sessions. We also predict that such improvement of the SNR will improve the
reproducibility of the data and spatial resolution of the inference in general.

Experiment 3: Empirical MEG recordings of hippocampal activity using head-casts

and hippocampal source models

Hypotheses: 1) If we combine an acquisition technique which is optimal for obtaining
high SNR data (Experiment 2, head-casts), a well-validated spatial memory task which
is known to engage the hippocampus, and explicit source modelling of the

hippocampus (Experiment 1), we can detect hippocampal sources in real MEG data.

2) If this combination of tools is effective, then changes to the hippocampal portion of
the generative model should give rise to decreases in model generalizability/fithess
(which can quantified by two orthogonal metrics; Free energy and cross-validation
error). Specifically, we predict that if the subject-specific generative model of the
hippocampus is correct, then laterally rotating it should decrease the model evidence

and increase the cross validation error

Experiment 4: Optimization of acquisition parameters to detect hippocampal activity

using Optically Pumped Magnetometers

Hypothesis: If we can utilize a new generation of room temperature (as opposed to
supercooled) MEG sensors to drastically improve the SNR due to decreased source-
to-sensor distances, then we can in turn optimize the configuration (location and
orientation) of sensors based on results obtained in the first three experiments to
optimally detect hippocampal signals. Such detection of hippocampal signals will allow
the possibility of eventually making MEG recordings of the hippocampus as the

participant moves freely around the environment.
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In summary, the main aims of this thesis are a) modelling of the hippocampus as a
potential electromagnetic source giving rise to part of the MEG signal, b)
characterization of the empirical requirements for detecting the signal originating from
hippocampus, and c¢) optimization of the acquisition parameters in order to meet these

requirements.

Modelling the signal consists of extending the existing biophysical model used to
explain MEG data, by including the location, orientation, density, cell type and global

geometrical shape of the hippocampus.

By systematically simulating a set of MEG experimental data, the aim is to first
characterize the requirements for hippocampal signal detection. This is then carried
forward to designing and conducting a cognitive experiment and head-cast device
which meets the requirements identified in simulations. Finally, we explore where on
the surface of the head these signals are strongest and use this to guide the placement

of room-tem perature sensors.
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Key contributions

The work provides a model of the hippocampus as an electromagnetic signal
generator and several novel ways of testing this model. We found that including
a hippocampal ‘mesh’ (i.e. anatomical surface) within the standard model of
the brain helps explain hippocampal source activity but does not introduce
bias. We applied rigorous control tests to determine the spatial specificity and
limitations and advantages of including this mesh.

Development of a new prototype of flexible head-casts, which minimizes both
head movement during scanning, and errors in co-registration to anatomical
data. Importantly, these casts are safer and more comfortable than the
previous design. Unlike the previous head-casts, this prototype also enables

subjects to see while being scanned.

Demonstration of hippocampus-specific activity recorded with MEG. Data was
acquired by asking subjects to perform a cognitive task known to evoke
hippocampal theta band oscillations while they were wearing a flexible head-
cast. Through application of Bayesian model comparison and cross-validation,
we found that lateral rotations of the hippocampal portion of the generative
model significantly decreased its predictive power, even when these errors

were as low as 5°.

The PhD work also contributed novel conceptual and theoretical ideas for
efficient use of room-temperature MEG sensors. These sensors represent a
new potential for MEG research to have higher spatial resolution through a 5-
10-fold SNR improvement. The empirical requirements for detecting
hippocampal activity in terms of different sources of error are addressed and
the spatial topography of a hippocampal source was obtained, giving way for

constructing the spatial configuration of a hippocampus-optimal sensor array.
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Chapter 1

Introduction
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Overview

Deep brain structures such as the hippocampus are involved in many healthy and
pathological brain processes in humans, yet are relatively poorly understood in the
context of temporal dynamics. Despite the potential and although clinical, simulation-
based, and empirical demonstrations of the detectability of hippocampus using
magnetoencephalography (MEG) have been presented (Attal and Schwartz, 2013;
Korczyn et al., 2013; Papanicolaou et al., 2005), widespread scepticism against the
possibility for detecting hippocampal activity by MEG persists (Mikuni et al., 1997;
Riggs et al.,, 2009; Stephen et al., 2005). This thesis aims to establish, from a
methodological standpoint, the detectability of hippocampal signals in MEG. MEG
detection of hippocampal sighals opens up exciting possibilities to formulate and test
new and specific hypotheses about the dynamics of hippocampal function during
cognitive functions in which it is known to be engaged, such as episodic memory and
spatial navigation.

MEG is a non-invasive neuroimaging technique that measures electromagnetic brain
activity with millisecond temporal resolution. In order to localise the spatial origin of
such activity, anatomical and electrophysiological information is used to constrain the
solution space. Whilst this general framework is well-established for neocortical
sources (Hamalainen et al., 1993; Henson et al., 2009; Lopes da Silva, 2013; Vrba
and Robinson, 2001), reconstruction of deep sources remains controversial
(Hamalainen et al., 1993; Mikuni et al., 1997; Riggs et al., 2009; Stephen et al., 2005).
This is partly because the signal strength - and consequently the spatial resolution -
rapidly decreases with distance from sensors: strength « 1/distance? for dipoles
(Geselowitz, 1967; Hamaldinen et al., 1993; Hillebrand and Barnes, 2002; Sarvas,
1987), and partly because it is unclear whether particular cell features or
configurations of deeper structures render them magnetically silent (Hamaléinen et
al., 1993). Despite a well-characterized repertoire of characteristic oscillatory
dynamics (for reviews see Buzsaki, 2006; O’Keefe, 2007), it is often assumed that the
hippocampus is difficult to detect with MEG, an assumption that has only recently

begun to receive critical reappraisal (Attal and Schwartz, 2013; Riggs et al., 2009).

Research on the methods required to characterize hippocampal detectability has not
been matched by attention to fMRI, rodent, behavioural, and intracranial methods
used to characterize hippocampal functions. Here, we are concerned with the analysis

and acquisition parameters required for successful and robust non-invasive detection

17



of human hippocampal signals. The general relevance of this aim extends to clinical,

computational, and cognitive research questions.

In this thesis this issue is addressed by employing a range of different techniques
including simulations, anatomical and electrophysiological modelling, acquisition
optimisation through design, virtual reality environments, and room temperature

optically pumped magnetometers.

In this introductory chapter, an overview of MEG as a neuroimaging modality is
presented, starting with the origins of the MEG signal, and how this signal can be
detected with the two different types of sensors this project used. Next the theory and
mathematical methods used to characterise the observed signal in 3D space are
introduced. Generally, these methods rely on specific assumptions about the magnetic
signal: both where it might originate, and how it might co-vary between neighbouring
locations. To tie these concepts together with the methods employed in later chapters,
the introduction describes how such assumptions can be formulated as hypotheses,
and how these can be directly compared in a Bayesian framework. Finally, the
relevance of, and rationale for, studying the hippocampus using MEG is outlined, and
both the modelling and simulation approaches used are described. In addition, the
debate regarding detectability of hippocampus using MEG is briefly reviewed, and
several previously unresolved questions that are addressed in this thesis are
highlighted.

Origins of the MEG signal

Electromagnetism of the brain

The brain transmits information through electrical activity and electrical current flow
gives rise to magnetic fields. MEG measures these magnetic fields. The MEG signal
is thought to originate mainly in the outermost layer of the brain - the cerebral cortex -
which consists of a 2-4 mm thick sheet of grey matter. The surface area of this sheet
in spread out form is ~2500 cm?for an adult human brain (Hamalainen et al., 1993).
In order to fit it inside the skull, it is therefore highly folded (Figure 1.1A). Interestingly,
the cellular architecture is well-preserved across this sheet: it is possible to subdivide

it into different layers based on the morphological features of cells within it (Figure
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1.1B). Although the absolute thickness of the sheet and the layers vary to an extent
with function of a particular brain area, the layers are generally well-preserved. Of
main interest here are the layers containing a particular type of neuronal cell, namely
pyramidal cells. These cells are large, recurrently connected (i.e. excite and inhibit one
another so as to potentially introduce synchronous activation), and oriented in parallel.
Pyramidal cells are found mainly in layers Il/lll and V, with those in layer V being larger
and longer (Figure 1.1). Layer V is therefore thought to constitute the main
contribution to the recorded MEG signal (Murakami and Okada, 2006) (Figure 1.1).

Figure 1.1: Human brain, cortical layers, current dipoles and magnetic fields hereof.

A) Lateral view of the human brain. The cortical surface is intricately folded, allowing more
surface area and therefore computational power inside the skull. Photograph adapted from
[Visuals Unlimited]. B) Layering of different cell types in outermost sheet of cortex (cerebral
cortex). Horizontal lines mark subdivision into six distinct layers. These are, from outer to
innermost layers the molecular (1), external granular (ll), external pyramidal (lll), internal
granular (1V), internal pyramidal (V) and multiform (VI). Together these six layers constitute the
grey matter. Below them are white matter and above them are the pia, arachnoid, and dura
matter before the skull. Layers II/lll and V contain pyramidal cells which have triangularly
shaped cell bodies as shown. Blue arrow represents a current dipole produced by electrical

activity in a layer V pyramidal cell. Diagram adapted from nhttps://o.quizlet.com/X.dubyvInupgdHtsbEQi9A.png

C) Magnetic field of a current dipole. Blue arrow represents current dipole created by a primary
current, dotted lines represent the volume current balancing it and solid lines represent the
magnetic field. Note that the magnetic field is technically continuous and the width of the circles
represent its strength at three heights. The magnetic fields “wrap around” the current dipole
and should therefore be interpreted as a three-dimensional ring around the blue arrow. This
diagram assumes the conducting medium to be homogeneous which is largely true for
magnetic fields in the brain. D) Topographical field map derived from MEG signals. The maxima
and minima of the magnetic fields represent the locations where the strongest part of the
magnetic field exits and enters the skull. The dipole is midway between these two points.

Images C and D adapted from (Hamalainen et al., 1993).
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In the next section the production of a primary current (blue arrow, Figure 1.1B,C) is
described in terms of movement of ions and thus charge along the membrane of
pyramidal cells. To compensate for this and prevent build-up of charge, a passive
volume current (dotted lines, Figure 1.1C) restores the balance of charge through ion
flow in the opposite direction in the extracellular space. Both currents contribute to the
resulting magnetic field (solid lines, Figure 1.1C) and can be approximated as a
current dipole: two electrical charges separated by a small distance (such as the length
of a neuron), with equal magnitude but opposite charge (blue arrow, Figure 1.1B-D).
Here we focus first on the physics and neurobiology of pyramidal cells and current

dipoles, and how these give rise to the measured MEG signal.

Electrical and chemical signalling of neurons

The nervous system consists of billions of specialized cells which have evolved to
carry and transfer information. While the former is achieved electrically within nerve
cells or neurons, the latter is achieved chemically when passing information from one
neuron to the next. Both of these processes are mediated by the opening and closing

of ion channels in the cellular membrane.

Within-neuron communication relies on well-maintained electrochemical gradients
across the membrane which, when altered, result in fluctuations in the local membrane
potential. The main ions involved are sodium (Na*), chloride (CI), calcium (Ca?*), and
potassium (K*). While Na*, CI- and Ca?* have higher extracellular concentrations, K*
has a higher intracellular concentration. These chemical gradients are balanced by
electrical gradients. For each ion, there exists a membrane potential at which the two
gradients are exactly balanced and there is no net flow. This is known as the reversal
potential. It is the value of the reversal potential relative to the neuron’s ‘resting’
potential (around -65 mV) that determines whether an increase in ionic permeability
due to channel opening will result in de- or hyper- polarisation of the membrane. When
the value of the membrane potential is lower than resting potential (i.e. -70 and -110
mV for CI- and K* respectively), the membrane will hyperpolarise if the channels open.
Conversely, when it is higher (i.e. +40 and 0 mV for Na* and Ca?* respectively), the
membrane will depolarise when the channels open. When the channel is depolarised
past a certain threshold (about -55 mV), the change in electrical potential becomes an

absolute and highly stereotyped potential which propagates along the length of the
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membrane and is referred to as an action potential. This propagation of the action
potential continues along the axon until it reaches the synapse, where it causes

release of neurotransmitters at the axonal terminals.

Between-neuron communication relies on local release of neurotransmitters into the
synaptic cleft between cells. These neurotransmitters act on, and thereby open,
ligand-gated ion channels on the neighbouring neuron. Similar to within-cell
communication, small electrical potentials are generated as a result of ion flux when
the channels open. These potentials are commonly referred to as post-synaptic
potentials (PSPs) and form the basis of the signal detected with MEG. As neurons can
either excite or inhibit one another (or themselves), two main classes of
neurotransmitters exist: excitatory and inhibitory. The main excitatory pathway
involves the neurotransmitter glutamate which acts on either AMPA! (Na* permeable),
or NMDA (Ca?/Na* permeable) receptors. This gives rise to excitatory (i.e.
depolarising) post synaptic potentials (EPSPs). Conversely, inhibition most commonly
works through the release of the neurotransmitter GABA which acts on so-called
GABA receptors (Cl permeable) and generates inhibitory (i.e. hyperpolarising) post
synaptic potentials (IPSPs). Because these potentials are a result of inputs from other
cells, they occur mainly on the dendrites of the neuron; but importantly, the dipole used
to model these PSPs spans the length of the neuron, as the current sources (outward
currents) and sinks (inward currents) are located at opposite ends of the neuron
(Figure 1.2A).

Four important differences between action potentials and PSPs distinguish them in
terms of detectability in MEG. First, action potentials are biphasic whereas EPSPs are
monophasic. Therefore, when detecting activity synchronized across large cell
populations (around 10%), action potentials may cancel each other out if not exactly
synchronized, whereas EPSPs summate as long as they overlap in time. Second,
EPSPs lend themselves well to detection in MEG because they are slower and thus
have a larger window during which these overlaps can take place. While action
potentials typically last only around a millisecond, EPSPs last tens of milliseconds,
depending on the receptor type — the decay time is ~2 ms for AMPA receptors and up
to 100 ms for NMDA receptors (Spruston et al., 1995) (Figure 1.2B). Third, an action

potential consists of de- and re-polarisation moving along the length of the axon. This

! AMPA stands for a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid,
NMDA stands for N-methyl-D-aspartate, and
GABA stands for y-aminobutyric acid.
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is modelled well by two opposing dipoles; one leading and one trailing the
depolarisation. If the conduction velocity of an axon is 1 m/s, then the distance
between two such dipoles will be ~1 mm (Hamalainen et al., 1993). Consequently,
they will form a quadrupole at a distance (Plonsey, 1977), which means that the
contribution will be far weaker than dipolar sources such as EPSP-induced neuron-
wide potentials. Specifically, the decay of the magnetic field strength with distance
from the primary current follows the inverse square law. Therefore, for distance rq
between a given current source and a sensor detecting its field at a point in space, the
decay is proportional to 1/r¢? if the current is a dipole, and 1/r¢® if it is a quadrupole
(Hamalainen et al., 1993).

Because the magnetic field associated with action potentials is quadrupolar, it will
decay more rapidly with distance and therefore be less detectable than dipolar
elements at a distance — such as the scalp. Finally, the apical dendritic trees (Figure
1.2A) of neighbouring pyramidal cells tend to be aligned and thus lend themselves
well to formation of dipolar activations across a population of many neurons, whereas
the same is not true for the axons in such a population (except when they enter white
matter pathways). Generation of measureable fields also depends on recurrent
connectivity across the neuronal circuits — i.e. pyramidal cells are structurally
configured to do so but also require synchronisation, e.g. through recurrent
connectivity between them, or with the help of interneurons which help
synchronisation. Thus, functional and structural connections are needed for
synchronising populations. Such circuits can be found in the pyramidal cell layers of
both neocortex (layers 1l/1ll and V) and the hippocampus. In the hippocampus, a single
pyramidal cell layer which is morphologically highly similar to neocortical layer V spans
the Ammon’s horn subfields (Amaral and Witter, 1989) (see also Hippocampus and
Hippocampal Oscillations section). Thus, the ‘open field’ arrangement underpinning
the generation of macroscopic electrical potentials can be found across dendrites, but
not in axons along which the dipoles cancel out. Critically, these parallel dendritic
arrangements are also perpendicular to the surface of the cortical sheet, which means
that when it is tangential to the surface of the head, the magnetic field is detectable
outside the head (although radial dipoles are therefore lost, these make up a very

small proportion of the potential cell assemblies (Hillebrand and Barnes, 2002)).

In summary, synchronous excitatory input to apical dendrites of a population of parallel
pyramidal cells induces EPSPs that can be modelled as a dipole moment spanning
the height of the neuron cluster, as the sinks and sources are maximally separated.

Given that these magnetic fields are dipolar, they are detectable at a distance.
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Furthermore, they are likely to summate sufficiently due to their monophasic nature
and relatively slow time constants, as well as parallel structural arrangements (Figure
1.2C).

There are nonetheless instances where action potentials may contribute to the
measured signal, such as during epileptic seizures (Bragin et al., 2002), at very high
frequency activity (>100 Hz) (Curio, 2000), or from somatosensory stimulation (in rat
neocortex) (Barth, 2003). However, the focus of this thesis is on modelling the signals
observed at much lower (e.g. 4-8 Hz) frequencies, and it is highly unlikely that action

potentials influence these signals.
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Figure 1.2: Basic structure and electrical response profile of a pyramidal neuron.

A) The neuron receives inputs from other neurons on its dendritic tree, on both the basal and

apical portions. Excitatory inputs cause excitatory postsynaptic potentials (EPSPSs) to arise.

Reconstructed morphology of layer 5 pyramidal cell, adapted from http://bluebrain.epfl.ch/ B)
EPSPs vary in duration depending on the receptor type. Im represents the membrane current,
guantified in nano Amperes (nA), following a unitary synaptic input at t=Oms. From (Shepherd,
2003) C) Example of an open field: pyramidal neurons arranged in parallel with a dipole
moment arrow next to it. The neurons receive synchronous excitatory inputs to the apical
dendrites. The sink is therefore at the top or near the apical dendrites, while the source is at

the bottom near the soma.
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A subtle but important point is the relationship between distributed excitatory synaptic
inputs to dendrites (Spruston, 2008), and the modelling of this activity as an equivalent
current dipole (ECD). There are complex and specific cytoarchitechtonic differences
between the synaptic targets of different sub- and neo-cortical projections, which
mean that the dendritic arbors contact a given pyramidal cell at different points.
Consequently, the distance between the sink and the source of a given dipole will
differ depending on where the excitatory input was delivered, causing differences in
the magnetic field that is generated. For example, excitation of the soma of layer Il
pyramidal cells gives a positive surface potential, whereas excitation of the apical
dendrites of layer V pyramidal cells produces a negative surface potential (Mitzdorf,
1985). Hence, it is difficult to draw conclusions about whether the underlying signal is
excitatory or inhibitory in nature based on the sign of the cortical dipole.

Electromagnetic coupling and properties of the signal

As different patches on the cell membrane act as current sources (outward currents)
and sinks (inward currents), magnetic fields are generated around the current flow.
The EPSPs of neurons thus underlie the measured signal, but these are not strong
enough to be individually detected at the scalp. One estimate is that the current dipole
of a2 mm long cortical pyramidal cell is between 20-200 fAm (Hamalainen et al., 1993;
Murakami and Okada, 2006), while the weakest signal measurable is around 10 nAm
(Hamalainen et al., 1993). It follows that if one measures a 20 nAm dipole, the number
of concurrently active cells generating the signal must be between 100,000 and
1,000,000.

The Danish physicist Hans Christian @rsted was the first to describe the link between
electric currents and magnetic fields in 1819-20. Before this, in 1786, Luigi Galvani
demonstrated the presence of electrical current in animal (specifically frog) tissue.
Later, in 1831, James Clerk Maxwell proposed a system of partial differential
equations describing how electrical (E) and magnetic fields (B) are generated by the
rate of change of each other, and the presence of charge density (p) and current
density (J). He also proposed that the propagation of the electrical and magnetic fields
could be described with a single wave equation, and that the speed of this propagation
is equal to that of light. Since MEG sensors are only a few centimetres (or millimetres

in the case of newer sensors) from the brain, the delay between generation and sensor
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detection of electromagnetic activity need not be considered. Notably, this is different
from other neuroimaging modalities such as positron emission tomography (PET) or
functional Magnetic Resonance Imaging (fMRI) where the signal can only be detected
after several minutes or seconds, respectively. The second reason why Maxwell’s
equations are useful for describing MEG data, is that brain currents have sufficiently
low frequencies (<1000 Hz), such that the capacitance and impedance of the head
and brain tissues, the inductive effect (dipoles across chemical bonds) and the
electromagnetic propagation effects (attenuation, reflection or perturbations of the
waves) are all negligible. Together, the instantaneous propagation and the relatively
low frequencies mean that the time derivatives in the original equations can be ignored
and thus the equations take a simpler, ‘quasi-static’ form (Geselowitz, 1967;

Hamalainen et al., 1993).

The key notion of electromagnetic coupling as described by @rsted, is that an electric
current produces a circular magnetic field as it flows, be it through a wire, or for the
purposes of understanding MEG, through a neuron. This primary current generates
magnetic fields that are transmitted through the biological tissue of the head and
towards sensors outside. Critically, this relationship is not only quasi-static, but also
linear such that the weighted sum of a subset of currents is equal to the weighted sum
of their corresponding magnetic fields (Kutas and Dale, 1997). The Biot-Sarvas law
describes this relationship between a current density J(r’) at location r’ in relation to its

magnetic field B(r) at a given location r (Baillet et al., 2001; Hallez et al., 2007)

B(r) = ﬁf}(r') « "7 gy

41 [lr —r'||3
Where 1, is the permittivity of free space (a fundamental constant, (Baillet et al., 2001,
Hamalainen et al., 1993)), and dv’ is the differential element of volume. The current
J(r') depends both on primary current flow (in/along the neuronal membrane), and on
volume current flow (compensatory ion flow in the extracellular space). In MEG, the
more relevant of the two is the primary current, as the location hereof is the location
of the active neuron assembly. For a given distribution of primary currents and
potentials on all surfaces of interest (i.e. patches of cortex with sufficiently large cell
assemblies), the magnetic field can be directly calculated, and becomes (Geselowitz,
1967):

25

(1.1)



k o
Ho N T
B(r) = Bo(r) + Ez(a" s S'jV(r ) T X dSi
j L

Where B,(r) is the magnetic field due to primary currents alone, summed over all
boundaries (inner skull surface, outer skull surface, scalp). The second term describes
the contribution of the volume current to the magnetic field, in the form of surface
integrals across the brain-skull, skull-scalp, and scalp-air boundaries. o denotes the
conductivity term, which is assumed to be isotropic and constant for each of the three
surfaces, and V(r') denotes the potential at r due to the primary current. S;; are the

modelled surface finite elements.

This equation thereby states that the magnetic field can be calculated directly, given
the primary current distribution and the potential on all surfaces. In other words, it is
hereby possible to compute the MEG signal generated by would-be neural activity.
This is also known as forward modelling or solving the forward problem. In turn, this
enables inferences about the spatial origins of the recorded MEG signal. To compute
the forward model, we need to specify a primary current distribution J? (") from which

we can calculate the primary magnetic field B,:

B = 2 [ ey Tl ar
o\r) = AT ] (T) ”r_rlllg r
The forward problem is solved (or the forward model is provided) by using the primary
magnetic field B, (r) to model the external magnetic fields. The next two sections deal
with how the magnetic fields are detected and how the primary current distribution can

be modelled (forward modelling).

Summary

The signal measured in MEG primarily originates from postsynaptic potentials (PSPs)
in pyramidal cells. Synchronized excitatory inputs summate and give rise to dipolar
magnetic fields which are detectable at the scalp. Important structural features are
parallel and scalp-tangential arrangements of the dendritic trees, which is the case in
the pyramidal cell layers found in layers Il/lll and V of neocortex, as well as the single

pyramidal cell layer in hippocampus.
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The most important feature of the MEG signal is that, because of the instantaneous
propagation of magnetic fields from the brain to the sensors, it presents a direct but

non-invasive measure of real-time neural activity.
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Technologies for detecting magnetic fields from the brain

In order to successfully record the very small magnetic signals generated by the brain,
one must both reduce the otherwise overpowering external magnetic fields, and use
highly sensitive sensors. Further, it is appropriate to configure the sensors to have a
high sampling rate (many Hz) because the signals reflect real-time brain activity, unlike
with for example fMRI. This section describes different currently used noise reduction
techniques and the two different types of magnetometer sensors used in this thesis.
While the conventional Superconducting Quantum Interference Device (SQUID)
based sensors require low temperature environments to function, the newer
generation of Optically Pumped Magnetometer (OPM) sensors require heating but
only in a small, sub-cubic centimetre, sensitive volume. In practice this means that
they can be approximately room temperature a few millimetres from this volume and
therefore from the scalp. This section briefly describes the quantum mechanics and

physics underpinning these sensors.

Noise reduction

The magnetic fields generated by the brain are extremely weak. As mentioned,
thousands or hundreds of thousands of cells are required to give rise to a measureable
signal. Nonetheless, the amplitude of a typical evoked (stimulus time-locked) response
is only ~100 femtoTesla (fT, 10*° T). This is around one billion times smaller than the
constant, ~50, uT magnetic field of the earth (Figure 1.3). Additionally, other large
signals come from cars, trains, computers, people, power lines, and metallic doors —
all of which are typically found within short distances of an MEG scanner. Finally,
magnetic fields generated by the heart or eyes can in some cases overpower the brain
signal, even if this is detected at the scalp. It follows that in order to detect signals from

the brain, the external signals must be reduced or ideally eliminated.
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Figure 1.3: Environmental and biomagnetic noise sources.

Scales of magnetic fields relative to those measured with MEG. Numbers reflect femto-Tesla
(fT, 1 fT=1015T). The fields are compared to sound and pressure levels at different distances.
Noise reduction is critical because most environmental and physiological noise sources are
larger than brain responses; sometimes 10-12 orders of magnitude larger. Note that close
proximity to MRI suites introduces immense magnetic fields and the attenuation hereof is
therefore critical for MEG recordings in many hospital or neuroimaging laboratory settings.

Image adapted from Sylvain Baillet.

Modern noise reduction set-ups consist of four main components:

First, the external magnetic fields are reduced by carrying out recordings inside a
magnetically shielded room (MSR). This provides passive shielding against magnetic
noise from the environment. High frequencies are attenuated by eddy currents
whereas lower frequencies are directed around the shielded room. The external
magnetic fields bend around the MSR and thus the noise inside of it is minimized to
10-20 nT. The shielding consists of concentric layers of mu-metal (a nickel-iron alloy)

and aluminium.

Second, environmental sources of noise are minimized by placing objects which could
interfere with the signal outside of the MSR, and/or only using objects which are

guaranteed to not introduce artefacts inside the MSR. For example, the projector used
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to present visual stimuli is located outside of the MSR, whereas devices used to record

participant’s responses, such as button boxes, contain no metallic moving parts.

Third, physiological responses such as those from muscle are reduced as much as
possible during recording, and can also, to an extent, be subsequently removed from
the data before analysis. These can arise when subjects make saccadic eye
movements, blink, swallow, cough, adjust their head position, or when their heart
beats. To minimize the saccadic eye movements, subjects are often instructed to look
at a fixation cross during a baseline period (although this is far from problem-removing
if subjects move their eyes in a way that is stereotypical during the task). To minimize
head movement, subjects are instructed to hold still as much as possible, and/or to
rest the back of their head on the back part of the inside of the helmet-like structure
which contains the sensors (the dewar, Figure 1.4A). However, it is still standard to
record upwards of 5 mm of head movement, even during short recording sessions
(Whalen et al., 2008). This problem is returned to and a possible solution is presented
in Chapter 3 where flexible and subject-specific head-casts are described. The cardiac
related fields are most often removed from the data offline, through the use of an
algorithm that identifies the stereotypical waveform of the heartbeat (the combination
of three graphical deflections, the “QRS complex”), and subtracts the wave deflections

from the signal.

Finally, reference channels located inside the MEG scanner can be used to measure
the ambient magnetic noise. In combination with the signals picked up by the pickup
coils and SQUIDs, the information from the reference channels can be synchronously
processed such that a third-order gradient of environmental noise sources can be
calculated synthetically. This higher-order gradiometer formation is a (CTF-system
specific) noise reduction technique carried out in real time. A higher-order gradiometer
is created by subtracting a pre-calibrated mixture of reference channels from each
gradiometer output. This functions as a form of noise subtraction, as the fields
recorded at both the standard and reference channels can be assumed to be
environmental, as the fields from the brain will rapidly attenuate with distance from the

brain and therefore only be detected by the nearby standard sensors.

Summary

The weakness of the magnetic signals generated by the brain means that reducing

externally generated magnetic fields and using highly sensitive devices are
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prerequisites for detection. This can be achieved at two levels. First, during
acquisition, one can use magnetic shielding, remove ferromagnetic objects from the
shielded room, minimize physiological interference from the subject’s body (or remove
well-characterized events from the data synthetically), and create higher-order
gradiometers. In addition, some sensor configurations allow more noise attenuation

than others (but this may be a tradeoff with depth sensitivity, see next section).

Second, acquisition protocols and experimental designs can be optimised with respect
to minimizing noise (or equivalently maximising SNR) through increasing the number
of trials, minimizing blinking, movement, co-registration error, muscle strain etc, and
decreasing the brain-sensor distance. To explore these effects further, we now turn to
the two types of magnetic sensor that have been employed in the experiments
reported in this thesis: superconducting quantum inference devices (or SQUIDs) and
optically pumped magnetometers (OPMs).

Superconducting Quantum Interference Devices; SQUIDs

Superconducting Quantum Interference Devices (SQUIDs) rely on the current
generated across two Josephson Junctions (JJs) in a superconducting loop. This
effect was named the Josephson effect after it was first described by Josephson
(Josephson, 1962), giving way for MEG to become a neuroimaging modality ten years
later (Cohen, 1972). Modern SQUID sensors use a superconducting loop which is
usually made of niobium cooled to superconducting temperatures (Figure 1.4A,B).
Such temperatures are defined as within 20 degrees of absolute zero, whereas
‘cryogenic’ temperature refers to temperatures <150 °C. The term cryogenic is
therefore used to describe the MEG system’s cooling which uses liquid helium to

maintain a temperature of ~-270 °C.

Direct current (dc) SQUIDs output the voltage across the JJs. This voltage can be
used to measure the magnetic flux which passes through the loop because they co-

vary periodically.

The magnetic flux is measured using a superconducting flux transformer (also called
a pickup coil, Figure 1.4C). A first-order gradiometer pickup coil consists of two
opposite wound wires located some distance apart and both perpendicularly to the
surface of the head (Figure 1.4C). The advantage of this configuration over simpler

ones (e.g. single loops of wire), is that the coil is insensitive to homogenous magnetic
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fields such as those created by environmental noise sources. Moreover, the directional
sensitivity can be determined by orientating the two loops: planar first-order
gradiometers are maximally sensitive to the spatial gradient along a particular plane
or direction, whereas axial gradiometers (Figure 1.4C) are maximally sensitive to the
magnetic activity which is perpendicular to the surface of the scalp. This thesis uses

data recorded and simulated using axial gradiometer dcSQUIDs.
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Figure 1.4: MEG system set-up and dcSQUID sensor circuitry.

A) MEG sensor instrumentation. A large tank of liquid helium is used to lower the temperature
of the SQUIDs to -270 °C to enable superconductivity of niobium. i) Diagram of SQUID;
Josephson Junction acts as insulator separating two superconductive loops but allowing
current to flow between them. ii) Configuration of subset of SQUIDs used to detect magnetic
fields produced by neural activity. The magnetic contours represent the in- and out-flow of
magnetic fields produced by sources tangential to the scalp. The contours can be detected at
a distance and characterized spatially through the use of several SQUIDs. Adapted from
(Fishbine, 2003). B) Diagram of a dcSQUID. A flux transformer applies magnetic flux which
produces oscillations in the SQUID that can be detected (by an external circuit) and amplified.
FT = Flux transformer, JJ = Josephson junction, Ioc = externally applied direct current, L =
inductor of the SQUID. Adapted from (Andra and Nowak, 1998) C) Axial gradiometer flux
transformer seen from the side. The use of two aligned magnetometers allows substantial

noise reduction as distant fields are detected by both and can be subtracted out, while neutrally
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generated fields are detected with more strength in the pick-up coil. Li = inductance of the input
coil, L = inductance of the SQUID. From (Andra and Nowak, 1998).

SQUID sensors are most often arranged in a helmet-like structure or a dewar (Figure
1.4A), The dewar contains hundreds of sensors distributed across its inner surface as
close to the scalp as possible given the requirement for cryogenic cooling. Practically,
MEG recording is silent, passive, non-invasive and gives exceptionally high time
resolution. The empirical study in this thesis uses a Canadian Thin Films (CTF) system
containing 275 sensors, with an axial gradiometer at each location. This system also
contains 29 reference channels which can be used to synthesize third order
gradiometers, and/or first regress out ambient fields in the case of optically pumped

magnetometer recordings.

Until very recently, SQUIDs have remained unchallenged as MEG sensors. A series
of combined recent developments in atomic physics and miniaturization however have

led to the introduction of a potential replacement technology;

Optically Pumped Magnetometers; OPMs

Optically Pumped Magnetometers (OPMs) are a new generation of MEG sensors
which do not require cryogenic cooling. Instead of superconductivity, OPMs rely on
the manipulation and interrogation of electron spin in alkali vapour. This section serves
as an overview of the physics and mechanics of these new sensors, and compares
them to SQUIDs for context.

Similar to SQUIDs, the development of OPMs began close to 50 years ago (Dupont-
Roc et al., 1969) but initially had dramatically larger size, large power consumption,
as well as poorer sensitivity (note that sensitivity scales with size). Particularly due to
their size, these magnetometers could not be used for multi-channel recordings,
making them less attractive for MEG experiments (Polyakov, 2003). Over the past
decade however, these problems have been solved and OPMs now represent a
candidate technology for surpassing and replacing SQUIDs. The primary reason is
that OPMs have been miniaturized and operate without cryogenic cooling, meaning
that they can be placed directly on the scalp. Critically, they now also provide equal
sensitivity to magnetic fields as SQUIDs do (Shah and Wakai, 2013).
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Magnetic field sensing by OPMs functions by aligning and then detecting changes in
electron-spin precession of vaporous alkali atoms. This is done in a low magnetic field
to ensure that ambient external magnetic fields do not influence the spin precession
and distort the measurement. First, circularly-polarized light is applied to alkali vapour
contained in a glass cell, which causes its single valence electrons to orient their spin
along the direction of the polarized light, absorbing the spin of the photons. This
process is known as optical pumping. For the spins to orient most efficiently, alkali
metals with a single (and thus more easily perturbed) unpaired valence electron such
as potassium, caesium, or rubidium are used (Figure 1.5A). It is the electron’s spin
which enables operation of OPMs as it can be used to detect the presence and
direction of an external magnetic field. This is because the electron spin precesses
around a magnetic field at the precessional or Larmor frequency (Figure 1.5B). This
frequency refers to the rate of precession of the dipole of the electron around the
external magnetic field and therefore reflects the strength of the external magnetic
field. If there is no external magnetic field applied, the spins do not change. If on other
hand there is, e.g. one generated by the brain, then the spins change, enabling them
to be used for detection of the external field. Thus, large polarization can be produced
in these electrons through optical pumping with circularly polarized light (Figure 1.5C),
which can be conceptualised as a baseline condition relative to which the effects of

external magnetic field fluctuations can be measured.

“‘Pumping” refers to the transfer of spins from the light photons in the circularly
polarized light, to the valence electrons in the gas. This is a highly effective process,
meaning that the spins align to near unity. After spin polarization, the electron spins
can be used to detect external magnetic fields by using a probe light (Figure 1.5D).
The probe light is linearly polarised to near resonant for zero applied magnetic field
(recall that the nuclear magnetic resonance depends on the magnetic field), and its
absorption after passing through the vapour cell can be used to characterize the
external field (Figure 1.5E). This process is very simple as the changes in light
absorption can be quantified based on measurements from a photodiode. The key
feature underpinning the relationship between magnetic fields and electron spins is
that due to nuclear magnetic resonance (NMR) properties, the resonant frequency of
a given substance is directly proportional to the strength of the applied magnetic field.

Thus, the resonant frequency can be used to infer the strength of the magnetic field.

The stronger the external magnetic field, the more spin precession and the more
absorption and less transmission of probe light. As the spin polarization difference in

the probe light photons that pass through the cell reflects the presence and magnitude

34



of an external magnetic field, the probe light passes through the cell uninterrupted and
the transmission is therefore maximal when there is no external field (Figure 1.5E,
black line). The sensitivity of this detection depends on the ambient field being very
small or non-existent, as the transmission will be non-informative if it is too far from
zero. Moreover, an oscillating magnetic field is applied perpendicularly to the probe
light and used to measure the local field’s orientation. This applied field is detuned
from the gas’ resonance (at zero field) so that it does not interfere with the magnitude
measurements. The demodulation signal causes the polarization angle to rotate in a
known manner and the degree of rotation subsequently measured by the photodiode
reflects how well- or mis-aligned the electrons are with respect to the pump beam in a
certain direction, which in turn reflects the direction of the external field. The
demodulation signal uses a polarimeter, and OPM direction measurements thus work
by inferring the orientation of the modulated electron spin precession angle and
thereby orientation of the magnetic field from the phase of this signal (Figure 1.5E,

grey line).

In most OPM devices, rubidium (Rb) vapour is used due to its atomic structure which
contains a single valence electron, and its high atomic density and therefore relatively
high SNR at low temperatures. For optimal atomic density, the cells are heated to
~150 °C. Notably however, the cell vapour-containing cell is very small (~1cm?3) and
can therefore be buffered by air such that the surface of the sensor can be room
temperature even a few mm away from the sensitive volume. This enables OPMs to
be placed directly on the scalp which is the basis of the 5-10 fold SNR improvement
(Boto et al., 2016).
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Figure 1.5 OPM principles of operation

A) Electron structure of Rubidum, showing the single valence electron in the 5™ and outermost
shell. B) Relationship between electron spin and magnetic field. The spin of the electron
precesses around the magnetic field, be it from circularly polarized light applied by the OPM
laser, or neurally generated fields. C) Optical pumping. Photons from circularly polarized light
transfer their spin to Rb e-which are thus pumped to near-resonance. D) Diagram of an OPM.
The spin orientations depend on the pump light o+ and the magnetic field B. Because the pump
light aligns the spins along a known direction, spin divergence from this (near) resonance will
only occur if an external magnetic field is present. The probe light is used to detect this. If there
is no field, it passes through the cell with maximal intensity and is detected by the photodiode.
E) Photodiode output and demodulation signal curves. The light transmission, black curve,
reveals the presence and strength of an external B field. An oscillating magnetic field is applied
perpendicularly to the probe light. This means that the transmitted light is demodulated such

that the phase can be used to read out the direction of the field, grey curve.

Until 40 years ago, the largest limiting factor in obtaining higher sensitivity was the
simple fact that when atoms collide, they can lose their spin orientation, a process
called ‘relaxation’. As collisions cause the electrons to transition into an alternative
hyperfine state, it orients and starts to precess in the opposite direction from the rest
of the group of atoms. This precession causes decoherence of spins across an
ensemble of atoms, which in turn causes the signal to be attenuated. Relaxation can
be eliminated by ensuring that the collision frequency is higher than the Larmor

frequency of spin precession. This effectively means that the spins do not have time
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to precess and decohere between collisions before they collide again and transition
back to their original hyperfine state. The high collision frequency is achieved by
having at high atom density and high temperature (150-180°C). Thus, the so-called
Spin-Exchange Relaxation-Free (SERF) regime has contributed to the improvements
in OPM sensitivity by removing the collision-induced sensitivity constraint (Happer and
Tang, 1973; Kominis et al., 2003).

Although the introduction of the SERF regime was accompanied by a large increase
in sensitive, it is interesting and perhaps counterintuitive to observe that this sensitivity
has decreased over time. The explanation lies in the requirements imposed by
miniaturization of the sensors. While larger earlier cells were pushed to give extremely
high sensitivity, they were also clumsy, impractical, and inherently limited with respect
to spatial resolution, even in multi-channel systems. In order for them to be useful for
experimental or clinical purposes however, the sensitive volume was reduced and the
‘chip-scale’ magnetometers were introduced (for example,(Sander et al., 2012)). This
reduced volume also reduced the price but limited the sensitivity which nonetheless
matches that of SQUIDs. Thus, the SERF regime is central to the recent and dramatic
improvements in OPM sensitivity, it can be implemented in small OPMs, but they
currently limit the bandwidth to ~100-150 Hz (Sander et al., 2012; Shah and Wakai,
2013). Fortunately however, most brain activity of interest falls within the 0-150 Hz
frequency band (Hamalainen et al., 1993). This means that OPMs are now small and
therefore flexible, can be placed close to the scalp, and with a sufficiently large array,
can be used to localise and reconstruct neural activity in 3D - a feat which was not
possible earlier with larger sensors. Next we discuss and quantify more explicitly how

the two types of sensors compare.

Advantages and Disadvantages of OPMs versus SQUIDs

The increased sensitivity of OPMs come at a price. First, the dynamic range of OPMs
is limited. The dynamic range is defined as the ratio between the largest and smallest
possible measurable values of a changeable quantify, in this case the maximal and
minimal magnetic field strength. This is because in very small magnetic fields, the spin
precession and continuous pumping interact and static reorientation of the spins
occurs (Griffith et al., 2010). Further, OPMs have a lower bandwidth (difference
between upper and lower measurable frequency bounds) compared to SQUIDs: ~100-
150 Hz for OPMs versus 10,000 Hz for SQUIDs.
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Nonetheless, OPMs possess several important advantages over SQUIDs. The most
important is that they do not require cryogenic cooling and therefore enable direct and
flexible placement of the sensors on the scalp. It follows from the inverse square law,
which states that the intensity (here of a magnetic field) is proportional to 1/distance?,
that halving the distance between a given source and a sensor equates to quadrupling
the signal amplitude. Thus, depending on the distance of the sources from the scalp
(larger improvements for superficial sources) and assuming equal noise floors for
SQUIDs and OPMs, the source-level SNR improvements will be of a factor around 4
(Boto et al., 2016).

This is promising for the future of MEG research, which may benefit from these SNR
improvements in a multitude of ways. OPMs will enable a neuroimaging modality to
combine high temporal and spatial resolution. It will also enable flexible sensor
configurations such that specific structures can be targeted on a subject-specific basis,
be it for basic research to characterize hard-to-access structures such as the
cerebellum or brain stem, or for clinical purposes such as localisation of suspected
epileptic foci, e.g. in the hippocampus. Moreover, the sensors will be particularly useful
for studies involving children that currently can only be scanned with relatively low
SNR due to the fixed sensor configuration of SQUID systems.

In particular, the OPMs will potentially be able to compliment and/or replace EEG and
intracranial electrode placement prior to epilepsy surgery (Alem et al., 2014), as they
can be worn for extended periods of time and thus likely detect infrequent epileptic
activity (unlike SQUID-based MEG), while giving superior spatial resolution to EEG
and removing the need for dangerous invasive surgery. In addition to these
advantages, the acquisition and maintenance prices for these devices are significantly

lower than helium-dependent SQUID systems.

As discussed in relation to the SERF regime, another important comparison is with
regards to sensitivity. Sensitivity is defined as the ratio of the change in the
measurement and the corresponding (true) chance in the value of the quantity being
measured. In MEG, this is quantified as fT/YHz. The sensitivity can also be thought of
as the detection noise, i.e. how much uncertainty is included in the measurement. The
sensitivity is in part dependent on the size of the sensitive cell and density of the
atoms; the more atoms, the higher the sensitivity. However, it is desirable to have
small sensors for MEG as this gives way for higher spatial resolution and many-
channel measurements. Empirically the sensitivity of OPMs has been measured to be

0.54 fT/NHz with a small (few cm?) active volume (Kominis et al., 2003). Similarly, a
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sensitivity of 0.2 fT/\Hz has been reported (Dang et al., 2010) at least over a narrow
1 Hz frequency band. Around the same time, a sensitivity of 5 fT/YHz was reported for
an OPM with a sensitive volume of only 1 mm? (Griffith et al., 2010). In a shielded
environment, the improvement of OPM over SQUID sensitivity has been estimated to
be a factor of 102: ~3 fT/\Hz for SQUIDs versus the theoretical sensitivity limit of ~0.01
fT/NHz for Potassium (as opposed to Rubidium)-based OPMs. Potassium has the
lowest molecule-to-molecule spin relaxation (Allred et al., 2002) and therefore higher
sensitivity. However, it requires higher temperatures for optimal atomic density and
Rubidum is therefore preferred for MEG applications (this may change if the

Potassium cells can be made smaller or more compact however).

Another major difference between SQUIDs and OPMs is the configuration of the
sensor. While SQUIDs in the CTF system for example uses axial gradiometers as flux
transformers, OPMs are magnetometers which have only a single sensing region and
thus no equivalent built-in mechanism for noise reduction (although newer sensors
have both field zeroing and modulation coils inside the sensor). Axial gradiometers

and magnetometers are sensitive to dipoles in different locations and orientations.

Therefore, while OPMs have a ‘zero sensitivity line’ directly underneath the
magnetometer sensor and thus have maximum sensitivity when sources are
positioned off-centre, axial gradiometer SQUIDs are maximally sensitive directly
beneath the sensor. Interestingly, the sensitivity changes differ over space between
the two configurations as well: the sensitivity decreases more rapidly with distance for
axial gradiometers, making them more sensitive to superficial brain sources and less
sensitive to deeper sources than magnetometers. This increased sensitivity to deeper
sources with magnetometers comes at the cost of needing more accurate models for
source reconstruction. This is discussed in more detail in Chapter 5. The main point
here is that it is not straightforward to compare the two sensor types directly as they

output different aspects of the signal.

Summary

In summary, OPMs work by manipulating and probing well-controlled atomic
ensembles inside vapour cells based on the influence of external magnetic fields on
electron spin resonance. The most exciting aspects of the sensors are the freedom
from cryogenic cooling which enables flexible and direct placement of the sensors on

the scalp, improving the SNR at least 5-fold. More recently, the miniaturization of these
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sensors has enabled them to be configured into multiple channel set-ups, which
enable large improvements in spatial resolution due to the increased sensitivity
compared to SQUIDs. This development has created a final push towards potentially
adopting OPMs as a new technology for MEG. However, OPMs have bandwidth
compared to SQUIDs, but these are still sufficient for recording brain activity. The
dynamic range is smaller but can be extended by using local feedback coils to cancel
out external fields.

In relation to the main aims of this thesis, the current magnetometer set-up of OPMs,
although likely to soon develop to gradiometers for noise reduction purposes, will most
likely be more optimal than SQUIDs for detect hippocampal sources due to their
increased SNR from being closer to the source. This notion and other anticipated

future developments will be revisited in the discussion.
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MEG analysis techniques: theory and methods

An externally measured electromagnetic field can be used to estimate neural activity
in terms of its three-dimensional source configuration and time course. This requires
two steps: construction of a forward model which describes the predicted scalp
distribution for a given source with a specific orientation, magnitude and location, and
subsequent inversion of this forward model to estimate the most likely spatial
configuration of sources giving rise to the measured signal. All the inversion methods
used here are parametric empirical Bayes linear inverse methods - the definitions and
implications thereof will be described in this section. All source reconstruction methods
rely on carrying out the following steps: preprocessing including filtering and removal
of possible artefacts present in the data, source space modelling, data co-registration,
forward computation, before finally carrying out the inverse reconstruction. Here we
focus on the latter four. The methods for inverse reconstruction vary with respect to
assumptions about covariance among sources. All simulations and analyses were
carried out using the Statistical Parametric Mapping (SPM) software version 12

http://www. fil.ion.ucl.ac.uk/spm/.

This section serves to introduce in more detail the analysis methods and theoretical
considerations underpinning source reconstruction methods used in this thesis. First,
the forward and inverse modelling will be discussed, data co-registration will be
introduced, and the general linear model will be described. This model proposes a
solution to the inverse problem and as such comprises the linking principle between
observed data and source estimates. Next, the Bayesian implementation of the
inverse methods applied in this thesis will be discussed. Following this, a brief
overview of the commonalities and mathematical terms of the different methods will
be given (see (Belardinelli et al., 2012; Lopez et al., 2014; Wipf and Nagarajan, 2009)
for detailed descriptions). Finally, the Free energy principle and Bayesian model
comparison will be considered in the context of source reconstruction. The objective
in later chapters is to set up a framework for direct comparison of competing
generative (forward) models, and examine this comparison across a range of

reconstruction methods, empirical factors, and subjects.

Forward Modelling and Data Co-registration
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The ‘forward’ model is a description of the primary current distribution and its
propagation through the head before reaching the sensors (Equations 1.1-1.3). It
relates the measured sensor distribution with dipoles with known location, orientation

and maghnitude.

Importantly therefore, the forward problem that the forward model solves is well-
posed. This is because there is only one solution for each current dipole, as the laws
of electromagnetism are linear. It follows that if the primary current density consists of
N terms, then each measurement can be decomposed into the sum of N terms where
each represents the part of the measurement that is generated by a single potential
source. In order to compute this forward model, one must first specify a generative
model of the brain, scalp and skull (where the first is the most important in MEG). This
generative model is informed by and based on neurophysiology, and it is possible to
incorporate unique anatomical characteristics such as shapes of certain structures.
The latter is used in this thesis for incorporating the surface of the hippocampus into
the generative model, and evaluating whether this improves the ability of the
generative model to explain the data parsimoniously. More commonly and generally,
the forward model is specified by a manifold of the cortical surface based on an
anatomical MRI image. Specifically, the cortex, skull and scalp surfaces can be
extracted from T1-weighted anatomical scans using automated segmentation tools
such as Freesurfer (Dale and Sereno, 1993; Fischl, 2012). In turn, this gives way for
explicit modelling of the dipole orientation, which is usually specified to be orthogonal
to the cortical surface mesh where each vertex constitutes a putative source. The main
advantage of this approach is that given fixed dipoles, the electromagnetic forward
model can linearly map each source onto each sensor based on approximations to
Maxwell’s equations. Accurate solutions describing the signal can be obtained using
methods such as the boundary element method (Brebbia and Dominguez, 1989)

which incorporates geometric representations of each surface.

Accurate forward modelling requires accurate estimation of the location of the brain in
order to be useful. Co-registration is the process by which the functional MEG data
are aligned or co-registered with the structural generative model (based on MRI data).
However, if the co-registration is inaccurate and contains 5 or more millimetres of
error, or there is an equivalent amount of (unmodelled) head movement during
scanning, then it is reasonable to instead use a non-linear registration of the subject’s
MRI scan to a canonical template brain (Henson et al., 2009; Mattout et al., 2007,
Troebinger et al., 2014Db).
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The Inverse Problem

Once a forward model has been constructed, it is inverted such that the underlying
neural activity generated by the observed data can be estimated. Unlike the forward
problem, the inverse problem is mathematically ill-posed, as there are effectively an
infinite number of possible inverse solutions to a given forward model. In other words,
even if the experimenter knew the exact magnetic field at all points outside the head,
s/he would still be unable to determine with certainty the configuration of sources
inside the head. The problem can be compared to estimating the configuration of
hands and fingers based on a shadow (Figure 1.5a). Practically however, this
limitation can be overcome if one is willing to make some simplifying assumptions to
constrain the solution space. These are often already present and well-known, e.g.
approximate relative sizes of objects in relation to distance (Figure 1.5b) or, in MEG,
brain structure and function. In order to find a unique solution, one must specify a set
of prior assumptions to constrain the inverse solution (Baillet et al., 2001). For MEG
inverse solutions, these constraints can be anatomical, functional, and/or
mathematical. In essence, the constraints or ‘priors’ act to define the solution space
such that the most probable solution (given the priors) can be identified. The most
likely priors are therefore those that maximise the model evidence for a given MEG
dataset (Friston et al., 2008a; Lopez et al., 2014; Wipf and Nagarajan, 2009). Hence,
the Bayesian framework allows one to ask which model or set of priors is the most
likely, given the data at hand. The approximation of the model evidence will be
discussed in the Free Energy section below.

Figure 1.5: lllustration of ill-posed nature of the inverse problem.
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a) Non-uniqueness of inverse problems: a 2D shadow can easily be computed given a source
of light and a surface (akin to solving the forward problem). Conversely, describing a 3D
configuration of hands and fingers based on this shadow is under-determined (akin to the
inverse problem); many configurations could give rise to the same shadow figure. The
challenge for the ill-posed inverse problem in MEG is reconstructing 3D neural source
configurations from a lower-dimensional projection. Image adapted from Hand Shadows to be
Thrown Upon the Wall (Henry Bursill, 1895, http://www.gutenberg.net). b) More realistic

version of how the inverse problem is solved in an everyday context: by looking at the image
on the screen, it appears that the man carrying the girl on his shoulders are the same height
as the yellow house. Given a priori knowledge about the relative sizes of humans and houses

however, it is easy to explain away this apparent equality with distance between the two.

A well-validated strategy for solving the inverse problem is the distributed approach,
where a large number of fixed dipoles fill the solution space and only their amplitudes
(and not orientations or locations) are estimated based on the data. This allows an

algebraic solution to the inverse problem (Grech et al., 2008).

The Generalized Linear Model

A distributed set of neural sources that linearly map onto sensors placed outside the
head are employed by all the reconstruction algorithms used here (Hamaélainen et al.,
1993):

Y=1L]+ ¢ (1.4)

Where the dataset Y € RV<*Nt contains information of N, sensors at N, time points,
the lead field L € RN<*Na incorporates our assumptions about cortical folding and head
location between N, sensors and N, sources, and J € RVNa*Nt js a matrix containing
N, amplitudes by N, time points of unknown primary current density parameters (i.e.
neural sources). € is a zero-mean Gaussian noise distribution which incorporates both
sensor noise and uncertainty about the propagation through L. Note that L is defined
as the propagation model of an MEG signal that is produced by a source of unitary
strength, and is completely determined by the sensor configuration and volume
conductor physics, as described in terms of the forward model. This function also
contains all known details about the measurement set-up and physical properties of
the brain. Since these are unlikely to change over the course of the experiment, the

lead fields is only computed once per dataset. This is valid provided that the location
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of the head relative to the sensors is unchanged — whether or not this assumption is

valid will be discussed later.

The generalized linear inverse solution describes the neuronal activity, J(t) at any
latency or time point t. Because the number of potential sources greatly exceeds the
number of sensors (N; > N,), L is ill-posed and therefore cannot be inverted directly.
This problem is simplified by assuming that the source amplitudes J are a zero-mean
Gaussian distribution with covariance cov(J) = Q, which gives the generalized linear

inverse solution:
J=0QLT(Q: +LQLN) 'Y (1.5)

Where Q, describes the sensor-level covariance cov(Y) and J € RNa*Nt contains the
estimated N,; source amplitudes by N; time points. This general expression is used
across most distributed source reconstruction algorithms which employ Gaussian
assumptions. Given that Y is known and L can be computed from the head model (and
sensor configuration and volume conduction principles), the only parameters needed
to compute the source current estimates in J are estimates of the sensor and source
level covariance matrixes, Q. and Q. The differences between inverse schemes arise
from how Q — the source level covariance - is defined, and this will be described in the

section Covariance Matrix Specification Using Different Functional Priors.

Thus, having an algebraic solution to the inverse problem implies that the inverse
problem can be formulated as a probabilistic generative model of the data. The term
probabilistic refers to the joint probability of all variables in the model while the term
generative implies that the model describes how the data were generated. This is done
by including all possible (and not mutually exclusive) variables and their estimated
probabilities in the joint probability, i.e. calculating the combination of factors which
could have given rise to the data. These factors include locations and orientations of
possible sources and are described in greater detail below. Moreover, the generative
model is hierarchical with two parameter levels. Each level has its own prior precision
which determines the importance of the prior relative to the data (in a Bayesian context
relative to the likelihood). Optimising these precision values as free parameters is
therefore equivalent to optimising the balance between the data and the priors at hand
(Mattout et al., 2006; Phillips et al., 2002). This is a critical feature because it is
effectively empirical model optimisation since the parameters can be estimated from
the data.
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The two levels are the sensor level which is directly measured, and the source level
which is inferred. The source level is higher in the hierarchy and thus its
‘hyperparameters’ represent priors on the lower level sensor parameters. This
relationship means that the source level hyperparameters scale the sensor level prior
distributions such that the likelihood is maximal given the data. Notably, this method
assumes Gaussian distribution of the priors (Belardinelli et al., 2013; Friston et al.,
2008b; Henson et al., 2011, Phillips et al., 2005).

Bayesian Implementation

Applying Bayesian methods to the inverse problem is helpful because they enable the
solutions (i.e. estimated locations or time courses) to take the form of posterior
distributions as opposed to point estimates. A posterior distribution is the distribution
of predictions (or unobserved observations) conditional on the observed data. In the
context of source reconstruction, the posterior distribution describes the subset of
possible sources which are most likely to have given rise to the observed data. Using
a Bayesian framework also makes it possible to marginalise out irrelevant variables

through integration.

The basis of the Bayesian implementation is that the recorded activity over sensors,
Y, is used to estimate the distribution of putative sources in the brain. The inverse
solution constraints take the form of prior probabilities of the source activity p(J) and
that these priors are informed by anatomy and neurophysiology (and combined with
the physical properties of volume conduction). The priors are then used to estimate
the posterior probability of the source activity given the data p(J|Y) through
combination with, or weighting by, the likelihood of the data p(Y|J). As such, Bayes
theorem takes the form (Grech et al., 2008):

p(Y1Dp(J) (1.6)

p(J|Y) = )

Where evidence for the recorded data p(Y)is considered to be constant, given a
constant dataset. This term also acts as a normalisation term because it is the
denominator of the equation. Gaussian refers to the assumption of normally distributed
and mean-zeroed data in the time domain. The estimated magnitude of J, / can be

found by taking the expectation of the posterior:
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J=Elp(UIN] (1.7)

The covariance of p(J|Y) is equivalent to 3, = (LTQ. 'L + Q‘l)_1 . As this (N; x Ny)
source covariance is computationally expensive, it is commonly replaced by the

modelled sensor covariance (Friston et al., 2008b) which is given by:
Y= Q. +LQLT (1.8)

Where Q. is the sensor noise covariance, L is the lead field, Q is the prior source
covariance matrix and (.)7 denotes the transpose operator. This in turn enables
projection of the source space covariance components into the (typically smaller)
sensor space. Given the algorithm-specific source covariance component(s) C; and
the covariance estimate of the sensor noise Q., the sensor covariance can be

modelled as X for optimising the hyperparameters:

i (1.9)
= ehQ, + Z et LCLT

i=1
Where h; is now expressed as e* which constrains its value to be positive, ensures
that the optimisation is convex and that the prior on the hyperparameters follows a
Gaussian (this equates to assuming a log-normal distribution on the scale parameters

e*) (Friston et al., 2008a; Wipf and Nagarajan, 2009).

Principles of Inverse Reconstruction

The three different inversion schemes used in this thesis are briefly described here
with respect to their commonalities and differences. What differs between them is the
choice of putative sources (the prior set) and the accompanying assumptions about
source covariance Q. The rationale for each is the same, however, and all three
algorithms are PEB algorithms. As for these three schemes, most popular inversion
schemes differ only in the choice of the form that the source covariance Q takes
(Equation 1.5) (Friston et al., 2008a; Mosher et al., 2003; Wipf and Nagarajan, 2009)

- that is, these three inversion schemes differ in their choices of source covariance Q.

The sensor noise is assumed to be identically independently distributed (1ID), i.e., an

identity matrix scaled by the so called regularization parameter h,. This means that
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the same noise level is assumed on all channels such that cov(e) = Q.. It can be written

as:
Qe = holy, (1.10)

Where Iy_€ RNe*Ne js an identity matrix, and h,, is the sensor noise variance. Implicit
in this formulation is the assumption of uniformity (that the noise variance is the same
across all sensors). h, can also be informed by empirical recordings of an empty MSR

to approximate the true sensor-level covariance (Henson et al., 2011).

Another important parameter common across the inversion schemes employed here
is smoothness, the spatial extent of each source prior. We include this because it is
known a priori that neuronal currents display local coherence. The smoothing function
used to determine the modelled smoothness is computed locally on the vertices of the
anatomical subject-specific MRI-derived surface mesh. We use a Green’s function
based on a graph Laplacian proposed by (Harrison et al., 2007) which can be
described as:

5. (1.11)
G(s) = Z%Al
i=0

Where the adjacency matrix A denotes the neighbourhood properties of the vertices
where A =1 if there is face connectivity and A = 0 otherwise. The smoothness
parameter s determines how far from the central vertex the G function connects the
patch points. In SPM, the default value, and the value we use here is s = 0.6. This
provides a trade-off between spatial accuracy and local coherence, it corresponds to
assuming an effective local coherence or patch diameter of approximately 10 mm if

the mesh density is approximately the same as a “normal” mesh with 8196 vertices.

Covariance Matrix Specification Using Different Functional Priors

We now turn to the differences between the inversion schemes utilised here: Minimum
Norm Estimation (MNE), Empirical Bayes Beamformer (EBB) and Multiple Sparse
Priors (MSP).

Bayesian MEG inversion algorithms differ only with respect to definition of the prior

source covariance matrix Q (Mosher et al., 2003; Wipf and Nagarajan, 2009). Here we
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briefly describe the differences between Qs specified using Minimum Norm Estimation
(MNE), Empirical Bayes Beamformer (EBB) and Multiple Sparse Priors (MSP).

The standard minimum norm estimation (MNE) represents the simplest assumption
about prior source covariance @, namely that the sources are independent and
identically distributed. This means that they have the same variance and no

covariance and can therefore be described by the covariance matrix:

Qune =1 (1.12)
Where I € RV<*Ne js an N, sensors by N, sensors identity matrix.

The Empirical Bayes Beamformer (EBB) inversion scheme is similar to MNE as there

is a single diagonal source prior covariance matrix which can be written as:

Qgpp = diag(az) (1.13)

Where o2 is the source variance. Unlike MNE, this variance value is estimated directly
from the data under the standard beamforming assumption that there are no spatially
separated but temporally correlated sources (Belardinelli et al., 2012; Van Veen et al.,
1997). Thus, while MNE assumes that all sources are potentially active with equal
probability, EBB selects and weights priors based on their putative contribution to the
measured signal. Specifically, for every dipolar location 8, the source variance ¢2 is

calculated as follows (Hillebrand and Barnes, 2005; Mosher et al., 2003):
of = (LhCyLy)™t (1.14)

Where C, = YYT is the sensor-level covariance matrix and Lgrepresents the effective,
smoothed lead field for a patch centred at dipole location 0. (-)" denotes a transpose

operator.

The Multiple Sparse Priors (MSP) inversion (Friston et al., 2008a) models a set of
sparse local spatial patches (as opposed to a single cortex-wide pattern) and prunes
away those patches which do not explain variance. Importantly, MSP is a more general
form of the approaches described above because the structure of the prior
components in Q can take any other form (if it is more appropriate), including those of
EBB and MNE. This is because the prior source covariance is a weighted sum of a set
of (multiple sparse) prior components, one per spatial prior: Q = {Cj, ..., szq} where N,
denotes the number of priors covering the mesh. The default N, = 512 in SPM. The

priors constrain the source space such that the algorithm is forced to explain the data
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using the priors given such that a poor model (i.e. a set of incorrect priors) will have a
low model evidence. Both generative models used with MSP have 90 identical
randomly distributed cortical priors but differ on the inclusion of hippocampal priors
(the remaining 10 cortical priors in the cortical model are also randomly distributed

across the cortex). The (global) prior source covariance matrix can be expressed as:

Nq
Qusp = Z h;C;
i=1

Where each C; € RVe*Na s itself a prior source covariance matrix with each prior

(1.15)

component corresponding to a smooth surface patch. These covariance components

are individually weighted by hyperparameters h = {h4, ..., th}. The larger a given

hyperparameter, the larger the prior variance of the patch. MSP can thereby optimize
the hyperparameters so as to best fit the modelled covariance to the data covariance
(at sensor-level) by mixing and pruning (hyperparameter down-weighting) the priors
such that the model evidence is maximized. Whereas MNE and EBB use only a single
hyperparameter to fit the data covariance, MSP uses one per spatial prior. MSP is a
generalisation of Bayesian inversion algorithms as it can take any other form if this is
optimal for explaining the data at hand parsimoniously.

After implementing the functional prior assumptions as described above, the
algorithm-specific Q is empirically optimised whereby that the current density can be
estimated and most likely source distribution inferred. The optimisation is based on an
approximate Bayesian inversion scheme, Variational Laplace (Friston et al., 2008b),
which assumes that the posterior distribution of J (J € RNe*Nt which describes the
amplitude of N, current dipoles over N, time samples) is Gaussian. The result is a set
of hyperparameters that maximize the model evidence for the given data, and which
are used to specify Q in the subsequent data inversion step (see for example Grech
et al, 2008 for details).

Free Energy

Each inversion returns a negative variational Free energy value (F) which
approximates the model evidence p(Y|m) where Y is the data and m is the model
(Friston et al., 2007; Wipf and Nagarajan, 2009). Because F represents a trade-off

between complexity and accuracy (Penny, 2012), it is used as the cost function to find
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the best hyperparameters when the models underlying the source reconstruction are

linear and Gaussian.

The Free energy is used as the objective function to fit the modelled covariance ¥
(Equation 1.16) to the actual data covariance X,. The Free energy, F, is expressed

formally (Friston et al., 2007) as

N, N N¢N, 1., A
F = %tr(ZyZ‘l) - éloglxl - tz “log2m — E(/l — v)TH(/l - v) (1.16)
1
Or equivalently, F = —[model error] — [size of model covaraince] —

[n Samples] — [error in hyperparameters] +

[error in covariance of hyperparameters]

Where tr(:) is the trace operator, N; is the number of time samples or temporal modes

(here N, =1), X, is the measured data covariance and X is the modelled data

covariance. There are N, sensors or spatial modes (here N, = 274). Where 1 and v
are the prior and posterior means, and IT and X, the prior and posterior precisions of
the hyperparameters, respectively. We use the SPM default values 1 = —32 and IT =

1/256 which makes the hyperparameters weakly informative.

This optimization can be thought of as a process to minimize the number of source
patches but still explain the maximum amount of data. The mixing and pruning of priors
means that for large numbers of priors, the optimization can get trapped in local
extrema. One practical solution to this is to run the same algorithm many times with

different sets of priors (spatial patches) (Troebinger et al., 2014a).

Perhaps the most important principle of the Free energy formulation for the purposes
of this thesis is that it can be divided into two constituent components: accuracy and
complexity. The accuracy is given by the first three terms in the equation while the
complexity (which is what differs from other Bayesian approaches (Wipf and
Nagarajan, 2009)) is given by the latter two terms. The accuracy reflects how well the
model explains variance in the data while the complexity reflects the error in the

approximations of the hyperparameters.
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As F approximates the model evidence for a generative model used to invert a set of
data, Free Energy values obtained with different models can be used for comparison
of the likelihood of these models. In this model comparison framework, properties of
the generative model are changed, and the F values obtained for the different
parameter values can be compared with respect to how well they describe the data
parsimoniously simply by subtracting one F value from the other. It is thereby possible
to quantify the difference in (approximated) model evidence which enables hypothesis
testing through variations in the generative model. For example, hypotheses could
relate to anatomical structures involved in generating the signal. The application of
this model comparison approach to MEG data analysis has successfully been
demonstrated elsewhere (Henson et al., 2011, 2009; Lopez et al., 2013; Lopez et al.,
2014; Penny, 2012; Stevenson et al., 2014; Troebinger et al., 2014a). Because of the
Bayesian context, the F value difference is equivalent to calculating a Bayes factor. In
line with Bayesian convention, a positive difference means that the first model in the

equation is ﬁ more likely than the second. A significance threshold is defined at 3

where, because of the log distribution of the Bayes factor of F difference, one model
is ~20 times more likely than the other. Critically, model comparison is only valid
however when the data is the same and can only be used to infer the relative fithess

of two models — not whether, or what form a potentially better one might take.

Summary

The general linear inverse expression describes how sensor-level data modelled as a
distribution of primary currents can be inverted such that the locations and time
courses of these currents or neural sources can be reconstructed. This is done by
constructing a forward model which simulates the field distribution for a current dipole
in a given orientation, location, and with a given source strength inside a volume

conduction model of the brain.

Because the inverse problem is ill-posed, is it necessary to specify prior constraints.
This can be done through prior distributions describing putative sources in a Bayesian
context. This gives a posterior distribution over the potential sources by incorporating
information about covariance present in the data into the solution, in a two-layer

hierarchical model of how the data were generated.

Assumptions about source level covariance are expressed through different inverse

reconstruction algorithms. These can also be thought of as functional priors (as
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opposed to spatial priors). Within the Parametric Empirical Bayesian framework in
SPM, any inverse solution also returns an approximation of the model evidence (a
Free energy value) which gives a trade-off between the accuracy and complexity of
the solution, and can be used to compare models (different functional and/or

anatomical priors) based on the same data.
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Hippocampus and hippocampal oscillations

The hippocampus is a small bilateral curved structure constituting part of the
archicortex in the medial temporal lobe (Figure 1.7B). Its shape is similar to a sea
horse from which it also takes its name in Greek. It is ~5 cm long in adult humans
(Schultz and Engelhardt, 2014). It is a uniquely important brain structure in humans
due to its role in episodic memory. This function is thought to have co-evolved
alongside navigation and spatial memory functions such that memory/learning, spatial
navigation and planning could be supported by the same neural circuits (Amaral and
Witter, 1989). Underpinning hippocampal mechanisms which support episodic
memory and spatial navigation are, most prominently studied and thus most well-
understood, 4-8 Hz theta oscillations (Vanderwolf, 1969; O'Keefe and Nadel, 1978;
Buzséki, 2005). Hippocampal theta is very well studied in rodents, and possesses a
wide range of directly quantifiable relationships between behaviour and features of the
oscillatory activity (such as frequency, phase and power). For example, theta
frequency and amplitude increases with running speed (McFarland et al., 1975) but

the frequency decreases with environmental novelty (Jeewajee et al., 2008).

Overall, we are interested in knowing whether (and how) we can translate the rodent
findings to humans and potentially further nuance them in this context. At present,
efforts to do so is occasionally possible in epileptic patients but for generalizability,
statistical power, and experimental freedom we must make these recordings non-

invasive.

Other human brain rhythms are predominantly generated by superficial sources and
are therefore relatively easy to measure using MEG. Hippocampal theta on the other
hand, is not. Thus, hippocampal theta is less well-studied in humans due to
methodological difficulties (which are addressed by this thesis), but IEEG recordings
from epileptic patients suggest that there are memory correlates (such as the
subsequent memory effect, (Sederberg et al., 2003)) as well as bouts of theta

oscillations during movement in virtual reality (VR) environments.

Relationships between Hippocampal Theta Oscillations and Behaviour

In rodents, a large set of complex and interesting relationships between theta and

behaviour have been demonstrated. For example, it has been shown that there is a
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relationship between theta and movement/arousal (Green and Arduini, 1954), that
theta frequency and power correlate with running speed (McFarland et al., 1975), that
theta frequency is reduced by anxiolytic drugs (John et al., 2014), that eliminating theta
impairs spatial memory function (and gets rid of grid cell firing patterns) (Brandon et
al., 2011; Givens, 1995). Two main domains have developed as a result of these
studies: one investigates the role of theta in physiological terms, linking synaptic
changes to behavioural changes in relation to theta. The other has emphasized the
role of theta in computing the location of an animal during spatial navigation.

The first domain which places the main focus on mechanisms related to memory and
learning is based on a set of documented links between synaptic potentiation, and
theta. For example, it has been shown that there is increased efficiency of memory
encoding during periods where theta amplitude is high (Seager et al., 2002), and is
has since been suggested that long-term plasticity may be induced by theta.
Specifically, it has been proposed that theta supports memory by providing a (timing)
signal which causes a population of simultaneously active cells to spike within a short
temporal window, in turn causing Hebbian plasticity and thus, long term changes in

synaptic connections (Buzsaki, 2005; O’Keefe and Recce, 1993).

The second domain on the other hand has focused on the notion of a cognitive theta
map (O’Keefe and Nadel, 1978; Tolman, 1948). The basis of this theory comes from
a study which showed that rodents build an internal map of the environment which
enables them to find a goal location regardless of starting point — and to take shortcuts,
as opposed to simply link actions to stimuli and follow previously executed routes
(Tolman, 1948). Importantly, these processes have since been shown to be
dependent on the integrity of the hippocampus (Morris et al., 1982). Currently, this
field concerns itself with the interactions and computations of the different cell types
and functions found in and around the hippocampus. These include (but are far from
limited to) hippocampal place cells (O’Keefe, 1976), entorhinal grid cells (Hafting et
al., 2005), and accounts of how theta mediates informative combinations of the neural
dynamics hereof, e.g. the role of phase in determining where within a place field an
animal is currently, or soon to be, located (Burgess and O’Keefe, 2011; Buzsaki and
Moser, 2013; Moser et al., 2008). Thus, theta oscillations modulate the activity of
hippocampal place cells (O’Keefe and Recce, 1993; Huxter et al., 2003). This branch
of research also concerns itself with the different cognitive processes which constitute
navigation. These processes include path integration whereby the internal self-motion

cues are integrated without reference to external cues, in order to encode the relative
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spatial location. One interesting example of the link between path integration of theta
showed that theta power is dependent on movement velocity, but that the gain of this
function is higher when the animal moves on its own, compared to being moved, or

having the external cues move (Terrazas et al., 2005).

In humans, the body of literature is far smaller but supports both theories of
hippocampal theta functions: there is evidence that theta power correlates with
memory performance (Ekstrom et al., 2005; Lega et al., 2012), and similarly, some
evidence that theta is associated with movement (especially movement onset) in
virtual reality (VR) environments (Kaplan et al., 2012a). Moreover, theta power
(synchrony) has been shown to selectively correlate with retrieval of spatial
information that is relevant for navigation (de Araujo et al., 2002). Generally however,
in order to begin to address the outstanding questions, as well as test new predictions,
a reliable and non-invasive method for recording hippocampal theta is needed (Dalal
et al., 2013a; Riggs et al., 2009).

Preoperative epilepsy patients with recording grids in the hippocampus have provided
valuable but rare insights into theta dynamics in humans (Jacobs et al., 2013; Lega et
al., 2012; Tesche and Karhu, 2000). However, such recordings are suboptimal for
ethical and practical reasons, as well as being infrequent and potentially non-
representative of healthy hippocampal processing. Thus, a non-invasive and reliable
alternative could potentially replace these invasive pre-operative procedures. This
could offer a much safer, more comfortable, cheaper and faster method of estimating
the epileptic foci, if effective and spatially precise. Further, it could enable a new range
of cognitive experiments which could address the role(s) of hippocampal oscillations
in the human brain. In addition, it is likely that the paradigms could be more complex
and thus representative of real-life navigation than is currently the case with patients

who are often drowsy, elderly, unwell, and/or off medication.

In this thesis, the focus is on using and developing new MEG methods for detecting
hippocampal activity. Since a large and growing body of both rodent electrophysiology
and human neuroimaging work has focused on the ability of the hippocampus to
represent and process spatial information, we use a well-validated spatial cognition
task to activate hippocampus in the empirical validation of the methods. This section
serves as a brief introduction to the relevant spatial cognition literature, overview of
anatomical and electrophysiological features incorporated into the MEG forward
model, and a discussion of previous MEG experiments showing evidence of

hippocampal activity.
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Viewpoint Independence

A cognitive map can be defined with respect to the behaviours is allows and a central
feature of the hippocampal cognitive map is that it is viewpoint-independent. This is
an ideal format of spatial knowledge since it can be enables behaviours such as taking
a novel short cut, flexibly planning and imagining routes, finding a desired goal location
from any starting position, etc.

This form of perspective is called allocentric and can be contrasted with an egocentric
or first-person viewpoint (Figure 1.7A). Egocentric representations of space have
been shown to localise to the parietal lobe, where lesions lead to egocentric spatial
processing deficits (Bisiach and Luzzatti, 1978), replicated in fMRI where the posterior
parietal cortex for example tracks egocentric direction of goal locations (Spiers and
Maguire, 2007). Allocentric spatial memory representations however have been
shown to be hippocampal: patients with bilateral hippocampal lesions are strongly
impaired on recognition of object arrays only when the viewpoint has been shifted
(King et al., 2002), suggesting an impairment specifically in allocentric representation
(be it encoding or retrieval or both). Further, the hippocampus has been shown in fMRI
to be more active during novel wayfinding than stimulus-based route following (where
an allocentric mental representation is required for the former but not latter) (Hartley
et al., 2003), and when planning routes during real-time navigation (Spiers and
Maguire, 2006). Similarly, the amount of allocentric knowledge acquired in single trials
(measured behaviourally through trial-by-trial improvements) correlates with
hippocampal activation (Doeller et al., 2008). A classical rodent example of this
anatomical dichotomy between allocentric and egocentric processing showed that
inactivating hippocampus and striatum makes rats use only the ego- and allocentric
strategies respectively in an elevated plus maze task (Packard and McGaugh, 1996).
This well-documented allocentric mapping is central to the importance of the
hippocampus across cognitive functions; encoding flexible representations of space

and relevant features is needed for subsequent recognition and planning.
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A Allocentric

Figure 1.7 Neural basis for spatial cognition.

A) Representations of allo- and ego-centric navigation perspectives. The hippocampus
provides a system for building allocentric representations of space based on egocentric

experiences. From https://www.google.co.uk/maps. B) Location and size of the human

hippocampus (red). From Wikimedia Commons (September 2016).

Electrophysiology of the hippocampus

The hippocampus consists of two inter-locking magnetically ‘open-field’ structures: the
dentate gyrus (DG) and Cornu Ammonis (CA consisting of subfields CA1-CA3). The
pyramidal cells found in neocortex layer V and CA subfields of the hippocampus are
morphologically indistinguishable (Spruston, 2008) (Figure 1.8A). In both pyramidal
cell layers, the principal neuronal axes of the dendritic trees are arranged in parallel

with one another, perpendicularly to the surface envelope. At a population level one
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can therefore model current flow along the principal neuronal axis (red arrow in Figure
1.7A) in the same way as per convention for the neocortex. Although the hippocampal
pyramidal cells point in the opposite direction to those in neocortex, this does not
influence the shape or extent of the magnetic fields produced and therefore need not

be explicitly modelled.

Conversely, dentate gyrus mainly consists of small granular cells which also have an
oriented dendritic tree and a high cell density (Attal et al., 2007; Duvernoy, 2005).
However, these cells are much smaller and shorter and are thus less likely to give rise
to dipole-like sources. Moreover, it is difficult or impossible using 3T MRI images to
segment these substructures accurately (Bonnici et al., 2012; Wisse et al., 2012).
Other MEG models have made the simplifying assumption that the hippocampal signal
originates only in the CA pyramidal neurons such that dipoles are modelled
orthogonally to the surface envelope (Figure 1.8B, (Attal et al., 2012)).

tuft

apical

soma

subiculum

basal

CA1

Figure 1.8 Hippocampal cell morphology and subfield structures

A) Morphology and similarity of pyramidal neurons in cortex and hippocampus. Postsynaptic
potentials occurring at the apical dendrites or tuft give rise to the primary intracellular current
(red arrow) which is measureable outside the head given a sufficiently large synchronously
firing cell population. CA: Cornu Ammonis. Cells pictured are from the rat (but representative
of all three cell types in humans). Image modified from (Spruston, 2008). B) Diagram showing
distribution of subfields in a coronal plane. CA1-3 folds around the dentate gyrus and almost

encapsulates it. Adapted from (Yang et al., 2008).

MEG source reconstruction in the case of the hippocampus
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Cumulative evidence suggests that hippocampal sources can be identified in MEG,
an observation made both with simulations (Attal and Schwartz, 2013; Chupin et al.,
2002; Mills et al., 2012; Quraan et al., 2011; Stephen et al., 2005), and empirical data
(Adjamian et al., 2004; Backus et al., 2016; Cornwell et al., 2012, 2008; Engels et al.,
2016; Guitart-Masip et al., 2013; Hillebrand et al., 2016; Kaplan et al., 2012a; Korczyn
et al., 2013; Mills et al., 2012; Moses et al., 2011; Poch et al., 2011; Quraan et al.,
2011; Riggs et al., 2009; Tesche and Karhu, 2000). Despite this body of theoretical
support and empirical evidence, the sufficiency of the spatial precision of MEG for
deep source reconstruction is still being debated (Mikuni et al., 1997; Mills et al., 2012;
Riggs et al., 2009) or assumed insufficient. The main reason is perhaps that although
these authors claim to record signals from hippocampus, the ground truth is not
available and so validation of these claims is difficult. Another reason is that arguments
for hippocampal involvement typically rely on the spatial location of a statistical peak
in traditional group level volumetric inference. Consequently, factors which have lead
such findings to be toned down from ‘hippocampus’ to ‘medial temporal lobe’ include
image smoothness at this depth (Gross et al., 2003), intra-subject variability, head
movement and in particular, co-registration error. Another argument against its
detectability is that its cylindrical geometry could cause signal cancellation
(Baumgartner et al., 2000; Mikuni et al., 1997; Stephen et al., 2005). However, it has
been demonstrated that the cancellation is lower than expected even when sources
on opposing subfields are simulated (Stephen et al., 2005). Perhaps most importantly,
direct evidence comes from two studies showing that concurrent intracranial electrode
recordings and MEG reveals that MEG sensors can reliably detect hippocampal theta
oscillations (Crespo-Garcia et al., 2016; Dalal et al., 2013a). These two studies form
a critical piece of cross-modal evidence which, unlike the non-invasive neuroimaging
studies, has ground truth available and shows that the MEG sensors detect
hippocampal activity both using beamforming (Crespo-Garcia et al., 2016), and at
sensor-level (Dalal et al., 2013a). Another similar observation comes from separate
iIEEG and MEG studies where the same theta correlates have been observed
invasively and non-invasively in response to the same VR (Bush et al., 2015; Kaplan
et al., 2012a).

Another commonly used argument is that the hippocampus is simply too deep to
produce a measureable signal. Estimates suggest that the distance between the
centroid of the hippocampal mesh and the nearest sensor is ~8 cm (Chapter 2).
Although this is deep relative to neocortical structures which are only a few centimetres

from the MEG sensors, it is more superficial than other structures successfully imaged
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using MEG such as the thalamus and brainstem (Attal and Schwartz, 2013; Coffey et
al., 2016; Papadelis et al., 2012; Parkkonen et al., 2009; Wibral et al., 2013).
Moreover, recent evidence suggests that the cell density, and consequently also
current source density in the hippocampal pyramidal cell layer is at least twice that of
the neocortex, which might compensate to some degree for its distance to the sensors
(Attal et al., 2012; Murakami and Okada, 2015, 2006). Thus, it seems likely that a
measureable signal is produced by the hippocampus (Crespo-Garcia et al., 2016;
Dalal et al., 2013a). The question then is how best to induce theta band
oscillations/activity in the human hippocampus in order to test this hypothesis?

Since the late 1990s, virtual reality (VR) has enabled a broader and more ecologically
valid approach to studying spatial navigation in humans (Maguire et al., 1999). Several
important features make this technology ideally suited for human neuroimaging
experiments designed to engage hippocampus. First, VR simulates real world
navigation in a highly naturalistic way. Unlike table-top tasks where the subject is
presented with allocentric representations from the beginning, VR makes it possible
for subjects to build these representations based on egocentric information, matching
real-world processes. Second, VR makes it possible to study the dynamic processing
involved in real navigation processes such as planning, path integration, wayfinding
etc. Third, VR environments have enabled experimenters to directly test the effects of
manipulating environmental layouts and content (e.g. landmarks, novel objects) on

navigation performance and strategies (Maguire et al., 1999).

Empirical validation of the ecological validity comes from research showing that
cognitive maps built through VR closely resemble those acquired naturally: with
practice, people learn to navigate inside a simulated building with equal level of
performance as in the real building. Interestingly and in accordance with the
requirement for naturalistic environments/surroundings, landmarks were found to
improve performance (though a form of spatial anchoring or improved reference
capacity), while abstract coloured pattern cubes were not (Ruddle et al., 1997).
Nonetheless, VR has drawbacks such as limited field of view, lack of vestibular and
proprioceptive feedback/engagement, movement execution through a keypad and
potential software issues such as screen resolution and speed are worth taking into
consideration for data interpretation (Maguire et al., 1999). Thus, while the ideal freely
moving experimental set-up is not currently possible, VR provides a highly useful

simulated version thereof (Shine et al., 2016).
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Summary

In summary, the hippocampus is thought (among other things) to enable a viewpoint
independent representation of physical space through computations dependent on the
theta rhythm. These oscillations are very well-studied in rodents and possess a range
of quantifiable relationships with running speed, novelty, synaptic plasticity, and the
activity of place and grid cells. The question therefore is whether and how these

theories can be translated to, and expanded on, in human neuroscience.

At present, these oscillations are difficult to study non-invasively in humans (using
MEG). The two primary reasons for this are distance from the MEG sensors (around
8 cm) and complexity or difference of the neural architecture from that of neocortex.
However, the depth is a solvable SNR problem, and the hippocampal pyramidal cell
layer is almost identical to neocortical layer V. Given appropriate/optimised acquisition
and analysis methods, is should therefore be possible to devise an objective test for

hippocampal theta.

There is now strong evidence showing that hippocampal theta oscillations can be
detected in MEG from epileptic patients by recording simultaneous MEG and
intracranial hippocampal activity (Crespo-Garcia et al., 2016; Dalal et al., 2013a). If it
is possible to create use MEG as a reliable and non-invasive methods for studying
hippocampal oscillations in humans, then the usefulness and relevance of this
approach extends across cognitive, clinical and computational neuroscience

guestions.

Overall Summary

Current dipoles generated by groups of synchronously active parallel pyramidal cells
produce instantaneous magnetic fields at the scalp. This enables us to sample

cognitively relevant brain oscillations directly but non-invasively.

Magnetic signals generated by the brain are extremely small, which means that it is
necessary to both shield the external magnetic field and use highly sensitive devices
for detection. Magnetically shielded rooms provide the required passive shielding,
while SQUID and OPM sensing technology are both extremely sensitive, and have

additional hardware and software based methods for noise minimization.
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Sources of neural activity measured by these sensors can be reconstructed by using
a set of mathematical models to “invert” the data from the sensor to the source level.
Various assumptions or hypotheses about the spatial distribution of these signals can
be embedded in different algorithms and generative models of how the brain gave rise

to the measured signals.

The human hippocampus contains a layer of pyramidal cells which strongly resemble
cortical pyramidal cells and therefore are likely to give rise to similar signals. There
are strong predictions about the temporal dynamics of these signals, specifically theta
oscillations, which could be tested in MEG if the spatial resolution of the data could be

improved.

Thus, the questions which remain unanswered and which | aim to address in this
thesis are:

1) Does including a model of the hippocampus in the generative model help to
explain hippocampal data?

2) In a probabilistic or Bayesian framework, how does this model perform relative
to a null hypothesis model?

3) How specific is this advantage anatomically? For example, do cortical sources
give false positive results? Do medial temporal lobe sources? How sensitive is
the advantage it to translations and rotations of the mesh?

4) Can we reliably use performance metrics to evaluate the model’s performance
which are not limited to simulated data (i.e. which do not rely on ground truth)?
If such a metric is appropriate for evaluating the goodness of fit, it can also be
applied to empirical data and provide directly comparable results.

5) How do different newly developed inversion algorithms compare to more
classical methods in this context, and which would be more appropriate for
empirical analysis?

6) How does this model perform in the face of realistic empirical perturbations
such as noise and/or co-registration error? How can we optimise our
acquisition protocol to meet such requirements? Does this enable us to

empirically measure hippocampal signals?
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7) Can we expect further improvements from using better MEG sensors in the
future? What are some of the potential practical pitfalls of this new technology?

How can these be addressed?

64



65



Chapter 2

Experiment 1: Using generative models to make
probabilistic statements about hippocampal

engagement in MEG
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Precis

The current general consensus (as outlined in the introduction) is that MEG cannot
reliably be used to localize activity from deep sources such as the hippocampus. If this
is the case, then we wondered whether an improvement to the anatomical modelling,
such as adding a nested hippocampal manifold to the cortical mesh, would give way
for an improvement in the model fit and therefore reveal itself as source-specific mesh

preferences in a Bayesian evaluation framework.

Here we evaluate the differences between model fits with and without this
hippocampal manifold included in the model. We do this across different inversion

algorithms and report their properties.

Introduction

The aim of this part of the PhD was to develop a method to infer not where an
activation peak appears to be, but rather whether a model which includes the
hippocampus does a significantly better job than a hippocampus-free model (i.e., a
‘null” model) at explaining hippocampal activity. We address this question by
comparing two generative models, both including the cortex but one with and one
without the hippocampus also included. A generative model is an account of the
putative origins of the signal. The models therefore enable formulation of competing
hypotheses, and direct comparison hereof. This work echoes previous papers on the
suitability of fMRI priors (Henson et al., 2009) and distinction between cortical laminae
(Troebinger et al., 2014a), where for a given dataset we evaluate the evidence for two
competing generative models which differ with respect to their anatomy. In this
simulation study, we focus on explaining the method and testing its performance under
different empirical constraints. We know from previous work that mesh-based
generative models are extremely sensitive to co-registration error (errors in aligning
an anatomical MRI image used to constrain the inverse solution, and the recorded
MEG data) (Hillebrand and Barnes, 2011, 2003; Lépez et al., 2012; Troebinger et al.,

2014b) which therefore constituted our main factor of interest.

Here we propose an anatomically and electrophysiologically realistic generative model
of deep source activity which accounts for geometry, depth and cell type. Through
model comparison, this allows us to make categorical statements about which
generative model is most likely for a given dataset — one with the hippocampus

explicitty modelled, or one without. Although we focus on the hippocampus in this
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work, the approach should generalize to other structures with similar features. Here
the modelling is motivated by the similarities between the pyramidal cell layer V in
neocortex which is the main generator of the MEG signal (Murakami and Okada,
2006), and the pyramidal cell layer of the hippocampus. Firstly, the cells are
morphologically identical (Figure 1.8A). Secondly, the pyramidal cell layer follows the
surface curvature which means that it can be modelled as such. Thirdly, individual
cells have dendritic trees oriented in parallel, thus causing magnetic fields to arise
perpendicularly to the surface.

The main advantage of an explicit generative model is that it makes it possible to
exploit not only the information from the estimated source location but also its
orientation (and other parameters not considered here like current density and local
coherence). We will show that this allows us to differentiate the hippocampus from

even the most proximal cortical sources.

In order to obtain probabilistic and comparative estimates of how good the two
generative models are with respect to the data, we approximate their model evidence
and compare the relative values in a Bayesian framework. This Bayesian model
comparison uses these model evidence values and is a useful way to compare models
because it allows direct quantification of competing models’ abilities to explain the
same data while avoiding over-fitting. Building models equates to specifying prior
beliefs about what could be expected from the data. In this case, the priors pertain to
the anatomical locations and orientations of the potential sources, and functional
properties of sources, e.g. how sparse or smooth they are (different functional priors

or inversion schemes).

To approximate the model evidence, we use Free energy (F), a lower bound on the
true model evidence. F rewards models which accurately fit the data, but penalizes
models based on their complexity. The former helps identify good hypotheses, while
the latter eliminates over-fitting noise. The logic in this context is that if electrical
current was generated on the hippocampus but the hippocampus is not part of the
generative model used to reconstruct the data, then a more extensive mixture of
cortical sources is required to explain the data equally well. Because of the increased
complexity (see Wipf and Nagarajan 2009 on how the volume of the model covariance
acts as penalty or sparsifying term), the hippocampus-free model will have lower

model evidence (or Free energy) than model which includes the hippocampus.

The aim of this chapter is to first introduce the notion of a generative model, and then

relate this to the simulation and source reconstruction procedures and parameters.
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Next the model comparison framework is introduced, where two models are assess in
relation to each other, in a set of scenarios with different sources of uncertainty,
specifically co-registration error and white noise added to the sensors. This model
comparison is done across three different sets of popular functional priors or beliefs
about the structure of the neural activity (e.g. how smooth and sparse it might be):
Minimum Norm Estimate (MNE), Empirical Bayes Beamformer (EBB), and Multiple
Sparse Priors (MSP). This allows us to interrogate the model comparison framework
from multiple angles, as there is no single superior functional prior since the
performance depends both on the experimental question(s), performance criteria, and
data (Hauk et al., 2011). Moreover, this allows us to address the consistency of results
across functional assumptions, i.e. the robustness to both different types of

uncertainty, and different assumptions about source covariance.

Hypothesis and objectives

Hypothesis: If the hippocampus is explicitly incorporated into the generative MEG
source model, then it is possible to test whether or not it is active at a certain time and

within a certain frequency band by using Bayesian model comparison.

This relies on the validity of the Occam’s razor approach: we assume that the simplest
way of modelling a source is the correct one. Specifically, we show that if hippocampal
activity is simulated, then a generative model which includes the hippocampus gives

a more parsimonious, and therefore better, inverse solution.

Our objective here is to test the limitations and robustness of this approach in
simulations where ground truth is known. A related objective is to quantify the effects
of different empirical acquisition factors, namely co-registration error and SNR, on our

ability to successfully and reliably detect hippocampal sources.

Methods

Anatomical modelling of the hippocampus

The independent variable of our generative model is the hippocampal surface mesh.
We constrain the sources to be oriented perpendicularly to the mesh surface (Figure
2.1A shows the surface envelope extracted from an MRI image). The hippocampus’

location is overlaid on an MRI image (Figure 2.1B) and shown with respect to the
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cortical mesh (Figure 2.1C). As the hippocampus bulges into the floor of the (inferior
horn of the) lateral ventricle, its medial surface extends more medially than that of the
cortical surface. Apart from this, the hippocampus is nested inside the cortical

manifold.

We extracted the left hemisphere’s cortical and hippocampal surfaces for a single
subject using FreeSurfer’s (Reuter et al., 2012) automated image segmentation of
individual T1-weighted MRI images (3T Siemens Magnetom). FreeSurfer gave a
cortical mesh that we used directly, and a hippocampal volume file which we converted
into a tessellated surface mesh. We limited the simulations and re-constructions to the
left side of the brain for simplicity. The resultant hippocampal surface was more
densely tessellated than the cortical, so we smoothed and downsampled it such that
the mean vertex-vertex distances matched. The number of vertices in the cortical and
hippocampal meshes were 10595 and 162 respectively and the mean vertex-vertex
distances were 3.73 and 3.69 mm. This approach is consistent with the Deep Brain
Activity model proposed by (Attal and Schwartz, 2013).

Figure 2.1: Hippocampal surface structure and location

A FreeSurfer-derived tessellated envelope of the left hippocampus. We model the sources to
be perpendicular to mesh vertices, consistent with the pyramidal cell orientation. B Sagittal
view of FreeSurfer hippocampal region of interest on a sample 1.5T T1-weighted MR image
from the FreeSurfer Image Analysis Suite. Blue colour shows the extent of hippocampal region
of interest. Image adapted from (Hostage et al., 2013) C Source space of the combined model
consisting of FreeSurfer-derived cortical and hippocampal meshes. For more detailed

description of this model, see Figure 3.

Simulation set-up
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The simulation and reconstruction pipeline consisted of three steps: first, we simulated
a single dipole perpendicularly to the hippocampal surface with a sinusoidal waveform
of 20 Hz for 300 ms (six cycles) and a total effective dipole moment of 20 nAm (Figure
2.2A). The simulation locations were randomly drawn from the 162 hippocampal
vertices and were simulated with a full-width half-maximum of 6 mm. Each simulated
dataset had a sampling rate of 600 Hz with the mean sensor-level Signal to Noise
Ratio (SNR) set to either 0, -5, -10, -15 or -20 dB, specified by adding Gaussian white
noise to the data. We repeated this 30 times with both hippocampal and cortical
simulation locations at each SNR level. This gave a core set of simulated data with
known ground truth (hippocampal source or not).

In the second step (Figure 2.2B), we mimicked the effect of co-registration error
between functional (MEG) and anatomical (MRI) images by adding O, 1, 2 or 3 mm
standard deviations of error to each of three fiducial points in each of the three spatial
dimensions. This shifted the surface mesh used for reconstruction (red) relative to the
surface mesh used to generate the simulation (black). Co-registration error levels
commonly seen empirically in MEG recordings are usually ~5 mm or more even with
the best compensation tools, be they bite-bars (Adjamian et al., 2004; Singh et al.,
1997) or algorithmic movement corrections (Whalen et al., 2008).

After having perturbed the idealized data by adding sensor noise and co-registration
error, we inverted the data using two different anatomical models and three different
inversion schemes. One anatomical model was, per convention, just the cortical
surface (Figure 2.2C, cortical model), while the other model additionally included the
hippocampal surface envelope (Figure 2.2C, combined model). Each anatomical
model was inverted using three different inversion schemes embodying functional (or
source covariance) assumptions. These were Minimum Norm Estimate (MNE)
(Hamalainen et al., 1993), Empirical Bayesian Beamforming (EBB) (Belardinelli et al.,
2012) and Multiple Sparse Priors (MSP) (Friston et al., 2008a). We thus obtained six
inversion solutions per simulated dataset; three inversion algorithms, each giving one

solution per anatomical model.

This lets us examine the difference between generative models across different
assumptions about the nature of the activity — how sparse, how co-varying, how
smooth etc. Each such inversion returns a Free energy (F) value, which approximates
the model evidence for generative model. This set-up allowed us to quantify the
difference in model evidence when the hippocampal mesh is included in the

generative model. The hypothesis was that there would be an improvement if the

71



simulated source was hippocampal. This model comparison approach has
successfully been demonstrated elsewhere (Henson et al., 2011, 2009; Lopez et al.,
2013; Lopez et al., 2014; Penny, 2012; Stevenson et al.,, 2014; Troebinger et al.,
2014a). Here we used log Free Energy to quantify the difference between anatomical

models: AF anatomical = Fcombined — Feorical. A positive difference means that the combined

model is Tt:AF more likely than the cortical. If AF = 0 then the two models are equally

likely, and if AF = 3 then the combined model is approximately twenty times more
likely.
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Figure 2.2: Overview of the simulation pipeline.

A A single dipole source is simulated (at a random location) on the hippocampal surface as a
temporal waveform with sinusoidal frequency of 20 Hz. Gaussian white noise is added to the
sensor level data (in this case -10 dB). On the right, a representative subset of the resulting
274 time-varying waveforms simulated are shown as coloured traces. B To simulate the effects
of co-registration error, we added a displacement of 0, 1, 2, or 3 mm standard deviation of error
in each spatial dimension to each of the three standard fiducial points. The data themselves
were unchanged. The displacement shown here is 2 cm for illustration. C Next we inverted the
simulated data twice, using two different generative models. One with only the cortical surface
(cortical model) and one with both cortical and hippocampal surfaces (combined model). We
repeated this double inversion procedure on each dataset using three different reconstruction

algorithms.

Specification of anatomical priors

The schematic in Figure 2.3 illustrates the two anatomical models and how they were
implemented. The key difference is that MSP priors can be user-defined within
subsections of the source space. Conversely, EBB and MNE by definition make use
of the complete source space. Left panels (A and C) show the cortical models and
right panels (B and D) show combined models (with hippocampal priors). For EBB and
MNE, the addition of hippocampal priors simply involves an addition to the source
space (which increases from 10595 vertices to 10757 vertices). For MSP on the other
hand, we kept the complete source space (combined model with 10757 vertices) but
specified 100 spatial priors (patches of cortex) to either include or not include the
hippocampus. The 90 blue dots mark cortical priors shared across the two models.
The ten green dots mark cortical priors unique to the cortical model (Figure 2.3C).
The ten red dots mark hippocampal priors unique to the combined model (Figure
2.3D). In all cases, we used a Nolte single shell (Nolte, 2003) to model the inner skull

boundary.
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Without hippocampal priors: With hippocampal priors:
Cortical model Combined model

EBB & MNE

MSP

Figure 2.3: Anatomical models with and without hippocampal priors.

Panel A shows implementation of the cortical model in the EBB and MNE algorithms. The
tessellated cortical surface envelope is comprised of 10595 vertices. Panel B shows the
combined model which includes a nested hippocampal manifold and contains 10757 vertices.
Bottom panels (C, D) show the anatomical model implementations in MSP. The full source
space is specified in both models such that each includes the nested hippocampal mesh and
the number of vertices is 10757. In both, 90 blue dots illustrate identical cortical prior locations.
In panel C an additional ten green cortical priors are specified. In D, an additional ten red

hippocampal priors are specified.

Source Inversion

The empirical Bayes source inversion scheme has been described in detail elsewhere
(Belardinelli et al., 2012; Friston et al., 2007; Henson et al., 2011; Lépez et al., 2012;
Phillips et al., 2005; Troebinger et al., 2014a). For a review, see (Lopez et al., 2014).

Here we elaborate on implementation issues and empirical applications.
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All three algorithms require the estimation of a source and sensor level covariance
matrix. In all cases we used an identity matrix to represent uncorrelated white sensor
level covariance. The main difference between the three algorithms is that the MNE
and EBB solutions require the optimization of a single source level covariance prior
whereas MSP has a more general form. In MNE this is also an identity matrix (all
sources have equal prior variance and are uncorrelated); for the EBB algorithm this
prior is derived directly from the data. This means that for EBB and MNE the algorithm
must estimate two (hyper) parameters which set the relative weighting of source and
sensor level variances. The MSP algorithm takes a more general form and allows the
source distribution to be built up of multiple covariance components. Traditionally each
of these components is a locally coherent patch of cortical activity. The ensuing
optimisation (to maximize Free energy) can be thought of as a process to minimize
number of patches but still explain the maximum amount of data. The mixing and
pruning of these priors means that for large numbers of priors, the optimisation can

get trapped in local extrema.

One practical solution to avoid this is to run the same algorithm many times with
different sets of priors (Troebinger et al., 2014a). However, as we were not interested
in the optimisation per-se in this work, but in finding the best possible solution, we
used 100 priors and simulated sources at a subset of these locations. Note that there
was thus a clear advantage for the MSP algorithm relative to EBB and MNE, because
the best solution is fixed to lie in the space of MSP priors, which is much smaller than
the space of all the vertices (See Figure 2.3 and discussion). This advantage is
relevant in both hippocampal and cortical simulation results. For hippocampus, the 10
MSP priors included the simulated patch, versus all 162 hippocampal vertices supplied
with EBB/MNE. Similarly for the cortical simulations, the solution space was defined
by 90 anatomical priors for MSP, again including the simulated patch, versus all 10595
cortical vertices specified for the EBB/MNE algorithms. Importantly, it is still possible
to directly compare the inversion schemes by keeping the model (and data) constant.

We return to this and examine it across a range of SNRs.

We did not use any spatial dimension reduction (i.e. all 274 functioning MEG channels
were used) but we decomposed the time series into a single temporal mode. The time
window was set to match that of simulation (0-300 ms), as was the frequency band of
interest (0-80 Hz, simulated waveform of 20 Hz). A Hanning taper was applied to the
time series. We used three different forms of functional priors (MNE, EBB and MSP)

and two sets of anatomical priors (cortical and combined models). Sample inverse
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solutions for all six prior combinations are shown in Figure 2.4A. We carried out 30

iterations of each hippocampal and cortical simulations at each SNR level.

Dipole Localisation Error Analysis

In order to provide a frame of reference between the model evidence based approach
and other simulation studies we also calculated the dipole localisation error (DLE).
The DLE equates to the distance between the true simulation location and source
distribution maximum of the inversion. The latter was defined as the peak in the
estimated primary current density matrix. We calculated DLEs separately for the
combined and the cortical models used to invert 30 hippocampal and (random) cortical

simulation scenarios using EBB.

Results

Variance Explained and Free Energy

In order to demonstrate the basic logic behind our analysis Figure 2.4A shows a
representative single-simulation source reconstruction for each combination of
anatomical and functional priors. We can compare the algorithms qualitatively with
respect to accuracy and complexity because we know the true source location. Spatial
accuracy can be assessed by looking at how far the simulation vertex (red circle) is
from the peak (darkest vertex) of the estimated current distribution. The complexity is
reflected in the spread of the source estimates. Note that when the correct anatomical
model is used (Figure 2.4A, top row), for EBB and MSP, the source estimates are
generally accurate and focal. The increase in complexity (most noticeable for MSP
and EBB) in the bottom row (inversions using just the cortical model) occurs because
it takes more non-hippocampal sources to describe MEG data arising from a single
hippocampal source. The simulation used here has sensor-level SNR -5 dB and zero

co-registration error added.

We find that as expected, MMN gives the most diffuse solution and MSP and EBB
give the most focal. Nonetheless, it is encouraging to note that although the algorithms
have different functional assumptions, the estimated activity is in approximately the

same place throughout.
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In contrast to F, variance explained is not penalized for complexity and consequently
is not discriminative of the correct model. Figure 2.4B illustrates the mean percentage
of variance explained over 30 iterations of hippocampal simulations with SNR -5 dB
whereas Figure 2.4C illustrates the mean Free energy. Note that the mean variance
explained is >99.5% for all algorithms, and that the best model in terms of Free energy
(MSP) does not explain the most variance. This is because there is less over-fitting of
the noise.

Given that the Free Energy values do not rely on information about the true source
location, it is ideally suited for evaluation of empirical as well as simulated data. For
example, it has been shown that Free energy correlates with cross-validation accuracy
as demonstrated by machine learning evaluations (Penny and Roberts, 1999), and
with conventional reconstruction evaluation measures such as dipole localization error
(Belardinelli et al., 2012). Although we do have access to the ground truth in these
simulations, we will nonetheless rely on Free energy as a goodness of fit criterion but
also evaluate the dipole localisation error for comparison. The main focus will be
evaluation of two forms of Free energy differences, shown in Figure 2.4C. The bars
encode mean Free energy values over 30 iterations of hippocampal simulations with
SNR -5 dB. We first compare anatomical priors by subtracting the two Free energy
values obtained using different anatomical models with the same algorithm. This is
shown for MSP where AF anatomical = Feombined - Feortical. We then compare functional priors
by subtracting the two Free energy values obtained using the same anatomical model
but different algorithms. For example, comparing Free energy with the combined
model using EBB and MSP: AFunciiona MSP vs EBB = Fusp — Fege. This metric tells us
how good the functional assumptions are (how smooth/sparse etc.), because the data
and anatomical model are constant (the results of these tests are shown in Figure
2.11).

The main emphasis of this paper is on AFanawomica, OF quantifying hippocampal
engagement probabilistically through comparison of generative models. With respect
to single-simulation AFanawomical Values corresponding to solutions shown in Figure
2.4A we find that for all three algorithms, the combined (true) model has a higher F
than the cortical model (single simulation AFanatwomica MMN = 1.4, EBB = 10.6, MSP =
73.2). We find that the average AFanatomical Values across 30 simulations (Figure 2.4C),
are somewhat similar (mean AFanatomica MMN = 1.0, EBB = 6.0, MSP = 23.1). Note that
only EBB and MSP pass the significance threshold of 3 (log units). Thus, even without
knowledge about true simulated source locations, Bayesian model comparison can

distinguish between anatomical models, and thereby be used to infer whether the
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source location is hippocampal or not. Interestingly, in this example EBB appears
(from the source level maps) to perform equally well for both anatomical models. One
explanation for why the peak of the cortical model solution appears to be infon the
hippocampus when it is not explicitly modelled (Figure 2.4A), is that the cortical and
hippocampal mesh surfaces are very close together (see Figure 2.3B). Since EBB
can distribute variance across all source vertices, those on the medial temporal lobe
could therefore appear hippocampal. This issue is directly addressed later in Figure
2.8. Note that the performance of algorithms with certain models is a separate question

from AF anatomical,
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Figure 2.4: Sample source reconstructions and model comparison.

A) Single-trial reconstructions of a hippocampal source (red circles) with MNE, EBB and MSP
priors using the combined model (top row) and the cortical model (bottom row). EBB and MSP

accurately capture the true source location. Glass brains show estimated current source
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density with the grey scale proportional to the darkest (maximally active) vertex location.
Sample source simulated with SNR -5 dB and no co-registration error. B) Variance explained
by different anatomical and functional priors. Bars encode mean percentage variance
explained across 30 hippocampal simulations (+SEM). Note that the y axis only spans 99-
100%. For this metric there was no significant differences between models with EBB (t(29) =
1.0842, p = 0.287) or MNE (t(29) = 0.1591, p = 0.875). For MSP in contrast, there was a
significant difference in the percentage variance explained (t(29) = -8.6310, p < 0.001), but
favouring the incorrect (cortical) model. C) Bayesian model comparison methods. Free energy
(F) is used to approximate model evidence. Bars encode mean Free energy values over 30
simulations, normalized to MNE cortical. Differences between anatomical priors we denote

AFanatomical Whereas differences arising from different functional priors we denote AFunctional.

Anatomical Model Comparison

We evaluated two variations of the same basic generative model, one that included a
nested hippocampal manifold and one that did not. To verify that the combined model
helps to explain hippocampal activity, we simulated hippocampal sources and
compared the Free energy values obtained with the two anatomical models (AFanatomical
= Fcombined - Feortical). We observed that as expected, the combined model increased
model evidence. Figure 2.5A shows the positive AFanatomicar Values from across 30
simulated hippocampal datasets with SNR of -5 dB and zero co-registration error. As
a first control, we tested whether this improvement was anatomically specific or could
be driven by an increase in vertices regardless of the source location. We therefore
simulated cortical sources and evaluated them in the same way before. The cortical
sources were randomly distributed across the cortical mesh and again the simulation
locations equated to (30 of the cortical) MSP priors. Given that the locations of the
cortical priors (sparse or mesh-wide) were identical in the cortical and combined
models, we expected to find no difference in model evidence between anatomical
models. Figure 2.5B shows the null AFanaomical Values for data simulated on the cortical

surfaces.

In order to derive a conservative bound on whether the models differed significantly,
we computed the the Bayes Omnibus Risk (BOR) which quantifies the probability
that the null hypothesis (that there is not a true difference in model frequency of
winning) is true and any observed differences between models observed are due to
chance (Rigoux et al., 2014). Table 1 shows the mean Free energy differences and

accompanying BOR values across all algorithms tested for the hippocampal and
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cortical control simulations. The mean Free energy difference must be above three
while the BOR must be below 0.05 to reach significance (i.e. conclude that the
results are only 5% likely to have been obtained by chance). While MSP and EBB
both have a mean Free energy difference above 3 and a significant BOR value (and
thus show significantly improved model fits with the combined model), the MNE Free
energy mean does not surpass significance although the BOR is significant. For the

cortical simulations, none of the mean nor BOR values reach significance.

Table 1: Bayes Omnibus Risk values for hippocampal and cortical simulations

Hippocampal simulations Cortical simulations
Free energy BOR Free energy mean BOR
mean
MSP 23.09 <0.001 -0.0490 0.8011
EBB 6.01 <0.001 0.0951 0.7930
MNE 1.04 <0.001 0.0642 0.7862
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Figure 2.5: Anatomical model comparison for hippocampal and cortical (control)

sources.

A Dots show AFanatomical = Fcombined - Feortical Values for sources simulated on the hippocampus.
AFanatomical IS poOsitive because the combined model explains more data using fewer
(hippocampal) priors. The black line marks zero where there is no difference between models.

The green line marks a positive difference of 3 which, because F is on a log scale, means that

80



the combined model is >20 times more likely than the cortical. MSP outperforms the other
algorithms while MNE fails to reach significance. B Shows the results for the simulated cortical
sources or control condition (note that here exactly the same comparison between full and
cortical models is made). There is little if any difference between models because the models
contain the same cortical mesh (all 10595 cortical vertices for EBB and MNE) or cortical priors
(90/100 priors for MSP where the hippocampal priors are redundant and therefore pruned away
in the combined model). For the 30 hippocampal and 30 cortical simulations shown, SNR is -

5 dB and no co-registration error is added.

Effect of Co-registration Error

We then examined the effect co-registration error on our ability to identify the correct
model. To do this, we simulated co-registration error by adding 0, 1, 2 or 3 mm
standard deviation of error to each of three fiducial locations in each of three
dimensions before inverting the model (see Figure 2.2B). Note that the shift and data
were always the same for the two models. Figure 2.6A-C shows the model evidence
differences obtained for the 30 hippocampal simulations described previously but with
different levels of co-registration error. As expected, AF decreases as co-registration
error increases, demonstrating that uncertainty about head location compromises our
ability to evaluate and discriminate between models. We also found that the variability

of AF values increases, illustrated most clearly with MNE (Figure 2.6C).

To quantify this we used a random effects analysis (Stephan et al., 2009) to estimate
the probability that the correct (combined) model would win given a randomly drawn
simulation run (grey lines, Figure 2.6D-F). Consistent with the model evidence
difference decreases in the top panel, this probability decreases as co-registration
error increases. If we were to select a dataset at random, we would expect to make
the correct decision ~95% of the time with MSP, regardless of co-registration error.
With the EBB this chance would decrease to ~75% at 3 mm of error and with MNE,
we would be at chance level with 2 mm of error. One problem with this inference is
that there is an underlying assumption that one model is better than another. In order
to derive a (conservative) bound on where the models differed we again computed the
the Bayes Omnibus Risk (BOR) which quantifies the probability that the null
hypothesis is true and that differences between models observed occurred by chance
(Rigoux et al., 2014). BOR probabilities (green lines in Figure 2.6D-F) of less than
0.05 (red lines) mean that the null hypothesis can be rejected. This showed that just 3

mm of co-registration error abolishes our ability to distinguish between models with
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EBB and MNE. In sum, increased co-registration errors of ~3 mm or larger blur out

existing differences between the anatomical models. Note that these co-registration

errors are often observed and most often exceeded in conventional MEG recordings.

Moreover, the closer the functional prior to the ground truth (compare MSP and MNE),

the more robust it will be to co-registration error.
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Figure 2.6: Effect of co-registration error on anatomical model comparison.

Inversion results from simulated hippocampal dipoles with SNR -5 dB and 0, 1, 2 or 3 mm

standard deviation of error added to each of three fiducial locations in each dimension. Top

panel (A-C): Dots represent AFanatomical fOr the same 30 simulations at each co-registration

error level. There is an increase in number of negative AFanatomical Values (false negatives) as a

function of co-registration error. Green line marks the significance threshold of 3, black line

marks no difference. Y-axes of EBB and MNE plots are adjusted for visibility. Lower panel (D-

F) is structured in the same way but depicts two measures of the reliability of the model

comparisons shown above. Grey line marks the expectation of the posterior; the probability

that the combined model supersedes the cortical model. Green line marks the Bayes Omnibus

Risk, the probability that anatomical model frequencies are equal (i.e. there is no difference

between models); we can reject this null when this metric is below 0.05 (red line).
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Effects of Co-registration Error and Sensor-level SNR

We next investigated the interaction between sensor level noise and co-registration
error. We added different amounts of uncorrelated white noise to obtain 0, -5, -10, -15
and -20 dB SNR at sensor level. Figure 2.7 takes the same form as Figure 2.6 but
includes an SNR dimension. The upper panel shows mean AFanatomica over 30
hippocampal simulations where positive values show evidence in favor of the
combined model. As expected, we find that as both co-registration error and noise
increase, AFanaomica decreases. The lower panel shows the Bayes Omnibus Risk
guantified based on 30 hippocampal simulations at each combination of SNR and co-
registration error. Green bar tops mark values BOR<0.05 where we can reject the null
hypothesis that the models are equivalent, red bar tops mark the opposite (i.e. no
difference between models). In general, we find that poor SNR is less detrimental to
our ability to distinguish sources than co-registration error is. As before, we conclude
that co-registration error must be <3 mm to make reliable identification of hippocampal
activity with EBB and MNE. As expected (or defined by our simulations), the MSP
outperforms the other two algorithms at all levels of co-registration error and SNR
tested here.
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Figure 2.7: Effects of noise and co-registration error on anatomical model comparison.
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The figure is similar to figure 6 with an added dimension of noise. Top panel (A-C) shows
negative effects of co-registration error and noise: AFanawomical decreases as a function of either.
Each bar encodes average AFanawomicar Of 30 reconstructed hippocampal simulations. Lower
panel (D-F) shows roughly the same effects on the Bayesian Omnibus Risk, the risk that
anatomical model frequencies are equal. Co-registration error above 0 and 1 mm are
detrimental for MNE and EBB respectively. Green and red bar tops mark signify when the null
(that there is no difference between models) can be rejected (BOR values <0.05) and not
rejected respectively.

Closest Cortical Neighbours

As spatial resolution decreases rapidly with depth in MEG, there is a risk that higher
Free energy values for the combined model could arise from nearby but non-
hippocampal sources, yet be misinterpreted as hippocampal activity through the
inference.

We tested this by simulating activity on the nearest cortical vertices to each of the 30
hippocampal vertices used in the original simulations and inverting these data with
both the cortical and combined models to calculate model evidence difference for each
location. Reassuringly, we found the average AF for the closest cortical neighbour
simulations to be non-significant (mean 1.75, BOR<0.001) (Figure 2.8A, grey dots).
Conversely, the hippocampal simulations gave positive and significant (AF>3, mean
6.01, BOR<0.001). The average distance between neighbouring hippocampal and
cortical vertices was only 2.14 mm (Figure 2.8B).
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Figure 2.8: Closest cortical neighbour analysis.

A Orange dots reflect AF when activity is simulated on the hippocampal mesh (30 different
sources shown here). Grey dots reflect AF when activity is simulated on the cortical surface
but centred at the nearest cortical vertex to its hippocampal neighbour. Dots are vertically
aligned in pairs (or neighbours). Simulating hippocampal simulations sources gives significant
(>3, green line) AF values whereas simulating on the nearest cortical neighbour does not.
Parameters used were no co-registration error, SNR -5 dB and EBB. B Simulation locations
visualised on two views the hippocampal mesh. Orange dots are on the hippocampal surface,

grey are on the cortical surface (not visualised).

Effects of Translating the Hippocampus

To ensure that Free energy differences were specific to the correct model and not
simply to having a deep structure added, we carried out a set of inversions with models
that had the hippocampal slightly offset relative to the correct location. For this
analysis, we used the same simulated hippocampal data as described previously (i.e,
activity simulated on the hippocampal surface in its original location), but inverted
these data using combined anatomical models with the hippocampal mesh slightly
offset from the correct location (0.5, 1, 1.5 and 2 cm shifts) in three dimensions
(medial-lateral, anterior-posterior, dorsal-ventral), and two directions (+ and -) giving
24 different shifted models (Figure 2.9). Note that the cortical portion of the combined
model stayed the same. We focused here on EBB because its performance was mid-
range and because it does not require specification of priors. We used simulations
with SNR -5 dB. We inverted each of the 30 datasets with each of the 24 shifted
models and compared the resulting Free energy values to those obtained with the
standard cortical model as well as standard combined model. Only in cases where
there is no translation (i.e. the correct combined model is used, middle bars), or there
is 0.5 cm lateral translation, is the model comparison significant (all BOR values are
significant, Table 2). This demonstrates specificity of the model comparison approach,
and the ability to identify the correct model among a set of subtly offset alternative
models. In other words, despite the physical overlap between surfaces when the
hippocampus is translated, the disparity in the surface orientations mean that these

shifted surfaces are poor generative models.

Table 2 shows the BOR values accompanying the translated mesh analysis. In all cases, the
BOR is significant but only in the no shift and 0.5 cm lateral shift conditions is the mean Free
energy difference between the two models greater than 3 (light green line, Figure 2.9).
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Table 2: Bayes Omnibus Risk values for hippocampal translations

0 2cmM 15cmM 1ecmM 05cmM no shift 0.5cmL

1cmlL

Hippocampal mesh shift

1.5cmL 2cmlL

Figure 2.9: Effect of shifting the hippocampal mesh on Free energy.

BOR 2cm 1.5 lcm 0.5 No 0.5 1cm 15 2cm
cm cm shift cm cm

Medial- <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.009
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We compare different combined models with shifted hippocampal meshes to the standard

cortical (hippocampus-free) model. Bars represent AF = mean Fshited — Fcorticar Of 30 different

hippocampal simulations for the particular shifted model. Top panel shows medial-lateral shifts,

middle panel anterior-posterior, bottom panel up-down. While no shift (combined — cortical)

gives a significant AF value, shifting the hippocampus in any dimension or direction renders

the model comparison non-significant. AF = 3 is taken as a significance threshold and marked

in green.

Dipole Localisation Error
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We also performed more traditional analysis by calculating the dipole localisation error
(DLE) between simulated and recovered sources (Figure 2.10). Both the average DLE
and its variance increases as co-registration error increases (A) and SNR decreases
(B). Furthermore, we found that in accordance with our Free energy results (Figures
2.6 and 2.7), DLE is more affected by co-registration error than by SNR. By definition,
DLE can only be calculated when the true source location is known, i.e. in simulations.
Critically therefore, the correspondence between the DLE and Free energy supports
the notion that Free energy is valid and informative when the true source location is

not known, i.e. in empirical data.
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Figure 2.10: Dipole localisation errors as a function of co-registration error and SNR

when sources are hippocampal.

A) Mean dipole localisation error (+SEM) against co-registration error. SNR of -5 dB. Dotted
yellow lines show results for EBB using the cortical model; orange solid lines used for
combined. For the combined mesh, DLE and variability starts to increase >1 mm co-registration
error. B) Mean dipole localisation error (tSEM) across SNR levels. For the combined mesh,

both error and variability increases with noise >15 dB. No co-registration error added.

Furthermore, we quantified how often the hippocampal simulations have source
distribution maxima on the hippocampal mesh (the true positive rate or sensitivity),

and how often cortical simulations have maxima on the cortical mesh (the true
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negative rate or specificity). At SNR -5 dB and no co-registration error, we find that the
sensitivity is 93.33% and specificity is 100%. The full table of sensitivity and specificity

values across all co-registration error and SNR levels is shown below:
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Table 3: Sensitivity and Specificity values across co-registration error and SNR levels

0 mm co-registration error

SNR (@dB) | 0 -5 -10 -15 -20
Sensitivity | 93.333 | 93.333 | 93.333 | 93.333 | 76.667
Specificity | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
1 mm co-registration error
SNR (@dB) | 0 -5 -10 -15 -20
Sensitivity | 93.333 | 96.667 | 93.333 | 93.333 | 80.000
Specificity | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
2 mm co-registration error
SNR(@B) | 0 -5 -10 -15 -20
Sensitivity | 90.000 | 86.667 | 76.667 | 90.000 | 76.667
Specificity | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
3 mm co-registration error
SNR(dB) | 0 -5 -10 -15 -20
Sensitivity | 80.000 | 66.667 | 66.666 | 56.667 | 50.000
Specificity | 100.00 | 96.667 | 100.00 | 100.00 | 96.667

Multiple Sources

One further question is whether this approach is robust to situations
containing a mixture of cortical and hippocampal sources. Reconstructing
concurrent sources in the model comparison framework revealed that even
when a single hippocampal source is simulated along with three cortical
sources, the model comparison framework can (in some cases) be used to
identify the hippocampal activity. Figure 2.11 shows the relationship between
ratio of cortical-to-hippocampal sources and AFanatomical. AS expected, the
proportion of hippocampal activity correlates with Free energy differences:
Four cortical sources (Free energy mean -0.0139, BOR 0.814), three cortical
and one hippocampal source (Free energy mean 0.7934, BOR 0.191), two
cortical and two hippocampal sources (Free energy mean 1.491, BOR
<0.001), one cortical and three hippocampal sources (Free energy mean
1.900, BOR <0.001), four hippocampal sources (Free energy mean 4.366,
BOR <0.001). Importantly this analysis also acts as a second validation of the
claim that (multiple) purely cortical sources (condition 4C) do not benefit from
the addition of the hippocampal mesh (Figure 2.5B).
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Figure 2.11: Simultaneous sources.

To test whether the model comparison framework would generalise with more than one dipole,
we simulated four simultaneous dipoles at different ratios of cortex (C) to hippocampus (H).
Orange dots represent 30 AFanatomical Values with 10 root mean square (rms) noise added. Blue
line shows mean Free energy difference. We added no co-registration error to these
simulations. As the proportion of hippocampal sources increases, the Free energy differences
increase. To add noise, we simulated band-limited white noise waveforms between 1-80 Hz
for 300 ms. The effective dipole moment for cortical sources was set to 100 nAm and 200 nAm
for hippocampal sources (Attal et al., 2012; Murakami and Okada, 2015, 2006). The simulation
locations were the same as used previously (which were drawn at random). Each simulated
dataset had a sampling rate of 600 Hz with the sensor-level white Gaussian noise level now
defined as an absolute value of 10 root mean squared (rms). Due to the range of frequencies
simulated, we used 16 temporal modes to model the data. We added no co-registration error

to these inversions.

Differences Between Functional Priors

We then asked whether we can use the simulated datasets to directly compare the
performance of the functional, as opposed to anatomical, priors. To do this, we looked
at the Free energy values obtained with the combined model and compare these
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values across algorithms. Given the same data and anatomical models, the
differences therefore reflect the appropriateness of the assumptions related to the
source covariance, and not, as before the physical locations of potential sources. The
AFuncional IS defined as the difference between given algorithm and the algorithm which
returns the smallest Free energy value (so for the worst algorithm this difference will
be zero). Figure 2.12 shows the mean AFuncional from the 30 hippocampal simulations,
across SNR levels (A), and co-registration error levels (B). We found that the most
likely functional prior is MSP for all SNR levels and that the second best algorithm is
EBB throughout. This implies that EBB has a good empirically-based estimate of
source power even at low SNRs and high co-registration error, considering that it does

not have the advantage of MSP where a small sub-set of sparse priors pre-specified.
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Figure 2.12: Functional model comparison.

Functional model comparison. This analysis compares combined models across algorithms,
meaning that we compare the functional, as opposed to anatomical, priors. Given that data

and models are constant, the differences in Free energy reflect the appropriateness of the
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assumptions related to source covariance. A) Model comparisons of combined models across
algorithms as a function of SNR. Bars encode mean functional Free energy difference (Faigorithm
— Fworst aigorithm) Of 30 hippocampal source inversions. Results are normalized to smallest mean
functional Free energy difference at each SNR value. Results are for the combined model
without co-registration error. The most likely functional prior is MSP for all SNR levels tested,
and the second most likely is EBB throughout. This implies that EBB has a relatively good data-
driven estimate of source power, even at low SNR (considering that it does not have the explicit
advantage of MSP where a small subset of correct and sparse priors are used to constrain the
source space). B) Same as A, but as a function of co-registration error. Results are similar to
SNR range, implying that the model comparison differences are driven by differences in the
model evidence values associated with the combined (compared here), and not the cortical
models. SNR set to -5 dB throughout.

Discussion

We demonstrate a new method for making probabilistic statements specifically about
hippocampal engagement in MEG. We show that in order to reliably infer hippocampal
activity through comparison of two generative models, one with and one without the
hippocampus explicitly modelled, uncertainty about the location of the brain relative to
the sensors must be less than 3 mm. Notably, this rather stringent criteria applies only
when one wishes to make a specific case for hippocampal (rather than medial
temporal) involvement.

This approach works because a model without the hippocampus explicitly modelled
will be sub-optimal in the sense that it provides a less-parsimonious solution to explain
the same amount of data. Consequently, this model will be penalized in terms of its
model evidence. Therefore, although the cortical and combined models may explain
the same amount of variance in the data (Figure 2.4B), the cortical model must use
more sources to do so, consequently returning a lower Free energy value (Figure
2.4C).

The most immediate advantage of the Bayesian model comparison method is that it
allows us to make use of much more information when making the same inference.
For example, instead of simply looking at the location of the peak in an image, we can
use a generative model to test whether the orientation of the source is what we would

have expected.

One important caveat is that our inference is only as good as our models. So for

example if the true activity arises from a neighbouring structure (such as the
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amygdala) and we have not specifically included a model of the amygdala then we
may make incorrect inference. The level of detail required is also an empirical
guestion. It would be interesting to test whether for real data we can distinguish
between canonical and individual models of the hippocampus (similar to work on the
cortex, see (Henson et al., 2009; Troebinger et al., 2014a)). We are encouraged by
the sensitivity of our inference to hippocampal location (Figure 2.9). Here we have
focused on the distinction between cortical and hippocampal surface sources (Figure
2.5, Figure 2.8) but we hope to eventually incorporate structural features of
hippocampal subfields and close-by structures (retrosplenial cortex, parahippocampal
cortex, entorhinal cortex, amygdala, etc) into the modelling of neuronal current flow.
This would allow the uncertainty to be further reduced and for us to begin to distinguish
between subcortical structures in MEG and study their real-time interactions.

Although the spatial resolution is inevitably poorer at deep locations in the brain
(Hillebrand and Barnes, 2002), we have shown that the approach presented here is
sensitive enough to discriminate between hippocampal and neighbouring cortical
sources, even when these are as close together as ~2 mm (Figure 2.8). We attribute
this discriminability to the different orientations of the local surfaces which give us
leverage to distinguish between models not commonly available in more traditional
voxel-wise inference where only location information can be used. As such, Bayesian
model comparison is distinct, and complementary to standard group level voxel wise
statistics in which we traditionally look for a peak location within a specific structure.
The key difference being that for each subject we have anatomical models which
constrain not only source locations but also orientations (and potentially in the future
expected current densities (Helbling et al., 2015)) which give us an extra dimension
through which to distinguish between models.

With respect to the central question of whether significantly higher Free energy for the
combined model is specific to hippocampal activity, we conclude that it is. This is
supported by four lines of converging evidence: a) Free energy is not higher for the
combined model when the source(s) is/are cortical (Figure 2.5B and Figure 2.11), b)
simulating activity on the nearest portion of medial temporal lobe does not give rise to
significant Free energy differences (Figure 2.8), c) the maximum Free energy
difference is specific to the correct location of the mesh and falls below significance if
the mesh is shifted (Figures 2.9), and d) using the combined mesh, the dipole
localisation error is close to zero at low co-registration error and high SNR (Figure

2.10). Thus, the extent to which Free energy differences can be used to infer
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hippocampal activity is dependent on the accuracy of the solution obtained with the
combined model. Largely irrespective of the SNR level, the most important empirical
factor when attempting to unambiguously determine the presence or absence of
hippocampal activation is minimization of co-registration error. Notably, we base the
detection of hippocampal on six cycles of oscillatory activity here (20 Hz simulation
frequency and 300 ms duration). Having more data would increase the detectability
by improving the SNR (Brookes et al., 2008).

We simulated data using one set of functional priors (suited to MSP) and reconstructed
using two other commonly used assumption sets (beamforming and minimum norm).
As one might expect, the MSP performs the most robustly and sensitively. This is
unsurprising, given that the simulated activity was sparse, a characteristic that
matches with the MSP assumptions. Another important point is that we pre-selected
the correct set of priors (spatial patches) for MSP and therefore side-stepped a
potentially computationally intensive search over possible patches which would be
necessary for empirical data (for example see (Troebinger et al., 2014a) where we
used 32 random patch sets per dataset and cortical model). This means that while
MNE and EBB had the same large search space, only MSP was given priors to start
the search from which exactly matched the actual simulation location. Overall we
were encouraged to find that all the functional assumptions showed a preference for
the correct anatomical model (Figure 2.3B-D) and gave somewhat similar estimates
of the true source distribution (Figure 2.4A). Importantly, as the true functional priors
will never be known, the Free energy equation (Equation 1.16) also allows us to select
the most likely functional priors (Figure 2.12). Given that the EBB algorithm did not
have the advantages of the reduced MSP prior space, yet performed well, and given
the wealth of previous hippocampal studies using volumetric beamformers (Cornwell
et al., 2012; Guitart-Masip et al., 2013; Kaplan et al., 2012b; Poch et al., 2011), we

think this is a promising avenue for further work.

It is important to consider the main limitations and assumptions of using Bayesian
model comparison and Free energy. Firstly, as is true for any model comparison
scheme, we cannot evaluate how good the individual models are in absolute terms;
we can only infer how good they are relative to one another. It is therefore not possible
to make inferences or predictions about whether alternative models might be better
without testing these models. In addition, there is a risk of having local maxima in the
cost function (in this case the Free energy) if the number of sources and/or hyper-
parameters is very large (Wipf and Nagarajan, 2009). This would mean that models

could converge on non-optimal solutions and thereby render the Free energy value an

%94



invalid reflection of the model or algorithm’s optimal parameter settings. However,
using simulated data, it has been shown elsewhere that Free energy correlates with
cross-validation accuracy using machine learning approaches (Penny and Roberts,
1999), and with conventional reconstruction evaluation measures such as dipole
localization error (Belardinelli et al., 2012). We also find this in our data (Figure 2.10).
It follows that maximization of Free energy can be used to fine-tune features of the
generative model used for analysis, such as number of equivalent current dipoles
(Kiebel et al., 2008), forward model (Henson et al., 2009), or cortical layer giving rise
to the measured signal (Troebinger et al., 2014a). However, perhaps the greatest
advantage of Free energy is that it provides a framework for reliably evaluating
hypotheses without knowledge of ground truth.

Here we have evaluated algorithm performances for a set of specific perturbations
from ideal conditions. We emphasize that there are parameters which we have not
fully investigated the effects of. For example, it would be interesting to evaluate the
algorithms using different types of correlated noise (although see Figure 2.11 in which
correlated noise is effectively introduced through multiple sources). Ultimately, there
are therefore still unresolved questions related to the assumptions implicit in the
algorithms and simulation parameters used here. Nonetheless, we show that
irrespectively of these, source reconstruction of hippocampal activity depends upon
accurate co-registration between MRI and MEG data.

The outstanding issue therefore is whether the proposed generative model will be
useful in practice. We know from these simulations that the main empirical constraint
will be co-registration error which we can now reduce down to <1.5 mm using flexible
and subject-specific head-casts for MEG. Moreover, the head-casts reduce head
movement during recording to <0.4 mm which gives way to higher SNR data. We are
now working on providing empirical validation of the model comparison approach
presented using these devices (Troebinger et al., 2014b) conjunction with a paradigm

known to modulate hippocampal activity (Doeller et al., 2008).

The roles of the hippocampus in cognition has been emphasized in both humans (for
example, Burgess et al., 2002; Lega et al., 2012; Rutishauser et al., 2010; Zhang and
Jacobs, 2015) and animals (Kahana et al., 2001; Logothetis et al., 2012). Our work
shows that by optimising acquisition protocols such that co-registration error is
minimized and SNR is maximised, e.g. by using head-casts (Troebinger et al., 2014b),
we have the ability to selectively study hippocampal dynamics in humans non-

invasively.
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Key points

e We demonstrate a method for quantifying hippocampal engagement
probabilistically using simulated hippocampal activity and realistic anatomical
and electromagnetic source modelling.

¢ We constructed two generative models, one which supports neuronal current
flow on the cortical surface, and one which supports neuronal current flow on
both the cortical and hippocampal surfaces.

e Using Bayesian model comparison, we could then infer for any given dataset
which of the two models provided a more likely explanation of the data.

¢ In addition, we tested the robustness of this inference by adding co-registration
and sensor level noise.

o We found that the framework is sensitive to hippocampal activity when co-
registration error is <3 mm and the sensor-level signal-to-noise ratio (SNR) is
<-20 dB.

e These level of co-registration error and SNR can now be achieved empirically

using recently developed subject-specific head-casts.

This chapter derives from Paper 1: “Using MEG generative models to make
probabilistic statements about hippocampal engagement” Sofie S Meyer, Holly
Rossiter, Matthew Brookes, Mark Woolrich, Sven Bestmann, Gareth R Barnes (under

review, Neurolmage).
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Chapter 3

Experiment 2: Flexible Headcasts for High Spatial
Precision MEG
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Precis

In combination with magnetoencephalographic (MEG) data, accurate knowledge of
the brain’s structure and location provide a principled way of reconstructing neural
activity with high temporal resolution. However, measuring the brain’s location is
compromised by head movement during scanning, and by fiducial-based co-
registration with magnetic resonance imaging (MRI) data. Each factor contributes in
the order of 0.5 cm of error which is propagated into the forward model. Here, we
present a method for stabilizing and repositioning the head during scanning, and co-
registering MRI and MEG data with low error. Using this new flexible and comfortable
subject-specific head-cast prototype, we find within-session movements of 0.25 mm
and between-session repositioning errors around 1 mm. Further, we empirically

demonstrate high precision source level reproducibility.

Introduction

In theory, the spatial precision attainable with magnetoencephalography (MEG)
increases monotonically with increasing signal strength (Gross et al., 2003; Hillebrand
and Barnes, 2005, 2003). In practice however, this increase is difficult to achieve. Two
of the main limitations are co-registration between functional MEG data and
anatomical magnetic resonance imaging (MRI) data, and head movement during
scanning. Both introduce, at best, ~0.5 cm of uncertainty about the location of the head
relative to the sensors (Adjamian et al., 2004; Gross et al., 2013; Ross et al., 2011,
Singh et al., 1997; Stolk et al., 2013; Whalen et al., 2008). Both sources of error non-
linearly compromise the forward modelling accuracy (Hillebrand and Barnes, 2011,
2003), and reduce the signal-to-noise ratio (SNR) through topographical blurring
(Medvedovsky et al., 2007; Uutela et al., 2001).

Although some progress has been made in minimizing co-registration error (Hironaga
et al., 2014; Koessler et al., 2011; Nunez and Silberstein, 2000; Whalen et al., 2008),
for example by stabilizing the head during recording (Adjamian et al., 2004; Singh et
al.,, 1997), or compensating for movements both during and after recording
(Medvedovsky et al., 2015, 2007; Nenonen et al., 2012; Stolk et al., 2013; Uutela et
al., 2001), implementation problems have remained. The sources of residual error

include misalignment of surfaces, amplification of small placement errors at the front
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of the head to large errors at the back of the head, and/or reliance on invariance in
fiducial placement within and across experimenters and subjects (Adjamian et al.,
2004).

Using 3D printing to create solid head-casts which are moulded to the surface of the
head internally and to the inside of the MEG dewar externally, we recently showed
reduction of co-registration errors to <2 mm (Troebinger et al., 2014a, 2014b).
Although these first solid head-casts gave access to much higher quality data by
minimizing both co-registration error and head movement, they covered the eyes and
their rigidity reduced patrticipant comfort, particularly for long recording sessions. Here,
we present a new head-cast prototype made of flexible polyurethane foam which
leaves the eyes uncovered, and is easier, safer, and more comfortable to use. The
improved user comfort is primarily because of the flexibility which makes it easier and
faster to get into and out of the MEG helmet. Furthermore, the 3D printing is now
based on an MRI image (as opposed to an optical scan used in Troebinger et al.,
2014a and 2014b) which both maximise the accuracy with which the cast fits the head,
and minimizes co-registration error by predefining the MEG fiducial coil locations in
MRI space. We describe the construction pipeline, the within- and between-session
head movement for subjects wearing these head casts, and assess the estimated co-
registration error. We then show how these improvements give rise to very high

between-session reproducibility at source level.

Hypothesis and objectives

Hypothesis: If co-registration error and movement of the head during data recording
can be minimized, then spatial precision and data reproducibility will be maximised. If
subjects can be re-positioned consistently, and maintain a stable head position
throughout normal-length scanning sessions, then it will be possible to build up high-
SNR datasets through repeated scanning of single subjects. If this is true, then non-
varying electrophysiological responses should be consistent across re-positionings

and scanning days.

In addition to maximising data quality through stabilization and reliable re-positioning
of the head relative to the sensors, the objective of this chapter is to design the head-
casts such that subject comfort and safety are improved relative to the first head-cast

prototype.
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Methods

This section is divided into two parts. First, we describe the methods used for building
head-casts. Next, we describe the scanning procedures for evaluating the head-casts

with respect to head stabilization, co-registration, and spatial precision.

Participants

Data were collected from five healthy adult subjects (5 men, mean age 30.0 years
old). All subjects were right-handed and had no history of neurological or psychiatric
disease. One participant was excluded from the analysis because of recording errors.
Informed written consent was given by all subjects prior to scanning and the
experiments were carried out after obtaining ethical approval from the University
College London ethics committee (ref. number 5833/001).

MRI Data Acquisition

In order to construct the head-cast, an accurate image of the scalp surface is required.
To get this, we first scanned participants in a magnetic resonance imaging (MRI)
system (Figure 3.1a). Images were acquired using a Siemens Tim Trio 3T system
(Erlangen, Germany). During the scan, the participant lay in the supine position with
their head inside a 12-channel coil. Acquisition time was 3 min 42 s, plus a 45 s
localizer sequence. We were very cautious of skin distortions as any such errors could
potentially make the head-cast ill-fitting and therefore uncomfortable. For this reason,
participants were not given padding or ear phones, as these could displace the skin
on the face, head or neck. To minimize audible noise they were instead given ear
plugs. The short acquisition time minimizes motion and potential consequential
distortions. We used an radiofrequency (RF) and gradient spoiled T; weighted 3D fast
low angle shot (FLASH) sequence with the following acquisition parameters: image
resolution 1 mm?3 (1 mm slice thickness), field-of view set to 256, 256, and 192 mm
along the phase (A-P), read (H-F), and partition (R—L; second 3D phase encoding
direction) directions respectively. Susceptibility differences existing at air-tissue
interfaces can lead to magnetic field inhomogeneity and subsequent distortions or

signal loss in the acquired image. Therefore, to preserve brain morphology we used a
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single shot approach with high readout bandwidth (425 Hz/pixel) and minimum echo
time (2.25 ms). Consequently no significant geometric distortions were expected or
observed in the images. A short repetition time (7.96 ms) was used to minimise
acquisition time while the excitation flip angle was set to 12° to ensure sufficient signal-
to-noise ratio for the resulting anatomical image. To accelerate the acquisition, a

partial Fourier (factor 6/8) acquisition was used in each phase-encoded direction.

Head-cast Construction

The construction process can be divided into seven steps (Figure 3.1a-g). First, we
extracted the scalp surfaces from the MRI data using standard SPM12 procedures

(http://www.fil.ion.ucl.ac.uk/spm/) (Figure 3.1a). We then converted this tessellated

surface into standard template library (STL) format (Figure 3.1b), commonly used for
3D printing. To specify the shape of the fiducial coils, we used optical white light
scanning to obtain a 3D representation of a single coil. This was digitally drawn in 3D
and then checked for its accuracy both against the digital white light scan as well as
the physical coil, using digital measuring callipers. Next three copies of this virtual coil
were placed, as per convention, at the approximate nasion, left peri-auricular (LPA),
and right peri-auricular (RPA) sites. Note that this was not strictly necessary as any
set of distant scalp locations would have enabled the co-registration procedure. This
approach therefore does not suffer from inaccuracies in determining anatomical
landmarks, as is commonly the case when placing fiducial coils on the head during
MEG data acquisition. One constraint on the placement of the coils was ensuring that
the coil-body and extruding wire were flat against the scalp, in order to remove
unnecessary stress or movement of the coil when the head-cast was put on or taken
off.

The original design (Troebinger et al., 2014b) was altered so as to now include eye-
hole extensions, ear flaps which extend down below the ears, and a top spacing-
cylinder to accurately position the positive head model in the dewar-helmet (Figure
3.1c-f). The ear flaps facilitate getting into and out of the scanner more easily and
safely (see Safety Procedures for more details) and also provide an external reference

of when the head-cast is touching the top of the dewar. The virtual 3D model was thus
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placed inside a virtual version of the scanner dewar-helmet (Figure 3.1d) such that
the distance to the sensors was minimized (by placing the head as far up inside the
dewar as possible) while ensuring that vision was not obstructed. Next, the positive
head-model (plus spacing elements and coil protrusions) was printed using a Zcorp
3D printer with 600 x 540 dots per inch resolution (Figure 3.1e). The 3D printed head
model was then placed inside the manufacturer-provided replica of the dewar-helmet
and liquid resin was poured in between the surfaces to fill the negative space. The
resin expands and sets within ~30 s, and the resulting flexible foam constitutes the
subject-specific head-cast (Figure 3.1f). Note that the coil protrusions on the 3D print
now become indentations in the foam head-cast. The fiducial coils can thus be placed
inside the resulting indentations and the head-cast can be worn for scanning (Figure
3.1g). This removes inaccuracies in determining anatomical landmarks for fiducial

placement, and also ensures that the same location is used for repeated scans.

Figure 3.1: Overview of head-cast construction steps.
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a) Head surface is extracted from an anatomical MRI image using the standard SPM12
segmentation procedure. b) Head surface extraction is converted to a surface file and fiducial
coils are added. The coil locations are defined in MRI coordinates. c) A positioning cylinder at
the top of the head is added to the virtual model to define the position of the head inside the
head-cast. Eye extensions are added to enable vision during use. d) Using and adjusting the
positioning cylinder, eye extensions and ear extensions, the virtual head model is positioned
appropriately inside a virtual copy of the MEG dewar. e) The positive head model is 3D printed.
f) The 3D print is placed inside the manufacturer-provided dewar copy (as in d) and foam resin
is poured in to fill the gap between the printed positive head model and the dewar. The fiducial
coil protrusions on the 3D printed head result in small coil-shaped indentations in the head-
cast (the nasion coil is visible between the eye protrusions in the image). g) The subject can

now wear the flexible foam head-cast and enter into the (real) MEG dewar for scanning.

MEG Data Acquisition

MEG recordings were made using a 275-channel Canadian Thin Films (CTF) MEG
system with superconducting quantum interference device (SQUID)-based axial
gradiometers (VSM MedTech, Vancouver, Canada) in a magnetically shielded room.
The data collected were digitized continuously at a sampling rate of 600 Hz. We
refer to Safety Procedures for a description of the general operating and safety

procedures.

Experiment 1: Between-session variability

We first tested how consistently subjects could be repositioned within the MEG
scanner by asking them to reposition themselves in the scanner ten times. In addition
to measuring absolute location of the head-cast using the fiducial coils, we also placed
a reference coil on one side of the nose to measure relative displacements between
the head-cast and head. Each subject performed ten separate 10s trials. For each run,
the subject first positioned themselves inside the scanner with the head-cast on, sat
still for 10s, before and after which the fiducial coils were localized, and the subject
then exited the scanner and removed the head-cast. This removal and replacement

was repeated ten times.

In addition to the healthy subjects, we also performed a similar experiment using the
manufacturer provided spherical current dipole phantom. This experiment was done
in order to get an approximation to the system-based noise inherent in localization of

the fiducial coils and for comparison with the head-cast results. We did not have a
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head-cast for the phantom but kept the four fiducials fixed on the surface of it using
tape. To mimic the re-positioning, we physically shifted its location between ten 10

second ftrials.

Experiment 2: Within-session variability and button presses

To test the head movement within trials, we analysed head-position data from a single
subject (subject 3 from experiment 1) performing button presses across twelve 15-
minute sessions with 180 trials each. These sessions were spread over four days
(which were separated by several weeks) with three runs per day. Visual stimuli
consisted of dots moving left or right, with the participant responding with a button
press using the right hand, upon a subsequent Go signal. MEG data were acquired at
a sampling rate of 1200 Hz.

Data were epoched around the button press onset (time 0), and a beamformer
covariance matrix constructed based on the data from the beta band (15-30 Hz) from
-2000 to 2000 ms. To extract the source locations, beamformer-based volume-of-
interest (VOI) analysis was then carried out, comparing two time windows ([-1500 to -
1000] versus [500 to 1000] ms) to generate a statistical chi square volume centred on
the average left primary motor cortex peak (-34, -30, 52 mm in MNI space) with a 20
mm radius and 1x1x1 mm? grid resolution. The data were subsequently smoothed with
a full-width half-maximum kernel of 8 mm. We then constructed a time frequency
decomposition of the signal from the primary motor cortex sphere (centred around -
34, -30, 52 with 20 mm radius) using a Morlet wavelet transform method with 7 cycles
on the baseline ([-1500 to -1000] ms) corrected data.

Results

Between-session movement

To first establish how reproducible the absolute head position was when using head-
casts, we measured the fiducial coil locations across ten repositioning trials
(Experiment 1). We found that it was possible to reposition the fiducial coils relative to
the MEG system within 0.6 mm standard deviation in any one dimension (Figure
3.2a).
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Next we were interested in whether there is a risk of the coils moving with respect to
each other when the head-cast is taken on and off. We examined this by calculating
the standard deviation of the distances between fiducial coils across repositioning
trials. We found no such effect measureable as the standard deviations of the
distances were similar to the standard deviation of the absolute locations (Figure
3.2b). We found that when we repeated the experiment using a phantom (with the
coils fixed on the surface), we observed a similar level of variability, suggesting that
this error is due to uncertainty in the (MEG system’s) localization of the coils

themselves and not to coil movement.

Since the fiducial coil locations are recorded by the MEG system, changes in head-
position relative to the dewar during recording, although undesirable, can be
accounted for. A more pernicious source of error is relative movement of the head with
respect to the head-cast. To address this directly, we placed a reference coil on the
nose of the subject in order to measure the distances between this reference and the
standard fiducial coils (Figure 3.2c). Unlike with the previous analysis where there
was no difference between measurements made with the phantom and normal
subjects, we now observed an effect beyond measurement error. We found that the
variability in the location of the head-cast relative to the head was predominantly due

to uncertainty in the Z dimension of 1.2 mm standard deviation.

Next, we were interested in whether these differences in distances to the reference
coil could be attributed to differences in location along some spatial dimensions more
than others. Figure 3.2d shows that the most variable dimension is the Z (up-down)
dimension. Figure 3.2e shows the standard deviation of the reference coil with respect
to ‘head-centred’ space, meaning that the coordinate frame is defined by the three
standard fiducial coils. These values reflect how much the reference coil moved
around relative to the standard fiducial coils inside the head-cast in X (front-back), Y
(left-right), and Z (up-down) dimensions. We thus found that the main axis along which
additional variance occurs is the Z (up-down) axis (Figure 3.2d,e). Surprisingly, we
found this highest variation in the Z dimension to be true for both phantom and human
measurements. This suggests increased measurement uncertainty in this plane,
which may be unrelated to the head-cast but perhaps due to the MEG sensors and
algorithms used to localise the coils or simply the vertical movement of the scanning

chair (on which the phantom rested) over time.
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Figure 3.2 Between-session head movement.

Results from Experiment 1 (re-positioning trials where each of the four subjects came out of
the scanner, removed the head-cast, put it back on and re-entered 10 times). a) Variability of
absolute coil locations. Dots show the standard deviation of the absolute coil location over the
course of the experiment. Repositioning is precise to within <0.6 mm standard deviation for
any coil in any dimension. b) Coil-coil distance variability. The standard deviations are
calculated from the distances between the fiducial coils measured in Experiment 1. The
distances vary <0.5 mm which is within the range of measurement error, as illustrated by the
phantom measurements (black squares). ¢) Reference coil-standard coil distance variability.
Same format as b, but based on the distances between each of the three standard fiducial coils
and a reference coil placed on the nose. There is more variability with normal subjects than
phantom. d) Scatter plot showing absolute locations of reference coil in head-centred (standard
coil-defined) space. This plot illustrates dimensions along which the reference coil location
varies relative to the standard coils: mostly in the Z (up-down). e) Location of reference coil in
head-centred space. Bars encode standard deviation of absolute position of the reference coil
in head-centred space measured across 10 repositioning trials. The location of the reference
coil deviates <1.2 mm from the fiducial coils in the worst case. Note that variability along the Z
dimension is also relatively high with the phantom. The standard deviation over all subjects

was 0.50, 0.57, and 0.80 mm for the X, Y and Z dimensions respectively.
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In addition to the standard deviation values shown in the Figure, Table 4 shows the
mean, maximum and minimum values of the coil locations. Values are in cm. P

phantom, S1 subject 1, LPA left pre-auricular, RPA right pre-auricular.

Table 4: Mean, maximum and minimum values for coil locations during Experiment 1

Nasion LPA RPA Reference
X y z X y z X y z X y z
S1 | Mean | 7.17 6.88 | -22.56 | -4570 | 7.11 | -24.510 | 7.03 | -4.44 | -2464 | 6.39 7.97 | -26.6
Max | 7.21 6.94 | -22.48 | -4.53 7.13 | -24.43 7.04 | -439 | -2457 | 6.44 8.06 | -26.4
Min 7.14 6.85 | -22.62 | -4.62 7.1 | -24.55 7.01 | -447 | -2476 | 6.33 7.78 | -26.76
S2 | Mean | 7.86 757 | -2476 | -3.79 6.75 | -24.86 6.25 | -3.74 | -2464 | 6.24 7.71 -26.41
Max | 7.90 762 | -2472 | -3.77 6.76 | -24.83 6.28 | -3.72 | -2459 | 6.30 7.82 -26.29
Min 7.81 754 | -2484 | -3.81 6.74 | -24.91 6.23 | -3.77 | -24.69 | 6.15 7.64 | -26.54
S3 | Mean | 6.88 6.52 | -23.46 | -4.28 6.64 | -24.68 6.55 | -4.18 | -24.57 | 6.07 738 | -26.92
Max | 6.91 6.57 | -23.4 4230 | 6.67 | -24.64 6.60 | -4.07 | -2453 | 6.16 7.45 -26.85
Min 6.83 6.47 | -23.53 | -4.33 6.62 | -24.72 6.52 | -424 | -2464 | 6.01 730 | -27.01
S4 | Mean | 7.43 733 | -2403 | -3.62 6.58 | -25.37 585 | -3.98 | -2467 | 5.86 7.71 | -27.48
Max | 7.52 7.43 | -23.97 | -351 6.63 | -25.28 590 | -3.88 | -24.61 | 596 7.78 | -27.36
Min 7.36 723 | -24.07 | -3.69 6.55 | -25.42 579 | -408 | -2473|5.70 7.67 | -27.59
P | Mean | 5.24 550 | -27.87 | -5.180 | 5.48 | -26.33 544 | -497 |-2672 | -492 | -495 | -25.03
Max | 7.34 786 | -27.74 | -2.83 6.90 | -25.63 713 | -141 | 2622 | -1.97 | -3.17 | -24.89
Min 1.55 323 | -2802 | -7.55 25 | -26.84 384 | -690 |-275 | -624 | -681 | -25.29

Within-session movement

To evaluate the head location stability over time, a single subject was scanned on 12
separate trials lasting 15 minutes each (Experiment 2). We found that results were
almost identical across fiducial coils. For any coil, relative movements over twelve 15-
minute runs were sub-millimetre (<0.75 mm) and the movement predominantly
occurred as drift in the vertical direction (left coil shown as an example, Figure 3.3a).
Note that these traces were mean-corrected (such that the average head position over
each 15 minute period was set to zero) but that the standard deviations of these means
were 0.25, 0.25 and 0.26 mm for the X, Y and Z dimensions respectively. Across all

coils, we found the standard deviations of locations over time to be below 0.22 mm for
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any coils in any dimensions (Figure 3.3b). The maximal absolute changes in the coil
locations were 0.69, 0.5 and 0.75 mm for the left, nasion, and right fiducial respectively
(the corresponding minimal changes were 0.06, 0.11, and 0.06 mm). All of the maxima
were in the Z (up-down) dimension. We reason that the explanation for the slightly
larger absolute changes and standard deviations in this dimension is that the height
of the head-cast inside the dewar may change slightly over the course of a trial, e.qg.
because the subject relaxes and therefore slouches and loses posture more. We also
suspect that there is slightly lower sensitivity in the Z axis (see phantom data in Figure

3.2e) which could be due to the sensor configuration (see Discussion).
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Figure 3.3 Within-session head movement.

Data from Experiment 2. a) Absolute location of the left coil in the X, Y and Z dimensions over
the course of 12 (colour coded) 15-minute trials. The location is mean-corrected individually
for each trial. We find that the variability across time is negligible. The largest movements are
downwards (from positive to negative) in line with the subject sliding down in the chair. b)
Circles show the standard deviations of the absolute coil locations for all 12 trials in all
dimensions and for all coils. The standard deviation of the locations recorded was 0.22 mm at

maximum. Z (vertical) is consistently the most variable dimension.

Data Reproducibility

In Figure 3.4 we show recordings from a single subject performing repeated right hand

button presses over multiple sessions conducted over several days. The beamformer
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peak from 11/12 sessions (consisting of 180 trials each) fell on the same three 1mm3
grid locations (positional noise is added to the plot in Figure 3.4a for visualisation)
while one fell more dorso-laterally when constrained to the same contralateral

hemisphere as the others.

Figure 3.4b shows the time-frequency plot over 4 separate scanning days for the
same subject (each represents the average of three 15-minute runs with 180 trials per

run) extracted from the beamformer peak in the motor cortex (Figure 3.4a).
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Figure 3.4 Consistency of data features across four separate scanning days

a Coloured spheres represent beta (15-30 Hz) rebound peaks from Experiment 2. The peak
locations reflect the maximum chi square statistic when comparing pre-button press data (-
1500 to -1000 ms) to post-button press data (500 to 1000 ms) across a 20 mm radius, 1x1x1
mm? resolution sphere centred around the average left primary motor cortex peak (-34, -30,
52). Note that the solutions were not constrained by the mesh as reconstruction was
volumetric. Data shown are smoothed using an 8 mm kernel. b Time-frequency plots based on
the motor cortex beamformer peak for right hand button presses. Each plot shows data from
one of four scanning days and represents the average of three separate 15 minute runs, each

run consisting of 180 trials.

Discussion

We have developed a novel method for building flexible and subject-specific MEG
head-casts to stabilise the head during recording. This method makes use of the
subject’s MRI image both to build the head-cast by 3D printing an image of the head
shape, and to co-register the MEG and MRI data. We find that using this technique for
head-cast design, the within-session head movement is 0.75 mm in the worst case
(and 0.06 in the best) over a 15 minute period, and the co-registration error is around

1.2 mm.

The head-casts were designed to improve both subject comfort and safety. By making
the casts flexible and adding ear flaps, we made it easier to enter and exit the dewar,
minimizing the risk of getting stuck or requiring assistance. Additionally, we added eye
holes which enable subjects to see and therefore participate in experiments using
visual stimuli and/or eye tracking. Together, these features make the head-casts less
intimidating to wear and open up the possibility of a wider range of experiments.
Importantly the head-cast does not obstruct breathing, vision, or talking although
hearing may be mildly compromised. We have not found these head-casts to induce

anxiety or claustrophobia.

The other major difference between this generation of head-casts and the previous, is
that the 3D print is now based directly on the MRI image eliminating the need for
optical scanning. We optimised an acquisition sequence to eliminate distortions on the
surface of the head. The manufacturing process is nonetheless not completely

straightforward. Whilst some head-casts fit very well, others require removal of
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sections that constitute pressure points on the head, typically near the eye holes and

temples. This seems to be more pronounced in subjects with longer hair.

With respect to the subjective experience of wearing the head-cast, we find that
subjects experience them as constraining and unusual at first, but that they quickly get
accustomed to the experience (after a few recordings), and they improve at entering
and exiting the dewar. Multiple subjects have remarked that it is obvious to them when
the head-cast is fit incorrectly when entering the dewar but not necessarily before. We
have also observed that some experienced subjects find it easier to relax while being
scanned when wearing a head-cast as they do not have to minimize or inhibit
movement. This is an important improvement, as previous methods have relied on
self-stabilization (e.g. with bite bars to hold the head in position (Adjamian et al., 2004;
Muthukumaraswamy, 2013; Singh et al., 1997)) which induces a risk of increased
muscle activity and concomitant artefacts (Kumar et al., 2003; Muthukumaraswamy,
2013; O’Donnell et al., 1974; Whitham et al., 2007).

The main advance of this head-cast approach is that unlike other co-registration
minimization approaches, the specification of fiducial points, and extraction of scalp
surface based on the same original MRI scan simultaneously minimizes co-
registration error and head movement. In turn, this improves the reproducibility of data
(Figure 3.4a). In previous work (Troebinger et al., 2014b) we have shown that the
reduction of within-session movement from 5 to 1 mm gives rise to an effective 5 fold
increase in SNR. Notably, high reproducibility implies high precision but not
necessarily accuracy. However, the high SNR recordings mean that this framework
can be used to directly test between different forward models (e.g. the head in different
positions, see Lopez et al. 2012) delivering an accuracy measure that encompasses

the complete source reconstruction pathway.

A number of caveats remain. First, we address the increased uncertainty of coll
localisation in the Z dimension as observed with increased error in phantom
measurements (Figure 3.2e). This could either be due to the internal algorithm used
to locate the fiducial coils based on their magnetic signature or simply the movement
of the scanner-chair. Second, the co-registration estimate based on the reference coil
(Figure 3.2c) may have been pessimistic as the tape holding the reference coil in
place on the side of the nose extended beyond the coil and was easily tugged on by
the head-cast. Additionally, the location of the reference coil was both below and
outside of the dewar, meaning that it would provide a further challenge to the internal

MEG coil localization procedure. Moreover, prospective motion correction methods
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where a small optical marker is tracked with sub-micron movement and sub-degree
rotation precision has shown that placing the marker on the bridge of the nose is
unstable, as uncorrelated movement between the marker and the brain can be
observed, likely due to malleability of the skin (Todd et al., 2015).

As mentioned perhaps the most pernicious source of error due to these devices is
movement of the subject’s head relative to the head-cast. In this case the fiducial
locations would appear stable over time whilst, for example, the subject was slowly
slipping out of the cast. Based on our reproducibility measurements in Figure 3.2c the
refitting of the cast over time does not seem to be a problem, but there may be some
subjects (due to the shape of their heads) who can slide downwards within the
headcast without head-cast movement. In the future we will begin using a 4™ coil

(attached to the head) for more routine measurements in order to quantify this.

Given that the brain is suspended in corticospinal fluid inside the skull, it must be
acknowledged that it remains ambiguous whether the difference between the brain
location while supine (during the MRI scan) and sitting (during the MEG scan) could
be affecting our estimates. There is a risk that when the head changes orientation with
respect to gravity, the brain shifts when the density or thickness of the CSF layer
between the brain and the skull changes. It has been approximated that the this
change in thickness is ~30% which equates to approximately 1 mm (Hill et al., 1998;
Rice et al., 2013). We emphasize however that using head-casts while subjects are
supine removes the ability to use gravity to exit the dewar, causing the safety to be
compromised. Although it would be interesting to directly quantify these shifts though

such comparisons, we decided not to due to the safety issues outline below.

Other potential data acquisition problems which we posit that the head-casts solve to
a degree but which we have not formally tested are to muscle artefacts
(Muthukumaraswamy, 2013), particularly when using bite-bars (Adjamian et al., 2004),

and slow within-session drifts (Stolk et al., 2013).

Moreover, we have extended the prototype design such that it can accommodate
subject with long or thick hair (Supplementary Figure 3A). This extends the usefulness
of these devices and means that a larger segment of the population can be scanned.
We are working on testing whether this modification affects head stabilization, re-

positioning, or in any way introduces unknown errors.

The results of the present study suggest that employment of the individual flexible

head-casts for MEG recordings provide an accurate and reliable method of safely
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stabilizing the head location during MEG recordings, and for co-registering MRI
anatomical images to MEG functional data. This design is ideally suited for studies

which require sensitive longitudinal MEG measurements.

Key points

e A method for constructing flexible head-casts to stabilize the head during MEG
scanning is proposed

e Co-registration error is minimized by using MRI images to pre-define fiducial
coil locations.

¢ Within- and between-session movement is <.25 and <1 mm respectively.

e This enables high reproducibility of source level results.

This chapter derives in part from: Paper 2. “Flexible headcasts for high spatial
precision MEG” Sofie S Meyer, James Bonaiuto, Mark Lim, Luzia Troebinger, Holly
Rossiter, Sheena Waters, David Bradbury, Simon Little, Sven Bestmann, Matthew

Brookes, Gareth R Barnes (submitted, Journal of Neuroscience Methods).

Safety procedures

Any head-casts pose a significant source of risk of injury to subjects if used incorrectly.
Because the head-casts are designed to fit the subject’s head internally and the MEG
dewar externally, the participant's head is firmly fixed inside the dewar during
scanning. This means that any unexpected movement of the chair or MEG system
has the potential to cause severe neck injury. Our primary safety measure is therefore
to ensure that neither the chair nor the dewar is moved while the subject is wearing a
head-cast. This means that the initial positioning of the subject (as well as any
subsequent adjustments to the height or angle of the chair) only takes place when the
subject is not inside the scanner or wearing a head-cast. To enter or exit the dewar,
the subject therefore slides in and out of the seat unassisted. In our experience, this
takes some practice but is easily and quickly mastered. However, this means that only
healthy, agile volunteer subjects are suitable for head-cast scanning. In order to
ensure maximal comfort and safety of participants, we have developed a set of safety

procedures to be followed by all researchers carrying out MEG scans involving head-
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casts. We also screen subjects to avoid scanning participants with claustrophobia,
and place a panic button inside the magnetically shielded room should the subject

wish, at any time, to stop scanning.

We advise that only authorised personnel are allowed to scan volunteers with a head-

cast.

For these reasons we have decided never to use the head-cast with a subject in supine

position where the consequences of unexpected relative movement between the

dewar and the bed could be much more serious.

We refer to our safety guidelines, standard operating procedures, training guide,
volunteer guide, and emergency procedures available on the MEG community website
(http://megcommunity.org/ under instrumentation > peripherals > subject stabilization)

which also contains a link to an instruction video for experimenters.

b

Supplementary Figure 3A: Head-cast design modified to accommodate hair

a) Virtual head model of a subject with grooves to accommodate hair volume. The MRI scan
is insensitive to hair so protrusions are added to the scalp extraction to create space. b)

Photograph of head-cast designed to accommodate hair.
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Chapter 4

Experiment 3: Hippocampal theta activity can be
detected in MEG during spatial memory with head-

casts
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Precis

Experiment 1 demonstrated that detection of hippocampal sources in MEG is possible
with improved modelling and depends on minimization of co-registration error, while
Experiment 2 demonstrated how this minimization can be achieved using flexible
head-casts. In this study, the anatomical modelling and head-cast methods are
combined to investigate the empirical predictions made in Experiment 1. This study
thereby addresses the question of whether it is possible to reliably detect hippocampal
activity empirically when the acquisition protocol is optimised (to the best of our ability),
and the individual hippocampal surface manifold is included in the generative model.
If this proves possible, it will be a step towards the exciting prospect of extending MEG
to be a non-invasive, temporally resolved neuroimaging tool for investigation of the
dynamics of human hippocampus. One cognitive function of particular interest is
spatial navigation which provides a fruitful starting point and a substantial challenge
as many of its neural properties have been studied in rodents, uncovering a wealth of
predictions and open questions. The focus of this study the methodologies which may
pave the way for such possibilities; how the previously presented methods can be
combined and to what extent it is possible to validate simulation results using empirical

data.

Introduction

Humans display remarkable cognitive skills when navigating through the environment.
Like other animals, our behaviour is based on explicit representations of space that
must be encoded, stored, and flexibly interrogated. The temporal dynamics of the
hippocampal computations which underpin these processes are being characterised
in humans using intracranial recordings in epileptic patients. However, studying these
using a non-invasive neuroimaging tool such as MEG would be a more generalizable,
efficient and unbiased way of exploring these correlates. This prospect has recently
been shown to be realistic for several reasons. First, it has been demonstrated using
concurrent intracranial hippocampal electrodes (in preoperative epileptic patients) and
MEG, that there is a large zero-lag component of the ongoing theta rhythm which is
detected by the sensors (Dalal et al., 2013b), and that this can be localised using
beamformers (Crespo-Garcia et al., 2016). Second, the electrophysiology and

anatomy of the hippocampus lends itself well to MEG; the hippocampus contains a
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pyramidal cell layer similar to neocortex (Attal and Schwartz, 2013; Spruston, 2008),
it is known to exhibit oscillatory activity in humans (Ekstrom et al., 2005; Lega et al.,
2012; Watrous et al., 2011), and information about the environment is encoded across
large populations of neurons (Buzsaki and Moser, 2013; Hebb, 1949; Pouget and
Driver, 2000). Third, the spatial priors (expected locations of activity) are strong given
that cognitive experiments can be adapted from MRI studies with robust hippocampal
responses. However, the real-time neural dynamics of these cognitive processes,
while extensively studied in rodents and shown here to possess a wide range of
guantifiable relationships to behaviour, have received relative little attention in humans
(Jacobs, 2014; Riggs et al., 2009; Zhang and Jacobs, 2015). Thus, it is unclear to
what extent the neural circuits and their oscillatory properties are shared across
species, and whether rodent findings can be successfully translated into human
neuroscience and begin to explain, in physical and computational terms at a systems-
level, the richness and complexity of our experiences of cognitive feats such as
navigation. Crucially also, the cognitive capacities of humans which extend beyond
those of rodents may hold answers to more general and clinically useful research

guestions.

Several functional features of the human hippocampal rhythms have previously been
demonstrated. However, while findings based on invasive electrophysiological
measurements are informative (but rare), they are not necessarily representative of
the general population, or healthy brains. On the other hand, they do rely on a known
ground truth (i.e. that the measured signal is hippocampal), whereas the same is not
true for MEG studies. Nonetheless, theta oscillations (~4-8Hz) during encoding and
retrieval of spatial information have been found in MEG by several research groups,
and these studies suggest (but do not show) that the signal is hippocampal (Backus
et al., 2016; Cornwell et al., 2012; Dalal et al., 2013c; Jacobs et al., 2013; Kaplan et
al., 2014, 2012b; Lega et al., 2012).

Theta oscillations and changes to them in relation to behaviour have a wide range of
interesting and informative properties. For example, theta power has been shown to
selectively correlate with retrieval of spatial information that is relevant for navigation
(de Araujo et al., 2002). At a circuitry level, theta oscillations modulate the activity of
hippocampal place cells (O’Keefe and Recce, 1993) and carry information about
spatial location in the oscillatory phase, the latter of which is thought to be used by

entorhinal grid cells to compute an animal’s location in space (Burgess et al., 2007).
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While it has been shown that anatomically, the human hippocampus plays a role in
detection of novelty (Kumaran and Maguire, 2007), medial temporal lobe (potentially
hippocampal) theta power during encoding of spatial information has been shown to
relate specifically to environmental, but not content, novelty (Kaplan et al., 2012b).
However, it is not clear whether the human hippocampus analogue of rodent theta is
at the frequency range thus far assumed (~4-8 Hz) (Lega et al.,, 2012), raising

guestions and perhaps concerns about the conclusions drawn from earlier studies.

In addition to theta, high-frequency gamma power increases in hippocampal activity
have also been shown to relate to successful memory encoding and retrieval (Burke
et al., 2014; Hanslmayr et al., 2016; Staresina et al., 2016). This suggests that power
changes in other frequencies, such as gamma, have an important but not-yet-

understood role in hippocampal-based memory functions such as pattern completion.

As MEG has a very high temporal resolution and is minimally susceptible to signal
attenuation by tissue or skull surrounding the brain, it is well-suited for measuring
dynamic brain activity such as theta oscillations. Despite a large and growing body of
modelling and empirical studies documenting the feasibility of MEG for detecting
hippocampus (Attal et al., 2007; Backus et al., 2016; Guitart-Masip et al., 2013; Kaplan
et al., 2014, 2012b; Riggs et al., 2009), as well as simultaneous invasive and MEG
recordings directly demonstrating this claim (Crespo-Garcia et al., 2016; Dalal et al.,
2013a), controversy regarding the reliability of these claims persist (Mikuni et al., 1997;
Riggs et al., 2009; Stephen et al., 2005) and deeper sources are often omitted from

analysis de facto.

However, there are now several methodological advances which directly facilitate
examination of hippocampal signals using MEG. Across a range of assumptions about
the relationship between brain activity and MEG signals, we found that minimizing co-
registration error is the single most important factor in being able to reliably detect
hippocampal activity (as demonstrated in Chapter 2). Using a new generation of
flexible head-casts for MEG (Chapter 3), it is now possible to meet the co-registration
error criteria identified in simulations. The key argument is that accurate information
about the anatomy of the brain in relation to the MEG sensors enables reliable
assessment of hippocampal involvement because generative models with and without
the hippocampus, or with variations in the hippocampal portion, can be compared.
This comparison can then be used to probabilistically assess whether the hippocampal
portion of the model contributes to a parsimonious explanation of variance and

generalizability, or not. Importantly, these head-casts are now compatible with visual
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stimulus presentation. Using a well-validated virtual reality (VR) paradigm which is
known to engage hippocampus in fMRI (Doeller et al., 2008), MEG (likely
hippocampal, tentatively medial temporal lobe) (Kaplan et al., 2014, 2012b), and
intracranial EEG (iEEG) (Bush et al., in preparation), we hypothesized that it would be
possible to find evidence for hippocampal activity in real data. Thus, this experiment
uses a combination of novel and well-validated methods to try to demonstrate the face
validity of this approach.

Hypothesis

Hypothesis 1: If we combine an acquisition technique which is optimal for obtaining
high SNR data (Experiment 2, head-casts), a well-validated spatial memory task which
is known to engage the hippocampus, and explicit source modelling of the

hippocampus (Experiment 1), we can detect hippocampal sources in real MEG data.

Hypothesis 2: If this combination of tools is effective, then changes to the hippocampal
portion of the generative model should give rise to decreases in model
generalizability/fithess (which can quantified by two orthogonal metrics; Free energy
and cross-validation error). Specifically, we predict that if the subject-specific
generative model of the hippocampus is correct, then laterally rotating it should

decrease the model evidence and increase the cross validation error.

Methods

Participants

We recruited 13 participants (11 men, 2 women, average age = 29.5, SD = 7.4, all
right-handed). All subjects gave informed consent and were compensated for their
participation (with the exception of one collaborator and one author). The head-cast
creation, cognitive task protocols, and MEG scanning were approved by the UCL
Research Ethics Committee. All subjects had normal or corrected-to-normal vision, no

history of psychiatric or neurological disease or claustrophobia.

Task Design and Structure
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During scanning participants were required to accurately encode and later remember
the locations of objects placed in a virtual arena within which they could freely move
(Figure 4.1). The circular arena was surrounded by 3-4 distal cues to be used for
navigation. The task consisted of two phases; encoding and test. Both were carried
out while the subject was being scanned in an MEG scanner while wearing a custom-

built flexible head-cast (see Chapter 3 for methods relating to this).

The experiment was designed such that each subject carried out one pre-scanning
familiarization trial and four regular trials (encoding plus test, carried out during
scanning) on each of two separate visits to the lab. Each encoding trial consisted of
presentation of six separate three-dimensional objects, each in a fixed location within
the arena. Only one object was visible at a time. The subjects were instructed to “pick
up” objects by moving to the location of the object which caused it to disappear.
Immediately following this, another object would appear in its respective location.
Following the encoding phase, subjects were presented with a fixation cross followed
by one of the six objects where fixation and cue periods were 3s each. During the cue
period, the subjects were instructed to construct a vivid mental image of where they
saw the object and try to incorporate as much detail into this image as possible.
Following the cue period, subject were placed in a random location and orientation in
the arena, and instructed to navigate to where they think the object was located and
indicate their response by pressing a button, after which a new fixation period would
begin. As with encoding, subjects performed 24 test runs in pseudorandom order; four
for each of the six objects presented during encoding. During test runs, no objects

were visible in the arena (the distal cues were still visible however).

Each subject performed four blocks of 24 trials per visit (plus one familiarization trial
on each of the two visits). To control and orthogonalize environmental and object
novelty, each trial was either performed in a new virtual reality environment. The object
sets and virtual arenas were staggered such that on each new trial, only one was novel
(to enable comparison of familiar versus novel objects). Object sets, object order,
environment order, and starting locations were pseudorandmised and fully counter-
balanced across participants. The experiment was self-paced with the exception of
the fixation and object presentation periods. Subjects were given breaks between trials

to exit the dewar and remove the head-cast if they wished.

Subjects controlled their movements through the environment with two 2-button MEG-

compatible control pads. The four buttons were configured to allow the subject to move
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left, forwards, right, and to indicate their response (i.e. location they thought the object

being tested was located in).

Encoding Test
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Figure 4.1: Virtual Reality environment and trial structure.

Left: Encoding run showing sample virtual reality environment. Subjects were instructed to
encode the locations of the object (chair, duck, helmet, bucket, etc) placed in the environment
and to pick it up by navigating to the location. Each of six objects was presented four times
with only one object present at a time. Encoding was self-paced and subjects were instructed
to focus on remembering the object locations. Right: Test run showing cued retrieval of object
location. Each consisted of a 3s inter-trial interval (ITI) followed by a 3s cue period where one
of the objects presented during the encoding phase was shown in the middle of the screen.
Subjects were instructed to remember, as vividly as possible, the location of the object
presented. Afterwards, the subject was placed at a randomized start position in the
environment and instructed to navigate back to the remembered object location and indicate
their response. Presentation order, object locations and identities were randomized and
counter balanced across subjects. Note that the subject only ever saw the environment from

an egocentric (first person) perspective.

Virtual Reality

UnrealEngine2 Runtime software (Epic Games, https://unity3d.com/) was used to

present a first-person perspective viewpoint 2 metres above the ground. All
environments were the same size (18 metres in diameter) and shape (circular), and
surrounded by a set of distal landmarks to enable orientation within the arena. These
were a stone/marble floor, surrounded by mountains, a grassy plane surrounded by
trees, a tiled arena surrounded by mountains, and a metal floor surrounded by
buildings and towers. All environments also had a clouds in the background and the

sun as a consistent light source which could be used for orientation. Participants
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practiced the task in an unrelated virtual environment before performing the
experiment. 3D objects were presented at different locations inside the environment.
The location in the environment and heading location was recorded every 25ms.
During the encoding phase, participants were instructed to “collect” the objects by
passing through their location. During the cue phase, the objects were presented as
2D images and participants were instructed to remember and subsequently navigate
to the object’s original location before indicating a response using the left button box.
To trigger the data, a small box was coded to appear at the top left-hand corner of the
screen and change from white to black when subjects transitioned from one trial-state
to another (e.g. from ITI to cue period). This enabled us to use a photodiode to record
and temporally align trial transitions with respect to the MEG data.

MEG Data Acquisition and Inversion

MEG recordings were made in a magnetically shielded room with a 275-channel
Canadian Thin Films (CTF) system with SQUID-based axial gradiometers. Data were
digitized continuously at a sampling rate of 600 Hz. Subjects wore customized flexible
head-casts during recording (methods described in Chapter 3). Fiducial coils were
attached to the head-cast and thereby located at MRI-defined nasion, right and left
preauricular sites. The coils were continuously energized throughout the experiment
for localization of the head(-cast) with respect to the MEG sensors. No subjects
deviated more than 5 mm from their starting position. Subsequently to MEG recording,

the data were co-registered to an anatomical MRI image.

The inversion parameters used here were kept as similar to those in Chapter 2 as
possible for comparability. Firstly, we used the Empirical Bayes Beamformer (EBB)
algorithm which bases the source covariance estimate on the data and is free from
pre-specified spatial priors and the bias which may accompany them. We analysed
the activity during the 3s cue period and baseline corrected this using the immediately
preceding 3s inter-trial interval. We used no spatial dimension reduction to ensure
valid comparisons across models (thus we used 274 spatial modes, matching the
number of functional sensors). We used 16 temporal modes and constrained the
solutions to lie on the meshes provided, with the orientation constrained to be normal
to the mesh vertices. A Hanning taper was applied to the time-series but no down-
sampling or data averaging was done. A Nolte single shell model was used to model

the inner skull boundary (Nolte, 2003). For the theta analysis, the frequency of interest
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was set to 4-8 Hz, while for the gamma analysis the frequency of interest was set to
60-90Hz.

MRI Data Acquisition and Surface Extraction

Two MRI images were acquired for each subject; one for constructing the head-cast,
and one for creating the anatomical models of the cortex and hippocampus for
constraining the inverse solutions of the MEG data. Both were acquired using a
Siemens Tim Trio 3T system (Erlangen, Germany). While the main criteria for the
former was to minimize distortion of the scalp, skin and face, the main criteria for the
latter was maximization of spatial resolution. Thus the acquisition times and
parameters differed; for the head-cast MRI, a 12-channel head coil was used without
padding, and the acquisition time was 3 min 42 s (see Chapter 3 for remaining MRI
and head-cast construction protocol details). Conversely, for the high (0.8mm)
resolution MRI images, a standard quantitative multiple parameter mapping (MPM)
protocol was used with a 32-channel head coil, padding, and 3 x 7 minutes acquisition
times for the (see (Weiskopf et al., 2013) for details). Both MRI images were acquired

during approximately two weeks prior to the first MEG recording.

The T1l-weighted head-cast image was segmented and used to create a virtual head
model for 3D printing using standard MRI segmentation procedures in SPM12 (See
Chapter 3 for more details). The T1-weighted MPM image was segmented using
FreeSurfer (Fischl, 2012) to extract the cortical and hippocampal surfaces for each
subject. Freesurfer-based mesh extraction consists of correcting for intensity
variations in the image, removing extracerebral voxels, and segmenting the cortical
hemispheres and subcortical structures taking into account variability in the
histological composition of these structures. Further, the algorithm self-corrects
topological defects. The result is a triangular tessellation of each structure; in this case
two hemispheres and two hippocampi per subject. These meshes were then used to
constrain the inverse solutions by modelling each structure with the assumption of
pyramidal cell-generated signals emerging whereby the source locations and
orientations were constrained by the mesh. The locations were modelled by the
vertices and the orientations were modelled by the normal orientation to these
vertices. The number of hippocampal vertices was ~400 for both hippocampi, making

up ~2% of the total vertices in the combined model.
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The MPM image was co-registered to the head-cast MRI image and the MEG data

was subsequently co-registered to the MPM image.

Pre-processing

Epochs corresponding to fixation and cue period were defined as -1000 to 7000 ms
relative to the onset of the fixation cross. We included 1s of padding on either side of
the baseline and cue period pairs to avoid analysis-induced artefacts. The data were
baseline corrected whereby the mean of the pre-cue (baseline) period was subtracted
from the activity during the 3s cue period. The data were then high-pass filtered 0.5
Hz, low-pass filtered at 150 Hz, and the power-line interference was stop-band filtered
away by removing 48-52 Hz. Data were analysed with SPM12
(http://www.fil.ion.ucl.ac.uk/spm/) within MATLAB 2014a (The MathWorks).

Eye blinks were detected from a frontal channel and detected eyeblinks were used to
obtain an average blink time course, based on which a principle component analysis
was used to obtain templates of the spatial topography related to blinks. The main
component obtain was regressed out of the data before proceeding with analysis.
Artifactual epochs were detected by visual inspection and rejected using the FieldTrip

visual artefact rejection tool.

Model Comparison

To assess the role of the hippocampus in generating the observed signals, we
specified, for each subject individually, a set of forward models which varied with
respect to the hippocampal mesh extracted from their MRI image. The forward model
constitutes part of the generative model describing how the data arose. All other
components of the generative model were left the same across all models tested. We
explored here the model evidence (approximated using Free energy, F) as well as the
cross validation error (CVE) values associated with each inversion carried out with a
different model. These two metrics are independent but it is worth noting that the
inverse solutions are optimised with respect to Free energy. Both Free energy and
CVE allow formal comparisons of different models of data. While Free energy works
in a Bayesian framework and can be conceptualised as a Bayes factor, CVE reflects
how well a random subset of sensors can be predicted based on the remaining

sensors, given the generative model (see introductory section Free Energy and next
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section Cross Validation Error for more details of how these are calculated). Both
values are used here as relative or comparative measures; that is, we compare the
Free energy and CVE values from different models against each other. The model
comparisons presented here provide a complement to the simulations presented in
Chapter 2 in the form of empirical substantiation of the assumptions made, given that

the acquisition requirements are met by using head-casts.

Figure 4.2 shows an example of the set of generative models tested against the data
recorded. First, a cortical (and hippocampus-free, a) model is compared against a
combined model which includes the individual subject’s hippocampus (b). This is the
basic model comparison which assesses whether or not modelling the hippocampus
at all, facilitates explaining variance in the data. Next, we add different degrees of

lateral rotation to each hippocampal mesh (c-f).

a b
Cortical mode Combined model

Figure 4.2: Anatomical models; cortical model, combined model, combined models with

shifted hippocampi.
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a) Cortical model comprising only the cortical surface. The cerebral cortex is used as a model
of putative cortical sources. This is the standard model/method used in most non-volumetric
MEG inversion algorithms. b) Combined model comprising the cortical surface and the
hippocampal surfaces. c) 5° rotation model. This is equivalent to the combined model but the
lateral axis of the hippocampus is rotated by 5° and shown in blue. Note that the red
hippocampal mesh is the non-rotated mesh, included for visualisation of the difference. d)
Same as c) but with 10° of rotation added to the hippocampal meshes. e) Same as previous
but with 20° of rotation. f) Same as previous but with 45° of rotation. The meshes shown here
are a representative example taken from a single subject but note that each generative model

is subject-specific and based on an anatomical MRI image with 0.8mm resolution.

Cross Validation Error

Cross validation is a model validation method used to assess how well a given model
will generalize to an independent measurement. Here, we apply this method to the
sensor-level signals and ask how well these can be predicted using different
generative models of the data. The validation component of this method consists of
leaving out a subset of the data, and measuring how well this subset can be predicted.

Thus, we examine the predicted signals in the left-out sensors.

We can then compare the different generative models with respect to the error in these
predictions. The units of these errors are femtoTesla (fT). In this set-up, we take out
10% of the sensors (equal to 27 sensors), and use the remaining 90% (247) to create
a model. We then use this model to predict the signals observed. In this analysis we
then calculate the average cross validation error across four iterations per dataset.
The figure below shows the different time-courses measured and predicted at a
random sensor over the course of 1 second of the cue period for a single subject
(Figure 4.3). The black line shows the measured data while the red shows the
predicted data when the generative model includes the correct (straight)
hippocampus. The blue line shows the predicted data at the sensor when the

hippocampi are rotated by 45° (Figure 4.2f).
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Figure 4.3: Cross validation method

Left image shows a random subset of sensors left out of the analysis and subsequently
predicted using generative models containing variations of the hippocampal mesh. The
generative models can be compared on the basis of their error in predicting the measured
signals across the randomly left out sensors. Right plot shows an example of data measured
(black line), predicted with a generative model which includes the correct (straight)
hippocampus (red line), and predicted with a generative model where the hippoca