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Abstract  

Background 

Inherited diseases caused by unstable repeated DNA sequences are rare but together represent a substantial 

cause of morbidity. Triplet repeat diseases are severe, usually life-shortening, neurological disorders caused 

by nucleotide expansions and most have no disease-modifying treatment. Longer repeat expansions are 

associated with genetic anticipation, earlier disease onset in successive generations, and earlier disease 

onset: however, not all the difference in age at onset of these diseases is accounted for by repeat length, 

implying the existence of additional modifying factors. As modifying factors alter the disease in people they 

must lie in pathways that can potentially be modulated to treat disease. 

Recent developments 

A recent genome wide association study detected genetic modifiers of age at onset in Huntington’s disease, 

which replicated in the spinocerebellar ataxias, finding a significant association between DNA damage 

response/repair pathways and the age at onset of disease. These data indicate a common genetic 

mechanism modulating age at onset in polyglutamine diseases that might extend to other repeat expansion 

disorders. Genetic defects in DNA repair underlie other neurodegenerative disorders such as ataxia-

telangiectasia and recent work has demonstrated that double-stranded DNA breaks are critical in 

modulating early gene expression, which provides a mechanistic link between DNA repair and 

neurodegeneration.  Mismatch and base-excision repair have both been demonstrated to be key in the 

somatic expansion of repeated sequences in mouse models of repeat disease, and somatic expansion of the 

expanded CAG tract in HTT is known to correlate with age at onset of Huntington’s disease and other triplet 

repeat disorders.   

Where next 

To understand both the common genetic architecture of these diseases and any further individual disease 

genetic susceptibilities requires further genetic analysis using more variants and larger samples, followed by 

sequencing approaches to define the phenotype-modifying variants.  This must then be translated, using cell 

biology, to elucidate the mechanisms through which the genetic variants operate. Genes that have a role in 
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the DNA damage response may underpin a common DNA repeat-based mechanism and provide new 

therapeutic targets and hence therapeutics that act in multiple repeat diseases.  

 

Search strategy and selection criteria 

We searched PubMed titles and abstracts using combinations of the terms “huntingt*”, “spinocerebellar 

ataxia”, “trinucleotide repeat”, “triplet repeat”,  “repeat” or “repeat disease” AND “DNA integrity”, “DNA 

repair”, “genome integrity” or “genome repair” from January 1st 2012 to September 30th 2016, until no new 

references were identified.  We identified further relevant papers by examination of the reference lists of 

these papers and through searches of our files.  The final reference list was generated on the basis of 

relevance to the topic of this Rapid Review.   
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Introduction 

The inherited diseases caused by unstable repeated DNA sequences were first characterised in the 1990s. 

They are individually rare, with Fragile X the commonest at 1/4000 males, myotonic dystrophy and 

Huntington’s disease (HD) around 1/10,000 and most spinocerebellar ataxias (SCAs) around 1/100,000 and 

some seen in only a handful of cases1, but together they represent a substantial source of morbidity. There is 

substantial geographical variation in prevalence for HD and the SCAs. Most are life-shortening with 

debilitating symptoms and no available disease modifying treatments. While they have a similar mutational 

mechanism, the repeated sequences occur in different genomic contexts and even in the polyglutamine 

diseases, where the repeated codon is translated to glutamine, the proteins are functionally unrelated. The 

nature and expression pattern of the repeat containing proteins is likely to underlie the clinical differences 

between these diseases1, but substantial phenotypic variability occurs within each disease which remains 

only partially explained. This variability can be exploited to gain insights into disease mechanism though 

genetics2.   

 

The repeat diseases can be subdivided into two main categories – those where the repeated sequence is 

translated into a protein product, and those where the repeat lies outside the coding sequence (Table 1).  

The non-coding disease associated repeat sequences are usually longer than those in the coding repeats 

They all display genetic anticipation, the earlier onset of disease in successive generations of families, caused 

by the germline expansion of the repeat3. There is also expansion of the repeat in dividing and non-dividing 

cells that is tissue, cell-type and disease specific1.  Expansion of the repeat is ameliorated if the repeated 

sequence is interrupted by other codons. Despite the repeat associations to specific loci having been known 

since the 1990s, the mechanistic cascade from repeat to clinical phenotype in most of these diseases 

remains unclear,hindering the development of new treatments.  There are some common pathogenic 

mechanisms. The repeat may prevent expression of the gene, as in Fragile X and Friedreich’s ataxia4.  

Pathogenic RNA foci occur in myotonic dystrophy and myotonic dystrophy-like 2 and give rise to 

characteristic splicing deficits5 and have been reported in other repeat diseases6. Repeat-associated non-ATG 

(RAN) translation, first observed in myotonic dystrophy and spinocerebellar ataxia 8 (SCA8)7, has also been 
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observed in Huntington’s disease (HD)8, fronto-temporal dementia/amyotrophic lateral sclerosis (FTD/ALS), 

caused by the C9ORF72 hexanucleotide repeat, and other repeat disorders9. While in the C9ORF72 repeat 

disease these dipeptides are neurotoxic10, their role in pathogenicity in other repeat diseases is unknown.   

 

These mechanisms may also operate in the polyglutamine diseases9.  However, the proteins containing 

expanded polyglutamine tracts aggregate and form characteristic insoluble protein inclusions in neural and 

other cells. Such insoluble inclusions are also widely seen amongst other neurodegenerations11, leading the 

field to hypothesise that the protein inclusions, or their soluble oligomers, are likely to be pathogenic. This 

remains controversial as the final proof, that preventing aggregation can prevent disease in people, has not 

been demonstrated12, though there are some recent, tantalising, hints. In early clinical trials aducanumab, an 

antibody that binds and reduces amyloid-β in mouse models and subjects with early Alzheimer’s disease 

(AD), showed cognitive benefits13.  ATXN1 oligomers have been shown to drive toxicity in spinocerebellar 

ataxia 1 (SCA1), and induce local spread of pathology14, that was partially inhibited using an 

immunotherapy15. There has been extensive study of the biological consequences of expanded 

polyglutamine with a wide range of potentially deleterious outcomes detected16,17 but it is unclear which of 

these  are important in manifestation of disease.  New genetic evidence indicates that the DNA damage 

response and DNA repair (Box 1) affect the clinical presentation of HD and multiple spinocerebellar ataxias 

(SCAs)18–20 implicating common modifiers that act on the mutated repeat itself. Together with evidence 

implicating these processes in repeat disease biology this sheds light on mechanism and highlights new 

targets for therapeutic intervention. 

The DNA damage response and neurological disease 

The DNA damage response (Box 1) can be both deleterious and protective for neurological diseases. 

Mutations in genes involved with the DNA damage response were first noted to cause neurological disease 

in ataxia telangiectasia (A-T), a rare recessive childhood neurodegeneration. Mutations in ATM 

serine/threonine kinase (ATM) cause A-T: ATM controls cell-cycle arrest after DNA double-strand breaks, 

often leading to apoptosis and thus neurodegeneration21.  Mutations in other genes that cause incorrect 

resolution of double-strand DNA breaks also result in profound developmental nervous system pathology 
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such as AT-like disease, ATR-Seckel syndrome and Nijmegen breakage syndrome22,23.  These diseases also 

have widespread extra-neural effects, in contrast to diseases that result from mutations in genes involved in 

single-strand DNA break repair, whose effects are usually limited to the nervous system, albeit still with 

severe clinical outcomes23.  Spinocerebellar ataxia with axonal neuropathy is caused by mutations in tyrosyl-

DNA phosphodiesterase 1 (TDP1) and the recessive ataxias with oculomotor apraxia (AOA) 1, 2and 4 are 

caused by mutations in aprataxin (APTX), senataxin (SETX), and polynucleotide kinase 3'-phosphatase 

(PNKP)24,respectively. TDP1 repairs stalled topoisomerase I-DNA complexes, APTX and PNKP25 operate on 

nucleotides and SETX encodes a helicase involved in transcriptional termination26,27.  

 

Most of these recessive diseases result in ataxia with a prominent cerebellar degeneration, also seen in the 

spinocerebellar ataxias caused by CAG repeat expansions, and it remains an outstanding question why this 

should be so.  The nervous system is vulnerable to DNA damage because of its dependence on, and high 

levels of, oxidative metabolism, which generates free radicals with the potential to cause single-strand 

breaks in DNA28,23. Reduced capacity to repair such single-strand breaks through subtle modulation of 

functional activity induced by variation in genes in the DNA repair machinery might therefore lead to 

neuronal susceptibility.  A recent novel insight from Madhabhushi et al.29 showed that DNA damage and 

repair can directly affect neuronal gene expression: activity-dependent transcription of early response genes 

in neurons triggered the formation of Topoisomerase II (TopoIIdouble-strand DNA breaks in their 

promoters. These gene products, such as c-Fos, regulate multiple downstream pathways and influence 

synapses to exert  downstream effects on functions such cognition, learning and memory23.  Subtle variation 

in these DNA repair proteins may alter the timing or repair of double strand DNA breaks. Notably, individuals 

carrying mutations in tyrosyl-DNA phosphodiesterase 2 (TDP2) manifest with intellectual disability, epilepsy, 

and ataxia and the loss of TDP2, which repairs topoisomerase induced DNA breaks, leads to  hypersensitivity 

to Topo II-mediated double strand DNA breaks30.  

 

Conversely, DNA damage response factors can maintain appropriate neurological function and be 

neuroprotective. Increased DNA double-strand breaks have been linked to ageing and pathogenesis in 
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neurodegenerative disorders such as AD31, and recently BRCA1, which resolves double-strand DNA breaks 

during homologous recombination22 has been shown to be neuroprotective in AD mouse models 32. This 

complements earlier findings in the repeat disorders. Cell models expressing mutant huntingtin (HTT) 

accumulate both single-strand and double-strand DNA breaks with a concomitant activation of the DNA 

damage response33. Mutant HTT binds Ku70, a core component of non-homologous end joining22, and 

overexpression can rescue the phenotype in the R6/2 model of HD34. BRCA1 is recruited to sites of DNA 

damage by -H2AX and in HD cell lines less BRCA1 was recruited and the nuclear distribution of -H2AX to 

neuronal DNA damage was reduced: this effect was rescued by overexpression of BRCA135. Both mutant HTT 

and ATXN1 bind high mobility group protein B (HMGB) proteins that are components of base excision repair 

(BER)22,36.  In fly and mouse models of SCA1, carrying expanded repeats in Atxn1, neuronal pathology was 

rescued by expression of HMGB1, which acted to reverse mitochondrial DNA damage repair in the Atxn1-

knock in mouse brain36,37.   

Genetic modifiers in the triplet repeat diseases 

One way of overcoming the difficulties of interpreting the biology is to return to the study of people carrying 

the repeat expansions.  In these natural experiments2 it is possible to search for genetic loci that modify 

disease in a beneficial or deleterious way, to reveal the underlying biology likely to be important in altering 

the manifestation of disease: variation that renders disease onset earlier or later, or alters the progression or 

severity of disease is likely to lie in a biological pathway, that if manipulated using drugs, might well have a 

similar effect on the phenotype (disease).  There are practical issues in pursuing such studies in Mendelian 

disease: by their nature such diseases are rare and therefore collecting sufficiently powerful samples is 

challenging. This is now being overcome through networks and consortia which aim to collect together large 

international patient cohorts, with both DNA and, critically, systematically collected clinical information, 

such as the Enroll study in HD (https://www.enroll-hd.org/) and the SPATAX consortium in the 

spinocerebellar ataxias38,39.  Even so, in many diseases sample sizes will always be relatively small and the 

approach used in the pursuit of genetic loci underpinning common diseases, of collecting larger and larger 

samples40, may never be possible. The recent successful search for loci that modify age at onset in HD 

demonstrates that this approach is feasible18 Genetic variation that modifies rare Mendelian disease may be 
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common and have substantial effect sizes, as such variants may not be under population selection pressure, 

as in common disease, and thus be easier to find. HD is relatively common amongst rare diseases41,42, and 

the collection of cohorts with DNA and systematic clinical information such as Registry43 allowed an 

appropriately powered genome-wide association study to be performed.  Three independent genome-wide 

significant loci were associated with age at motor onset, one on chromosome 8 and two close together on 

chromosome 15, along with a significant enrichment of signal in the network of DNA repair-related genes18.  

 

DNA repair related mechanisms have been implicated as modulators of somatic expansion of the disease-

associated repeated sequences in mouse models of HD, DM23,44, Fragile X45 and Friedreich’s ataxia46.  Both 

the inverse correlation of age at onset – CAG repeat length and somatic expansion are widely seen in repeat 

diseases (Table 1). In the CAG-repeat associated spinocerebellar ataxias, testing SNPs from the DNA repair 

pathway genes implicated in HD18, a significant genetic signal was observed, in the same direction as that 

observed in HD19.  Thus it appears that at least some genetic modifiers in the DNA repair pathways seen in 

these diseases are likely to be acting at the level of the mutation type, the repeated sequence itself, rather 

than affecting the functions of individual repeat disease proteins.  This may occur through the somatic 

expansion seen in many repeat disorders.  In DM1, somatic expansions can be detected in blood as well as 

other tissues. This enabled Monckton and colleagues to identify polymorphisms in MSH3 in a cohort of Costa 

Rican DM1 cases, associated with variation in somatic instability in blood, though no association with age at 

onset was detected47.  Nevertheless this provides an intriguing direct link between DNA repair gene 

polymorphisms and somatic instability of repeats and supports mismatch repair (MMR) as central to repeat 

expansion.   

DNA repeat expansions and the DNA damage response 

Repeat expansions in DNA are affected directly by activities of the DNA damage response48 (Box 1).  The 

repeats undergo expansion on transmission through the germline, in both dividing and terminally 

differentiated somatic cells, and the repeat size increases with age48.   Strand breakage in the repeat is 

repaired and it is at this point the repeat sequences are thought to expand44,49.  The length of the repeat 

expansion is positively correlated with the propensity to further somatic expansion in HD50 and the greatest 
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expansions occur in the striatum which has been proposed as the underlying reason that the striatum is 

particularly susceptible to degeneration in HD51.  Proteins containing polyglutamine expansions can bind 

nuclear proteins that operate in DNA repair, such as VCP52, raising the possibility that accumulation of the 

expanded polyglutamine proteins themselves induces DNA damage, which may exacerbate disease 

pathogenesis in a vicious cycle. 

 

The structure of the repeats influences the likelihood of expansion.  Trinucleotide repeats can adopt multiple 

incorrectly paired structures including hairpins, loops, triplet helices and G-quadruplexes49,53 (Figure 1); such 

bulky non-B structures in the DNA may be stable at large sizes54, and thus act as substrates for the DNA 

damage response. The CTG·CAG repeat sequence adopts multiple transient slipped–DNA junctions giving 

unpaired bases that might well be the target of DNA repair: consistent with this the prevalence of slipped 

strand features correlated with instability levels in DM1 tissue55. RNA-DNA hybrids (R-loops) formed during 

transcription-coupled nucleotide excision repair (NER) prevent repeat contractionand knocking down SETX, 

which resolves R-loops, enhances repeat instability56. Damage to individual bases also requires repair and 

oxidative damage from the generation of reactive oxygen species through mitochondrial dysfunction and 

exitotoxicity, seen in HD, can lead to the formation of aberrant DNA adducts and induction of the DNA 

damage response16.  Such damage might also be potentiated by the expanded repeats themselves through 

repeat induced mutagenesis57. The mechanisms of germline and somatic expansion may involve different 

pathways as replication is also associated with repeat expansion58.  Classically, in non-dividing cells, such as 

neurons, DNA repair activities and expansion are thought to be associated with DNA damage, transcription 

and chromatin dynamics, though recent evidence suggests that environmental stress may induce DNA 

rereplication and promote repeat expansion59.  

Mismatch Repair 

Mismatch repair (MMR) activity on DNA modulates somatic expansion of repeat tracts48 (Figure 1), and 

elements of the classical MMR pathways may also act as downstream effectors of other DNA repair 

mechanisms.  In mammalian cells MMR is performed by two complexes: MutS, which contains mutS 
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homolog 2 (MSH2) and mutS homolog 6 (MSH6) and preferentially targets mismatched bases and MutSβ 

which contains MSH2 and mutS homolog 3 (MSH3) and preferentially targets small deletion/insertions22,44.  

The MutS complexes recruit the endonuclease MutL, that contains mutL homolog 1 (MLH1) and PMS1 

homolog 2 (PMS2) and cleaves the DNA of the lesioned strand44; MutLβ (MLH1/PMS1) and MutL 

(MLH1/MLH3) can also perform this role.  MutSβ can cause both somatic and intergenerational CAG·CTG 

repeat instability, but the evidence for MutS is less consistent44. Knocking out repair genes prevents 

somatic expansion and ameliorates the phenotype of HD mice60,61. Susceptibility to somatic expansion was 

mapped to Mlh1 and Mlh3 in mouse chromosome substitution experiments62 and HD mouse crosses in 

different background strains showed increased levels of MSH3 were associated with repeat expansion63.  In 

cells carrying 800 CAG·CTG repeats knockdown of MSH2 and MSH3 prevented repeat expansion 56.  Similar 

phenomena are also apparent in mouse models of Friedreich’s ataxia and Fragile X carrying GAA·TTC and 

CGG·CCG expansions respectively64,65, and DNA damage response genes are downregulated in Fragile X 

patient blood66.  An intriguing further finding shows that histone deacetylase (HDAC) enzymes promote 

repeat expansion via the MutSβ pathway67. CAG repeat sequences show enhanced convergent 

transcription68 (transcription taking place on both strands and moving towards each other), that involves 

MMR components but induces cell death via ATR focus formation at CAG repeats69. It is therefore possible 

that the final pathways of neurodegeneration and cell death in the repeat diseases parallel those of other 

neurological diseases, such as the A-T like diseases that can be caused directly by mutations in ATR.  

Base excision repair 

The response to oxidative damage of DNA by base-excision repair influences repeat expansion (Figure 1). 8-

oxoguanine glycosylase (OGG1) removes 8-oxoguanine bases from DNA, damaged through the action of 

reactive oxygen species. Crossing HD knock in mice with Ogg1-/- mice reduces somatic expansion of the Htt 

CAG repeat and delays phenotype, and treating mice with a reactive oxygen species scavenger to prevent 

DNA oxidation also reduces somatic expansion and correlates with improvement of the motor phenotype70.  

Flap endonuclease 1 (FEN1) also has a role in BER and repeat expansion71. During BER of 8-oxoguanine in the 

DNA of CAG repeats, OGG1 and mutY DNA glycosylase (MUTYH), that removes adenine incorporated 
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opposite unrepaired 8-oxoguanine bases, generate incisions on opposite DNA strands that may permit 

repeat expansion72 though events downstream of DNA cleavage are also involved in expansions: the p53R2 

protein product of RRM2B is induced in R6/2 HD mouse brain regions that show somatic expansion of 

repeats, but not in those that do not73. Notably RRM2B is in the genome-wide significant peak on 

chromosome 8 in the HD-GeM study18 and has nominal associations in other repeat diseases19.   

The Fanconi Anaemia repair pathway 

The operation of the Fanconi Anaemia (FA) pathway74 in trinucleotide repeat diseases is unexplored. 

However, the chromosome 15 locus associated with age at onset of HD18 contains FAN1. As a DNA nuclease 

it is a candidate for modifying HD onset through mechanisms outlined above or by promoting or 

ameliorating DNA expansion at the CAG repeat. FAN1 cleaves DNA at interstrand cross-links and repair 

occurs in complex with other FA pathway members including FANCD2 and the MMR proteins74. Mutations in 

genes associated with interstrand cross-link repair, with which FAN1 interacts, cause Fanconi anaemia, but 

loss of function mutations in FAN1 lead to a recessive renal syndrome, karyomegalic interstitial nephritis75, 

while heterozygous truncating mutations in FAN1 cause some familial colorectal cancers76, in common with 

other MMR pathway mutations. In addition to its known function in repairing interstrand cross-links, FAN1 

recognises branched structures mimicking DNA-repair rather than specific DNA sequences74,77. Repeat 

sequences, including CAG repeats, adopt non-helical structures in DNA such as G-quadruplexes49 and thus 

FAN1 may target these structures, rather than recognising the sequence itself (Figure 1). This activity is likely 

dependent on other MMR proteins to effect DNA repair, consistent with the manipulation of MMR genes 

ameliorating the HD mouse phenotypes44. Given that MLH1 is in a locus on chromosome 3 that has a signal 

just below genome-wide significance in the HD GWAS7, and MLH1 interacts with FAN1, these may be central 

players in a novel FAN1 activity that binds repeats and modulates their instability. 

Conclusions and future directions 

The demonstration that genetic modifiers exist in the Mendelian triplet repeat disorders shows that finding 

genetic modifiers in rare genetic diseases is possible.  It highlights areas of biology that modulate disease in 

people: in the triplet repeat disorders specific aspects of the DNA damage response are highlighted: 
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mismatch repair, base-excision repair and the Fanconi anaemia pathway. These recent findings raise two 

very interesting questions: first, does the observation of genetic association with DNA repair processes occur 

across all the repeat diseases, and second, is the common mechanism through which it operates somatic 

expansion of repeats? In order to establish the relevance of DNA-repair and other modifiers to the repeat 

diseases more genetic studies – including both genome-wide association and sequencing - to fully power and 

identify risk SNPs and loci are required, across all the repeat diseases: this is ongoing in HD.  Many of these 

diseases have very long repeats, which are currently difficult to measure accurately but new sequencing 

technologies, including long read and single-cell sequencing, should overcome this and allow a more 

accurate determination of the exact sequence in the repeat including any interruptions78.  The current work 

in HD and the polyglutamine diseases provides a model that indicates combining multiple diseases in 

analysis may be a possible route to increased power19.   

 

Elucidating the mechanistic consequences of such variation will be challenging. Many of the diseases already 

have models in cells and animals that can be refined with knowledge of modifiers and common biology 

allows development of common downstream assays that reflect disease biology demonstrated to be 

important in people.  However, as yet there is no information about the direct molecular effects of the 

genetic variation detected so whether the function of the DNA damage response is enhanced or inhibited by 

the observed changes is unknown. As in complex diseases, clues can be gathered from aggregating data 

about likely expression changes and functional effects of coding changes in genes and pathways using 

algorithms such as co-expression networks79, protein interaction networks80 and developments of them.  

 

Downstream from genetic discovery, in order to establish whether somatic expansion or other DNA 

repair/integrity mechanisms are responsible for the genetic signal, cell biology and animal models will be 

necessary.  Human tissue will be needed to investigate gene expression and demonstrate the effects of the 

variants in vivo. One immediate priority, just beginning, is establishing the effects of manipulating the 

Fanconi anaemia pathway. Potential emerging pathogenic mechanisms that require further investigation 

include the operation of repeat-induced mutagenesis, where DNA repair activities lead to further 
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mutagenesis around repeat loci57, and the relevance of chromatin structure to repeat exposure and 

dynamics81.   Detailed mechanisms examining the exact nature of the DNA damage response essential in 

neurodegeneration will allow the development of new drugs and possibly the repurposing of already existing 

treatments targeting the DNA damage response in cancers22. 

   

Finally, a common mechanism in multiple diseases offers hope that treatments can be developed that will be 

applicable across diseases.  This is analogous to the situation in cancers where common biological pathways 

are dysregulated in multiple forms of the disease and the same chemotherapeutic agents can be used as 

part of polytherapies in a number of different cancers82. These recent findings open a new window on repeat 

expansion disease, with obvious avenues for therapeutic exploitation.  
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Box 1: DNA damage and the DNA damage response 

Lesions in DNA are the inevitable result of both exogenous and endogenous processes. Repairing DNA lesions, whatever their cause, is fundamental to genome 

integrity. Mutations induced by damaged bases, structural modifications of DNA through supercoiling and looping out of strands and interstrand cross-links all 

occur, and require resolution to maintain the genome: unrepaired lesions lead to cell death or uncontrolled division. Clinically, inherited lesions in the genes of the 

DNA damage response confer susceptibility to cancers which has recently been reviewed in detail by Pearl and colleagues22. The major pathways of the DNA 

damage response (DDR) are shown below. It should be noted that while the pathways are distinct, many of the proteins within them operate in multiple DDR 

pathways and it is important to bear this in mind when considering their potential effects in mediating and modulating neuropathology. 

 

Abbreviation Repair pathway Type Repair 

FA Fanconi anaemia Double strand Interstrand crosslinks, possibly others74 

HR Homologous recombination Double strand Template-directed end-joining from other chromatid83 

NHEJ Non-homologous end joining Double strand Ligates double-strand breaks without a template84 

BER Base excision repair Single strand Removes damaged bases, fills and ligates the strand85 

DR Direct repair Single strand Direct repair of damaged bases without removal86 

MMR mismatch repair Single strand Corrects mismatches in replication and short insertions and deletions87 

NER Nucleotide excision repair Single strand Removes DNA modifications that cause structural distortions88  

TLS Translesion synthesis  Synthesises DNA at sites of damage during replication89 
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Location Disease Gene Repeated 
sequence 

Non-
expanded 

Expanded Somatic 
expansion 

Comments 

5' UTR Fragile X syndrome90,91 FMR1 CGG <50 >200 Y (M, H) FRAXE and other rare fragile sites 
all CCG  

  Fragile X associated tremor/ataxia91 
syndrome 

FMR1 CGG <50 50-200 Y (H, M)  

  Spinocerebellar ataxia 1292  ATXN12 CAG 7-28 46-78 rare May also be exonic 

  Frontotemporal dementia/Amyotrphic 
lateral sclerosis93 

C9ORF72 GGGGCC 2-17 10-50kb Y (H)  

Exon Dentatorubralpallidolusian atrophy94 ATN1 CAG <48 48+ Y (H, M)  

  Huntington’s disease48 HTT CAG 6-35 36-250 Y (H, M)  

  Huntington’s disease like 295 JPH3 CAG 6-28 40-59 Y (H) Intronic or 3'UTR also 

  Spinal and bulbar muscular atrophy96 AR CAG 9-36 38-62 Y (H, M)  

  Spinocerebellar ataxia 138 ATXN1 CAG 26-37 39-82 Y (H, M)  

  Spinocerebellar ataxia 238   ATXN2 CAG 15-29 33-63 Y (H, M) also ALS13  

  Spinocerebellar ataxia 338  ATXN3 CAG 12-35 47-84 Y (H, M)  

  Spinocerebellar ataxia 638   CACNA1A CAG 7-16 20-29 rare 
meiotic 

 

  Spinocerebellar ataxia 738  ATXN7 CAG 8-14 36-62 Y (H, M)  

  Spinocerebellar ataxia 1738 TBP CAG 29-42 43-63 meiotic  

Intron Friedreich's ataxia97 FXN GAA 6-30 66-1700 Y (H, M)  

  Myotonic dystrophy 298 CNBP CCTG <30 55-11,000 Y (H, M) Complex repeat structure 

3' UTR Myotonic dystrophy 148,98 DMPK CTG 5-37 100-2000+ Y (H, M)  

  Spinocerebellar ataxia 899 ATXN8 (CTA)(CTG) <33 80+ Y (H) May also be exonic, instability in 
non-expanded and expanded 
repeats 

Table 1: Characteristics of selected disease causing repeat loci  

Disease causing repeat loci mentioned in the text are included thus multiple rare diseases caused by expansion of repeat codons giving rise to shorter polyalanine 
tracts100 are not included.  H = seen in human tissues, M = seen in mouse model tissues.  
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Figure legend 

Figure 1 DNA repair and repeat expansion mechanisms 

Mismatch repair (a), transcription-coupled repair (b), the Fanconi anaemia pathway (c) and base excision 

repair (d) may all have a role in repeat instability.  Slipped strands of different sizes in CAG repeats , where C-

G bases are Watson-Crick paired and stabilise the looped out structures but the intervening bases are not 

paired.  Unpaired bases also occur at the ends of loop structures and at bulges in the DNA.  These unpaired 

bases are susceptible to damage which can lead to base excision repair, illustrated in (d). TC-NER (b) can 

occur as the DNA strands separate for transcription and the DNA on the non-transcribed strand is unwound 

and exposed.  Elements of the transcriptional machinery can cleave the DNA and stalled transcription 

promotes the formation of R-loops which predispose to repeat instability.  More speculatively, FAN1, a 

structure specific nuclease, and possibly other elements of the Fanconi anaemia pathway (c), might 

recognise and bind to bulky structures formed by the repeat sequences such as G-quadruplexes leading to 

DNA cleavage rendering repair necessary and predisposing to repeat instability.  There is currently no 

mechanistic work to support this hypothesis.  All the DNA structures with unpaired bases are likely to have 

an increased propensity for DNA damage, and extrinsic and intrinsic factors such as oxidative stress which 

can damage DNA are likely to cause more damage.  Such damage and subsequent BER (d) is known to lead to 

DNA repair by gap-filling synthesis and predispose to instability of repeats. 
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