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ABSTRACT 
 

The majority of non-small cell lung cancer (NSCLC) patients present 

with advanced disease and with a 5 year survival rate of <15% for these 

patients, treatment outcomes are considered extremely disappointing. 

Standard chemotherapy regimens provide some improvement to ~40% of 

patients. However, intrinsic and acquired chemoresistance are a significant 

problem and hinder sustained long term benefits of such treatments. 

Advances in proteomic and genomic profiling have increased our 

understanding of the aberrant molecular mechanisms that are driving an 

individual’s tumour. The increased sensitivity of these technologies has 

enabled molecular profiling at the stage of initial biopsy and thus has paved 

the way for a more personalised approach to the treatment of cancer patients. 

Improvements in diagnostics together with a wave of new small molecule 

inhibitors and monoclonal antibodies that target “driver” mutations has 

revolutionised the treatment of cancer.  

To date there are essentially three targeted agents approved for clinical 

use in NSCLC. The tyrosine kinase inhibitor (TKI) erlotinib, which targets 

the epidermal growth factor receptor (EGFR) TK domain, has proven to be 
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an effective treatment strategy in patients who harbour activating mutations 

in the EGFR TK domain. Bevacizumab a monoclonal antibody targeting the 

vascular endothelial growth factor (VEGF) can improve survival, response 

rates, and progression-free survival when used in combination with 

chemotherapy. Crizotinib, a small-molecule drug, inhibits the tyrosine kinase 

activity of the echinoderm microtubule-associated protein-like 4 anaplastic 

lymphoma kinase (EML4-ALK) fusion protein, resulting in decreased 

tumour cell growth, migration, and invasiveness in patients with locally 

advanced or metastatic NSCLC. Several other agents are in clinical testing 

that target a number of key signalling molecules including: KRAS, HER2, 

BRAF, MET, PI3K/PI3K-mTOR, MEK1, and IGF- 1R. Often several 

pathways are activated simultaneously and crosstalk between pathways 

allows tumour cells to escape the inhibition of a single targeted agent. This 

chapter will explore the clinical development of currently available targeted 

therapies for NSCLC as well as targeted agents currently in clinical trials and 

will examine the synergy between cytotoxic therapies.  

 

 

INTRODUCTION 
 

Only approximately 20-30% of newly diagnosed NSCLC patients present 

with early stage disease and are suitable candidates for resection. Traditionally 

decisions on therapeutic options were based on the histology of the tumour. The 

standard treatment for advanced NSCLC patients with a good performance status 

(0-1) is platinum-based chemotherapy and partial responses are achieved in 30-

40% of patients [1]. Complete responses are very rare in advanced NSCLC and 

those that do respond initially will develop acquired resistance to treatment. With 

a 5 year survival rate of <15% for patients with advanced disease, treatment 

outcomes are considered disappointing. A randomised phase III trial demonstrated 

better results for pemetrexed than for gemcitabine in patients with non-squamous 

NSCLC [2]. However, conventional chemotherapy has reached a plateau of 

effectiveness in improving patient survival in all tumour histologies and a 

concerted effort to further classify tumours at the molecular level is critical.  

Lung cancer is a heterogeneous disease and often several signalling pathways 

are driving the oncogenic behaviour of tumours. Several key “driver” genes are 

mutated in NSCLC including, epidermal growth factor receptor (EGFR), 

anaplastic lymphoma kinase (ALK), KRAS, human epidermal growth factor 

receptor 2 (HER2), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), 

MET, phosphatidylinositol 3-kinase catalytic α (PIK3CA), AKT and mitogen-

activated protein kinase kinase 1 (MAP2K1) (Figure 1). In fact, these genes 

contribute to the pathogenesis of several cancer types. Other aberrations such as 

http://www.cancer.gov/drugdictionary?CdrID=586080
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variation in gene copy numbers, translocations between genes and single 

nucleotide polymorphisms (SNPs) can occur in a proportion of cells within a 

tumour. These aberrant genes are obvious targets for inhibition and thus the 

design of drugs that will selectively block these oncogenic varieties while sparing 

their normal counterparts seems like the ideal strategy to annihilate these rogue 

cells. A table summarising the frequency of mutations and availability of targeted 

therapies in NSCLC is shown below (Table 1). However, there is no guarantee 

that only the oncogenic variant is druggable, and like all targeted therapies the 

cancer cell will eventually activate alternative signalling pathways to evade these 

targeted inhibitors.  

 

 

Figure 1. Mutation rates in Non-Small Cell Lung Cancer. 
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Intrinsic resistance or the development of acquired resistance to targeted 

therapies may be due to the multilevel complex cross-talk that occurs between the 

targets of the biological agent and several signal transduction pathways. Blocking 

only one of these pathways may not always be an effective treatment strategy as 

this approach may open the door for others to act as bypass mechanisms within 

tumour cells. The most promising approaches to the treatment of NSCLC, will be 

drugs with multiple targets or the use of a combination of targeted therapies.  

 

Table 1. Frequency of mutations and availability of targeted therapies in 

NSCLC. 

 

Gene Alteration Frequency in NSCLC 

AKT1 Mutation 1-2% 

ALK Rearrangement 3–7% 

BRAF Mutation 1–3% 

DDR2 Mutation ~4% 

EGFR Mutation 10–35% 

FGFR1 Amplification 20% 

HER2 Mutation 2–4% 

KRAS Mutation 8-21% 

LKB1 Mutation 9-33% 

MEK1 Mutation 1% 

MET  Amplification 2–4% 

NRAS Mutation 1% 

PIK3CA Mutation 2-5% 

PIK3CA Amplification 12-20% 

PTEN Mutation 4–5% 

PTEN  Loss 24-44% 

RET Rearrangement 1% 

ROS1  Rearrangement 1% 
Key:  

Drugs approved in NSCLC 

Drugs approved in NSCLC for ALK subtype & effective here 

Drugs approved in other cancers 

Drugs in clinical development 

 

 

TARGETED THERAPY IN LUNG CANCER 
 

A deeper understanding of the pathobiology of human malignancies has led to 

successful application of targeted therapeutic strategies in several cancers [3-6]. 

 

http://www.mycancergenome.org/gene.php?dz=nsclc&gene=MET


Targeted Therapies in Non-Small Cell Lung Cancer 5 

 

Figure 2. Targeted Therapies in NSCLC. 

In NSCLC several targeted inhibitors are currently being evaluated in clinical 

trials and there are essentially three targeted agents approved for clinical use 

(Figure 2). The EGFR TKIs gefitinib and erlotinib which target the EGFR TK 

domain, have proven to be an effective treatment strategy in patients who harbour 

activating mutations in the EGFR TK domain. Bevacizumab a monoclonal 

antibody targeting VEGF can improve survival, response rates, and progression-

free survival when used in combination with chemotherapy. Crizotinib, a small-

molecule drug, inhibits the tyrosine kinase activity of the EML4-ALK fusion 

protein, resulting in decreased tumour cell growth, migration, and invasiveness in 

patients with locally advanced or metastatic NSCLC. With increasing studies 

showing the importance of matching the treatment to the mutation the Lung 

Cancer Mutation Consortium (LCMC) in collaboration with the National Lung 

Cancer Partnership was established to promote molecular tumour mutation testing 

for lung cancer patients. The LCMC aims to screen a large population of patients 

to create a unique national data set to determine the frequency of certain driver 

mutations and explore opportunities for clinical trial enrollment. Molecular 

profiling of 830 patients, indicated that 60% of tumors exhibit known driver 

mutations including 25% KRAS, 23% EGFR, and 6% ALK rearrangements [7]. 

These data remind us that in 40% of tumours there are as yet unknown lung 

http://www.cancer.gov/drugdictionary?CdrID=586080
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cancer drivers. Interestingly 95% of molecular lesions are mutually exclusive and 

the presence of one mutation in lieu of another can influence response to targeted 

therapy. Companion diagnostics that enable the monitoring of changes in patients’ 

tumour genotypes throughout the course of their disease together with a 

combination approach to targeted therapy can potentially reduce toxicities and 

improve patient outcomes. 

 

 

EGFR 
 

The EGFR signalling pathway plays an essential role in the pathogenesis of 

NSCLC with EGFR protein expression seen in up to 85% of NSCLC patients. 

Initial studies failed to demonstrate the prognostic relevance of EGFR expression 

in NSCLC or to predict response to oral EGFR TKIs [8-12]. However, a recent 

study has shown that EGFR expression does predict response to EGFR-TKIs if an 

intracellular binding antibody is used for immunohistochemistry analysis [13]. 

Somatic mutations in the EGFR TK domain proved to be a better predictor of 

response to EGFR TKIs and were first described in 2004. Mutations are either in-

frame deletions or amino acid substitutions clustered around the ATP-binding 

pocket of the TK domain (exons 18-21). The two most common mutations are in-

frame deletions in exon 19 (del 19) or a substitution mutation in exon 21 (L858R) 

and these account for 85-90% of the drug-sensitive EGFR mutations seen in 

NSCLC. Two other sensitising mutations are substitutions in exons 18 (G719A/C) 

and 21 (L861Q) [14]. 

These mutations are more common in female, never smokers with 

adenocarcinomas, who are of Asian ethnicity [15, 16]. Cells harbouring these 

“driver” EGFR mutations are said to be in a state of “oncogenic addiction” and 

are highly dependent on the constitutively active EGFR signalling pathway [17]. 

A germline T790M EGFR mutation was reported in a family with multiple cases 

of NSCLC and was shown to confer a growth advantage to the cancer cells [18]. 

Both T790M positive cells and those having a “double mutant” (T790M and 

L858R mutations) have been shown to have enhanced kinase activity [19] and 

increased tyrosine phosphorylating activity, respectively [20]. The T790M 

mutation has also emerged as a secondary point mutation that is present in 

approximately half of lung cancer patients who develop resistance to EGFR TKIs. 

Pinter et al. have shown that there is little correlation between EGFR expression 

(IHC) and EGFR-activating mutations, increased EGFR gene copy number or 

response to EGFR TKI [9]. Although EGFR amplification can indicate response 

to EGFR TKIs, mutation status is the best predictor of response and is used 
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routinely to identify NSCLC tumours that are most likely to benefit from 

treatment [15, 21-25]. 

 

 

TARGETING EGFR 
 

Cetuximab (Erbitux) is a chimeric monoclonal G1 (IgG1) antibody that binds 

to EGFR with high affinity and blocks ligand binding, inducing receptor 

internalisation and degradation resulting in inhibition of EGFR expression. It is 

licensed to treat both metastatic colorectal cancer (mCRC) and squamous cell 

carcinoma of the head and neck (SCCHN). However, after initial positive results 

in Phase II trials in patients with advanced NSCLC, two Phase III trials evaluating 

Cetuximab in addition to first-line chemotherapy showed only a small benefit in 

overall survival (OS). Interestingly, a subgroup analysis of patients with high 

EGFR expression by IHC from the FLEX Phase III trial demonstrated a greater 

survival benefit [26]. If this data can be validated prospectively than cetuximab 

may be approved as a standard treatment in the future. 

The EGFR TKIs gefitinib (Iressa) and erlotinib (Tarceva) have been licensed 

to treat advanced or metastatic NSCLC. Activating mutations in the EGFR 

tyrosine kinase domain have been shown to demonstrate different sensitivities to 

EGFR TKIs, with exon 19 deletions being more likely to respond than those of 

exon 21 [27-31]. Conversely, some substitution mutations in exon 20 (T790M) 

and exon 21 (T854A) are known to confer resistance to some EGFR TKIs [32-34] 

Although mutated tumours initially respond to treatment with the EGFR TKIs 

erlotinib and gefitinib, almost all will eventually develop acquired resistance to 

these drugs [32, 35]. A mutation at T790M has been shown to confer resistance in 

50% of cases [36-38]. It was initially thought that the substitution of the larger 

methionine residue may cause steric hindrance to the binding of the drugs [32, 39] 

A structurally similar reversible TKI is, however, able to overcome the T790M 

mutation [40]. The T790M mutation may result in increased affinity of EGFR for 

ATP compared with erlotinib or gefitinib and this is the primary mechanism by 

which the mutation confers drug resistance [41] Thus, it should be possible to 

overcome the resistance by developing TKIs that have a higher affinity for the 

T790M kinase [33, 42, 43]. New generation EGFR TKIs, that bind irreversibly to 

the EGFR-TK, forming covalent cross-links with EGFR, such as afatinib (BIBW 

2992), have been shown to be active against tumours resistant to reversible EGFR 

TKIs [32, 42-46] and offer an alternative therapy strategy. New-generation TKIs 

may have a longer duration of action than reversible agents. In order to change the 

therapeutic agent at the optimal time to prevent tumour progression, it would be 
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useful to know when the T790M mutation has developed. A recent publication 

found T790M in up to 38% of patients not previously treated with a TKI [47]. The 

existence of a T790M mutation in a few cancer cells at diagnosis confers a shorter 

time to tumour progression [48]. Such cells are subsequently ‘cloned out’ during 

the patient’s treatment with EGFR TKIs indicating that these patients may benefit 

from treatment with new-generation EGFR TKIs from the beginning. 

Alternatively screening for the emergence of the T790M mutation during 

treatment may allow early identification of acquired resistance to TKIs and 

treatment to be tailored as necessary. In addition to these specific EGFR 

mutations, other factors such as amplification or activation of the insulin-like 

growth factor receptor [49] and MET amplification [50] have also been shown to 

confer resistance to EGFR TKIs. These nuances of the EGFR discussed above 

demonstrate that both preselection of patients most likely to respond to EGFR-

targeted therapy and screening during therapy are crucial to determine the 

appropriate treatment regimen. 

 

 

VEGF AND VEGFR 
 

The vascular endothelial growth factor (VEGF) ligand is released from 

endothelial cells in response to tissue injury or hypoxia, and leads to the formation 

of new blood vessels. It has been implicated in tumorigenesis and metastasis and 

is an important pro-angiogenic mediator. There are five members of the VEGF 

family (VEGF-A, VEGF-B, VEGF-C, VEGF-D and PIGF) with VEGF-A the 

most clinically active. There are 3 VEGF receptor (VEGFR) tyrosine kinases 

(VEGFR-1, VEGFR-2 and VEGFR-3) with VEGFR-2 involved in most 

angiogenic responses. Overexpression of VEGF promotes vascular permeability, 

which enhances tumor nutrient exchange, extravasation of macromolecular 

proteins and the influx of tumor cells [51]. Several studies have identified VEGF 

overexpression as a poor prognostic indicator in NSCLC and SCLC [52, 53]. 

 

 

TARGETING VEGFR WITH BEVACIZUMAB 
 

The anti-tumor effects of VEGF pathway inhibition have been validated in 

preclinical models [54, 55], and subsequently led to the development of VEGF 

antagonists such as the monoclonal antibody, bevacizumab (Avastin). The Phase 

III ECOG 4599 trial established the efficacy of bevacizumab by randomizing 
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metastatic, non-squamous lung cancer patients to carboplatin, paclitaxel and 

bevacizumab versus chemotherapy alone [56]. The addition of bevacizumab to 

chemotherapy resulted in better median survival (12.3 vs 10.3 months, hazard 

ratio (HR) 0.79) and a higher response rate (RR; 35 vs 15%, p < 0.001) when 

compared with chemotherapy alone. Based on this study, bevacizumab gained 

FDA and EMEA approval in 2006 as first-line therapy in combination with 

carboplatin and paclitaxel for advanced nonsquamous NSCLC.  

 

 

TARGETING VEGFR WITH TKIS 
 

After the success of bevacizumab a number of compounds targeting 

angiogenesis have since gone into preclinical and clinical testing. Several of these 

newer agents are multitarget tyrosine kinase inhibitors (MTKIs) which target 

several pathways concomitantly. Sorafenib inhibits the kinase activity of C-RAF, 

B-RAF and targets platelet-derived growth factor receptor family (PDGFR-β and 

stem cell factor receptor (KIT)) as well as VEGFR2/3. Sorafenib inhibits MEK 

and ERK phosphorylation in various cancer cell lines and tumor xenografts [57]. 

Sunitinib is a multitargeted inhibitor of VEGFR, PDGFR, KIT and FLT3 (FMS-

like tyrosine kinase 3). Both MTKIs were approved by the FDA to treat metastatic 

renal cell carcinoma and sunitinib has been approved for gastrointestinal stromal 

tumours. However these drugs have not produced as promising results as in the 

non-specific biomarker setting. These drugs are also associated with having 

higher toxicities.  

In a large Phase III placebo-controlled study investigating the efficacy of 

sorafenib with carboplatin and pacliltaxel (CP), the addition of sorafenib to 

chemotherapy-naïve patients with advanced NSCLC failed to show clinical 

benefit [58]. In a setting when the biomarker status of a patient is known, such as 

in the case of the BATTLE trial, sorafenib has shown varying results [59]. 

Sorafenib was found to have activity against tumors in patients with wild-type K-

RAS, whereas patients who had EGFR mutations fared worse on sorafenib. Such 

results illustrate the importance of biomarkers in predicting the sensitivity or 

resistance of patients to targeted therapy. BATTLE-2 is a follow-up trial seeking 

to pursue the interesting data found in BATTLE-1 regarding KRAS mutations and 

the positive results of sorafenib. Thus, only two arms from the original BATTLE-

1 trial (erlotinib and sorafenib) were continued in BATTLE-2.  

Another MTKI that has been investigated in NSCLC is Motesanib which 

targets VEGFR 1 - 3, PDGFR and KIT. A Phase II three arm study comparing 

motesanib and CP with single agent motesanib and single agent bevacizumab 
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showed comparable results between the motesanib and bevacizumab arms in 

advanced NSCLC patients but with higher toxicity in the motesanib arms [60]. A 

larger Phase III placebo-controlled study with motesanib and CP was temporarily 

halted due to a high incidence of hemoptysis in patients with squamous cell 

histology, but reopened later for non-squamous NSCLC patients with results 

available in 2013 [61].  

Other therapies that target and antagonize circulating VEGF are currently 

undergoing investigations [62]. VEGF and EGFR are now shown to have 

interconnected downstream pathways, potentiating the effectiveness of their dual 

inhibition in cancer therapy. Vandetanib is a small molecule that inhibits VEGFR, 

EGFR as well as RET and additional kinases, and may be beneficial in treating 

patients with solid tumors [63]. The effectiveness of dual EGFR/VEGF inhibition 

to single EGFR blockade was evaluated in a two-part crossover, randomized 

Phase II trial [64]. Vandetanib (300 mg) was tested against gefitinib (250 mg) and 

following progression on the randomized primary treatment, patients were crossed 

over to the opposing treatment arm. Median PFS was 11.0 weeks for vandetanib 

and 8.1 weeks for gefitinib (HR = 0.69) with no difference found in OS. DC for 

more than 8 weeks was observed in 45% of patients in the vandetanib arm 

compared with only 34% patients taking gefitinib.  

The efficacy of vandetanib was evaluated in four randomized phase III 

clinical trials in NSCLC in combination with docetaxel (ZODIAC) [65], 

pemetrexed (ZEAL) (66] or as a single agent (ZEST and ZEPHYR) [67, 68]. Both 

combination trials with vandetanib resulted in the improvement of lung cancer 

symptom control. However, ZODIAC was the only trial to meet its primary 

endpoint of progression free survival (PFS) while no study showed advantage in 

overall survival (OS). As of October 2009, there are no longer planned 

developments for the use of vandetanib in treating advanced NSCLC in the USA 

and the EU. The decision was made based on the lack of benefit to OS and the 

insufficiency of using PFS as the primary end point for approval.  

 

 

EML4-ALK 
 

EML4-ALK is an aberrant fusion gene that is the result of a chromosomal 

rearrangement between the N-terminal half of the echinoderm microtubule-

associated proteinlike 4 (EML4) gene and intracellular kinase domain of the 

anaplastic lymphoma kinase (ALK) gene. This leads to constitutive, ligand-

independent activation of the ALK kinase, resulting in aberrant activation of 

downstream oncogenic signalling pathways including PI3K and MAPK, as well 
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as STAT3 dependent pathways that promote cell proliferation, stromal invasion, 

and apoptotic inhibition. Other reported ALK fusions in NSCLC include TFG 

[69] and kinesin family member 5B (KIF5B) [70, 71] are less frequently 

observed. EML4-ALK was initially discovered in anaplastic large-cell lymphoma 

[72] however, in 2007, Soda et al. described ALK activation in a subset of 

NSCLC that exhibited this fusion between EML4 and ALK in the short arm of 

chromosome 2p [73]. This study detected the EML4–ALK fusion transcript in 5 

of 75 Japanese (6.7%) NSCLC patients however further studies revealed that it 

occurs in approximately in 2-7% of patients with NSCLC adenocarcinomas. ALK 

rearrangements are more common in never smokers or light smokers and in those 

with adenocarcinoma especially the acinar histology in East Asia or the signet-

ring or cribriform morphology in the West. This variant is always positive for 

TTF-1 [74, 75]. In general, EML4–ALK and EGFR and KRAS mutations are 

mutual exclusive [76] however counterexamples have also been reported [77]. 

Patients with ALK rearrangements are not thought to benefit from EGFR TKIs.  

 

 

TARGETING ALK 
 

Although the incidence of EML4–ALK is low in NSCLC its importance is 

significant due to its relatively specific and well-tolerated ALK inhibitor, 

crizotinib (Xalkori) [78, 79]. Crizotinib is a small molecule TKI originally 

developed as a mesenchymal epithelial transition growth factor (c-Met) inhibitor 

[80] but was discovered to be a potent ALK inhibitor. It binds to ALK blocking 

the driver kinase activity and inhibiting tumour growth. This inhibitor was first 

described in 2007 and in less than 3 years an early-phase clinical trial yielded 

impressive responses in patients with advanced lung cancer containing ALK 

rearrangements (Kwak et al.) 82 patients, most of whom were previously treated, 

were enrolled in the study and received crizotinib (250 mg) twice daily in 28-day 

cycles [81]. At a mean treatment duration of 6.4 months, the overall response rate 

was 57% (47 of 82 patients, with 46 confirmed partial responses and 1 confirmed 

complete response); 27 patients (33%) had stable disease. A total of 63 of 82 

patients (77%) were continuing to receive crizotinib at the time of data cut-off, 

and the estimated probability of 6-month progression-free survival was 72%, with 

no median for the study reached. The drug resulted in grade 1 or 2 (mild) 

gastrointestinal side effects. The benefit of testing for ALK rearrangements was 

demonstrated in phase I and phase II trials of the ALK inhibitor crizotinib. 

Patients with the EML4-ALK fusion, nearly all of whom had progressed despite 
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at least 1 prior line of therapy, showed response rates of approximately 50% to 

60% crizotinib. Response duration was 42-48 weeks [78, 79]. 

Data obtained from clinical trials has shown that in patients who had received 

prior treatments that either failed or worked only for a brief period of time, 

crizotinib offered a 72% chance the tumour would shrink or remain stable for at 

least six months. As with the EGFR inhibitors, however, tumours tend to adapt to 

target therapies, and eventually render them ineffective. The FDA approved 

crizotinib along with a companion diagnostic to evaluate ALK rearrangements on 

FISH for advanced stage non-small cell lung cancer which has been determined to 

be ALK positive. 

In patients who received crizotinib as second-line therapy, the 1-year overall 

survival rate was 70% and the 2-year overall survival rate was 55%. By contrast, 

ALK -positive matched controls had a 1-year survival of 44% and a 2-year 

survival of 12%, whereas ALK -negative controls had a 1-year survival of 47% 

and a 2-year survival of 32%. These data suggest that the presence of the ALK 

gene fusion itself does not confer a poorer outcome but that the use of crizotinib 

in ALK-positive patients can improve outcome [82]. 

Immunohistochemistry, may become a standard-of-care, high concordance 

with FISH having been established for IHC 3+ or IHC 0 [83]. Intermediate IHC 

scores may, however, still require FISH. Several different antibodies are in 

development [76]. Already, a crizotinib resistance mechanism has been identified, 

a “gatekeeper” mutation L1196M [84-86]. Interestingly the ROS gene is also an 

“off-target” of crizotinib. Activation of ROS can be found in about 1.7% of 

NSCLC and crizotinib appears to have marked activity in these cases [87]. 

However, there is a case report of a patient with NSCLC harboring MET 

amplification who responded to this agent [88].  

Pemetrexed may have exceptional activity in ALK-rearranged NSCLC [89], 

with a response (in monotherapy or in combination with a platin) of 42% and a 

PFS of 9 months. Other publications have appeared in support [90, 91]) but more 

recently, those findings have been questioned. The ongoing profile studies should 

be informative. 

 

 

KRAS 
 

RAS oncogenes were first identified as the transforming factor in the Harvey 

and Kirsten strains of a mouse sarcoma virus [92]. KRAS is a member of a family 

of intracellular GTP-binding switch proteins called the GTPase superfamily. 

KRAS alternates between an active “on” state with a bound GTP and an inactive 
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“off” state with a bound GDP. It plays a key role in signal transduction 

downstream of transmembrane receptor tyrosine kinases, e.g. EGFR. After 

binding of growth factors such as the epidermal growth factor (EGF) and 

transforming growth factor α (TGFα) to the EGFR, GDP bound KRAS is then 

recruited by adaptor molecules. KRAS activation is accelerated by a protein called 

guanine nucleotide– exchange factor (GEF), which binds to the KRAS-GDP 

complex, causing dissociation of the bound GDP. GTP binds spontaneously to 

“empty” KRAS molecules, with release of GEF, activating downstream signalling 

predominantly via the RAF/MEK/ERK downstream signal transduction pathway 

(the classical MAPK pathway). Several other pathways may be stimulated by 

KRAS, including PI3K/AKT [93, 94]. Deactivation of KRAS, requires the 

assistance of a GTPase-activating protein (GAP), which binds to RAS-GTP and 

accelerates its intrinsic GTPase activity by a hundredfold.  

Homologous KRAS mutations have been identified in several human cancers. 

These missense mutations impair GTP hydrolysis and thus promote formation of 

constitutively activated GTP-bound KRAS. In NSCLC, 97% of KRAS mutations 

occur in exon 2, codon 12 or 13 [95] and are more common in “smoking 

adenocarcinoma” patients (30%–40%) hence the hypothesis that there is a direct 

relationship to tobacco exposure. The mutations are G-to-T or G-to-C 

transversions (pyrimidine swapped for purine); however, in never-smokers with 

adenocarcinoma, “transition” mutations (G to A (purine for purine)) have 

occasionally been found (approximately 15%) [96]. Mutation subtype may alter 

downstream signal activation, with potential implications [97] for prognosis. 

KRAS mutations are rarer in never smokers and less common in East Asian vs. 

US/European patients [98]. In general, KRAS mutations are found in tumors wild 

type for EGFR or ALK defining a distinct molecular subset of the 

disease. KRAS mutations are prognostic for poor survival, independent of therapy 

and patients fail to benefit from adjuvant chemotherapy and seem to be resistant 

to EGFR-TKIs [99, 100]. 

 

 

TARGETING KRAS 
 

Unlike other inactivating mutations which “switch off” signalling, KRAS 

mutations results in its persistent signal activation. For this reason KRAS has been 

difficult to target directly; as it requires reactivation, not inactivation, to switch the 

signalling off. 

Potentially KRAS itself could be targeted by inhibiting: KRAS protein 

expression, membrane localization through posttranslational modification or 
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trafficking, blocking its interaction with GEFs, or enhancing KRAS/GAP 

interactions [101]. Although extensive studies have been undertaken to block 

prenylation of the KRAS C-terminal membrane anchoring by farnesyltransferase 

inhibiton, unfortunately to date, no agent has been developed that can modulate 

any of the above processes with success. Efforts to target downstream effector 

pathways including BRAF, MEK, and PI3K either singularly or in combination 

have been more successful and are described below. 

Targeted inhibition of the molecular chaperone Hsp90 by investigational drug 

ganetespib, a synthetic second-generation Hsp90 inhibitor, slowed the growth of 

NSCLC cells which were KRAS mutation positive. The drug was even more 

active when combined with traditional lung cancer treatments and other 

investigational targeted therapies, according to preclinical study data [102]. 
The indirect value of KRAS in determining sensitivity to other targeted 

agents or to pemetrexed remains controversial. Recent data in NSCLC has shown 

that KRAS mutations may sensitize tumours to antifolates such as pemetrexed 

[105], possibly by upregulation of mir-181c, a micro RNA that can downregulate 

KRAS. As clinical evidence emerges, it is apparent that both KRAS mutation and 

amplification status should be considered for patient stratification prior to 

antifolate treatment. 

 

 

HER2 
 

HER2 is a member of the EGFR family of tyrosine kinase receptors that drive 

and regulate cell proliferation [103]. HER2 is overexpressed in 20% of NSCLC 

patients resulting in poor patient prognosis and survival [104]. Increased gene 

amplification has been documented in 2% to 23% of cases depending on the study 

[105, 106] and is more frequent (30%) in tumors with bronchioloalveolar 

carcinoma histology [107]. Mutations in the tyrosine kinase domain of HER2 

were first identified by the Cancer Genome Project [108]. Occurring in 2 to 4% of 

cases somatic mutations are predominantly insertion/duplications between amino 

acids 774 and 779, or a missense mutation at 755 and result in the continuous 

activation of the HER2 receptor pathway [109]. EGFR and HER2 mutations are 

located in the C-helix region of the kinase domain and interestingly, HER2 in-

frame insertions are found in a similar position to the deletion mutations observed 

in EGFR in NSCLC. Similar to EGFR and ALK, mutations occur more frequently 

in women, never-smokers and those with an adenocarcinoma sub-type. Studies 

have shown HER2 mutations, in exon 20 of the tyrosine kinase domain, are found 
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in 3 to 10% of lung adenocarcinomas [110, 111]. HER2, EGFR, and KRAS 

mutations seem to be mutually exclusive although a small proportion of patients 

may have coexisting HER2 and EGFR mutations [112]. At present, due to the 

relatively low mutation rate in the HER2 tyrosine kinase domain, routine patient 

screening and the availability of clinical trials has been limited.  

 

 

TARGETING HER2 
 

Early trials with the anti-HER2 monoclonal antibody (Trastuzumab) 

combined with chemotherapy in lung cancer patients with HER2 overexpression 

did not show a benefit for patients like the exceptional results seen in breast 

cancer [113]. Patients with amplified HER2 do not seem to benefit from anti- 

HER2 monoclonal antibodies (trastuzumab) or HER2 TKIs (lapatinib) [105-107, 

114, 115]. Although patients with HER2 mutations are resistant to EGFR TKIs 

irrespective of their EGFR mutation status, they do benefit from HER2 targeted 

therapy. Patients who have previously shown resistance to chemotherapy and/or 

EGFR inhibitors benefit from trastuzumab plus chemotherapy [116]. The dual 

tyrosine kinase inhibitors lapatinib and afatanib, which target both EGFR and 

HER2, have shown evidence of activity in lung cancer patients with HER2 

mutations [117]. Similarly, the pan-HER TKI PF00299804 inhibited cell growth 

in HER2- amplified and HER2-mutated NSCLC cell lines resistant to gefitinib 

[118].  

At present, patients who are identified as HER2-mutant are treated with first-

line chemotherapy, with HER2 specific trials designated as second-line or greater 

therapy. The Lung Cancer Mutation Consortium is offering tumor testing for 

HER2 mutations with the aim of promoting, within all participating medical 

institutions, clinical trials of this uncommon mutation.  

 

 

BRAF 
 

B-RAF is a serine/threonine-protein kinase that plays a role in linking RAS 

GTPases with proteins of the MAPK family which are involved in cell division 

and differentiation [119]. Three members of RAF kinase family have been 

identified and include: A-RAF, B-RAF and c-RAF. B-RAF mutations are among 

the most common in cancer in general, and were first described in melanomas 

[120]. They are present in only 1% to 3% of lung cancers and are most commonly 
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found in adenocarcinomas and in former or current smokers. In melanoma, where 

the most promising results with BRAF inhibitors have been seen, about 80% of 

mutations affect the Val600 residue (exon 15) within the kinase domain. 

Lung tumours also harbour non-Val600Glu mutations including the 

Leu596Val mutation in the kinase domain and the Gly468Ala mutation in the G 

loop of the activation domain, making testing more complicated [57, 120, 121]. 

The Lung Cancer Mutation Consortium is testing for multiple BRAF mutations, 

with direction to clinical trials being offered through the consortium. 

 

 

TARGETING BRAF 
 

Sorafenib (BAY43-9006, Nexavar) was the first RAF kinase inhibitor to enter 

clinical testing. This compound was initially developed as a selective inhibitor of 

RAF, however studies revealed other targets included VEGF receptor 2 and 3, 

PDGFR, FLT-3, c-KIT, and FGFR-1 [122]. The anti-tumor activity of sorafenib is 

actually thought to be anti-angiogenic rather than through RAF inhibition in 

patients with advanced cancer. Second-generation RAF inhibitors with greater 

selectivity for BRAF are in development and include PLX4032 (vemurafenib) and 

its close analogue PLX4720 (Plexxikon, Berkeley, CA, USA). Both are small 

molecule inhibitors selective for B-RAF and have shown excellent results in the 

treatment of melanoma patients with the Val600Glu mutation [123]. PLX4032 

potently inhibits MAPK pathway activity in cells expressing 
V600E

BRAF, however 

paradoxically it induces activation of ERK in BRAF wild-type tumor and normal 

cells [132, 133]. In BRAF wild-type tumor and normal cells, low concentrations 

of PLX4032 induces ERK signaling by transactivating non-drug bound RAF 

protomers in a process that is RAS-dependent. At higher concentrations, 

PLX4032 binds to both protomers within a dimer and inhibits all RAF activation 

[124]. Novel RAF inhibitors that potently suppress ERK activation in BRAF 

mutant cells but lack the paradoxical activation of ERK noted with PLX4032 in 

normal cells are also in development on the basis of the presumption that such 

agents would exhibit a broader therapeutic index [125]. 

 

 

C-MET 
 

The MET gene is located on chromosome 7q21-q31 and encodes hepatocyte 

growth factor receptor (HGFR) [126]. Its paracrine ligand, hepatocyte growth 
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factor (HGF), is produced by stromal cells. Met signals via RAS, PI3K/AKT, and 

STAT, affecting mitosis, survival, angiogenesis, migration, invasion as well as 

mesenchymal–epithelial transversion. Upregulation in cancer cells results in 

“invasive growth” [127]. In NSCLC, MET amplification occurs in squamous-cell 

carcinoma and adenocarcinoma but HGFR overexpression maybe more common. 

Mutations in MET are rare with one study identifying only 3 mutations in a cohort 

of 188 lung adenocarcinomas; two in exon 13 encoding the juxtamembrane 

domain (Arg988del and Tyr1021Asn) and one in exon 18 encoding the kinase 

domain (Gly1260Cys) [128]. 

Two Japanese studies also identified an intronic splice variant leading to exon 

14 deletions in 2–3% of NSCLC [129, 130]. Upregulation of MET may depend on 

prior exposure to therapy and may mediate resistance to it. Several studies 

indicate that MET amplification is responsible for ±20% of resistance to EGFR 

TKIs through a mechanism termed kinase switch [131–133], prompting the 

development of Met-inhibitory strategies. 

 

 

TARGETING C-MET 
 

Interestingly, crizotinib (PF-02341066 (Pfizer) described above as an 

approved targeted therapy for ALK-rearranged metastatic NSCLC, was originally 

developed as a c-MET inhibitor. A recent report [88] of a MET-amplified NSCLC 

patient with normal ALK treated with crizotinib showed the patient had a rapid, 

durable response to the dual inhibitor. As seen with other cancers crizotinib has a 

role in treating NSCLC patients with ALK rearrangements or MET amplification 

[134, 135]. 

Tivantinib (ARQ 197) is a small molecule inhibitor of c-Met with potential 

antineoplastic activity. A randomized, double-blind study (MARQUEE) 

evaluating erlotinib plus tivantinib versus erlotinib plus placebo in previously 

treated patients with locally advanced or metastatic, non-squamous, non-small cell 

lung cancer (NSCLC) was recently halted after interim analysis showed it was not 

expected to reach its primary endpoint of improvement in OS. This trial was based 

on a randomized phase II study (erlotinib ± tivantinib) in which non-squamous 

and KRAS M+ patients had benefited most with PFS (4.4 vs 2.3 months, P = 

0.12) and OS (10.1 vs 6.9 months, P = 0.18) [136]. Tivantinib continues to be 

studied as a monotherapy and as a part of combinations to treat many cancers 

including NSCLC. 

MetMAb (Hoffmann–La Roche), an anti-Met monoclonal antibody, achieved 

significant PFS and OS benefit in a randomized phase II trial (OAM4558g), 
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comparing MetMAb plus erlotinib (ME) to placebo plus erlotinib (PE) in 2nd/3rd 

line NSCLC. Benefit was not restricted to EGFR M+ or MET FISH + but was 

also seen in MET FISH-/IHC + [137]). Therefore MET expression may be more 

reliable than amplification in predicting MetMAb benefit. The effect in low 

expressors of Met appeared actually harmful, highlighting the importance of a 

companion diagnostic as MetMAb proceeds into phase III. Several phase I trials 

are in progress with inhibitors targeted towards specific and multiple kinases that 

are also active against c-Met. Multikinase inhibitor of c-Met and VEGFR-2 

foretinib (GSK1363089 or XL880), and cabozantinib XL184 (Exelixis) 

demonstrate strong affinity for the hepatocyte growth factor receptor (Met) and 

vascular endothelial growth factor receptor 2 (VEGFR2).  

Rilotumumab (AMG 102) (Amgen) is a fully humanised IgG2 monoclonal 

antibody that binds to and neutralises HGF, which prevents its binding to c-MET. 

A phase II trial of this drug in combination with chemotherapy is underway. MET 

appears to be the next major biomarker in metastatic NSCLC, with several 

inhibitors fast approaching the clinic.  

 

 

PI3K 
 

Phosphatidylinositol 3-kinases (PI3Ks) were discovered by Lewis Cantley 

and colleagues, who first published on their association with the polyoma middle 

T protein in 1985 [138]. PI3Ks have since been shown to be signal transducer 

enzymes that have the ability to phosphorylate the 3 position hydroxyl group of 

the inositol ring of phosphatidylinositol and phosphoinositides. The signals that 

PI3K family members help to potentiate induce the cell to grow, differentiate, 

proliferate, and increase survival, motility and intracellular trafficking. As such, 

these enzymes are strongly implicated in the development of the malignant 

phenotype. The PI3K/AKT/mTOR pathway has been implicated in lung 

tumourigenesis, with mutations, amplifications and epigenetic alterations 

observed at various points in the cascade [139]. The catalytic subunit of PI3K, 

p110, occurs in multiple isoforms, with the p110α isoform being encoded by 

PIK3CA. PIK3CA is frequently amplified or mutated in NSCLC, and is 

associated with increased AKT activity. PIK3CA aberrations are more frequently 

observed in squamous cell carcinomas (mutations: 2-7%; amplifications: 33-70%) 

than adenocarcinomas (mutations: 2%; amplifications: 6-19%) [140]. PIK3CA 

promoter methylation has also been observed in NSCLC, implying an alternative 

mechanism underlying inactivation of tumor-associated genes in lung 

carcinogenesis [139]. Further alterations in PI3K pathway genes such as PTEN 
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(mutation: 4-5%, loss 24-44%), LKB1 (mutation: 9-33%) and AKT1 (mutation: 

1-2%) are all found in NSCLC. Alterations in these genes lead the PI3K pathway 

to become constitutively activated. Activated mTOR (p-mTOR) has been shown 

to be present in up to 90% of adenocarcinomas, 60% of large cell carcinomas and 

40% of squamous cell carcinomas cases.We and others have shown that activation 

of this pathway in NSCLC leads to a more aggressive, drug-resistant disease 

which correlates to poor prognosis for patients [141]. 

 

 

TARGETING PI3K 
 

The PI3K pathway represents an attractive target for therapeutic intervention 

and recently we have seen the development of several inhibitors targeting 

strategic points in the signalling cascade. Analogues of mTOR inhibitor 

Rapamycin (or ‘Rapalogues’) were first investigated as a method of inhibiting 

PI3K pathway signalling. The mTOR protein kinase nucleates two distinct 

multiprotein complexes, mTOR complex1 and 2 (mTORC1 and mTORC2), and 

these Rapalogues (including Everolimus and Temsirolimus) only inhibit 

mTORC1. Disappointing results from clinical trials indicated that this treatment 

strategy was not ideal, and as such ‘second generation inhibitors’ of mTOR, 

which inhibit the adenosine triphosphate site of the mTOR kinase domain, and 

crucially are able to block both mTORC1 and mTORC2 complexes, were 

developed [142]. Several second generation mTOR inhibitors also exert effects on 

PI3K, and as such several of these ‘dual PI3K/mTOR inhibitors’ such as BEZ235, 

GDC-0980 and XL765 are currently in clinical trials, with promising in vitro and 

in vivo data indicating that this dual inhibition strategy may be superior to 

targeting mTORC1 or PI3K alone. Pan PI3K inhibitors such as GDC-0941, 

XL147 and PX-866, and isoform-specific PI3K inhibitors such as P110α inhibitor 

BYL719, p110β inhibitor GSK2636771 and p110δ inhibitor GS1101 have also 

been developed and are currently under investigation. AKT, NfκB and other PI3K 

pathway protein inhibitors have also been investigated in the laboratory and 

clinical setting for effectiveness in NSCLC, with more recent strategies involving 

a combined treatment approach, as discussed later in this chapter. NSCLC 

represents a cancer which could benefit greatly from use of PI3K pathway 

targeted inhibitors such as these, due to the limited effectiveness of current 

standard treatments as well as the crucial role that the PI3K pathway has been 

shown to play in the progress, maintenance and inherent/acquired 

chemoresistance of NSCLC tumours.  
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MEK 
 

The most common oncogene in human cancer is RAS, with 20% of all 

tumours harbouring an activating mutation in one of the RAS genes. As discussed 

earlier in this chapter, this gene plays a particularly important role in NSCLC, 

with 35% of NSCLC tumours having undergone a RAS activating mutation [143]. 

It is generally accepted that the RAS protein superfamily plays an important role 

in lung carcinogenesis and the maintenance of the malignant phenotype, with 

KRAS and BRAF being frequently mutated in NSCLC. It has been reported that 

one or other of KRAS and BRAF is mutated in 50% of NSCLC cases [144]. 

While strategies of targeting KRAS and BRAF have already been discussed, here, 

the relevance of KRAS downstream signalling effectors to NSCLC treatment will 

be examined.  

Once activated through the binding of an extracellular mitogen to a 

membrane-bound ligand, RAS exchanges its GDP for a GTP, allowing it to 

activate signalling proteins which ultimately exert effects on cell proliferation, 

cell survival and other pro-carcinogenic phenotypes. The first identified and most 

extensively investigated effector of RAS is RAF, a serine/threonine kinase which 

phosphorylates MEK1 and MEK2, which in turn activate ERK1 and ERK2 by 

phosphorylation. Once activated, ERK can translocate to the nucleus and activate 

transcription factors such as ETS family members that can transcribe genes 

involved in the promotion of cell cycle progression.  

Glu56Pro, Lys57Asn and GLN56Pro mutations occur in the non-kinase 

portion of MEK1. Somatic mutations including these have been identified in 

approximately 1% of NSCLC, predominantly adenocarcinoma [145].  

 

 

TARGETING MEK 
 

With the RAS-RAF-MEK signalling cascade offering a cancer cell ample 

opportunity to grow, divide and survive, there has been significant interest in 

developing methods of ‘switching off’ the pathway in cancers including NSCLC. 

A number of inhibitors of RAF have been investigated in both the laboratory and 

clinical settings, and are discussed earlier in this chapter.  

The only known substrate for MEK is ERK, and since activation of MEK and 

ERK can be independent of RAS activation, inhibition of MEK has become a 

major focus of research over the last number of years. Marks et al. demonstrated 

in 2008 that cells harbouring MEK1 Lys57Asn and Gln56Pro mutations (which 
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are both gain-of-function mutations) can be sensitive to MEK inhibitor AZD6244 

[145]. Results from a Phase II, open-label, randomized study to assess the efficacy 

and safety of AZD6244 versus pemetrexed in patients with NSCLC who had 

failed prior chemotherapeutic regimens indicated that while AZD6244 showed 

clinical activity as a second- or third- line treatment for patients with advanced 

NSCLC, it did not offer any advantage over standard treatment with pemetrexed 

[146]. A phase II study of the oral MEK inhibitor, CI-1040, in patients with 

cancers including advanced NSCLC concluded that it demonstrated insufficient 

antitumor activity to warrant further development [147]. Other inhibitors of MEK 

currently under investigation include PD0325901 [148], selumitinib [149] and 

GDC-0973 [150].  

With numerous points of cross-talk between the RAS-RAF-MEK pathway 

and other pathways including the PI3K/AKT/mTOR pathway, cancer cells have 

the ability to overcome MEK targeted inhibition by utilising alternative signalling 

routes, which could explain the disappointing results that have been observed thus 

far with clinical MEK inhibition. As such recent thinking suggests a more 

promising role for these inhibitors in combination with other pathway inhibitors, 

as discussed below.  

 

 

PI3K AND MEK CO-TARGETED INHIBITION 
 

RAS has the ability to activate both the PI3K and MEK pathways, resulting in 

pro-carcinogenic phenotypes being expressed by a cell in response to an 

extracellular stimulus such as the binding of a growth factor to a receptor. Once 

one of these two pathways is blocked by a targeted therapy, it is both possible and 

plausible that the cell can overcome the treatment by signalling through the other 

pathway at any of a number of points of convergence, i.e. by using a ‘bypass 

track’. This is one increasingly discussed explanation for the high frequency of 

resistance observed when patients are treated with cell signalling protein targeted 

inhibitors. As such, a promising strategy going forward is to utilize a combination 

approach to therapy for NSCLC patients, where both the PI3K and MEK 

pathways are inhibited. Research published in 2009 identified a robust increase in 

apoptosis and tumour shrinkage upon combined blockade of both of these 

pathways [151], with further in vitro and in vivo work showing promise for this 

strategy [152-154].  

Recent in vitro data demonstrates that PI3K/mTOR inhibitor GDC-0941 

synergizes with the MEK inhibitor U0126 in NSCLC cells [155]. A phase I trial is 

currently recruiting patients with solid tumours for combination treatment with 
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PI3K pathway inhibitor BKM120 and MAPK pathway inhibitor MEK162. 

Another Phase I trial is currently recruiting patients with locally advanced or 

metastatic solid tumours for co-targeted inhibition treatment with MEK inhibitor 

GDC-0973 and PI3K inhibitor GDC-0941. This approach may become more 

common in lung cancer treatment, as an estimated 70% of lung tumours display 

RAS-RAF-MEK pathway activation [144].  

 

 

IGF1-R 
 

The insulin-like growth factor receptor-1 (IGF-1R) is a transmembrane 

tyrosine kinase and is structurally homologous to the Insulin Receptor (IR). IGF-

1R overexpression has been identified in several tumour types and protects cells 

from apoptosis-inducing agents, including hypoxia and anti-cancer drugs. The 

IGF-1R suppresses apoptosis primarily through the phosphoinositide 3-kinase 

(PI3K) pathway [156] and has been shown to activate other receptors involved in 

cancer including EGFR, VEGFR, ERα and AR [157]. Although several studies 

have shown that IGF-1R is not a prognostic marker in NSCLC [158-160]. Merrick 

et al showed that high IGF-1R expression is associated with ADC histology and a 

poorer survival in 191 resected NSCLC patients [161]. We have shown that high 

levels of both IGF-1R and EGFR correlates to poor survival in NSCLC patients 

(unpublished data) and high levels of IGF-1R correlates to a poor prognosis in 

SCLC [162]. Activation of the IGF-1R signalling pathway is also involved in the 

development of resistance to EGFR TKIs [163].  

 

 

TARGETING IGF1R 
 

Several different approaches are being investigated for targeting the IGF-1R, 

including small-molecule kinase inhibitors and IGF-1R antibodies. Initial results 

of a randomized phase II study showed that combining an anti-IGF-1R 

monoclonal antibody (figitumumab) with a platinum doublet (paclitaxel–

carboplatin) in NSCLC patients resulted in a higher response rate and trends for 

superior progression-free survival and overall survival. The best results were 

observed in squamous cell patients [164]. However, a subsequent phase III study 

failed to validate these results although in a subset of patients with high IGF 

serum levels, the addition of figitumumab appeared to offer benefit over 

carboplatin–paclitaxel [165]. Studies have shown mTOR inhibition can activate 
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AKT through IGF-1R resulting in a synergistic interaction with IGF-1R inhibitors 

[166]. To this end, a phase I trial with cixutumumab in combination with 

temsirolimus was undertaken and resulted in stable disease in 47% of patients, 

although only 1 patient in this trial had NSCLC [167]. These clinical trials have 

indicated that high circulating levels of IGF-1 may be a potential biomarker that 

could identify patients who may benefit from IGF-1R inhibitors. Currently, the 

monoclonal antibody IMC-A12 is being tested in combination with a platinum 

doublet in stage IV NSCLC and in extensive stage SCLC. Several trials are 

ongoing that are testing the inhibition of both the EGFR and IGF-1R pathways. In 

one study, cetuximab is combined with cixutumumab and patients are randomized 

to gemcitabine–cisplatin or carboplatin–cetuximab with or without cixutumumab. 

Two randomized trials with the IGF-1R tyrosine kinase inhibitor (OSI-906) 

combined with erlotinib are ongoing. The first study, chemotherapy naïve patients 

with EGFR mutations are randomized to erlotinib combined with OSI-906 or to 

erlotinib and placebo. In the second study, patients who are eligible for erlotinib 

maintenance are assigned to the EGFR TKI plus OSI-906 versus placebo. 

Importantly the collection of of blood and tumor specimens for molecular marker 

testing is mandatory in these trials, which is crucial in determining markers of 

response to treatment. 

 

 

THE FUTURE OF TARGETED THERAPY 
 

The implementation of treatment protocols tailored to the molecular profile of 

an individual’s tumour represents an important paradigm shift in how we treat 

cancer patients. This personalised approach will hopefully lead to substantial 

therapeutic improvements and increased patient survival. The success of EGFR 

and ALK targeted therapies have taught us that a greater emphasis should be 

placed on the collection of tumor specimens in “real-time” during clinical trials as 

in the case of the BATTLE trial. Further analyses of these tumor and blood 

specimens may identify unique patient subgroups that are sensitive to targeted 

treatments. A recently published study by Tsimberidou and colleagues describes a 

personalised medicine program undertaken, at the MD Anderson cancer center, in 

the context of early clinical trials, which involved using targeted agents matched 

with tumor molecular aberrations [168]. Of 1,144 patients analyzed, 460 (40.2%) 

had 1 or more aberration. Patients with one aberration treated with a matched 

therapy (n =175), compared with treatment without matching (n = 116) were 

associated with a higher overall response rate (27% vs. 5%; P < 0.0001), longer 

time-to-treatment failure (TTF; median, 5.2 vs. 2.2 months; P < 0.0001), and 
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longer survival (median, 13.4 vs. 9.0 months; P = 0.017). These data, although not 

randomized and patients had diverse tumor types and a median of 5 prior 

therapies, are extremely encouraging and represent a promising future for targeted 

therapies.  

 

 

CONCLUSION 
 

A deeper understanding of the aberrant molecular mechanisms of tumours has 

led to a shift from a “one size fits all” therapeutic approach to a more personalised 

targeted approach defined by each tumour’s molecular characteristics. Patient 

screening using companion diagnostics is key to ensuring those with a compatible 

molecular profile receive an appropriate targeted agent thus improving overall 

survival and decreasing toxicity. However, in NSCLC, the acquisition of 

sufficient biopsy material remains a stubborn obstacle to the identification of a 

patient’s molecular signature. Therefore the development of more sensitive 

technologies, that can generate a comprehensive genetic profile of tumor 

specimens in a time- and cost-effective manner, is crucial to the success of 

targeted therapies in NSCLC. 
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