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1.1 Introduction

In this chapter, we introduce fundamental approaches and ideas, which will be
exploited in the rest of the book. These can be divided into two main streams: one
dealing with the motion of atoms or ions described at a simplified level of theory
and another focusing on electrons. The modeling framework, which covers both
streams, is outlined next.

1.2 Atomistic Simulations

1.2.1 Basic Concepts

Methods based on interatomic potentials have a major and continuing role in
molecular and materials simulation. The concept of the potential is simple: the
energy (E) of the system is written as either an analytical or possibly a numerical
function of the nuclear coordinates, ri, of particles i = 1 to n:

E = E(r1, r2, r3, . . . , rn).

The function will normally be written as a sum of terms that depend on the
coordinates of two, three or more atoms, although in many potential models,
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especially those for ionic and semi-ionic solids, only two body terms are considered;
for the latter class of material, the electrostatic term is normally separated, that is,

E = Ecoul + ESR,

where the Coulomb energy, Ecoul, is obtained by summing over all the interactions
between the atomic charges, which are a parameter of the model and must be
assigned. The short-range energy, ESR, represents the remainder of the interactions
including Pauli repulsion and covalent and dispersive attractive terms. Simple
analytical functions are commonly used for ESR, including inverse power (r−m) and
exponential terms (exp(−r/r0). Detailed discussions can be found in the seminal
book of Born and Huang [1], and more recent literature [2, 3].
In modeling metallic systems, rather different approaches must be adopted; in

particular, the effects of the conduction band electrons on atomic interactions must
be included—a difficult problem for which there is no simple solution. Neverthe-
less, a number of effective and useful potential models have been developed for
metallic systems, which may be based on the “embedded atom concept.” Details
and examples are given in [4].
Accurate models especially for ionic solids must include a representation of

polarization. It has long been known that in solid-statemodeling simple point dipole
models have serious inadequacies, leading to excessive polarization, as they omit
any representation of the damping of polarization by the resulting increase in short-
range repulsion with neighboring ions. This problem was simply and elegantly
solved by the development over 50 years ago of the shell model by Dick and
Overhauser [5]. This crude but effective model describes an atom or ion in terms of
a “core,” which contains all the mass and represents the nucleus and core electrons,
and a “shell” (of charge, Y), which is massless and represents the polarizable
valence shell electrons; the core and the shell are coupled by an harmonic spring
(of constant, k), and the development of a dipole moment is modeled by the
displacement of the shell relative to the core. The charge of the shell (Y) and the
value of the spring constant (k) are parameters of the model; and of course, the sum
of core and shell charges must equal the total atomic charge. Moreover, the shell
model parameters can be related to the polarizability (α) by the simple relationship:

α = Y 2

k
.

Elaborations such as the “breathing shell” model have been developed, but the
basic shell model remains the most widely used treatment of polarizability in
materials simulation.
A potential model will normally therefore consist of (i) a set of atomic charges,

where appropriate, (ii) analytical (or occasionally numerical) functions, containing
variable parameters, and (iii) a representation of polarizability for short-range
interactions, which will require specification of the parameters Y and k when the
shell model is used. In Section 1.2.2, we review the methods used to set the variable
parameters and then we return to some of the more common potential models.



Computational Techniques 3

1.2.2 Parameterization

Once the choice of the form of the potential model has been made, the crucial next
step is to parameterize the model, that is, fix the variable parameters, so that the
model describes the specific material (or materials) under investigation. Here, there
are two broad strategies, which may in some cases be used in concert:

1. Empirical fitting: involves variation of the parameters in order to reproduce, as
accurately as possible, experimental data of thematerial. Standard procedures are
available for calculating a wide range of properties using potential models (see,
e.g., [3]). These are usually coupled to a least-squares minimization procedure
to achieve the best fit of calculated to experimental data. Commonly used data
include cohesive or lattice energies, crystal structures, elastic and dielectric
properties and where available lattice dynamical data. The procedure is simple
in concept and highly automated in principle, but in practice itmay prove difficult
and lengthy and require extensive user intervention and direction to achieve the
optimum parameter set. And, of course, it requires that suitable and accurate
experimental data be available.

2. Fitting to energy surfaces: requires no empirical data, but rather uses energy
surfaces calculated by electronic structure methods, with parameters in the
potential model being varied to ensure that the surface calculated using the
potential model matches as closely as possible that determined by the electronic
structure technique. The energy surface is constructed by varying the structural
parameters of the material or molecule in a systematic manner, followed by
a least squares fitting of the potential parameters. The approach is again in
principle straightforward but of course requires an accurate energy surface to
which to fit the potential parameters.

Both approaches are widely used and as noted they may be used together,
and indeed a potential derived by the latter approach should always be tested in
regards to the extent to which it reproduces any available experimental data. More
generally, in evaluating a potential model, it is necessary to examine carefully its
mode of derivation. When empirical methods are used, the range and accuracy of
the data will be crucial; when parameters have been derived from calculated energy
surfaces at a higher level of theory, the quality of electronic structure technique
will determine the accuracy of the parameterized model.

1.2.3 Parameter Sets

A wide range of parameter sets are available for different classes of material and
many can be found in online databases [6]. For oxides, which are extensively used
in energy materials, the Born model parameter set derived by Catlow and Lewis
[7] may often provide a useful starting point as these parameters have the merit
of simplicity and transferability between different materials, which may be an
important factor in assessing the suitability of a potential model for applications,
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in which several materials are investigated and compared. Other significant con-
siderations when deciding on the suitability of a model are accuracy—that is, the
extent to which the model reproduces known crystal properties—and stability—
an important consideration as models may perform well around the equilibrium
configuration of a crystal but have instabilities for other configurations that may
be sampled in dynamical simulations or simulations of defective crystals. More
generally the assessment and choice of a potential model is crucially important and
needs careful and detailed consideration.

1.2.4 Implementation

Having developed or chosen a suitable model for calculating energies and forces
as a function of nuclear coordinates, they may be implemented in a wide range
of powerful simulation tools (e.g., CP2K, DL-POLY, GULP, GROMACS, KLMC,
LAMMPS, METADISE), based on three main concepts:

1. Minimization: A conceptually simple approach, in which the aim is to locate
the energy minimum configuration of the system modeled, with the energy
calculated using an interatomic potential model or by an electronic structure
technique. The complexity of energy landscapes may, however, make the iden-
tification of the global minimum far from straightforward, and a range of both
sophisticated search and minimization algorithms have been developed. Min-
imization is perhaps at its most effective when refining approximately known
structures, although developments in search procedures for energy landscapes
have given the techniques an increasingly predictive value [8, 9]. Minimization
may be applied to any type of atomic assembly including crystals, molecules
and adsorbed species. The approach has been applied with particular effect to
defects in solids where the method, originally pioneered by Mott [10], effec-
tively minimizes the energy of a region of crystal surrounding the defect with
more approximate quasi-continuum treatments of the more distant regions of the
lattice. Energy minimization may also be extended to free energy minimization
when entropies can be calculated by, for example, the vibrational partition func-
tion in a crystalline solid [11]. The technique has been further developed to study
transition states, or more generally, minimum energy pathways as in the popular
nudged-elastic band (NEB) approach. Overall, despite its basic simplicity and
obvious limitations in omitting any explicit representations of dynamic effects,
minimization is a robust and powerful approach and should often be the first
approach of a simulation study.

2.Molecular Dynamics (MD): Here, again the basic idea is simple: the time evolu-
tion of a system at the molecular level is followed by solving the classical equa-
tions of motion—essential Newtonian mechanics for molecules. In practice, the
equations of motion are solved using a numerical, iterative procedure, employ-
ing repeated applications of a time step, during which both atomic positions and
velocities are updated using the known velocities and forces, respectively. The
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time step must, of course, be shorter than the characteristic time associated with
any important process (e.g., the period of an atomic or molecular vibration) and
values of typically 1 fs are chosen. A simulation proceeds by initially setting
the positions and velocities of the particles to be included in the simulation; the
latter are chosen with target temperature in mind. During the initial “equilibra-
tion” stage of the simulation, the system reaches thermal equilibrium, and it is
normally necessary to scale the velocities a number of times in order to retain
the simulation at the target temperature. Once the system is in equilibrium at the
specified temperature, the production stage commences and the data from the
simulation (positions and velocities) are stored for subsequent analysis.
MD simulations yield a wealth of information—structural properties via radial

distribution functions, information on dynamical properties via a range of corre-
lation factors and diffusion coefficients via the variation of particle mean square
displacements with time. Although originally developed to model properties
of liquid systems, they have found extensive applications in solids, especially
those with high ionic mobility, that is, fast ion conductors, which find important
applications in both batteries and fuel cells. The technique does, however, have
substantial limitations, most notably the limited amount of “real time” that can be
explored with a simulation and the limitations on the size of the simulation cell.
The two are, of course, related; but with contemporary simulations with realistic
models, implemented on high performance computing (HPC) platforms, sim-
ulations are generally confined to the nanosecond time range, with simulation
boxes containing several thousand particles. Of course, longer time scales and
larger simulation boxes may be achieved given very substantial resources, but
in general the phenomena of interest must be accessible within the limitations
placed on the technique by the time and size constraints. One major consequence
is that standard MD cannot effectively model rare events, which we may define
as those involving energies considerably in excess of kBT, as such events will
be insufficiently sampled (or not sampled at all) during the course of a simu-
lation. There are a number of recent developments including the increasingly
used metadynamics that alleviate this problem, but it does remain intrinsic to the
technique. As with minimization techniques, MD can be applied to molecules,
clusters and systems with 2D or 3D periodicity. The technique is powerful and
flexible, yielding quantitative information can often give valuable insight via
graphical displays of configurations and migration mechanisms.

3. Monte Carlo (MC) simulations: A stochastic method alternative to MD for the
sampling of large and complex configurational spaces using random numbers.
This method is particularly useful to assess higher energy configurations or take
the system of interest over a high potential energy barrier, which would be inac-
cessible in realisticMD time scales. Another advantage ofMC is the possibility to
explore remote regions of configurational space. In modeling materials structure
and thermodynamic properties, the Metropolis algorithm is commonly applied
to bias the search toward thermally accessible configurations, which is controlled
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by the simulation temperature. The approach can be extended to include variation
in the number of particles based on the chemical potential in Grand Canonical
MC. In contrast to direct minimization, both MC and MD techniques are suit-
able to study nonequilibrium, rapidly evolving systems and processes.WhileMC
methods, unlike MD, do not give information on the time evolution of a system,
an adaptation of the technique—Kinetic Monte Carlo (KMC)—can allow time
dependent processes to bemodeled by sampling events, such as atomicmigration
processes, rather than particle positions.

1.3 Electronic Structure Techniques

The atomistic simulation techniques previously discussed are concerned with
describing the energy landscape of individual atoms or ions, where classical
mechanics can be usefully employed as the first successful approximation. Elec-
trons are much lighter particles with essential quantum behavior. The goal of quan-
tum chemical approaches, or more broadly, the electronic structure techniques, is
to provide the description of electrons. The distribution of electrons in turn deter-
mines the structural, optical and magnetic structure of molecules and solids. As
electrons are charged particles with spin 1/2 in atomic units, they interact with each
other coulombically, and their motion is correlated in different manner depending
on mutual orientation of their spins. Quantummechanics of many-electron systems
describes these as effects of electron exchange and correlation, which should be
taken into account for a proper quantitative description. Further in materials, the
behavior of large numbers of electrons is described using quantum statistical meth-
ods suitable for fermions (i.e., Fermi-Dirac statistics), where one typically deals
with the Fermi gas or liquid models.
The most advanced quantum chemical methods are based on the (approximate)

solution of the Schrödinger equation for the many-electron wavefunction, while
density functional theory (DFT) is developed around the electron density, which
is a one-electron property. The result for the majority of contemporary electronic
structure techniques is the ground-state electron distribution and associated one-
electron properties. A distinction is generally made between first-principles (or
ab initio) methods that contain no external parameterization beyond fundamental
physical constants, and semi-empirical methods, which typically replace more
computationally demanding terms with parameters obtained from a fit to a large
data set of experimental measurements or calculations at a higher level of theory.
Beyond the one-electron approaches, the full many-body system can be treated,

or excited states can be calculated, building up from the ground-state single-particle
description. Themethods discussed in this section arewell developed and have been
implemented in a wide range of academic and commercial software packages; a
number of such codes are listed in Table 1.1. While any chemical system can,
in principle, be calculated using these methods, care must be taken, especially



Table 1.1 A selection of actively developed electronic structure codes suitable for modeling energy materials

Code Method Basis set Web site

ABINIT DFT Plane waves http://www.abinit.org
ADF/BAND DFT Slater local orbitals http://www.scm.com
CASTEP DFT Plane waves http://www.castep.org
CONQUEST DFT/HF Numerical functions http://hamlin.phys.ucl.ac.uk
CPMD DFT/HF Plane waves http://www.cpmd.org
CP2K DFT/HF Gaussian orbitals/plane waves http://cp2k.berlios.de
CRYSTAL DFT/HF Gaussian local orbitals http://www.crystal.unito.it
DFTB+ DFTB Tight binding atomic orbitals http://www.dftb-plus.info
DMOL3 DFT Numerical functions http://accelrys.com
ELK DFT/HF Augmented plane waves http://elk.sourceforge.net
EXCITING DFT Augmented plane waves http://exciting-code.org
FLEUR DFT Augmented plane waves http://www.flapw.de
FHI-AIMS DFT/HF Numerical functions https://aimsclub.fh-berlin.mpg.de
GAUSSIAN DFT/HF Gaussian local orbitals http://www.gaussian.com
GPAW DFT Numerical functions https://wiki.fysik.dtu.dk/gpaw
ONETEP DFT Wannier functions http://www2.tcm.phy.cam.ac.uk/onetep
PETOT DFT Plane waves https://hpcrd.lbl.gov/∼linwang/
SIESTA DFT Numerical functions http://www.icmab.es/siesta
SPHINX DFT/DFTB Plane waves http://www.mpie.de/index.php?id=sxlib
QUANTUM-ESPRESSO DFT/HF Plane waves http://www.quantum-espresso.org
VASP DFT/HF Plane waves http://cms.mpi.univie.ac.at/vasp
WIEN2K DFT/HF Augmented plane waves http://www.wien2k.at

Opium Pseudopotential generator http://opium.sourceforge.net
BSE Gaussian basis set/effective core

potential database
https://bse.pnl.gov/bse

DFT, density functional theory; HF, Hartree–Fock; DFTB, density functional tight-binding.
For updated descriptions see http://www.psi-k.org/codes.shtml
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for open-shell or highly correlated d and f shell systems to ensure that physically
meaningful results are obtained.
For any numerical electronic structure approach, a tractable representation of the

one-electron wavefunction (or orbital) is required, which is usually obtained from
a linear combination of simple functions referred to as the basis set. These can
take many forms, and are one distinguishing factor between computer codes (see
Table 1.1). Introduction of a basis set reduces the problem of solving simultaneous
differential equations to that of linear algebraic equations with coefficients deter-
mined by matrix elements (integrals in real space) between such basis functions.
Due to the ease of computing electron integrals, Gaussian functions, xk yl zme−αr2 ,
are the most widely used basis for molecular calculations, while for solids, plane
waves of the form eikr act as a more suitable basis (following the Bloch theorem
for a periodic potential as discussed below) and offer high accuracy and efficiency.
As the more weakly bound valence electrons make the primary contributions

to chemical bonding, a common approximation is to replace the core states by
an analytical function that results in the same effective potential for the valence
electrons, but at a greatly reduced computational cost. These are known as pseu-
dopotentials or effective core potentials, and exist in many flavors, for example,
accurate norm-conserving pseudopotentials [12] or computationally efficient ultra-
soft pseudopotentials developed by Vanderbilt [13]. This approach to saving the
computational effort has close similarities with a more recent method of projector-
augmented wave potentials developed by Blöchl [14], which relies on an explicit
but simplified representation of core electronic states in the inner atomic regions.
Many codes now come with their own optimized set of potentials, but there are
also databases of transferable potentials and pseudopotential generators available
for the entire periodic table.

1.3.1 Wavefunction Methods

The time-independent, nonrelativistic Schrödinger equation can be expressed con-
cisely as

Ĥ� = E�,

where � is the wavefunction, E is the energy and Ĥ is the Hamiltonian, the sum
of the kinetic and potential energy operators. The kinetic operator can be divided
into the contributions from the nuclei and the electrons, and the potential as the
sum of the nuclei–nuclei interactions, the electron–electron interactions and the
nuclei–electron interactions:

Ĥ = K̂nuclei + K̂electrons + V̂nuclei + V̂electrons + V̂nuclei-electrons.

Solution of the eigenvalue equation results in the eigenfunctions (state wavefunc-
tions) and the eigenvalues (state energies).
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Tomake solution of the Schrödinger equation practical formany-atom andmany-
electron systems, we can separate nuclear and electronic degrees of freedom. To
this end, we rearrange the Hamiltonian as follows:

Ĥ = [K̂nuclei + V̂nuclei]+ K̂electrons + V̂electrons + V̂nuclei-electrons.

Differences in inertia between the nuclei and electrons mean that the nuclei are
almost static compared to the electrons and that their kinetic energy and the nuclear–
nuclear interactions can be calculated separately. This forms the basis of the Born–
Oppenheimer approximation and is valid for most chemical systems of interest,
except for the motion of very light atoms (i.e., hydrogen) or where correlations
between the ionic and electronic motion are important (e.g., vibrations in solids or
the interactions of fast ions with a solid).

1.3.1.1 Hartree–Fock Theory

TheHartree–Fock (HF)method is widely used in quantum chemistry. The predicted
equilibrium interatomic distances and bond angles for the majority of molecules
are typically within a small percentage of experimental measurements. Many codes
now allow for HF calculations of periodic systems, but these are more expensive
than simple DFT-based approaches described below, and have inherent difficulties
in the description of metallic systems, and hence are less widely used.
In 1928, Hartree introduced a self-consistent fieldmethod to evaluate the approx-

imate wavefunctions and energies in many-electron systems [15]. The total elec-
tronic wavefunction for N electrons is constructed as the product of the individual
one-electron orbitals:

�0 = �0 (1)�0 (2) . . . �0(N ).

Individual electrons are assumed to move as independent particles in the mean
field (potential) due to all electrons, hence the probability to find all electrons in
a certain configuration can be calculated as a product of probabilities of finding
individual electrons. Solving the approximate Schrödinger equation for each one-
electron orbital, in a mean field of all electrons, results in a new wavefunction, thus
causing a change in the electron distribution and therefore in the potential. The
procedure would typically start from a trial set of orbitals (initial guess) to generate
a mean-field (Hartree) potential and should be iterated self-consistently until the
wavefunctions stop changing (or remain within a certain numerical threshold).
Following the variational principle, the energy calculated with any trial (approx-

imate) wavefunction (�T) is higher than the true energy obtained using the exact
wavefunction (�0):

[<�T|Ĥ |�T >= ET] ≥ [E0 =< �0

∣∣Ĥ
∣∣�0>].

This fact is sometimes used as the basis for an alternative solution to the self-
consistent field procedure outlined above, where the energy is minimized with
respect to the free coefficients that define the trial wavefunction.
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Within the original Hartree approximation, the effect of the electron–exchange
interaction is neglected. Fock recognized that the Hartree wavefunction was not
antisymmetric with respect to electron interchange [16]. In 1930, he demonstrated
that the Hartree approach could be made antisymmetric by appropriately adding
and subtracting all possible electron combinations, which was later redefined by
Slater as the determinant of the matrix formed by the system of N electron orbitals
[17]. Electron exchange is a nonlocal property as “Pauli repulsion” exists between
electrons finite distances apart, and forms the basis of the modern HF theory. In
spite of its name, the exchange is a stabilizing interaction as it keeps electrons of
the same spin further apart, thus effectively reducing electron–electron Coulomb
repulsion. In practical applications, one obtains a large set of orbitals, only a part
of which of the lowest energy is occupied by core and valence electrons, while the
higher energy virtual orbitals (conduction states in solids) normally remain empty.
The HF approach captures a significant amount of the physics of many-electron

systems, but it will never result in an exact wavefunction for an interacting system
of electrons. From the definition of the variational principle, the energy of an HF
wavefunction will always be greater than the energy of the true wavefunction.
Löwdin described this measure of the error as the correlation energy. In the mean-
field approach, each electronmoves independently of all others in the system, except
for having a Coulombic repulsion to the average positions of all electrons. As the
motion of electrons is in fact correlated, they tend to “avoid” each other even more
than the theory would suggest. This dynamic correlation is the main source of error.

1.3.1.2 Post-Hartree–Fock Approaches

There are a number of methods that go beyond the HF approximation in order to
recover the electron correlation that is absent in the original theory. At the heart
of such approaches is the use of one-electron excited states (unoccupied orbitals)
along with the ground state (occupied orbitals) in constructing more representative
many-electron wavefunctions, thus leading to more accurate energies and other
fundamental properties. As usual, increased accuracy comes at much greater
computational expense, so the applicability of these methods to complex systems
remains limited. Importantly, these approaches are typically valid only for local-
ized states, which are not routinely accessible from solid-state calculations. The
situation has started changing with the advance of new methods using localized
Wannier functions (available in, e.g., CRYSTAL, VASP, and FHI-AIMS).
One such method is known as configuration interaction (CI), and involves the

calculation of excited states to create a more accurate electronic wavefunction.
Many-electron excited states are obtained by swapping occupied and unoccupied
states in Slater determinants. Due to the large number of possible excited states,
only a subset are considered to make the problem tractable; for example, the addi-
tion of single and double excitations to the ground-state wavefunction produces the
CISD method. In the multiconfiguration self-consistent field method, and related
approaches such as complete active space self-consistent field (CASSCF) method,
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the one-electronHFmolecular orbitals themselves are re-optimizedwhen determin-
ing the new electronic wavefunction. Sometimes, such methods, which rely on the
initial HF solution of particular symmetry, or reference, may become insufficient,
and the need for multireference wavefunctions becomes particularly important for
systems with low-lying and/or degenerate excited states.
An alternative approach is given by many-body perturbation theory, where the

ground-state HF wavefunction is subject to a perturbation with respect to the cor-
relation potential. The most widely used method is second-order Møller–Plesset
(MP2) theory, while calculations up to sixth order (MP6) are feasible on small
molecules. Of the two approaches, CI is typically the more accurate, but scales
poorly with increasing system sizes; for example, HF conventionally scales as
O(N4), MP2 asO(N5) and CISD asO(N6), whereN is the number of basis functions
used to construct the wavefunction. A modern alternative to the Møller–Plesset
series is given by the coupled-cluster approaches, which include partial sums
over infinite series of different excitations of certain types. While still being very
computationally expensive, they provide a highly accurate treatment for both
ground and excited states of small molecules. An alternative way of handling the
electron correlation problem without the heavy computational burden of post-HF
methods is through DFT, which is discussed in Section 1.3.2.

1.3.1.3 Semi-empirical Wavefunction Methods

For large or complex systems, first-principles methods can become too expen-
sive to apply directly. However, further approximations can be made in order to
make calculations more affordable. One of the earliest approximate methods is
Hückel theory, which describes the π orbitals of aromatic hydrocarbons. Only
nearest-neighbor interactions are considered, and all remaining electron integrals
are parameterized. This approach is closely related to the tight-binding approx-
imation employed in solid-state theory and, more generally, model Hamiltonian
methods. Despite their simplicity, both the original Hückel theory and the extended
Hückel method, developed by Hoffmann to treat π and σ bonds, have been highly
successful approaches in the field of organic chemistry.
An extended family of more general semi-empirical approaches can be created

by reducing the number of two-electron integrals present in the HF approach. These
include zero differential overlap, intermediate neglect of differential overlap and
so on. Parameterization of integrals can be performed over a large experimental
database to reproduce first-principles results. The most advanced of these are the
AM1, MNDO and PM3 (PM6) approaches, which are parameterized over a wide
range of molecular systems to reproduce structural, thermodynamic and electronic
properties. Similar to empirical potentials, the validity of these models for systems
or properties that were not in the initial database is not guaranteed, but nonetheless
they can produce valuable insight into the processes that are beyond the length
and time scales accessible to higher level approaches, such as protein folding and
biosolvation.
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1.3.2 Density Functional Theory

DFT describes a chemical system in terms of its real-space electron density
(n), rather than the 3N-dimensional wavefunction associated with solution of the
Schrödinger equation. The theory originates from theThomas–Fermimodel (1927),
which provided a simple expression for the kinetic energy based on the uniform
electron gas model and combined it with a classical description of nuclear–electron
and electron–electron interactions. Moreover, the Hartree approximation intro-
duces the mean potential that depends only on the electron density, and likewise
the exchange potential models have been advanced for atoms and electron gas by
Dirac, Slater, and Gáspár. Building upon these ideas, in 1964 Hohenberg and Kohn
[18] reported two important theorems. Firstly, they proved that every observable
of a stationary quantum mechanical (QM) system (including energy) could be
calculated exactly from the ground-state electron density. Secondly, they showed
that the total energy calculated for any trial density could not be lower than the
true ground-state energy, and thus could be optimized via the variational principle.
There is therefore a direct analogy between HF and DFT methods, except that the
latter implicitly includes electron correlation, as it is an exact method by definition.
Within the self-consistent Kohn–Sham approach [19], independent (HF-like)

one-electron particles are used to construct an interacting electron density:

n (r ) =
N∑

i=1
|�i (r ) |2.

In practice, the success of DFT-based approaches relies on the description of
exchange–correlation effects, which comes down to the choice of the exchange–
correlation functional used to describe the interacting system of electrons.

1.3.2.1 Exchange–Correlation Functionals

While an exchange–correlation functional (EXC) that results in the exact ground-
state energy in principle exists, its form is hitherto unknown and only approximate
forms are available. However, one reason that DFT is so appealing is that even
relatively simple approximations to EXC can give reasonable results for equilibrium
atomic and electronic structure. The majority of density functionals are based upon
the uniform electron gas model, for which accurate energies are known from
quantum Monte Carlo simulations (here, MC techniques described above are used
to solve the many-electron Schrödinger equation).
The simplest way to derive an EXC for a real system of variable electron density

based on contributions from the uniform electron gas is the local density approxi-
mation (LDA), where EXC depends only on the value of the density at a position
r in the system of interest. The density calculated at this point is then referenced
to the EXC contributions that a uniform electron gas of equivalent density would
have. This process is repeated for, and integrated over, each point in space. Such an
approach is expected to work well for systems, in which the electron density does
not vary rapidly, such as a metal; however, practice shows that the LDA performs
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reasonably, at least at a semi-quantitative level across the whole range of chemical
compounds and processes. Concerning errors in this approach, calculations based
on the LDA generally result in exaggerated binding energies and underestimated
bond lengths. The semi-local generalized gradient approximation (GGA) is depen-
dent on both the value of the density at a position r and its variation close to r (the
first derivative, or gradient of density). This accounts better for the nonhomogene-
ity of the true electron density. In contrast to the LDA, the GGA has a tendency to
overestimate bond lengths.
Perdew has presented the hierarchy of density functionals metaphorically as

Jacob’s ladder, which rests upon the “Hartree world” without exchange or corre-
lation and reaches toward the utopia of chemical accuracy [20]. At the bottom,
the local potential experienced by each electron at each point is determined by the
charge density at the same point. In heaven, the potential at each point is determined
by the global electron distribution. To climb the ladderwe use auxiliarymeans in the
form of the gradient expansion of the charge density and different constructs using
Kohn–Sham orbitals. Above the rungs of the LDA and GGA are the more complex
meta-GGA functionals, which depend on second derivatives, or Laplacian, of the
charge density along with the Kohn–Sham orbital kinetic energy density:

τ (r ) = 1

2

N∑

i=1
|∇�i (r )|2.

Hybrid exact-exchange functionals, which incorporate an element of nonlocal HF-
like electron exchange, can be considered as one of the examples of the next hyper-
GGA rung,whichmakes use of theKohn–Shamorbital exchange energy.Generally,
hyper-GGA functionals can include dependence on the orbital exchange both in
exchange and correlation functionals. These methods are now under development
and still experimental. While both orbital kinetic and exchange energy densities are
local with respect to orbitals, their dependence on the charge density is essentially
nonlocal. Finally, unoccupied Kohn–Sham orbitals can be used on the fifth rung,
which explicitly includes some correlation effects as they are considered by various
post-HF theories, for example in MP2 and the random phase approximations.
The application of hybrid functionals has become increasingly popular in the last

decade, for both solid-state and molecular systems: the error cancellation between
HF and DFT can generally provide better structural, electronic and thermodynamic
properties than either of the pure methods. While the amount of exact-exchange
and/or screening of that exchange is not necessarily universal, there has been
notable success for a wide range of systems using standard functionals [21, 22]. A
number of modern functionals are listed in Table 1.2.
DFT has proved a successful approach applied to a wide range of systems, from

insulators to metals, and from the molecular to the solid state. However, the biggest
challenge for electron density-based methods can be found in the low- and high-
density limits—weak interactions (van der Waals forces) and highly correlated
(congested) d and f electron systems.
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Table 1.2 A selection of commonly used DFT exchange–correlation functionals

Functional Type References

AM05 GGA R. Armiento and A.E. Mattsson, Phys. Rev. B7, 085108 (2005)
BJ06 Meta GGA A.D. Becke and E.R. Johnson, J. Chem. Phys. 124, 221101 (2006)
B3LYP Hybrid GGA/LDA P.J. Stephens et al., J. Chem. Phys. 98, 11623 (1994)
B97 Hybrid GGA A.D. Becke, J. Chem. Phys. 107, 8554 (1997)
B97-3 Hybrid GGA T.W. Keal and D.J. Tozer, J. Chem. Phys. 123, 121103 (2005)
HSE06 Hybrid GGA A.V. Krukau et al., J. Chem. Phys. 125, 224106 (2006)
M05 Hybrid Meta GGA Y. Zhao et al., J. Chem. Phys. 123, 161103 (2005)
PBE GGA J.P. Perdew et al., Phys. Rev. Lett. 77, 3865 (1996)
PBE0 Hybrid GGA C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999)
PBEsol GGA J.P. Perdew et al., Phys. Rev. Lett. 100, 136406 (2008)
PW91 GGA J.P. Perdew et al., Phys. Rev. B 46, 6671 (1992)
PW92 LDA J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)
PZ81 LDA J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)
TPSS Meta GGA J. Tao et al., Phys. Rev. Lett. 91, 146401 (2003)
vdW-DF GGA + dispersion M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)

While nonbonding interactions can be neglected for strongly bound covalent or
ionic materials, for molecular solids or physisorbed states, which may be present
in gas storage or catalytic systems, their contributions can become critical. A
number of exchange–correlation functionals have been developed to account for
these terms. One approach is to incorporate an empirical r−6 correction as found
in the Lennard-Jones potential (termed DFT-D) [23], while an alternative approach
derives the dispersion forces from a partitioning of the charge density itself [24].
Such methods have had recent success in the description of phase transitions
in metal–organic frameworks [25], as well as the conformational landscape of
polypeptides [26].
For highly correlated systems, where electrons occupy localized orbitals, stan-

dard LDA or GGA functionals have a tendency to delocalize the electronic states,
which affects, for example, the description of magnetism in 3d systems. While
hybrid functionals are starting to be applied to these systems, a more popular and
approximate method formulated for treating d and f shell systems is DFT+ U,
where U is an orbital-dependent external potential [27]. One of the most prolific
applications of DFT+ U in recent times has been in the treatment of chemical
reductions in the catalytic materials TiO2 and CeO2, where standard LDA and
GGA functionals have been shown to result in an unphysical description of the
excess electron distribution.

1.3.2.2 Semi-empirical Density Functional Approaches

Similar to semi-empirical wavefunction-based methods, it is possible to reduce the
cost of DFT through further approximations. The most successful approach in this
area, which can facilitate the simulation of thousands of atoms, is density functional
tight-binding (DFTB) theory. In solid-state physics, the tight-bindingmethod based
on linear combinations of atomic orbitals, where the interaction potentials are
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determined empirically or intuitively, has been successful when applied to a range
of solids, as reviewed extensively by Harrison [28]. DFTB extends this method
to the Kohn–Sham formalism using a minimal localized atomic basis set, and
where the level of self-consistency can be controlled, giving rise to different orders
of theory. It is a chemically intuitive approach that allows for the calculation of
large-system sizes and complex response functions. A detailed discussion of these
techniques can be found in the book of Martin [29].

1.3.3 Excited States

Many of the processes relating to energy materials involve excited states, most
commonly the absorption or emission of light by materials, which are addressed
in Chapters 2 and 8, respectively. In the calculation of excited states, the concepts
of excitonic and quasi-particle states are most important, and commonly confused.
It is possible to have excitations in which the number of particles is conserved
(e.g., optical absorption creating an N∗-excited state), or in which the number of
particles changes (e.g., characterized by the N−1 ionization potential or N + 1
electron affinity). For charge-conserving excitations, the dielectric response can be
calculated starting from the single-particle density at various levels of theory—a
zeroth-order response is based purely on the DFT or HF orbital energies, while
higher level theories include electron–hole (excitonic) interactions explicitly (e.g.,
time-dependent DFT or HF) [30].
Alternatively, one could start with a description of quasi-particle states (e.g.,

the N−1/N + 1 excitation spectra) obtained from many-body perturbation theory
(e.g., theGWmethod) [31] and include excitonic effects using explicit two-particle
calculations (e.g., the Bethe–Salpeter method) [32]. These approaches are currently
the state of the art for calculating the optical properties of solids [33], discussed
in more detail in the context of solar cell materials in Chapter 2 and solid-state
lighting in Chapter 8.
One drawback of one-electron theories is that the band gap (the energy separa-

tion between filled and empty states) of semiconducting and insulating materials
is typically incorrect by a significant amount: for LDA/GGA-DFT it is too small,
while for HF it is too large. For comparison with experimental measurements, a
rigid shift (or scissors operator) is generally applied, or a hybrid DFT functional
is constructed that results in the correct eigenvalue spectrum. Neither approach is
entirely satisfactory, and this is an area where many-body perturbation theory is
being rapidly developed for, and applied to [34–36]. The first-principles quanti-
tative prediction of band gaps in nonmetallic materials remains one of the major
challenges in contemporary computational materials science.

1.4 Multiscale Approaches

The techniques outlined above are generally applicable directly to small molecules
or homogeneous crystalline solids with small- to medium-sized unit cells in
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equilibrium. However, often we are interested in large molecules, inhomogeneous
solids, complex environments or geometrical arrangements, systems that are
far away from equilibrium or have particularly long evolution times. Moreover,
when a direct treatment by ab initio methods is not viable, and we want to use
semi-empirical or interatomic potential-based techniques, suitable parameters
will not always be available or easily derivable. Then in many cases, multiscale
approaches could be the method of choice. A typical multiscale approach would
combine in one model two or three levels of description applied in different
regions and/or time intervals.

1.4.1 Hybrid QM/MM Embedding Techniques

Hybrid techniques can be applied to systems with large numbers of atoms, where
there is a clearly defined site of interest comprising a small group of atoms, or
a cluster with an active site or point defect. The method aims at describing this
cluster at the highest affordable level of theory, post-Hartree–Fock or hybrid DFT
at present, while the remaining atoms are treated with a parameterized interatomic
potential, or molecular mechanical (MM) approach. But other schemes combining
different MM or QM methods have also been advanced and widely used. Further,
these approaches closely relate to solvation models employed in studies of liquid
phase, for example, the behavior of molecular complexes in dielectric solutions.
Hybrid techniques could be broadly divided into two classes [37, 38]: in one,

subtractive or multilayered, more than one level of theory would be applied within
the same region of interest [39], whereas in another, additive or multiregion, each
atomic group is treated with one specific approach [40]. As the fundamental exten-
sive measure used in evaluation of system structure and properties is its energy
(which could be, for example, potential, internal, including vibrational contribu-
tions, or free energy), the terms refer to theway the energy and forces are calculated.
Suitable techniques have been developed for both the length and time scales.
Depending on the physicochemical nature of the system of interest, system

partitioning may involve (i) only steric constraints on the embedded cluster, which
constitutes mechanical embedding, (ii) long-range Coulomb interactions included
in the Hamiltonian used to describe the electron subsystem of the embedded region,
which defines the electrostatic embedding, and (iii) short-range Coulomb and
exchange–correlation interactions of the electron system of the embedded region
with the environment, which could be included into the electronic Hamiltonian
as an embedding potential [12, 41], a frozen (or relaxed generalized hybrid [42])
orbital or a charge (or spin) density [43].
A distinct problem in hybrid embedding is the termination of the inner QM

region. For molecular and ionic systems, the boundary between QM and MM
regions can be chosen along theminimum density path, so that all ions or molecules
in the QM region remain intact. Then a suitable form of embedding would result
in a correct electron localization within the QM region. For extended covalent
and metallic systems this is not possible, but additional effort is required. In the
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Figure 1.1 A hybrid QM/MM model of a surface-active site. Atoms or ions are shown as
spheres while a trapped electron as spin isodensity contours. Auxiliary point charges placed
around the large MM cluster emulate the accurate Madelung field in the active region of the
model.

case of broken covalent bonds, especially of the sigma character, a QM region
necessarily terminates in dangling bonds that need to be saturated. The simplest
way to deal with it is by saturation (passivation) of dangling bonds by hydrogen,
halide or a molecular group (e.g., methyl) [44]. The metallic systems in turn
are characterized by strongly delocalized electrons; to account for their behavior,
typically an electron localizing procedure is employed, in which the electrons in
the QM cluster are treated as a perturbation of the ideal crystal [4, 45].
As an example of a typical hybrid QM/MM embedded cluster approach, used in

the studies of heterogeneous systems, we highlight a ChemShell implementation
of the solid-state embedding procedure [46], illustrated in Figure 1.1. Here, simple
effective core potentials are centered on the cationic sites around the QM cluster
forming an interface region, whose role is to contain the electrons within from
spilling over the positive charges in the MM region. Similar models have been
widely used in the studies of numerous technologically important materials used in
catalysis, energy technologies and electronics [41, 44, 47–53]. The QM treatment
used in these types of schemes varies from a straightforward application of a
suitable QM method, which is available off the shelf, to sophisticated methods
using electron localising procedures to generate a customized embedding potential.

1.4.2 Beyond Atomistic Models

We are often interested in processes that occur at much larger length and longer
time scales than atomistic models are appropriate for, where the systems are huge,
inhomogeneous and processes are far from equilibrium. At these scales different
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Figure 1.2 Diagrammatic representation of the computational approaches employed at dif-
ferent temporal and spatial scales.

laws govern the motion of matter; sometimes they can be reduced to the under-
lying quantum mechanics of atoms and electrons, but they can also require new
approaches to the understanding of meso- and macrophysics and chemistry of
materials. Appropriate methods have been developed, and are widely available, but
lie outside the scope of this book. Nevertheless, we give some pointers as to where
atomistic simulation techniques fit in this wider picture.
In Figure 1.2, we illustrate the hierarchy of the simulation methods employed

to meet the challenges that arise in modeling and design of advanced functional
materials, in particular those used in energy technologies.
The typical problems that we wish to tackle at a larger than atomic scale would

include modeling macroscopic response to mechanical, thermal, chemical, elec-
tromagnetic or high-energy radiation impact on bulk or thin-film materials used
for components of devices. One example is the mechanical resistance of a material
to deformation and plasticity, which requires an understanding of phase stability,
domain or grain structure and evolution, dislocation behavior or microstructure in
general. Another, perhaps even more challenging aspect is the growth and self-
assembly kinetics of nanoparticulate and nanocomposite materials, and indeed
charged particle dynamics in porous systems used as reactors or membranes [38].
In all such situations, we move to the description of rigid or deformable groups
of atoms, sometimes comprising quite large entities such as grains, nanoparticles,
strands of polymers, or more generally whole macromolecules or residues (coarse
graining). Thus, the collective motion of an atomic group is modeled explicitly,
whereas its internal degrees of freedom and interactions are represented by aver-
aged quantities. As the atomistic detail is lost, vast arrays of data pertinent to
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individual electrons or atoms are no longer required, while the necessary time step
in dynamical or Monte Carlo stochastic simulations can be increased by orders
of magnitude. Both interactions between the new objects and their motion can
be described to differing levels of realism according to the simulation approach.
For example, simple isotropic Lennard-Jones potentials are often applied in the
context of lattice Boltzmann or molecular dynamics, but realistic size and shape,
anisotropic potentials are also employed.
The methods to treat inorganic solids, which we are concerned most in this

book, strongly overlapwith those developed for liquids and soft matter and could be
generally related to fluid dynamics. For the description of macroscopic phenomena,
including mass and heat transport or kinetics, for which continuum (or continuous
media) methods are employed, a number of accurate modern methods have been
developed. Solving the corresponding equations of kinetics or hydrodynamics,
usually on simulation grids, presents the next step of coarse-graining, now from
meso- to macroscale. Finally, we note that “bottom-up” approaches try to make
use of electronic techniques or atomistic simulations to parameterize mesoscopic
models, the data from, which are used to derive relevant macroscopic parameters.
The opposite “top-down” approaches, in which empirical macroscopic data are
used to parameterize meso- and microscopic models, are also widespread.

1.5 Boundary Conditions

Electronic structure and atomistic simulations require us to solve relevant “master”
equations for particular boundary conditions, which reflect the system dimension-
ality and complexity. Small clusters of 10–100 atoms would typically be treated as
a molecule in the gas phase, that is, in vacuum, whereas simple bulk solids are con-
sidered using periodic Born–von Kármán boundary conditions in three dimensions.
However, if we wish to reach toward a fully converged basis set for a particular
cluster(s), then a plane-wave electronic structure code could be used, and thus
artificial periodicity is imposed on this cluster. To reduce the unwanted effects of
the periodicity, that is, cluster–cluster interactions, the simulation cell should be
chosen to be as large as possible. In turn, systems, extended in one dimension, are
often described as periodic in this dimension, even if in reality such a periodicity
is not present as is the case for polymers. However, 1D periodic models are valid
for the description of nanowires and nanotubes and still serve as effective models
for dislocations and polymeric strands. Systems extended in two dimensions are
typically material surfaces or interfaces. In practical calculations, 3D boundary
conditions are employed, with the third dimension consisting of a finite slab and a
large vacuum layer to reduce surface–surface interactions.
Remarkably, however different in nature, the classical vibrational motion of

atoms in the harmonic approximation in condensed matter and quantum elec-
tronic motion are described by similar homogeneous wave equations, which have
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qualitatively similar wave solutions, both obeying the Bloch theorem. As a conse-
quence,motion of atoms and electrons can be described as a planewave propagating
in the direction of periodicity modulated by a fully periodic function. When there
are two or three periodic directions as in the case of surfaces or bulk crystals, the cor-
responding waves spread along any vector in which the system is periodic. A wave
number of any such wave can always be chosen as a real number between zero and
a certain maximum determined by the system period, with all allowed values thus
forming a segment (1D), a polygon (2D) or a polyhedron (3D) and referred to as the
first Brillouin zone (BZ). The vibrations (phonons) or one-electron orbitals with the
period of the unit cell correspond to the first BZ center (� point) and form the basis
of the entire phonon or electronic structure of the periodic system. For each point
in the first BZ, there are only a finite number of solutions of the wave equations: 3N
vibrations or M orbitals, where N is the number of atoms in the periodic unit cell
andM is the number of basis functions. This defines 3N vibrational orM electronic
energy bands across the first BZ, respectively. Importantly, wave solutions in direc-
tions where the system is finite are confined, which results in phonons propagating
normal to surfaces being reflected back in the bulk direction and the wavefunctions
that describe bound electrons decaying exponentially into free space.
Vibrational or electronic states, based on the plane-wave solutions described

above (so-called Bloch states), are fully delocalized in the periodic directions of
extended systems, which is often inconvenient if we wish to consider localized
processes. For example, to include electronic correlation effects via many-body
perturbation theory, CI or coupled cluster techniques would require permutation of
delocalized states that lead to severe mathematical problems, generally requiring
to sum over divergent series. To avoid this problem, as Bloch states with all
allowed wave numbers form a complete basis set, they can be transformed—any
linear combination of such states would form another proper solution of the wave
equation. Localized solutions could be obtained using a Wannier procedure and
then the most relevant localized states could be selected to calculate a desired
property of interest, as for example implemented in the code CRYSCOR [54].
The periodic boundary conditions for extended systems are of course suitable

for the true periodic systems, which are characterized by sharp X-ray, neutron
or electron diffraction patterns. A large class of disordered materials, including
glasses, metal and semiconductor alloys on one hand and soft matter on another, do
not fit this description. Two types of approaches tomodeling such systems have been
developed: (i) the atomic or electronic correlation is assumed to decay in real space
rapidly, and the system is represented by a large periodic simulation box, usually
chosen as a cubic unit cell, with zone-center solutions used to represent the entire
extended system; and (ii) effective medium (commonly in the form of mean field or
coherent potential) approximations are employed, in which a small representative
fragment of the extended system is embedded in a continuousmediumcharacterized
by some dispersion, which can in turn be obtained from counterpart crystalline
systems, self-consistently or from empirical data. Both approaches work best for
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metallic or covalent systems, but experience problems when dealing with ionic
systems, characterized by long-range correlation tails.
Ionic or semi-ionic/semi-covalentCoulombic systems in general require a careful

treatment in order to avoid artefacts in our simulations. The problem occurs as we
try to describe a finite object such as a crystallite as infinite. When charging a
molecule or a particle, we allow the long-range Coulomb tail to decay completely
in real space, which results in a finite Coulomb energy (excluding of course self-
interaction). By charging an infinite object and using a periodic boundary condition,
we create an infinite charge, which leads to infinite Coulomb energy density that
is unsustainable within a normal physical system. However, often we wish to
study local charged centers or nanotubes or surfaces, which are in reality locally
compensated. In Section 1.6, we describe how this problem is dealt with when
modeling charged point defects.
Even where there is no net charge, the local electrostatic field also has to be

considered. For material surfaces, this issue is of particular importance. Depending
on the terminating planes, for a binary ionic system, this can lead to dipolar (type
III), quadripolar (type II) or nonpolar (type I) surfaces, following the notation
developed by Tasker [55]. The presence of an uncompensated surface dipole leads
to an infinitely large voltage between opposite surfaces, which necessarily results
in a dielectric breakdown. This is the most fundamental reason whymodels of polar
surfaces should always be carefully reconstructed; however, this may not always
be evident from experimental analysis.

1.6 Point-Defect Simulations

The role of point defects in determining the properties of condensedmatter has been
recognized from the onset of solid-state studies in the nineteenth century. These
include a combination of lattice site vacancies, interstitials and antisites that may
contribute to the optical, electrical, thermal andmechanical response of thematerial.
One of the principal objectives of atomistic simulations is to derive an accurate and
coherent approach to the prediction of defect structure, energetics and properties.
In Sections 1.6.1 and 1.6.2, we outline two of the most widely employed methods.

1.6.1 Mott–Littleton Approach

The Mott–Littleton approach was originally developed in 1938 as a method to
calculate the energy of a charged point defect in alkali salts [10]. The method has
since been developed, initially at the Harwell Laboratory, to provide an accurate
and flexible description of defects in solids using computer technologies [41].
A charged defect in this approach is treated at the limit of infinite dilution as

a local perturbation, the energy of which is minimized to determine the defect
equilibrium energy, structure and physical properties. As the total energy of the
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perfect infinite system is infinite, when using periodic boundary conditions we
normally deal with the energy density. This, however, not a useful quantity when
dealing with an infinite system containing just one defect, as the change in the
mean energy density is negligible. Considering the difference in total energies of
the system, with a defect and that of the ideal system, thus proves to be a reasonable
course of action. Using the method of interatomic potentials, calculation of such
differences is a straightforward procedure as the total energy is summed up over a
series of on-site, pairwise, three-body, four-body and so on interaction energies. All
contributions from a particular site around the defect center can then be evaluated
for the two systems and subtracted from one another to yield a contribution of
interest to the defect energy.
On creation of a charged defect, the total energy of an infinite system changes

in the first place by the Madelung energy of the introduced charge, qVMadelung.
Following the original derivation of Mott and Littleton, the defect energy can be
summed up over contributions from the defect site itself (vacant, substitutional
or interstitial) and its nearest and, perhaps, next nearest neighbors. To include
longer range, polarization effects, a simplified continuous medium approximation
of the dielectric material of a given permittivity, ε0, could be employed, for which
one can use the Jost formula, for example −q2/2R

(
1− 1/ε0), where R is the

radius of a sphere containing the defect site with all the neighboring atoms treated
explicitly. This approximation is essentially employed in the majority of hybrid
QM/MM methods, described in Section 1.4 [46]. Although this approach is robust
and provides quite a reasonable estimate of the defect energy, there is still some
arbitrariness in how the radius of the dielectric cavity containing defect is chosen or
the scalar character of the dielectric constant, which fails for many technologically
important materials with a large degree of anisotropy (one celebrated example is
TiO2 rutile for which ε033/ε

0
11 ≈ 2.3 at 0K).

Inmodern implementations [3], no recourse ismade to continuousmedia approx-
imations; all lattice sums are calculated explicitly until specified criteria of conver-
gence are reached. The system is split into an inner region 1, contained within a
sphere of a given radius, and the system remainder referred to as region 2. Within
region 1, all ions are treated explicitly and their interactions with each other are
calculated exactly (at a given level of theory). In region 2, ions are considered to be
perturbed by forces generated by a defect in region 1, but remain in harmonic wells
around their perfect crystalline sites and in equilibrium with the defect. The unit
cells to which local groups of atoms belong would deform elastically in response to
a nearly uniform stress generated by the defect region at a large separation distance.
Moreover, parameters of the wells (or curvature) are approximated to be the same
as in a perfect crystal. In other words, a response of the crystal with a defect to
an external field (electrostatic, short-range or elastic in nature) is equated to the
response of the perfect crystal.
In the linear response (or harmonic) approximation for any given defect config-

uration in region 1, displacements of atoms from their perfect positions in region 2
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can be calculated in just one step. Then forces acting on displaced atoms in region
2 can be re-evaluated and new displacements calculated with the procedure applied
iteratively until it converges. Following this procedure, the total defect energy is
calculated as the sum of (i) the defect energy of atoms in region 1, (ii) the defect
energy of atoms in region 1 due to the interaction with atoms in region 2 and (iii) the
energy of displacement of atoms in region 2 from their crystalline ideal positions.
The latter term is the polarization energy of the system remainder, which provides
a much more accurate atomistic expression, thus replacing the simple Jost formula
given earlier.
The Mott–Littleton approach has been very successful but still has certain lim-

itations. Firstly, it has slow convergence with respect to region size, where quite
reasonable estimates could be obtained on a modern single processor/core machine
within seconds, but accurate energetics, converged to 1meV for example (see Fig-
ure 1.3), may require calculations involving explicit sums over many thousands of
atoms taking of the order of a hundred processor hours.
Secondly, the method itself may be quite sensitive to the initial (guess) defect

configuration and get stuck in an artificial local minimum overstabilized by strong
relaxations in region 2a, especially for relatively small region 1 sizes. Thirdly,
molecular dynamics and Monte Carlo simulations cannot be routinely performed
in this approach although would be possible in principle. The main obstacle is
the nonvariational character of the defect energy for nonequilibrated region 1–2

Figure 1.3 Convergence in defect energy of fundamental Ga defects in the hexagonal phase
of GaN with region 1 size. The graphs show approximately inverse cubic asymptotes for large
values of R1.



24 Computational Approaches to Energy Materials

structures. Finally, a fully ab initio counterpart of Mott–Littleton simulations has
not been formulated yet, and possibly is mathematically intractable. As a rem-
edy, hybrid QM/MM procedures have been employed, which use simplified M-L
approaches to calculate defect polarization energy. These problems are mostly
avoided in periodic supercell techniques described in Section 1.6.2.

1.6.2 Periodic Supercell Approach

An alternative to the embedded cluster techniques for the calculation of lattice
defects is to maintain the 3D boundary conditions of the host material, where
the defect is placed at the center of an expanded unit cell, the supercell approach.
While in the past, the typical supercell expansion consisted of the order of 64 atoms,
developments in high-performance computer architecture mean that calculations
involving hundreds or thousands of atoms are now feasible, in particular when
combined with linear-scaling electronic structure techniques.
The benefit of the supercell approach is that it requires no methodological

advancement and hence works with all existing condensed matter codes. The draw-
back is that the isolated point defect of interest is treated as a periodic array – for
both the total energy and electronic structure, the size of the supercell must be care-
fully checked for convergence. The issue is most serious for charged defect centers,
as the Coulombic interaction is long-ranged, and the error remains significant even
for relatively large unit cells, as illustrated in Figure 1.4 for the case of an oxygen
vacancy in In2O3. As introduced by Leslie and Gillan [56], the electrostatic correc-
tion to the total energy is governed by the supercell length (L), the Madelung
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constant of the material (αm), the charge of the defect (q) and the dielectric
constant (ε0):

	E = −αmq2

2ε0L
.

The corresponding correction to the pressure is

	p = − αmq2

6ε0L4
.

Makov and Payne extended this formalism to include multipole corrections [57].
Such correction methods are now widely used in the community, with a variety
of coefficients [58]. Freysolt et al. recently presented a straightforward imple-
mentation that automates the correction for calculations based on electronic
structure techniques [59]; however, it does rely on the input of the dielectric
tensor of the material, which may be calculated separately or inferred from
experiments.

1.7 Summary

Having introduced the fundamentals of atomistic simulation techniques, their utility
for a range of energy-related technologies is illustrated in the following eight
chapters. For example, excited-state methods are further developed in Chapters 2
and 8 in relation to solar cells and solid-state lighting, while molecular dynamics
approaches are extensively used in Chapters 3 and 4 covering nuclear and energy
storage materials. A suggested reading list (Further Reading) is included at the end
of the book for any reader interested in the finer details, and especially to those
wishing to develop or implement their own techniques in the future.
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