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Abstract
Layer-by-layer epitaxial growth of the pyrochlore magnet Tb2Ti2O7 on the isostructural substrate
Y2Ti2O7 results in high-quality single crystal films of up to 60 nm thickness. Substrate-induced
strain is shown to act as a strong and controlled perturbation to the exotic magnetism of
Tb2Ti2O7, opening up the general prospect of strain-engineering the diverse magnetic and
electrical properties of pyrochlore oxides.
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Introduction

Compared to bulk phases, epitaxial oxide films can show
superior properties with advantages that include high purity,
abrupt interfaces, and high structural uniformity. For exam-
ple, epitaxial thin films with ferromagnetic, ferroelectric or
multiferroic properties have played a crucial role in devel-
oping a new generation of spin-electronic devices [1–3],
while epitaxial perovskite oxides have shown enhanced cat-
alytic performance for application as cathodes in fuel cells as
compared to their powder counterparts [4–7]. In both of these
instances, thin-film growth techniques have allowed the
properties of existing materials to be modified and tailored by
strain engineering.

A significant class of oxide material that has been studied
only recently in thin film form [8–11] is that having the
pyrochlore structure type, with general formula A2B2O7 [12].
Here the A and B cations typically occupy separate

interpenetrating lattices of corner sharing tetrahedra. The
preparation of pyrochlore thin films has been motivated by
interest in the unusual magnetic and electrical properties of
the series [12]. Thus, Dy2Ti2O7 [8] and Ho2Ti2O7 [9] have
been studied for their spin ice behaviour, Bi2Pt2O7 as a
candidate fuel cell cathode material [10], and pyrochlore iri-
dates as candidate topological materials [11].

We recently reported [8] the first epitaxial films of the
spin ice Dy2Ti2O7 grown on the non-magnetic pyrochlore
substrate Y2Ti2O7. One of our main findings was that the spin
ice behaviour of the bulk was altered significantly by sub-
strate-induced strain [8], a result that recommends the use of
inert pyrochlore substrates as a method of perturbing and
probing the fascinating magnetic properties of pyrochlores in
a controlled manner. Thin film spin ices represent a new
approach to ice-type magnetic systems that complements
classical and quantum spin ice in the bulk [13–15] as well as
artificial spin ice micromagnetic arrays [16–20].

In this paper, we report the preparation and character-
ization of the first epitaxial thin films of Tb2Ti2O7 (TTO)
which, as in our previous work [8], were grown on Y2Ti2O7

(YTO) substrates. TTO is a relative of spin ice with particu-
larly unusual magnetic properties, that remain mysterious
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despite many years of research [21–26]. It fails to order
magnetically down to T=50 mK, instead forming a spin
liquid [14], possibly governed by ice rules [27–30], magne-
toelastic effects [26], and quantum fluctuations [15, 23, 31].
The ground electronic state of the Tb3+ ion is an approximate
doublet, with a more precisely defined doublet at ∼15 K
above the ground term. Formulation of the single ion and
collective spin Hamiltonian has developed around at least two
competing models [24, 25]. An early and striking result on
TTO was the ‘crystallization’ of the spin liquid under strong
applied pressure [22]. In this context, it is particularly inter-
esting to examine the properties of TTO on YTO as epitaxial
strain would be expected to significantly perturb the proper-
ties of the bulk.

Results and discussion

The single crystal epitaxial films of TTO were deposited on
isostructural YTO, both cubic pyrochlores, space group
Fd m3 ,¯ lattice constant a=1.0152, 1.0083 nm, respectively.
The substrates were prepared, cut and aligned as described in
methods. Three set of films were made, of thickness 5 nm,
11 nm and 63 nm respectively (note that 1 nm≅1 mono-
layer)—details of these samples are reported in table 1. In
each the out-of-plane direction is 110 ,( ¯ ) with 111( ) and 112( ¯)
forming orthogonal directions in-plane, parallel to the sub-
strate edges. Use of the non-commercial substrate YTO had
already proven to be an advantage in obtaining very high

quality thin epitaxial layers with the pyrochlore structure [8].
In the present study, we were further able to determine a
layer-by-layer growth mechanism by following the char-
acteristic intensity oscillation of the reflection high-energy
electron diffraction (RHEED); a schematic representation is
reported in figure 1, with more details given further down the
text. Similar behaviour may be anticipated for other pyro-
chlores grown under similar conditions, opening up the
exciting prospect of creating multilayers, heterostructures,
and interfaces of pyrochlore materials with atomic-layer
precision.

Figure 2(a) displays the out-of-plane 440 x-ray reflection,
recorded for three different film thicknesses. The out-of-plane
lattice parameters are 1.025(1) nm and 1.009(1) nm for the
films and substrate, respectively. The thickness of each
sample was determined from the fringes observed in the XRD
pattern, as well as by fitting reflectivity curves (figure 2(b));
these results are summarized in table 1, columns 3 and 4. The
main purpose of the reflectivity analysis was to estimate the
thickness and the density of the film, both of which are
expected to be reliable numbers in our analysis. The calcu-
lated total thicknesses are in close agreement with the values
calculated on the basis of the number of laser pulses used
during the growth. Furthermore, the density of the film is
close to the tabulated bulk density of Tb2Ti2O7 (table 1). Two
orthogonal off-specular reflections have been measured and
figure 3 shows both of them for the thicker sample 63TTO||
YTO(110) (in this notation [8] the number of monolayers is
indicated on the left and the crystallographic face on the

Table 1. xTTO||YTO(110): list of samples with x indicating the number of monolayers.

Sample Pulses
Thickness
(fringes) nm

Thickness
(reflectivity) nm

Thickness
(RHEED) nm

Density
(reflectivity) g cm−3

YTO Annealed substrate — — — —

x=63 7512 62.6(1) 62.7(1) 62.2(2) 6.9(2)
x=11 1252 10.4(1) 10.3(1) 10.4(2) 6.8(2)
x=5 626 5.2(1)a 5.4(1) 5.2(2) 7.1(2)

a
This thickness value has been extrapolated from the number of pulses.

Figure 1. Layer-by-layer epitaxial growth. A schematic representation of the detected growth mechanism along the out-of-plane direction
110 .[ ] Each RHEED oscillation corresponds to the formation of one tetrahedral layer (a quarter of the unit cells). The network shows the
pyrochlore structure with highlighted tetrahedra.
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right). These measurements show the films are very uniform
(clear fringes appear in both spectra) and that they have a
compressive strain, consistent with the smaller lattice constant
of the substrate.

Figure 4(a) is as an example of a RHEED pattern that
was recorded during the depositions, and the oscillation per-
iod measured at the specular reflection turns out to be com-
patible with the formation of a quarter of the unit cell along
the out-of-plane direction [110]; see also the schematics in
figure 1. Along this crystallographic direction, each pyro-
chlore unit cell contains four corner-shared tetrahedra of the
Tb sub-lattice; one RHEED oscillation corresponds to the
formation of one tetrahedral layer. The thickness calculated
from this model is in excellent agreement with the XRD
analysis (table 1).

It is interesting to examine the lattice distortion in more
detail, as this affects the distance between the Tb ions and
their oxide environment (hence the magnetic moments, and
their hamiltonian) and will most certainly have an impact on
the magnetic properties of the thin films. Figure 4(b) shows a
schematic of one Tb tetrahedron and its orientation with
respect to the cubic pyrochlore axis. In the cubic phase, all
Tb–Tb distances are equal: =d 3.589 ÅTb for a lattice
constant of 1.0152 nm. Analysis of the diffraction data
indicates that the epitaxial strain is homogenous, the film
structure being compressed equally along 111( ) and 112 ,( ¯)
with the average density maintained by elongation along the
110( ¯ ) direction. When looking at the Tb sub-lattice, one
finds that not all the distances are equivalent: in particular,
the 110( ¯ ) and 110( ) (green and blue lines in figure 4(b),

Figure 2. First TTO films. Room temperature structural properties of Tb2Ti2O7 || Y2Ti2O7(110)K(111). Colour code: xTTO||YTO(110) with
x=63 (blue), x=11 (green), x=5 (purple), x indicating the number of monolayers. (a) High resolution J w-2 scans showing (440)
reflection for different film thicknesses. (b) Reflectivity measurements and related fits. In both plots, each scan has been displaced vertically
to improve clarity.

Figure 3. Epitaxy and compressive strain. Room temperature high-resolution XRD reciprocal space maps (RMS) showing (a) 751( ¯ ) and (b)
844( ¯ ) reflections for 63TTO||YTO(110). Here, the two orthogonal Qx are the components of the reciprocal space vector aligned with the
substrate in-plane edges. These RMS confirm the film is high quality, fully epitaxial, and fully strained along the two in-plane orientations.
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respectively) distances measure =d 3.567 Å110( ¯ ) and
=d 3.627 Å,110( ) respectively, and the other four measure
=d 3.582 Åother (red lines in figure 4(b)). The angles

between the tetrahedron edges are perturbed accordingly.
With homogenous strain, the space group symmetry is
reduced to orthorhombic, A1, with a six-fold increase in the
number of atoms per unit cell. Despite the large unit cell, it
is reasonable to expect a single local environment for the
Tb3+ ions, and our analysis of the magnetic and thermal
properties assumes this. However, a complete description of

the crystal structure must await a detailed analysis by syn-
chrotron x-ray techniques.

The thicker sample 63TTO||YTO(110) was chosen as a
prototype to investigate the magnetic behaviour of the epi-
taxial layers. Its relative thickness gives the advantage of
minimizing the difficulties in quantitatively separating the
contribution of the active material (TTO) from that of the
substrate (YTO). The extension of the analysis to thinner
films requires a much more extensive and accurate study that
is beyond the scope of the present work.

Figure 4. (a) Layer-by-layer growth. Reflection high-energy electron diffraction (RHEED) oscillations measured at the specular spot during
deposition. Three different growths are shown to confirm reproducibility. Two repetitions rate were used during each deposition (initial
200 pulses at 1 Hz to help nucleation, increased to 5 Hz afterwards), hence the two oscillation periods. One oscillation corresponds to ¼ of
the cell, equivalent to the formation of one tetrahedron of Tb ions (one unit cell along the 110[ ] orientation contains four corner shared
tetrahedra of Tb ions). (b) Structural distortion. Schematic of the Tb sub-lattice is shown, where the tetrahedra edges depict the Tb–Tb
distances. In the pyrochlore cubic structure these are all identical ( =d 3.589 ÅTb for lattice parameter of 1.0152 nm. In the xTTO||YTO(110)
strained film, the 110[ ] (green) measures =d 3.627 Å;110( ) the 110[ ¯ ] (blue) =d 3.567 Å110( ¯ ) and the remaining four distances (red) measure

=d 3.582 Åother .

Figure 5. Specific heat and energy levels. Data for 63TTO||YTO(110). (a) Insert shows the raw scans of the thin layer (black) and the
annealed YTO substrate (red): a clear difference is detected below 10 K due to the presence of the TTO epitaxial layer. (a) Magnetic
contribution and related fit. The quantityC TM is plotted after subtraction of the substrate and lattice contributions (see main text). The line is
a fit to a four singlet levels (adjusting three energies only): energy level diagram is depicted in panel (b) insert. (b) Comparison with bulk
TTO. Green, blue and pink dots are previously reported [36–38] single crystal data (pink line is just a guide to the eye). The specific heat
profile of TTO thin film is drastically different than of the bulk.
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A commercial PPMS system (see methods) was used to
measure the heat capacity of the TTO thin films, taking
advantage of our previous demonstration [8, 32] that the
PPMS can be used to accurately measure the heat capacity of
pyrochlore thin films. Figure 5(a) reports an overview of the
low temperature specific heats of 63TTO||YTO(110) and the
annealed substrate YTO(110), and as clearly shown in the
insert of figure 5(a), there is a distinct contribution in the raw
data from the thin layer of TTO at temperatures below 10 K.
To estimate the magnetic specific heat of the film, CM, the
measured heat capacity was corrected for the contributions
from substrate and phonons using the same method described
at length in [8].

The magnetic specific heat, CM, divided by temperature
is plotted in figure 5(a). In a single-ion approximation, by
comparison with the bulk, we expect up to four microstates to
be thermally active. Considering all models with four
microstates we found that CM(T) is uniquely and quantita-
tively described by a system of four singlets, with the first
excited singlet at =E 0.25 2 K;1 ( ) followed by =E 3.7 2 K2 ( )
and =E 8.8 1 K.3 ( ) The grey line in figure 5(a) is a fit to this
four level system where the only fitting parameters being the
three energy values reported above. The quantitative accuracy
of the single ion description, coupled with the well-defined
x-ray diffraction and RHEED oscillations, rules out any sig-
nificant role of sample imperfection. As in the case of the bulk
[21], and in contrast to the case of applied pressure [22], there
is no transition to range order evident down to 0.4 K. The
modest departure from the single-ion model evident in
figure 5(a) at low temperature is suggestive of weak exchange
and dipole interactions that perturb the single ion states.

This behaviour may be compared to that of bulk TTO. In
that case, it is accepted that an excited doublet lies close the
ground doublet (at about 15–18 K) [33, 34], and both of these
can have their degeneracies lifted by Jahn–Teller distortions

[35]. The bulk specific heat can be fitted to a single ion model
with the ground state doublet split by 1.8 K into two singlets
[24]. Following a debate [24, 25], it was established that these
excitations are in fact dispersive [30], with quadrupolar
interactions and coupling with phonons playing a role.
However, sample imperfection in bulk crystals complicates
interpretation of the specific heat [36–38] as shown in
figure 5(b), where data for three different bulk TTO crystals
are presented (taken from [36–38]). The peak near 6 K is
attributed to the first excited doublet, whereas the origin of the
signal(s) below 3 K is the subject of debate [24, 25]. The
contrast with the specific heat of the film is striking, yet it can
be understood in terms of the high sample quality gained by
layer-by-layer deposition (thereby clarifying the low temp-
erature behaviour) and the removal of crystal field degeneracy
by epitaxial strain. Figure 5(b) shows a schematic of the
energy levels and how they vary when passing from bulk to
thin film. We note that in the future it may be possible to use
substrates with tailored lattice constants to extrapolate the
evolution of the electronic state back to unstrained and near-
perfect TTO, thereby settling the issue of its true electronic
state, definitively [24, 25, 30].

To further compare the film with the bulk, magnetization
and magnetic susceptibility were measured, and figure 6
summaries our findings. These data have been corrected for a
paramagnetic contribution arising from defects in YTO,
quantitatively estimated by direct measurement of the
annealed substrate. Digitized [34] data for a powder sample
are reported for comparison, and it can be observed that the
magnetization of the thin film is in close agreement with that
of bulk TTO. The two orthogonal crystallographic orienta-
tions show the anisotropy expected for Ising spins constrained
to the local 111[ ] local direction [39, 40]; the moment ratio
between the 111[ ] and 112[ ¯] directions approaches the
expected value of 1.3 at 7 T. From the slope of the

Figure 6. (a)Magnetization versus field curves measured at 1.8 K for 63TTO||YTO(110) along the two in-plane orthogonal orientations 111[ ]
(grey) and 112[ ¯] (black); data have been subtracted for the substrate contribution. As a comparison, digitized data [34] for a powder TTO
sample are reported. The anisotropy shown is in line with that of Ising magnetic moments confined to point parallel or antiparallel to their
local 111[ ] directions. Initial slope of the two curves give a magnetic moment of m m= 5.4 0.2 .Beff (b) Susceptibility reported in the
dimensionless SI units measured at low magnetic field (0.02 T) and its temperature dependence. The anisotropy vanishes in the limit of linear
susceptibility as shown by our data. The insert reports the effective magnetic moment versus T.
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magnetization versus field curves measured at 1.8 K, we
extrapolate an effective moment m m= 5.4 0.2 ;Beff this is
in close agreement with the calculated magnetic moment
associated with the ground state of bulk TTO [33, 34].
Figure 6(b) reports the magnetic susceptibility of 63TTO||
YTO(110), measured at low field as a function of temper-
ature; the inset shows the evolution of the effective moment
meff versus temperature. Looking at the effective moment, one
can see that at T=2 K it resembles that associated with the
ground state bulk TTO [33, 34]. It then rather quickly
increases to m m= 5.9 0.2 Beff close to T=10 K, but
again it is in close agreement with the moment associated
with the first excited doublet in bulk TTO [33]. Subsequently,
the magnetic moment increases more slowly with temper-
ature, finally approaching the free ion value.

A detailed understanding of these magnetic moments in
the context of the four singlet levels inferred from specific heat
must await a quantitative analysis of the crystal field hamilto-
nian. Although singlet states are non-magnetic to first order in
magnetic field, higher order Zeeman splittings can be difficult
to distinguish from first order ones in bulk magnetization
measurements. Hence the observed magnetic moments, while
suggesting doublet levels, should not be thought of as neces-
sarily being inconsistent with a singlet structure. However, it is
also possible that the inferred singlet states are not true single
ion states, but instead reflect peaks in a density of states.

What seems certain is that our TTO films represent an
improvement in sample quality over the bulk and that the
experimental properties of our films present a clear picture
that any theory of TTO must seek to encompass. This means
that the epitaxial strain in the films may be used as a sys-
tematic probe of interactions in the bulk. For example, there is
likely to be a coupling between the strain and single ion
quadrupoles [30] and hence the films can be used to inves-
tigate this.

Conclusion

In conclusion, TTO is part of a family of pyrochlores with
exotic magnetic properties: relatives so far unstudied in thin
film form include Yb2Ti2O7, which is a candidate quantum
spin ice, and Er2Ti2O7, the leading candidate for magnetic
order-by-disorder [12, 15]. Our study identifies a new way of
probing and perturbing such systems, and alleviating pro-
blems of sample quality. More generally, our study suggests
that pyrochlore oxides may be excellent subjects for forming
heterostructures, thereby opening broad possibilities for tai-
loring and exploiting the diverse magnetic and electronic
properties of the pyrochlore series.

Methods

Pulsed laser deposition (PLD)

Single crystals of Y2Ti2O7 [41] were cut and epi-polished on
one side (SurfaceNet GmbH, http://surfacenet.de). A set of

fully oriented YTO substrates was prepared: YTO110K111,
where the first crystallographic direction (hkl) is the out-of-
plane orientation and the second (Khkl) identify one of the in-
plane edges of the square substrate. Epitaxial TTO thin films
(between 65 and 5 nm in thickness) were grown on YTO
substrates by pulsed laser epitaxy (KrF, λ=248 nm) at
750 °C in 113 mTorr O2. The laser fluence at the target was
fixed at 1.97 J cm−2; the laser repetition rate was initially set
at 1 Hz for the first 200 shots and increase to 5 Hz for the
remaining growth. Samples were subsequently post-annealed
for 1 h at 750 °C in 400 Torr O2 before cooling down to room
temperature. RHEED was used to monitor the surface struc-
ture and to control the film thickness with atomic-layer
precision.

Structural characterization

Lattice parameters and film epitaxy were studied at room
temperature by XRD using Cu Kα1 radiation in a Rigaku
high-resolution diffractometer. Film thickness was deter-
mined by x-ray reflectivity; the fits were performed with the
Integrated Thin Film Analysis Software GlobalFit 1.3
(Rigaku Corporation). High-resolution reciprocal space maps
were collected using the same machine.

Magnetic properties

In-plane magnetization was measured using a Quantum
Design MPMS-7 SQUID (superconducting quantum inter-
ference device) magnetometer. Measurements were per-
formed in RSO (reciprocating sample option); silver dag was
removed from the underside of samples to prevent the pos-
sibility of spurious magnetic signals attributed to material
from the heater block of the deposition system. Samples were
positioned using a customized sample holder to avoid dis-
placement or reorientation during the measurement. Finally,
the holder was loaded inside a clear plastic straw having a
5 mm inside diameter. This arrangement allows complete
cancellation of background signals from the sample holder
and strongly reduces the effect of field noise in the magnet.

Specific heat

The specific heat of each sample was measured from 50 and
0.4 K with a Quantum Design PPMS (physical properties
measurement system) with a 3He option.
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