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Abstract

In order to provide relevant information to mobile userghsas workers engaging
in the manual tasks of maintenance and assembly, a wearabiputer requires
information about the user’s specific activities. This wlwkuses on the recognition of
activities that are characterized by a hand motion and apnajganying sound. Suitable
activities can be found in assembly and maintenance worke,Hee provide an initial
exploration into the problem domain of continuous activigognition using on-body
sensing. We use a mock “wood workshop” assembly task to grown investigation.

We describe a method for the continuous recognition of diets/(sawing, ham-
mering, filing, drilling, grinding, sanding, opening a drmytightening a vise, and
turning a screwdriver) using microphones and 3-axis acoeleters mounted at two
positions on the user's arms. Potentially “interestingtiaites are segmented from
continuous streams of data using an analysis of the souedsity detected at the two
different locations. Activity classification is then pemfieed on these detected segments
using linear discriminant analysis (LDA) on the sound clerend hidden Markov
models (HMMs) on the acceleration data. Four different méshat classifier fusion
are compared for improving these classifications. Using-dspendent training, we
obtain continuous average recall and precision rates (fsitige activities) of 78% and
74%, respectively. Using user-independent training @eawe-out across five users),
we obtain recall rates of 66% and precision rates of 63%.dkai®n, these activities
were recognized with accuracies of 98%, 87%, and 95% for see-dependent, user-

independent, and user-adapted cases, respectively.

Index Terms

Pervasive computing, Wearable computers and body arearetwClassifier evaluation, Industry

I. INTRODUCTION

For office workers, computers have become a primary toadwatly workers to access the

information they need to perform their jobs. For more mobi@kers such as those in main-
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tenance or assembly, accessing information relevant to fhles is more difficult. Manuals,
schematics, system status, and updated instructions magalldy available on-line via wireless
networks. However, with current technology, the user mosti$ both physically and mentally on
a computing device either on his person or in the environntemtexample, to access a specific
schematic through a PDA, an aircraft repair technician sg¢ednterrupt his work, retrieve his
PDA from a pocket or bag, navigate the PDA’s interface, réaddesired information, and finally
stow the PDA before resuming work. Equipping the worker vathead-up display and speech
input or a one-handed keyboard, helps reduce distractam the physical task. However, the
worker’s task is still interrupted, and he must make a cogmiéffort to retrieve the required
information.

For over a decade, augmented reality and wearable/ubiguitomputing researchers have
suggested that pro-active systems might reduce this cogmffort by automatically retrieving
the right information based on user activity [1]. For examms an airplane mechanic begins
removal of a turbine blade from an engine, the manual pageisldhis procedure is presented
automatically on his head-mounted display. The assumjdidimat such systems will be able to
follow the progress of the task and automatically recogmibech procedure is being performed.
While other methods [2] are being explored, in this paper ssime such a continuous activity

recognition system will use on-body sensors and computatgrovide this facility.

A. Problem Analysis

We wish to explore the use of on-body sensors to recognizeegsuactivities. To ground
our work, we have chosen to examine the activities involveén assembly task in a wood
workshop. For this exploration, we will focus on recogngihe use of five hand tools (hammer,
saw, sanding paper, file, and screwdriver), the use of theehime tools (grinder, drill, and vise),
and the use of two different types of drawers (which will bed®led in one class).

These activities, though limited here to a specific scenane fairly diverse. In some respects
they can be said to provide insight into a wide range of aaiusing the hand and some object
or tool. Common to many activities, they produce a broad eamigdifferent signatures for both
sound and motion. Hammering, for example, is characterigethe rise and fall of the arm,

accompanied on impact by a loud bang. Use of the saw produsesearegular sound, directly
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correlated with the back and forth movements of the arm. @notiher scale, the hand twists
associated with using a screwdriver are generally accoie@dny correlated, quieter sounds.
In contrast, the use of a drilling machine produces a loudfisaous sound, and whereas the
motion of the arm during its use is also well-defined, it isalsuindependent from the sound
being made. Even more extreme, the opening and closing olwedrproduces characterstic
but widely varying sounds, with motions that can vary from @llwdefined push and pull, to a

simple nudge of the elbow or leg.

B. Paper Scope and Contributions

From these observations, microphones (sound) and acoeézos (motion) were chosen as
suitable on-body sensors. In this paper we present the ubesé devices, worn at two locations
on the wrist and upper arm, to detect continuous activitiean assembly scenario. Specifically,
we present:

1) Two-microphone signal segmentation:Through an apparatus similar in concept to a
noise-cancelling microphone, we demonstrate a methods®isténg segmentation of ac-
tivities from a continuous stream - particularly for thosmiaties where a noise is made
close to the user's hand.

2) Recognition using sound and accelerationSeparate classifications are performed using
spectrum pattern matching on the sound and Hidden MarkoveloHMM) on the
acceleration data. We then compare various ways of fusiegetiwo classifications.
Specifically, we use methods based on ranking fusion (Bowodmt¢ highest rank, and

a method using logistic regression) and a simple top clasgpaason.

The methods are evaluated using a multi-subject dataseteofvbod workshop scenario.
User-dependent, user-independent, and user-adapties eas evaluated for both isolated and

continuous recognition to assess robustness of the metbadsanges in user.

C. Related Work

Many wearable systems explore context awareness and pve-awvolvement as means of

reducing the cognitive load on the user [3]. Key to this is dbdity to recognize user activities.



To date, much of the work in this area relies on the use of caeenpusion [4], [5], [6], [7], [8].

Though powerful, vision can suffer in the mobile and weagadbdbmains from drawbacks such
as occlusion and changes in lighting conditions as usersrmaoound. For many recognition
tasks the computation complexity is often beyond what curveearable hardware can support.

Non-visual, body fixed sensors (BFS), in particular acostesters, have been employed for
many years in the analysis of body posture and activity [Slially in a clinical setting [10], [11].
Using two uniaxial accelerometers - one radial at the clibst,other tangential at the thigh -
Veltink et al.[12] were able to evaluate the feasibility of distinguighpostures, such as standing,
sitting and lying; they also attempted to distinguish thigse the dynamic activities of walking,
using stairs, and cycling. Similar approaches, all with gloal of ambulatory recognition, have
since been investigated [13], [14].

Uiterwall et al. [15] performed a feasibility study on the long term monibgyiof ambulatory
activities in a working environment - specifically maintena and messenger work. In the
wearable domain these activities have been addressed bynhenwf researchers as part of
a general attempt at recognizing context [16], [17], [18].n@re intricate hand activities, such
as interaction with objects or gesticulation, there haventseveral works using accelerometers -
generally involving sensors either on the objects beingimaated [19], or embedded in special
gloves [20].

The use of sound has been investigated by Pedtaal. [21] for their work in analysing user
situation. Intelligent hearing aids have also exploitegingbanalysis to improve their performance
[22]. In the wearable domain Clarkson and Pentland used aication of audio and video to
infer situation based on short-term events (such as optasgng doors) [23]. Wu and Siegel
[24] used a combination of accelerometers and microphanpsotvide information about defects
in material surfaces. For recognition of activities howetkis combination of sensors has not
been investigated to date.

Fusion of multiple information sources is a well-studiedd ativerse field covering many
different disciplines. Within the domain of activity readgjon, fusion of multiple sensors stems
largely from the intuition that two well-placed sensorsagemore information about an activity

than one sensor alone. Combining the results from diffeckssifiers has been investigated by



numerous researchers [25], [26], [27]. The simplest meibdd compare the top decisions of
each classifier, throwing out any results in disagreemdm. groblem with this technique is that
it disregards any particular advantage one classifier nfigiie over another. Several alternative
methods, all making use of class rankings, were explored byeHal. [28]. We apply these

methods in this work to the specific problem of fusing sound acceleration classifiers.

II. RECOGNITION METHOD

To provide pro-active assistance for assembly and maintenpersonnel, the computer needs
to identify relevant activities from a continuous data atre It has been shown that activity
recognition in the isolation case - where the beginning amdirg of activities are known -
can be achieved with good accuracy [29]. However, in the ioootus case where the start
and completion of activities are not known, reliable reatign is still an open problem. The
main difficulty lies in the fact that large segments of randown-relevant activities often occur
between activities meaningful to the task. These non-agleactivities can involve many diverse
movements such as scratching one’s head, swinging the amaking something out of the
pocket. This diversity means that it is infeasible to defirigabage class” for the accelerometer
data that is sufficiently well separated from the relevanivaies.

We solve this problem by using sound analysis to identifevaht signal segments. Our
approach is based on the assumption that all of the actviiehich we are interested produce
some kind of noise close to the hand. While this is certaioliytrue for many human activities, in
our case it is a reasonable assumption as most assemblatablmachines make characteristic
noises when in use. We thus define the null class by the absdérsteeh a characteristic sound
in the proximity of the user’s handTo this end we use the intensity difference between the
microphones mounted on the wrist and upper arm. Furtherawgmnent of the segmentation
is achieved through clustering of short frame-based souaskifications over longer sliding
windows. We then treat those segments as isolated eventsich toth sound and acceleration
classification is performed separately. Finally these isgpaclassifications are fused. This step
is particularly important for removing false positives uksg from the over sensitivity of the

sound segmentation. Four different methods of fusion aaduated: comparison of top choices
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Fig. 1. Recognition algorithm: segmentation using two ctes (wrist and arm) of sound (left); overall recognitiorogess
(right).

(COMP), highest rank, Borda count, and a method using liegisgression. An overview of the

recognition process is given in Figure 1. Key steps are etdbd below.

A. Sound Intensity Analysis (IA)

Partitioning cues are obtained from an analysis of the @iffee in sound intensity from two
different microphone positions [30]. This is based on thengise that most workshop activities
are likely to be associated with a characteristic soundiratgng near the hand.

Since the intensity of a sound signal is inversely propoglao the square of the distance
from its source, two microphoneg1) on the wrist, and2) on the upper arm - will register two
signal intensities [; and ;) whose ratiol; /I, depends on the absolute distance of the source
from the user. Assuming that the sound source is locatedstdrdied from the first microphone
andd + ¢ from the second, the ratio of the intensities is proportidoa
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Sound originating far from the uset,>> 4, will result in % ~ 1. Whereas sound originating

close to the user’s hand,~ ¢, will result in % > 1. Thus, the ratio% provides an indicator of



whether a sound was generated from the action of the user®. lBased on this, the following

sliding window algorithm is performed over data from the tawdio channels:

1) Slide windoww;,, in increments ofj;, , over both channels, calculating and I, at each
step

2) For each frame, calculatg /I, — I/I;: zero indicating a far off (or exactly equidistant)
sound, while a positive value indicating a sound closer tsowhist microphone 1)

3) Select those frames where this ratio difference passegabke threshold;,

B. Frame-by-Frame Sound Classification Using LDA

Frame-by-frame sound classification is performed usintgpatnatching of features extracted
in the frequency domain. Each frame represents a window 0£=100ms of raw audio data
(sampled atf, = 2kHz). From this a Fast Fourier Transform (FFT) is perforngedierating a
100 bin output vectofl/2 fxwy = 1/2+2% 100 = 100 bins). The choice of these parameters
is based on preliminary investigations into achieving ahlg recognition performance while
minimizing computation requirements.

Making use of the fact that the recognition problem requaesnall number of classes, Linear
Discriminant Analysis (LDA) [31] is applied to reduce therdénsionality of the FFT vectors
from 100 to the number of classeg{lasses) minus one. Classification of each frame can then
be performed by calculating the Euclidean distances froeninboming point in LDA space to
the mean of each class (as obtained from training data).nWim distance is then used to select
the top class The savings in computation complexity by dimensionalégluction come at the

comparatively minor cost of requiring us to compute andestoset of LDA class mean values.

C. Sound-Based Segmentation

The initial approach to segmentation was simply to applyi#halgorithm, with w;, = 100ms
andj;,, = 25ms, across a sweep of different thresholds, highlighting ¢htioames of interest for

LDA classification and marking the rest as null. This tendeg@roduce a somewhat fragmented

1Equally, a nearest neighbor approach might be used. Howthisrwas not found to produce any significant improvement

for the dataset used here.



result with wildly varying partition sizes. To combat thtgjo different methods of “smoothing”
using variations of the majority vote were applied. In eatlhese, a window of just over one
second was moved over the data in one second incrementsrelaisely large window was
chosen to reflect the typical timescale of the activitiesnbériest.

The first approach at smoothing was to run a two-class mgjedte window directly over
the output of the IA algorithm. This process has the effeat th any given window, the class
with the most number of frames (either “interesting” or ‘ylwins and takes all the frames
within the window. In the (rare) event of a tie, the null classassigned.

The second approach, and the one chosen for the remaindée ofidrk, is to perform a
majority vote over already classified frames, as shown inléfiebox of Figure 1. Firstly a
preliminary frame-by-frame LDA classification is perfordhen those frames selected by IA;
those not selected by IA are “classified” as null. Then a jurgpnajority vote is run over all of
the frames. This process differs from the previous appraac¢hat in order to “win” a window,
a class has to have both more frames accounted to it than ary won-null class, and more
than 1/#classes of the total number of frames. If no positive class wins, risilassigned.

The results from all three of these approaches, and themdéasohoosing multi-class majority

vote, is explored further in the results section IV-C.1.

D. Sound classification

Segments are defined as a sequence of one or more contiguousilhavindows. Being
non-null by definition, classification of a segment can beardgd in isolation and is simply a
matter of taking a winner-takes-all vote of the constituiaime classifications.

When higher level information about a segment is requiredhsas the likelihood of each
possible class, then the problem is not so straightforn@ree approach is to build a histogram
entry for each class over the frame-by-frame classificatitilus providing an estimate of class
probability. However, this method throws out potentiallgetul information provided by the
LDA frame-by-frame classification. Another approach, addpn this work, is to take the LDA
distance values for each class and calculate their mean allvéine frames. This provides a

single set of class distance values for each segment. Theseaks themselves might not be



mathematically useful, but their rank is. How these are thsad in classifier fusion is elaborated

in the Recognition Method section II-G.

E. Acceleration features

The 3-axis accelerometer data streams X, y and z, from bagt and arm mounted sensors,
are sampled at 100Hz. (The x-axis on the wrist is defined bwidgaa line across the back
of the wrist between the joints where the two forearm bonemeot to the hand. The x-axis
on the shoulder can be described as parallel to the line ctingethe bicep and tricep muscles
through the arm.) A short sample sequence of this data (xfof, wrist, and x for arm) for the
activities of sawing, putting the saw in a drawer, clampiogne wood with a vise, and using
the drill, is shown in Figure 2. The locations of the senseesaso shown in this figure.

Selection of features is a critical task for good recognifi@rformance. Since a thorough anal-
ysis into the best possible features is beyond the scopesofvtirk - we are more concerned with
recognition improvements through classifier fusion - weeskfeatures based on a combination
of intuition and empirical experience of what works well fthis problem. Specifically, the
features calculated are a count on the number of peaks withiOOms sliding window, the
mean amplitude of these peaks, and the raw x-axis data frenwiist and arm sensors.

These features reflect our intuition (and the analysis o¥ipus researchers also using tri-
axial accelerometers [32]) that three main componentsaffidict the readings: gravity, motion
initiated by the user, and impacts of the hand with objectigh&r frequency vibrations will
be associated with this last component, and counting thebeumf peaks in a 100ms window
is a computationally inexpensive way to capture this effécr example, a large number of
peaks may indicate the “ringing” in the hand caused by theachpf, say, striking a hammer
or pushing a saw into wood.

A smaller number of peaks may be caused when the user isitaataotion. Intuitively, the
force the user’s muscles apply to the hand will result in a@macceleration as compared to
the jerk (and higher order components) associated with ¢inpaents. For example, the twist of
the screwdriver results in peaks in acceleration as the siaeis and stops the twist.

The orientation with respect to gravity is also reflected um features. The mean height of

peaks in a 100ms window is composed of both 1g acceleratientalgravity and any other
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shock caused by interaction with the object or motion by ther.uGravity is represented even
more explicitly in the raw x-axis data recorded from the wead arm. For example, twists of
the wrist will show a large effect as the x-axis becomes padjmeilar with the floor.

This last example illustrates an interesting point. A tvasthe wrist associated with the turn
of a screwdriver has a large effect at the wrist but a much Ilemaffect at the upper arm.
Similarly, vibrations from machine tools affect the wristuaim more than they do the upper arm.
Thus, the upper arm can provide lower frequency posturanmdton while the wrist provides

cues as to the interactions with objects.

F. Acceleration classification

In contrast to the approach used for sound recognition, wel@nHidden Markov Models
(HMMs) for classification of the accelerometer features],[334]. The implementation of the
HMM learning and inference routines was provided courtefyKevin P. Murphy’s HMM
Toolbox for Matlab [35]. To increase the computation spekthese algorithms, the features are
further downsampled to 40Hz (this has negligible effect wen¢ual recognition rates). They are
also globally standardized so as to avoid numerical coraftins with the learning algorithms.

The HMMs use a mixture of Gaussians for the observation ftibes. The number of
mixtures and hidden states are individually tailored bychfor each class model. Classification
is performed by choosing the model which produces the laigeslikelihood given a stream
of feature data from the test set.

With the exception of drilling, all of the class models ogeraver a short time frame (e.g.
around 1 second). As it is unlikely that a user will changévagtmore than once in this time, the

recognition system is insulated from changes to the ordarninwhich activities are performed.

G. Comparison of top choices (COMP)

The first approach at fusion is the simplest of all the methexiployed here. The final
decision labels from each of the sound and acceleratiosifitxs for a given segment are taken,
compared, and returned as valid if they agree. Those segméretre the classifiers disagree are

classified as null (no activity).
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H. Fusion using class rankings

There are cases where the correct class is not selected asptlohoice by one classifier,
but may be listed second. Such near misses would be ignomaifclassifier decisions were
considered. A more tolerant approach considers levels ofidence a classifier has for each
possible class. However, when combining information froiffecent types of classifiers, the
measures may be inconsistent or incomparable with one.other

In this case we use measures based on LDA distance and HMM Gkadihoods. It is
conceivable that these measures might be converted intoapildies and then fused using
some Bayesian method, but this approach would requireiaddittraining in order to perform
such a conversion. Additionally, with the view to a futuretdbuted wearable sensing system,
such computations might be expensive - for both calculatioth, when one considers possible
expansion of the number of classes, communication bandwidtmid-range solution is to
consider the class rankings. This approach can be comguadiii simple and can lend itself to
modular system design in case additional classes or clxssdre added at a later stage.

We use confidence measures to assign a ranking to each dandidaassifier issues a list of
class rankings which is compared to the rankings from therothassifiers. A final decision is
made based on this comparison. To ensure that a decisiors$tbp rankings must be given a
strict linear ordering, with “1” being the highest, and tlogvést equaling the number of classes.

From the acceleration HMMs, an ascending rank can be praddrectly from the inverse
log likelihood of each class model (e.g. the largest likatith being assigned the highest rank).
For sound, the approach is slightly different. First, theA_Blass distances for each frame in
the segment are calculated. The mean of these is then tak&maaking is assigned according
to the criteria of shortest distance. Where there is a tisvéeh classes, the ranking can be
assigned randomly or, as in our case, by reverting to prasscpreferences.

Three different methods of fusion using class rankings aeduhighest rank, Borda count,
and logistic regression. The implementation of each ofédhmasthods is described below:

1) Highest rank (HR):For any given input, take the rankings assigned to each blaske
classifiers and choose the highest value. For example, ifdhed classifier assigns “drilling”

with rank “2” and the acceleration classifier gives it rank,“the highest rank method will
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return rank “1.”

This method is particularly suited to cases where for eaabscthere is at least one classifier
that is capable of recognizing it with high accuracy. It iscabuitable for systems with a small
number of classifiers - more classifiers might produce tooynti@s between class rankings.

2) Borda count: The Borda count is a group consensus function - the mapparg & set of
individual rankings to a combined ranking. It is a genegtlan of majority vote: for each class
it is the sum of the number of classes ranked below it by eaassifler. The output is taken
from ranking the magnitude of these sums, e.g. highest Bawdat is assigned the highest rank.

Borda count is simple to implement, but it retains the drasiba all fusion mechanisms men-
tioned so far in that it treats all classifiers equally. Toradd this shortcoming, a method based
on logistic regression was employed to approximate weigjstifor each classifier combination.

3) Logistic regression (LR):If the Borda count was extended to include a weighting on
each combination of classifier rankings for every class falseon problem would soon become
prohibitively expensive to calculate - especially for agmamumber of classes. One way to
address this is to use a linear function to estimate theitigetl of whether a class is correct
or not for a given set of rankings. Such a regression funcestimating a binary outcome with
P(true| X, class) or P(false|X, class), is far simpler to compute. For each class a function
can be computed(X) = a + >, fix;, where X = [z1, 9, ..2,,] are the rankings of the
class for each of then classifiers, andv and 3 are the logistic regression coefficients. These
coefficients can be computed by applying a suitable regredsi using the correctly classified
ranking combinations in the training set.

To obtain the combined rank,,(X) is estimated for each class given the input rankings.
Classification is performed by choosing the class with maxmrank. This method allows the
setting of a threshold oh(X ), thus enabling us to return a “null” classification if the dzimation

seems extremely unlikely. This threshold is chosen enaglyic

I1l. EXPERIMENTAL SETUP

Performing initial experiments on “real-world” live asskiy or maintenance tasks is inadvis-
able due to the cost, safety concerns, and the ability toirolbégpeatable measurements under

experimental conditions. As a consequence we decided tsfoe an “artificial” task performed
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Fig. 2. The wood workshopldft) with (1) grinder, (2) drill, (3) file and saw,(4) vise, and(5) cabinet with drawers. Example
of raw accelerometer data from the x-axis of arm, and x,y,v$t, for a subsequence involving saw, drawers, vise aiitl dr

(top right). Sensor placemenbgttom righ}: (1,2) wrist and upper arm microphones and 3-axis acceleratiososen

at the wood workshop of our lab (see Figure 2). The task ctatssf assembling a simple object
made of two pieces of wood and a piece of metal. The task redjgeveral processing steps
using different tools; these were intermingled with acsiaypically exhibited in any real world

assembly task, such as walking from one place to anothertoeviag an item from a drawer.

A. Procedure

The exact sequence of actions is listed in Table I. The task twaecognize nine selected
actions: use of hand tools such as hammer, saw, sanding, fifgpand screwdriver; use of fixed
machine tools such as grinder, drill and vise; and finallyuke of two different types of drawer.
To be ignored, or assigned as garbage class, are instant®s wser moving between activities
and of interactions with other people in the shop.

For practical reasons, the individual processing steps wely executed long enough to obtain
an adequate sample of the activity. This policy did not regjtihe complete execution of any
one task (e.g. the wood was not completely sawn), allowintpumplete the experiment in a
reasonable amount of time. However, this protocol infludnmely the duration of each activity
and not the manner in which it was performed.

Five subjects were employed (one female, four male), eacforpeing the sequence in

repetition between three and six times producing a totaBeB¢4+4+6)=20 recordings. Some

14



No | action

1 |take the wood out of the drawer
2 | put the wood into the vise

3 |take out the saw

4 |saw

5 |put the saw into the drawer

6 |take the wood out of the vise

7 | dril

8 |get the nail and the hammer

9 |hammer

10 | put away hammer, get driver and scr|
11 | drive the screw in

12 | put away the driver

13 | pick up the metal

14 | grind

15 | put away the metal, pick up wood
16 | put the wood into the vise

17 | take the file out of the drawer

18 |file

19 | put away the file, take the sandpape
20 | sand

21 | take the wood out of the vise

Ew

TABLE |

STEPS OF WORKSHOP ASSEMBLY TASK

subsequent training and evaluations were based.

15

subjects performed more repetitions than others becauaeambination of technical problems
in recording data and the availability of subjects. Eacltusege lasted five minutes on average.
For each recording, the activity to be performed was prothpigomatically by a computer,
which an observer announced vocally to the subject. Thetexaing of each activity was
recorded by the computer when the observer pressed a ke dietiinning and end of the
activity. Any errors in these semi-automatic annotatiomsenater corrected by visual inspection

of the data and listening to the recorded audio. This praVidke ground truth from which all



The definitions of activity start and stop during ground Hrannotation might be judged
differently by different observers. Differences agairsardepending on which sources are used
(visual, sound, or even acceleration signals). As suchImglliag scheme of a continuous system
can be perfect. For these experiments therefore, a set ofittefs was drawn up of which the

main aim was to at least maintain consistency between tlierelit recordings.

B. Data Collection System

Data collection was performed using the ETH PadNET senstwank [36] equipped with
two 3-axis accelerometer nodes connected to a body-wormpetamn and two Sony mono
microphones connected to a MiniDisk recorder. The senserg Wwositioned on the dominant
wrist and upper arm of each subject, with both an accelermmeide and microphone at each
location, as shown in Figure 2. All test subjects were rigintded. These recordings were later
ported to a desktop PC for processing. The two channels oirded sound, initially sampled
at 48kHz, were downsampled to 2kHz for use by the sound psotgsligorithms.

Each PadNET sensor node consist of two modules. The mainlmimaorporates a MSP430149
low power, 16-bit mixed signal microprocessor (MPU) fromxdg Instruments running at a
6MHz maximum clock speed. The current module version readsaamum of three analog
sensor signals (including amplification and filtering) arahtlles the communication between
modules through dedicated 1/0O pins. The sensors themsaheefiosted on an even smaller
“sensor-module” that can be either placed directly on thenmaodule or connected through
wires. In the experiment described in this paper sensor tesdwere based on a 3-axis ac-
celerometer package consisting of two ADXL202E devicesnfidnalog Devices. The analog
signals from the sensor were lowpass filtered in hardwarb wif...,;; = 50H z, 2nd-order,

Sallen Key filter and digitized at 12-bit resolution usingaanple rate of 100HZ

V. RESULTS
A. Leave-One-Out Evaluation

All training for LDA, HMM and LR is carried out using three vations of leave-one-out:

2With these settings some aliasing is possible, but was notdfdo affect the experiments described.
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1) User-dependentwhere one set is put aside for testing, and the remainirgyfeain the
same subject used for training.

2) User-independentwhere data from the subject under test is evaluated usingrg data
provided by the other subjects. This is the most severe testaluating the system’s
response to a never-before seen subject.

3) User-adaptedwhere one set is put aside for testing, and all remainirngfsain all subjects
are used for training. This case emulates situations wheresystem is partially trained

for the user.

These methods are applied consistently throughout the,\aorkresults for each are given where

appropriate.

B. Isolation Results

As an initial experiment, the positive (non-null) eventeafied by ground truth are evaluated
in isolation. The metric used isolation accuracy(also known asclass relative sensitivi}y
defined as‘%ef:c, with the number otorrect, andtotal. positive events for each class

Table Il shows results for (a) user-dependent, (b) usespaddent, and (c) user-adapted. Being
an isolation test, null is not defined; however in the case OMP, there is the possibility that
an event be declared null, i.e.deletion For COMP almost all errors are infact deletions, and
so the substitutions, where occurring, are highlightedrackets.

As shown in Table ll(a), most classes with user-dependaititrg produce very strong results
for sound and acceleration (above 90%, for non-vise and @lragtivities). Any substitution
errors that do exist are then completely removed when thesifler decisions are compared
(COMP), albeit at the expense of introducing deletions. fidrking fusion methods fare even
better - with Borda recognizing five classes perfectly, amat fwith only a single event error.

When applied to data from subjects not in the training seerfusdependent Table 1i(b)),
an expected drop in recognition rates can be seen for souhéh@seleration. Activities such
as using the drill or drawer continue to register almost garfesults though, largely due to
the specific movements which they require and the correspglydperson-independent sounds

which they produce. Some activities, such as driving a semsvusing a vise, yield poor results
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Class Total sound | accel. COMP HR Borda LR

hammer 20 100 100 100 100 100 100
sawing 20 100 90 90 90 95 100
filing 20 95 75 70 95 100 95

drill 20 100 100 100 100 100 95

sand 20 95 95 90 95 95 95
grind 20 100 90 90 100 100 100

screw 20 85 95 85 95 95 95
vise 160 87.5 99.4 87 99.4 100 99.4
drawer 440 98.2 99.1 98 99.3 99.3 99.3
Average% 95.6 93.7 90.1 97.1 98.3 97.6

(a) User-dependent isolation accuracies

Class Total sound | accel. COMP HR Borda LR

hammer 20 90 85 75 70 75 85
sawing 20 75 45 35 35 70 80
filing 20 25 25 10(10) | 10 50 60
drill 20 100 100 100 95 100 95
sand 20 60 70 35(5) 60 80 75
grind 20 85 35 30(5) 90 90 95
screw 20 85 95 85 95 95 95
vise 160 794 | 969 78(1) | 975 | 99.4 | 975
drawer 440 95 96.4 921 | 991 | 986 | 982
Average% 772 72 60 863 | 842 | 86.7

(b) User-independent isolation accuracies

Class Total sound | accel. COMP HR Borda LR

hammer 20 100 100 100 85 85 95
sawing 20 85 65 60 60 75 90
filing 20 60 70 35 50 90 85
drill 20 100 100 100 100 100 100
sand 20 60 100 60 90 90 95
grind 20 95 75 70 100 95 100
screw 20 90 95 920 95 95 95
vise 160 85.6 96.9 83.8 97.5 98.8 96.9
drawer 440 96.4 98.9 95.7 99.6 99.3 99.6
Average% 85.8 88.9 77.2 86.3 92.0 95.2

(c) User-adapted isolation accuracies

TABLE Il
ISOLATION ACCURACIES FOR SOUNDACCELERATION, AND THE FOUR COMBINATION METHODS NOTE: FORCOMPALL

ERRORS ARE DELETIONYEXCEPT WHERE GIVEN IN BRACKETS.

from sound but are clearly recognizable in the acceleronustea. Again this is due to the unique
person-independent motions which one must perform to ussettools.

With user-independent training, simple comparison of tlesgifier results fares less well.
Although the number of substitution errors is low, the ladjgcrepancy in performance of the

constituent classifiers ensures that the possibility oé@grent is almost as low as the possibility
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of disagreement. This effect causes a large number of deteti particularly for filing, sawing,
sanding and grinding. In contrast the ranking methods -qdatrly LR - resolve this problem
extremely well. Of particular note is the case of filing: altigh 60% (12/20) accuracy is not
ideal, it is an enormous improvement on the 25% of the carestit classifiers.

Finally, with the user-adapted test, Table ll(c), the ressimhprove again. For this, LR performs

best - almost as well as with user-dependent.

C. Continuous Recognition Results

Defining appropriate evaluation metrics is difficult in cdomibus activity recognition research
[37]. There is no application independent solution to thishfem [38]. Often the continuous
recognition task requires discrimination of relativelyeactivities from a default “null” activity
that constitutes the majority of the time in the data. In &ddj there may be more than one
type of error in a system, such as posed by multi-class contis recognition, and the common
metric of accuracy can be misleading [39]. Further problamse when one wishes to evaluate
continuous recognition with ill-defined, often fragmentud variable length class boundaries.
Similar problems exist in vision, and though ways of autaoadly dealing with them exist,
e.g. for 2D graphics [40], it is common for researchers synipl show typical output figures
e.g. [41]. A typical output of our system is shown in FigureAhough these results can be
compared (and evaluated) visually against the hand-kdbgifound truth, for large datasets it is

desirable to have some automatic metric.

1) Segmentation evaluation methothe purpose of this initial investigation is to evaluate, fo
each method, how well positive activities in a continuousan are identified and segmented
from null. There are four possible outcomes: those retgrmpositive activities,true positive
(TP) and false positive (FP)and those returning nultrue negative (TN)and false negative
(TN). As the continuous recognition methods are all aimed atctlate TP activities, and null is
simply what remains, TN is regarded as less critical thaerotlutcomes. This is a similar view
to that in Information Retrieval (IR), where the evaluatimtus is on the positive results that
are returned - how many of these are correct, and what piopart the total existing positives
they make up - rather than the remaining (often more numgnoegative results. The metrics
chosen therefore are those common to IR, narmpedgision(also known agositive prediction
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Fig. 3. Section of a typical output sequence (approx. 3 resjutGround truth is plotted alongside the sound and aet&ar
classifications, together with two approaches at fusingeghecomparison (COMP) and logistic regression (LR). Usgrethdent

training is used.

value andrecall (sensitivity or true positive ratg

true positive time TP

Il = = 1
reea total positive time TP+ FN (1)

true positive time TP

= 2
hypothesized positive time TP+ FP 2)

precision =

A precision-recall(PR) graph can be plotted to show the effects of differenaipaters when
tuning a recognizer [42].

2) Segmentation resultdn evaluating segmentation there are two parameters wlaohbe
varied: intensity analysis threshold,, and the majority vote window size. Of thesE, has
the most significant effect. Fdr;, of (0, 0.1, 0.3, 0.5, 1, 1.5, 2, 3, and 5) the total, correct,
and hypothesized times are calculated and summed oversaltéta sets. PR curves are then
generated for each of the three segmentation schemes: éatisel on its own, 1A smoothed
with a majority vote, and IA+LDA smoothed with majority vote

As expected, the IA alone gives the worst segmentation pagnce, with prediction output
being heavily fragmented with false negatives and scattesiéh frames of false positive. The

bottom curve in Figure @) shows this performance across the range of thresholds. \@hen
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Fig. 4. Multi-class confusion matrix: diagonal marks tberrect positivefor positive classes, and True Negative (TN) for
NULL,; off-diagonal marks the positive class substitutions, shen of the False Positives (FP) and the sum of False Negative
(FN) errors.

majority vote is run over the IA selected frames however, ynainthe spurious fragmentation
and inserted frames are smoothed away. Again this is refléctdhe improved PR performance.

When we take the IA selected frames, apply LDA classificateothem, and run a multi-class
majority vote window over the entire sequence, the segrtientaesults are not immediately
improved - in fact, for high precision, the IA+majority voé@proach is still preferable. However,
when considering that the later recognition stages will fuseéon as a means of reducing inser-
tions, a lower precision at the segmentation stage can beatet. With this in mind, high recall
is preferable, and for this an improved performance can ke ssing the IA+LDA+majority
vote. A suitable recall rate of around 88% can be achievel this method when the threshold
of T;, = 0.3 is chosen.

3) Continuous time (frame-by-frame) resulfShe sound and acceleration classifiers are ap-

plied to the partitioned segments. The four fusion alganghare then applied on these.

Again PR curves are adopted, albeit with a slight modificatio the precision and recall
definitions so as to encapsulate the concept that in a nlaksaecognition problem a TP data
point is not just non-null, but can also be eithet@rect classification, or aubstitution Figure
4 gives a graphical breakdown of the possible designatisrsgetions of a multi-class confusion
matrix. The revised definitions aforrect recalland correct precisionare then given as:

; I correct positive time correct 3)
correct recall = =
total positive time TP+ FN
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correct positive time correct

= 4
hypothesized positive time TP+ FP ()

correct precision =

These modified metrics are then calculated from the summatlsion matrices of all test
datasets for each value @f,. Figure 5 shows the curves for thig) user-dependents) user-

independent, an@/) user-adapted cases.
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Fig. 5. Top left plot (a) shows PR comparison of 3 differemjreentation schemes. The remaining plots shommrect PR
comparisons for the different classifiers and combinatidemes, with user-dependent(b), independent(c) andexdidptcases.

a) Choosing a thresholdThe main conclusion to be drawn from these graphs is that
regardless of threshold, the classifiers and fusion metped®rm relatively consistently with

regard to each other within the precision-recall regionriériest. LR always performs better
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than Borda, which performs better than HR, and this, in tisnan improvement over the
sound and accelerometer classifiers. Also noteworthy isctmelusion thatl;, = 0.3 yields
consistency within a suitably close operating region fazheaf the methods, thus legitimizing
further comparisons which require a fix&g,.

b) Confusion matrix based result®Vith T;, set, the results can be examined in more detail.
The first step is to calculate time-based confusion matri@esording to the template of Figure
4, and sum over all test datasets. Rather than present dlietwatrices (available on request
from the authors), two summaries of the most pertinent tesuk made.

Firstly, the individual class performance is examined gsilass relativeprecision and recall.
Recall is defined for each class,as % and precision is defined % where
correct. is the total correct timetotal, the total ground truth time, anflypothesized,. the
total time returned by the system, for classThe precision and recall rates for each positive
class, summarized by the averages over these, are showblmITlaAs an additional indicator
of performanceNULL is included as a special class. Although the terms recall @rdision
are used foNULL, the recall ofNULL is more accurately referred to as the systgecificity

TN

= 7n+rp» With precision ofNULL known as thenegative prediction valugNPV) =

TN
TN+FN"*

Secondly, the overall performance, in terms of substitijd-N, FP, TN and correct positive
counts, is summarized in graphical form as the respectiveepéges of the total dataset size,
as shown in Figure 6 (pending further discussion, only degendent is given).

4) Analysis of continuous frame-by-frame resulBased on the results of Table Il the

following observations can be made:

« Recognition performance is improved by fusion. Almost ddisses improve over the con-
stituent classifiers. One exception is with screwdrivingeve performance is slightly lower
than can be achieved by acceleration alone. An explanatiothfs result is the influence
of extremely poor sound performance for this class.

« User independence. Recognition of machine tools, suchihsgtinder, vise and drawer
is fairly user independent when using LR. With handheldgpsbw and hammer, there is
a drop of roughly 10% in performance. Filing and sanding guenfworst, almost certainly

due to the greater variety of ways these activities can bopeed.
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Fig. 6. Graphical summary of confusion matrix (user-deemdnly): totals of the substitution, false negative (FN}l dalse
positive (FP) error times are given as percentages of tla dataset time, together with true negative (TN) and compesitive
times. Total count oNULL time in dataset is 46%.

« Performance oNULL. As the system has been tailored for recognition of posiivents,
it is not surprising thaNULL, when treated as a class in its own right, performs poorly
(e.g. 69/42 P/R for LR i{a)). COMP provides a compromise (e.g. P/R of 69/67 (ioy).

The summary in Figure 6 corroborates this first observatiparticular note is the ability
of the fusion methods to reduce substitution errors front@pmately 3.7% of the total time in
the acceleration classifier to as low as 1.5% for LR, and ev2#dor COMP. The advantage
of COMP is fewer false positives (FP) at the expense of molsefaegatives (FN). This
is particularly evident when considering the very low récates of positive classes for this
method in user-independent training, but COMP has the Bigheecision of all the methods.
Correspondingly, it also has the highest recalNdJLL (specificity) at 79%.

5) Event-based resultsFor many applications, frame-by-frame performance is ttielisig-
nificance. Of more interest is the detection of events thet fdace on a time scale of at least
several seconds or hundreds of frames. For instance, wfemnmg to “hammering,” we consider
the whole consecutive hammering sequence contained in equériment, not any individual
hammer stroke. The corresponding definition of an event aéiruous time segment throughout
which the system has returned the same classification. Efiistion can in principle be extended
to segments oNULL as a “no activity event”.

Evaluation of event performance is similar to the strateggduin speech and character
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Sound Accel. COMP LR

Class (s) %R | %P || %R | %P || %R | wP || %R | %P
hammer (196) | 92 | 74 93 | 79 92 | o4 92 | o3
saw (306) 9 | 87 9 | 80 88 | 95 93 | 90
file (305) 77 | 80 80 | 82 65 | 94 82 | 90
drill (242) 95 | 54 99 | 41 95 | 64 9% | 59
sand (313) 82 | o7 87 | 92 77 | 93 83 | 94
grind (278) 83 | 69 63 | 66 62 | 80 75 | 73
screwd.(260) || 52 | 20 53 | 87 51 | 86 53 | 81
vise (678) 65 | 55 74 | a9 61 | 69 73 | 53
drawer (659) || 86 | 47 88 | 39 69 | 51 87 | 39
Pos.Average%|| 76 | 62 76 | 68 73 | 79 78 | 74

NuLL(2778) || 33 | o | 33 [ 6o |[ 6o [ 67 ][ 42 | e9 |

(a) User-dependent

Sound Accel. COMP LR

Class (s) %R %P %R %P %R %P %R %P
hammer (196) 83 66 76 59 67 93 84 77
saw (306) 71 75 53 51 36 84 78 7
file (305) 29 46 19 39 7 34 23 46
drill (242) 91 47 99 28 92 62 93 62
sand (313) 48 35 51 66 31 89 50 67
grind (278) 72 57 26 45 19 74 82 66
screwd.(260) 46 14 50 86 48 86 50 79
vise (678) 55 54 71 38 47 79 71 62

drawer (659) 81 46 72 38 54 53 89 37
Pos.Average% 61 51 55 52 48 71 66 63

NuLL(z77e) || 33 | 8 || 33 [ es |[ 7o [ s6 ][ 42 | 62 |

(b) User-independent

Sound Accel. COMP LR

Class (s) %R | %P %R | %P %R | %P %R | %P
hammer (196) || 85 62 92 81 85 94 91 83
saw (306) 78 79 61 81 49 97 85 88
file (305) 48 52 58 66 23 88 49 89
drill (242) 94 56 99 46 94 64 94 64
sand (313) 49 42 85 75 43 93 85 76
grind (278) 78 64 82 54 78 72 82 70
screwd.(260) 49 18 51 87 51 87 51 80
vise (678) 65 56 74 56 61 80 74 65
drawer (659) 84 47 89 38 68 52 92 37
Pos.Average% 67 55 73 65 63 79 75 72

NULL(2778) || 35
(c) User-adapted

60 |[ 35 | 6o || 72 [ 61 |[ 43 | e8]

TABLE Il
CONTINUOUS % RECALL(R) AND PRECISIONP) FOR EACH POSITIVE CLASSAND THE AVERAGE OF THESE ALSO GIVEN

ARE THER & P VALUES FORNULL (T}, = 0.3,5 = TOTAL TIME IN SECONDS).
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recognition. Importance is placed on the ordering of lst@nd words, rather than the specific
time their components are uttered. Table IV presents evaséd results using the standard
metrics of insertion and deletion. We reduce each evalobaboa two-class problem, i.e. one
class against all others combined. Thus any predictedriostaf a class that does not overlap
with a same class event in the ground truth is marked as amtiotseand any ground truth
instance of a class that has no corresponding predictiorhatf $ame class is marked as a
deletion. By overlap, we mean some rough correlation of thput with the ground event.

6) Analysis of event-based resulf§able 1V helps to confirm many of the observations from
the earlier frame-by-frame analysis. Across all user ingjrcases, fusion drastically reduces the
number of insertions for most positive classes. For the-uspendent case, the low recall/high
precision of COMP is confirmed with a high number of deletiems worst case, filing with 17
deletions out of 20 events - but with few insertions. Again fewer deletions, the LR method
is a better choice.

7) Combined time and event-based evaluatidimere is some information which Tables Il
and IV fail to capture. For example, the sanding activity(in has a recall of 83% (an error
of 17% existing class time), yet produces only one deletidBd=5% of existing class events).
Is this because the deleted event is longer than the otheiis, ibbecause the other sanding
events do not completely cover their ground truth? The anssvgenerally a bit of both. In
this case, most of the error lies with the later cause. Suamiaiches in event timing constitute
a considerable portion of the total frame by frame errorshm éxperiments described in this
paper. We have also found them to be common in other similak 48], [44], and we conclude
our results presentation with a closer look at timing issues

We first solidify the notion of timing errors through the cepts of Overfill and Underfill:

« Overfill (t) - FP frames forming part of a correct event whidinaged over its segment

borders.

« Underfill (t) - FN frames left when the correct event does rmnpletely cover its borders
Examples of these situations are illustrated in Figure 7ugéethe above definitions to recalculate
the evaluation presented in Figure 6. This leads to someelapneviously considered false

positive to become Overfill. Similarly some FN frames areevaluated as Underfill. Note
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Sound Accel. COMP LR
Class (T) | D | D | D | D
hammer (20) 33 0 18 0 0 0 2 0
saw (20) 17 0 15 0 1 0 7 0
file (20) 20 0 17 1 2 1 8 0
drill (20) 40 0 83 0 2 0 8 0
sand (20) 62 1 2 1 0 2 0 1
grind (20) 13 0 24 5 2 6 9 2
screwd. (20) 293 4 8 3 8 4 14 3
vise(160) 131 18 168 15 38 35 146 15
drawer (440) 47 8 86 31 14 110 85 30
NULL (740) 33 299 33 299 35 86 41 242
(a) User-dependent
Sound Accel. COMP LR
Class (T) | D | D | D | D
hammer (20) 46 0 44 2 0 3 20 1
saw (20) 32 0 25 7 4 11 15 0
file (20) 27 9 13 14 4 17 19 14
drill (20) 71 0 175 0 3 0 5 0
sand (20) 76 7 25 7 2 11 20 8
grind (20) 42 1 39 12 3 14 21 1
screwd. (20) || 322 3 5 3 5 3 12 3
vise(160) 132 32 223 20 6 55 80 19
drawer (440) 57 22 105 90 13 169 123 16
NULL (740) 32 311 32 311 31 27 50 232
(b) User-independent
Sound Accel. COMP LR
Class (T) | D 1 D | D | D
hammer (20) 59 0 17 0 0 1 15 0
saw (20) 26 0 7 6 0 8 7 1
file (20) 25 4 17 4 3 10 4 5
drill (20) 34 0 79 0 1 0 1 0
sand (20) 70 6 15 2 0 7 11 2
grind (20) 28 1 58 1 2 1 7 1
screwd. (20) || 285 3 4 3 4 3 11 3
vise(160) 126 26 101 19 3 44 68 19
drawer (440) 51 15 93 22 17 111 121 8
NULL (740) 33 291 33 291 38 43 43 229

(c) User-adapted

CLASS RELATIVE EVENT ERRORS FOR EACH CLASSI' =TOTAL, I =INSERTIONS D =DELETIONS.

that substitution, correct positive, and true negativenacounts are not affected. Thus the
recalculation essentially subdivides FP and FN into ‘tignerror’ components, which have no
influence on event recognition, and 'serious error’ compdsiewhich do.

Figure 8 shows the results of such a recalculation. Kereous error level (SEL)s denoted

by a thick line. This graph includes substitution time in #odd to the serious error components

TABLE IV
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Fig. 7.
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of FP and FN. Errors below the serious error line would be iclmned part of an error for an

event-based recognition system while errors above thesdire timing errors and would be of

more concern to a frame-by-frame recognition system. Thesonsiderations presented in this

paragraph can be considered as a combined time and evenaitval

8) Analysis of combined time and event evaluatidhe combined timing and event analysis

provides a relatively complete characterization of syspemiormance, from which the following

observations can be made:

1)

2)

The correct positive time indicates the amount of timedbeect activity was recognized,
and the true negative time indicates the percentage of Bamere the system correctly
recognized that no activity was happening. These classagderboth an indication of the
effectiveness of the recognizer as well as the difficultyhaf problem. The sum of these
two percentages indicate the standard frame-by-frameracgwf the system. At a glance
we see that the recognition system is not suitable for tasgsirnng a high degree of
frame accuracy. However, if our goal was such a frame-atitiecognition system, COMP
provides the best performance, with 70.198.{% + 32.0%), 60.5% @3.9% + 36.6%),
and 66.1% $2.6% + 33.5%) accuracy for the user-dependent, user-independent, sard u
adapted cases, respectively.

Looking at the charts, we see that 46% of the frames had thatacThe size of the null
class is important in judging the performance of a systenrm&my continuous recognition

tasks over 90% of the time may be the null class. Thus, the Titlgmoof the column
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provides an implicit understanding of the type of problenmgeaddressed. With high TN
as a criteria, COMP would again be the top choice.

3) The underfill and overfill portions of the column provide sntuition of how “crisp”
the recognition method is at determining activity bounelsriHigh levels of overfill and
underfill indicate that the recognition system has diffiguletermining the beginning and
end of an activity, or that it breaks an activity up into sraafragments. Thus, a researcher
might once again choose COMP to minimize these errors fangmsensitive tasks.

4) The substitution, deletion, and insertion portions & ¢tlolumns represent “serious errors”
where the activity is completely mis-recognized. Idedlgse errors should be minimized
for a recognition system intended to recognize activitissdacrete events. The best
performance in minimizing such errors - particularly in tnger independent and adapted
cases - is achieved by the logistic regression (LR) methds?4914.5% and 9.6% for the
cases, respectively). In the user dependent case, COMBriperfslightly better on this
score (9.2%); however, unlike LR, this method does not nedpsell to changes in the
training setup.

5) Some tasks call for a detailed analysis of the “seriousrgir If the goal is to minimize
substitution and insertion errors, COMP would be the mogédlaccording to the charts
of Figure 8. If, on the other hand, it is more critical not tossiimportant events, keeping

deletions to a minimum, one of the ranking fusion methodsld/twe more appropriate.

V. CONCLUSION

We have recognized activities in a wood workshop using arbgémeous distributed on-
body sensor network consisting of microphones and accualeters. To conclude, we discuss
the relevance and limitations of our results, summarizelé¢lssons learned, and outline future

and ongoing work.

A. Limitations and Relevance

Our experiment is intended as initial exploration of contins activity recognition using on-
body sensing. In particular, we focus on activities thatregpond with characteristic gestures

and sounds. While our experiment involved a single, “moatérario, it provides insights and
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directions for future wearable continuous activity reatign systems. The assembly procedure
involved a diverse selection of realistic activities penied by several subjects, and these
activities represent a broad range of different types oindoand acceleration signatures. The
combination of accelerometers and microphones for agtréitognition presented in this paper
seems promising for other domains. Our research groups Usa@ similar sound recognition
methods for recognizing household activities [43] and thalysis of chewing sounds [45]. We
have also applied time series analysis of wrist worn aceosleters signals to American Sign
Language gestures [46], bicycle repair [44], and everydaivides such as opening doors or
answering the phone [47]. Given the results of these studiesire optimistic that the techniques

presented here will be valuable in these other domains.

B. Lessons Learned

a) On the use of two body worn microphones to segment contnactivities: Provided
that the activities of interest are associated with a soundyzed closer to the hand than to the
upper arm, the strategy of using intensity differences betwtwo separately placed microphones
works relatively well for the detection of the activitiesoWever, the strategy tends to produce
short, fragmented segments. Smoothing is required to seigime data into useful events of 1-2
seconds in length. In this experiment, a successful apprdassified the sound data individually
in each 100ms frame using LDA and smoothed the results wisingeet majority decision sliding
window of 1 second. The sensitivity (recall) of this segna¢ionh can be adjusted using a threshold
on the intensity ratio differencg,,. Further classification using separate sound and acceéteom
based classifiers can then be performed on the discoveretesésy The performance of these
classifiers is affected directly by the setting@f, and the classifiers can be tailored for specific
application requirements by adjusting this parameter.thRerexperiments described here, this
value was fixed so as to maximize the performance of positagsaecognition.

b) On the combination of body-worn microphone and acceletenfeatures:Hand activi-
ties involving both a motion and complementary sound corepbnan be better recognized using
a fusion of classifiers (over the separate classifiers aléioe)the assembly scenario investigated,

the following was found:
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« A simple fusion method based on comparison of outputs (COMBYides a ‘cautious’
recognition, preferring low instances of falsely recoguizactivities, and almost no sub-
stitution errors (0.2% for user-dependent to 1.3% for uséependent), at the expense of
more deletions than either of the constituent classifiers.

« More advanced fusion methods, based on a combination of cdéakings (Borda & HR),
are better at detecting all positive activities at the espeof insertions.

« The logistic regression (LR) fusion method provides a campse in performance. This
method can be trained to identify common combinations, apdoduces aNULL result in
the event of unlikely combinations. LR results in fewer migsms than Borda & HR and
fewer deletions than COMP. In terms of recall and precisigar @ositive activities, LR
gives the best overall performance, ranging from 78% rexadl 74% precision for the user

dependent case and 66% recall and 63% precision for theindegendent case.

Note: by altering7;,, the exact ratio of insertions to deletions can be adjustedrding to
application requirements, but in general the above holdsfy fixedT;, (see Figure 5).

c) On recognition robustness across different usdrsuser independent testing, the indi-
vidual audio and gesture classifiers performed poorly coathto the user dependent scenario.
However, the fused classifiers - particularly those basedlass ranking - had only a relatively
slight drop in performance (the COMP method became even oauous.) Activities that allow
little variation, such as the use of machine tools or todised to the bench, are barely affected
by changes in user. Other activities, such as the use of apedpr a file, allow more variation

between users and consequently perform less well in usepéerdient testing.

C. Future and Ongoing Work

We are pursuing this work in three main directions: (1) farthlgorithmic improvements, (2)
use of different sensor combinations, and (3) applicatmfreal-life” scenarios.

We wish to add a segmentation algorithm to the accelerataiyais and apply sensor fusion
at both the classification and segmentation levels. Intiatk in this direction is described in
[47], [48]. We will also improve our features, particulafiyr acceleration, as it is clear that the

information available from the arm and hand may be bettertgoed for activity discrimination.
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More detailed analysis of the sub-sequences of actionstimapose the wood workshop activities
should also yield improvements in performance. For exanthke components of using the drill
press could be modelled as “switch on,” “drill,” and “switoff.” Recognizing these sub-activities
separately within the structure of an expectation gramm8i ghould improve the results of
recognizing the activity as a whole.

We are studying the use of ultrasonic hand tracking as a itulesfor sound analysis in
signal segmentation. Initial results on the utility of akonic hand tracking have been described
in Ogris et al. [44]. RFID readers to identify tools and more complex irsrensors such as
gyros and magnetometers are being investigated as additidhe sound and acceleration based
system describe here.

Currently our groups are involved in a number of projects nehitbe concepts described in
this paper are used in “real-life” applications. In the W&@Work project, sponsored by the
European Union, activity recognition is being implemented a car assembly training task.
Similar systems are planned for aircraft maintenance. Inogept sponsored by the Austrian
regional government of Tirol, recognition of householdiaties is being pursued using wrist
mounted accelerometers, microphones, and other sendwswadrk is ultimately envisioned as

forming part of an assistive system for the cognitively tled.
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