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Characterization of Bespoke Force Sensors
for Tailored Applications

Dafne Zuleima Morgado Ramirez, Maria del Pilar Garcia Souto, Benjamin M. Oldfrey,
Peter Smitham, Mark Miodownik, and Catherine Holloway

Abstract— Bespoke force sensors made with active polymer
composites are inexpensive, thin and flexible, hence popular in
wearable electronics, however their wider application is limited
due to the lack of literature studying their voltage response
related errors. We present the voltage response characterization
of bespoke force sensors made with an active polymer composite,
silver coated fabric, stainless steel thread, and silver epoxy.
Characterization of the effects of static and dynamic loading
was completed with a mechanical testing machine. Static tests
consisted of loading and unloading at 0.01, 0.1, 0.5 and 1 N/s,
and drift tests for 120 minutes up to 10 N every 1 N. Dynamic tests
consisted of a sinusoidal load of 5 N £1 N applied at 0.05, 0.1, and
0.5 Hz for 60 min. The force-voltage relationships were modeled
using an exponential function. Maximum mean drift error was
observed when applying different static loads for 120 minutes
each. Drift error is minimal at 5 s (<1%) and at 60 min
(<5%) with loads under 1 N. Maximum hysteresis of 18% was
observed at the 1 N/s loading rate. The maximum drift error after
1 h of dynamic loading was observed at 0.5 Hz and is minimal
(—0.00004%). The cost of fabricating these sensors is very low
compared with commercially available options. These sensors can
be fabricated in any shape and size with the added advantage
of being able to set the location of the electronic connections as
desired.

Index Terms— Conductive materials testing, force sensors,
instrumentation, transducers, wearable sensors.

I. INTRODUCTION
ESPOKE electronics for force sensing are becoming
increasingly popular and have been used in a wide
variety of ‘hack-type’ projects [1], [2] as well as more formal
wearable electronics experiments [3] and teaching [4]. There
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have been a wide variety of applications and uses for such
sensors. The simplest application uses sensors as simple binary
switches, for example, light up LEDs [2]. More complex
projects have created variable inputs to control a PC cursor
or video game [2]. Other applications have shown the ability
to create sensors with more complex geometries, opening
up the possibility of sensors in any shape. For example a
speaker with force sensors shaped into letters, which allows
the user to drag their hand along the speaker to change the
volume [2]. Recent applications have demonstrated the use of
these sensors in monitoring human sitting posture [5], making
human-robot interactions safer [6] and for enabling spinal cord
injury patients to control devices through a sensor inside their
hard palate [7].

These bespoke force sensors are made using one layer of
active polymer composite such as carbon loaded polyolefin,
commercially known as Velostat or Lingstat. The polymer
composite is sandwiched between two electrodes, tradition-
ally made of copper tape or aluminium foil, and insulated
with adhesive tape or nonconductive fabric. The electrical
characteristics of the active polymer composite are unaffected
by aging and humidity, and has the advantage of being thin
(1004m). Force sensors made with this material are not only
easy to make but are also relatively inexpensive in comparison
with commercially available alternatives.

Most current applications do not require a high level of pre-
cision in the sensor or the control. However, the application of
such bespoke sensors could be expanded to more specialized
applications if their measurement related errors were known.

Previous work has begun to model aspects which influence
the resistive response and behavior of these low cost resistive
force sensors. Initial studies investigated sensors made
with one layer of polymer composite [8] and the effect of
design changes on the voltage response, such as: more than
one piezo resistive layer, various electrode configurations
and different material compositions [9]. One study has
evaluated force sensors made with elastic electrodes yet with
a non-elastic piezo resistive layer [10]. Similarly, a study has
investigated the repeatability, sensibility and range of these
low cost resistive sensors while modifying the number of
electrodes and piezo resistive layers [11]. The performance
of commercially available thin and flexible sensors has been
studied before [12]. However, there is no literature reporting
the voltage response errors such as hysteresis and drift
under static and dynamic tests for bespoke force sensors
made with Velostat. This crucial information is fundamental
to allow an informed force analysis in any experimental
setting and also to allow comparisons between bespoke
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polyurethane tape

Fig. 1.

Schematic of sensor components.

TABLE I
COMPARISON TABLE OF CONDUCTIVE FABRICS

Surface

S Thickness? . Very
Name resistivity? Fraying .
(mm) flexible
()

Bremen AB <1 0.09 yes yes
Nora LX <0.05 0.1 no no
Nanking <0.3 0.1 no yes

Nora <0.03 0.1 yes yes

Bremen IR <0.5 0.09 yes yes
Bremen <0.5 0.09 yes yes
Budapest <1 0.15 yes yes

Zell <0.02 0.1 no no
Zell CR <0.02 0.13 no no
Nora Dell <0.009 0.13 no no

*Reported by the manufacturer

TABLE I
COMPARISON TABLE OF CONDUCTIVE THREADS AND YARNS

Resistance strong
Name at13cm Fraying Thin

weave

Q)

235/34 HC 36.1 yes no yes
44/13Z-100RD 228.1 yes no yes
44/13Ag+113/PES 7.08K no yes yes
78/18Z-Turn 359.9 no no yes
22/1RD 1.035K no yes yes
33/12 2 Turns+B 1.208M yes yes yes
SM1INC 210 309.7 no yes yes
235/34 dtex 2-ply 34.1 no yes yes
235/3;;::;2)( 4ply 10.8 no yes no
640 2-ply 4.7 no yes yes

low-cost sensors and commercially available sensors [13].
This paper addresses this gap in the literature by reporting
results of the characterization of the voltage response of
bespoke force sensors made with active polymer composites
and other carefully selected materials based on their
conductivity and durability. We will also provide a fabrication
and implementation guide of those bespoke force sensors.

II. DESIGN AND FABRICATION

Three force sensors were manufactured with the materials
shown in an example sensor in Fig. 1. All sensors were
manufactured with the same materials, shape and area. The
conductive fabric, thread and cold solder epoxy used for
manufacturing the sensors were selected among a list of
options (Table I) through a series of pilot studies. Ten different
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Fig. 2. Assembly stages of a force sensor. Components required are:
two layers of conductive fabric glued with stainless steel thread (1, a),
three layers of conductive polymer composite (1, b), transparent permanent
polyurethane adhesive tape (1, ¢) and insulating tape to hold polyurethane
tape in place (2, d, e). Steps consist in: the cutting of the conductive fabric
and polymer composite to desired shape (1, a, b), placing of conductive fabric
and glued thread over polyurethane tape with adhesive facing upwards (2, e),
polyurethane tape is held with insulating tape to a flat surface (2, d) placing
of polymer composite layers over first layer of conductive fabric, placing of
three layers of conductive composite polymer over the first conductive fabric
layer (3-5), a second conductive fabric with glued stainless steel thread is
placed over previous parts (6), insulating all previous elements in place with
polyurethane tape with adhesive facing downwards (7) and cutting of sensor
sealing to desired shape (8).These photos were extracted from the video that
accompanies this paper.

commercially available conductive fabrics that vary in thick-
ness, surface resistivity and weave were assessed (Table I).
Conductive thread was chosen for its durability, flexibility,
and scale of the electrode in contrast with prefabricated
electrode connections. A total of 11 commercially available
yarns and threads were assessed: ten silver coated conductive
polyamide yarns and threads (Statex Produktions & Vertriebs
GmbH) and one stainless steel thread (Adafruit) (Table II).
Conductive fabrics were chosen over copper tape (0.15 mm)
and heavy aluminum foil (0.07 mm) as their thickness is
similar (0.09 mm) and are flexible without breaking. Bremen
fabrics were chosen due to their small thickness, flexibility
and minimal fraying weaves. A stainless steel 2-ply thread
was selected due to its low resistivity, strength and absence of
fraying. Two commercially available silver based 2-part epoxy
resins with equal volume resistivity of 0.0007 Qcm were tested
to cold solder the chosen thread to the conductive fabric
electrodes: ElectroDag 5810 and MG Chemicals adhesive
8330S of mixing ratios 16:1 and 1:1 respectively. 8330S was
chosen as it is easy to mix, cures at room temperature
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Fig. 3. Electronic circuit schematic used to power the force sensors with
5 V where R; = 100k Q.

(96 hours at 25 °C or 2 hours at 65 °C) and has a strong
adhesion to steel.

The steps to assemble all parts of the sensor are detailed in
Fig. 2 from step 2 to 7. The order of the sensor parts can be
seen in Fig. 1 and the final result in step 8, Fig. 2. In summary,
the sensor manufacturing procedure followed was:

1) Two layers of conductive silver coated fabric were cut
to the desired shape and size of the sensing area, we cut
a circular shape.

2) A section of stainless steel thread was attached to each
of the conductive fabric cuttings with a small drop of
silver epoxy located at the edge (just enough to hold
the two materials together, approximately 0.5 mm?)
(step 1, a, Fig. 2).

3) Three polymer composite layers were cut with a 0.5 mm
boundary to a circular sensing area of 12.56 mm?
(step 1, b, Fig. 2).

4) Once the silver epoxy had cured, all parts were assem-
bled and insulated with a clear permanent polyester tape
DYMO Rhino 24 mm wide (step 1, a, Fig. 2). The
opposing conductive fabric cuttings did not touch each
other once all parts were assembled.

In order to perform various mechanical tests, a steel indenter
of equal area and shape to the circular sensing area of the
sensors was used to load/unload the sensors via a mechanical
testing machine (Instron Electropuls E3000, ITW Ltd.) with
a 50 N load cell (Instron 2530-437, ITW Ltd.) which has
a reported 10% drift and a 0.1% hysteresis. Force sensors
were connected to a voltage divider fed with 5 V and
simultaneous force and voltage measurements were taken (the
voltage decreased with increasing force) (Fig. 3). Voltage
data acquisition was performed by establishing a connection
between an Arduino UNO board and a custom made program
in LabVIEW (2013, National Instruments). Data analysis was
performed with custom made scripts in Matlab (R2013b,
Mathworks Inc.). Voltage and force data were acquired at
50 Hz and low pass filtered at 1 Hz with a zero phase
5% order Butterworth algorithm and then resampled to 10 Hz.
Before data analysis, the absolute value of voltage (V) data
of each sensor was corrected for voltage offset (voltage read
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at zero loading of the sensor was subtracted, V) and then
normalized by the maximum voltage read at the maximum
force of 10 N (Vj4x) applied during the characterization of
each sensor, here onwards called normalized voltage (Vy)
as in
Vy = u (1)
Vmax - VO
Static (Fig. 4) and dynamic characterizations (sinusoidal
loading at three different frequencies), explained in detail in
the next section, were performed on the three sensors.

III. STATIC CHARACTERIZATION
A. Force-Voltage Relationship

Measurements were taken on the three sensors to establish
the relationship between an applied force and the sensor volt-
age output. A force of 0 to 10 N was applied four times at four
different rates (0.01, 0.1, 0.5 and 1 N/s) recording loading and
unloading curves for force and voltage simultaneously (Fig. 4,
tests A to D). These series of tests were performed in order to
obtain data indicative of a broad range of testing conditions.
Curve fitting was used to determine an exponential model of
the force-voltage relationship (2) using the normalized voltage
resulting in an coefficient of determination (R?) of 0.8949 and
root mean square error of 0.9608 as reported in Fig. 5.

Force = ae®"88VN 4 pe=00364Vy | 2)

Where a is 0.008507, b is —5.555 and c¢ is —5.532.
R? is a measure of how well the exponential regression line
approximates the real data points. When R? has a value of 1 it
indicates that the regression line perfectly fits the data.

B. Drift Error With Static Loading

Drift error was calculated as the change in the sensor voltage
response to a constant static force. Ten static loads, from 1 N to
10 N in steps of 1 N, were applied for 120 minutes each, with
the loading and unloading between steps occurring at 0.01
N/s (Fig. 4, test F). An example of the normalized voltage
drift for a sensor can be seen in Fig. 6. Drift was reported
as a percentage shift per time given (Fig. 7) as calculated
in (3) where ¢ is time in seconds and N is the total number
of samples. Drift error was calculated at 5 s, 60 s, 3,600 s,
and 7,200 s.

Drift error

static load
1 t 1 t=1
IR b (ﬁ VN)
- ! =0 100 3
= = 3)
N2 VN
t=0

C. Hysteresis Error

From the data obtained during the loading and unloading
for the observation of the force and voltage relationship,
hysteresis error was estimated using (4). Where Vy; and F;
are the normalized voltage and applied force during loading
respectively whereas Vy, and F, are the voltage and force
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Fig. 4. Sample of static force tests performed. Loading and unloading repeated four times at four different force rates: 0.01 N/s (A), 0.1 N/s (B), 0.5 N/s

(C), 1 N/s (D). Drift tests with a static force held for 120 minutes every 1 N while loading and unloading at 0.01 N/s (F), and pre-drift tests consisting of
loading and unloading at 0.01 N/s every 1 N without holding a static force (E).
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Fig. 5. Force-voltage relationship for three sensors made with the same mate-
rials and specifications. This relationship corresponds to load and unloading
tests at four different speeds up to 10 N. Recommended exponential model
fitted. This model could be used as a calibration curve.

TABLE III

VOLTAGE HYSTERESIS ERROR (%) FOR CONSECUTIVE LOADING
AND UNLOADING TESTS AT DIFFERENT FORCE RATES

Force rate (N/s)
0.01 0.1 0.5 1
Mean (%) 14.040 12.969 16.523 18.030
Standard deviation (%) 4.552 6.240 3.975 6.290

during unloading of the sensors (4). Mean hysteresis values
were obtained for all sensors and repetitions at each loading
rate (0.01, 0.1, 0.5 and 1 N/s) (Table III).

max |V, —
Fi=F,

Vil

Hysteresis error = 100

“)

max {Vyu, Vni}

D. Effect of Drift Error on Hysteresis Error

The experimental observations during the drift tests (Fig. 4,
test F) present the combined effect of the hysteresis error due
to the loading-unloading cycle and the drift error due to the
static load held. In order to understand the effect of the drift
error on hysteresis we have designed a test to separate these
errors. A reference test where we knew that drift error was
not present (Fig. 4, test E) was employed to compare it with

9 4N .
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w U TN
g
g 8N
0.7
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06 9N
Z
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Fig. 6. Example of voltage drift every 1 N up until 10 N for a sensor.
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Fig. 7. Mean voltage drift error across all sensors for loading at every 1 N

up until 10 N.

a test where drift and hysteresis error were present (Fig. 4,
test F). Loading and unloading at 0.01 N/s from 1 N to 10 N
in steps of 1 N (Fig. 4, test E) were applied to calculate
what we called non-drift hysteresis. Separately, we calculated
another hysteresis from the loading and unloading sections of
the drift test with static loading (Fig. 4, test F). The latter is
the hysteresis error calculated under the influence of the drift
error that we call drift-hysteresis. If the non-drift hysteresis
is compared with the drift-hysteresis, then the influence of
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TABLE IV

EFFECT OF CONTINUOUS APPLICATION OF A STATIC FORCE
ON VOLTAGE HYSTERESIS ERROR (%)

Voltage
Force reached hysteresis hV:tlet:f:is
during the loading- without a .y . Difference
. . with a static
unloading cycle (N) static force o
force (%)
(%)
1 27.479 24.158 -3.321
2 17.971 18.296 0.325
3 12.029 28.260 16.231
4 9.980 33.118 23.138
5 13.681 29.800 16.118
6 10.765 25.063 14.298
7 11.377 20.843 9.467
8 8.291 19.996 11.705
9 10.291 19.820 9.529
10 8.375 19.482 11.108
0.98
0.975
3
[
é" 0.97 -
g
=l
80965 !
=
5
Z 0.96
0.955
10° 10" 10 10°
Time (s)
Fig. 8. Example of dynamic test at 0.1 Hz for a sensor.

drift error on hysteresis error can be determined. This was
calculated as the difference between two hysteresis errors:
one calculated from loading-unloading cycles at 0.01 N/s
without drift tests (Fig. 4, test E) and the other calculated
from the loading-unloading cycles at 0.01 N/s with drift tests
(Fig. 4, test F) (Table IV). All hysteresis errors were calculated
using (4).

IV. DYNAMIC CHARACTERIZATION
A. Force Response

Sinusoidal loads with a peak to peak amplitude of 2 N
oscillating around 5 N were applied at 0.05, 0.1 and 0.5 Hz for
60 minutes respectively (Fig. 8). Mean and standard deviation
of the normalized voltage seen during this test was calculated
(Table V).

B. Drift Error With Dynamic Loading

Drift error was calculated by determining the change in the
mean normalized voltage from the first five seconds to the last
five seconds of the 60 minutes test (Table V) as in

Drlft erroryean dynamic load

| t=3600 | t=5

(N > VN) v 2 W
t=3595 t=0

= 100 5)

| 1=5
¥ 2 VN
=0
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TABLE V

VOLTAGE MEAN, VOLTAGE STANDARD DEVIATION AND VOLTAGE DRIFT
ERROR (%) AT 60 MINUTES OF A DYNAMIC LOADING TEST AT THREE
DIFFERENT FREQUENCIES

Frequency (Hz)
0.05 0.1 0.5
Mean Voltage
W) 0.949 0.948 0.951
Standard
deviation (V) 9.960E-03 9.493E-03 7.699E-03
Drift error on
mean V (%) 3.733E-05 1.207E-04 5.123E-05
Drift error on
maximum V (%) 4.094E-05 5.781E-05 3.527E-05
Drift error on
minimum V (%) 0.951E-05 3.806E-05 0.860E-05
TABLE VI

COMPARISON OF CHARACTERISTICS BETWEEN BESPOKE FORCE
SENSORS AND COMMERCIALLY AVAILABLE ONES

FSR Model 400

. . . FlexiForce
Characteristic Sensor in this (Interllrfk A101
paper Electronics
(Tekscan, Inc)
Inc.)
Sensing area 12.56 20.26 11.34
(mm?)
Thickness (mm) 0.7 0.3 0.203
Electrode pin Any desired fixed fixed
spacing
Non actuated >20 MQ >10 MQ >30 kQ
resistance
Hysteresis 15.39% + 5.56 at 10% average 4.5% of full
various load scale
rates (0.01, 0.1,
0.5and 1 N/s)
Static drift 3.74% + 1.27 at <5% per <5% per
10 N after 2 logarithmic logarithmic
hours scale scale
Dynamic drift 0.00005% * Not reported Not reported
0.05 Hzto 0.5 0.00002 after 1
Hz hour
Effect of drift on From 8.37% to Not reported Not reported
hysteresis 19.48% at 10N
for 1 hour
Cost for 1 a$0.31 $5.95 $8.5
sensor

All characteristics of commercially available sensors are those reported by
the manufacturers.
“Including electrode connections.

The same was calculated but for the maximum (6) and for
the minimum (7) voltage value found within that five initial
and last seconds of the test.

Drift error g imum dynamic load

(max; 3665 V) — (maxi=gV)

= 100 6)
(maxi(S)VN)
Drift erroryinimum dynamic load
- 1=3600 int=3
_ (mini=3gos V) — (mini =g V) 100 )

(min(=3 V)

Comparisons between the characteristics determined for
these sensors and the nearest commercially available sensors
are presented in Table VI.
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V. BESPOKE SENSOR IMPLEMENTATION GUIDE

Sensors can be manufactured following the process pre-
sented in this paper. Make the electronic circuit as shown in
Fig. 3 with the data acquisition system of your preference.
Then follow the instructions below in order to obtain the
corresponding force in Newtons based on the force-voltage
relationship provided in this paper.

These steps minimize the effect of manufacturing imperfec-
tions that lead to different voltage offset and resistivity under
no loading between sensors that may look alike otherwise.

1) Determine the voltage offset (Vp) when the sensor is
unloaded.

2) Apply 10 N and take a note of the voltage, this will
be the voltage at maximum applied force (V,,4x). Make
sure the applied load falls only inside the sensing area.
This is the area where you observe a change of V for a
change of force.

3) Calculate the force using the modified equation of the
force-voltage relationship determined in this paper that
takes into account the transformation and normalization
of the voltage (2).

VI. DISCUSSION

Through static and dynamic tests performed this paper has
reported hysteresis and drift errors in the voltage response of
bespoke force sensors. We have also suggested a method of
normalizing and removing the voltage offset of such bespoke
sensors before determining a calibration curve through which
the user will be able to then test and measure forces, knowing
the hysteresis and drift expected from such bespoke sensor
in advance.

Drift and hysteresis errors of the sensors presented are
similar to those reported by manufacturers of commer-
cially available force sensors (Table VI). Minimum hysteresis
(12.96% =+ 6.24) was observed when applying 0.1 N every
second while maximum hysteresis (18.03% =+6.29) was
observed at 1 N/s. It can be inferred that the hysteresis error
will be greater the faster the load is applied to these bespoke
Sensors.

In applications where loads are held for less than a minute
these bespoke sensors offer minimal drift error (<1%, for
loads between 8 and 10 N). The greatest drift error during
the static tests was observed for 1 N after a two hours test.
High drift was observed increasing from less than 5% at one
minute to less than 24% at 2 hours when applying a 1 N load.
These bespoke sensors will display less drift error when used
in settings where loads are greater than 8 N for longer periods
of time.

The dynamic tests show minimal drift (0.00005%) after
1 hour which supports the application of these sensors in
settings where forces are applied at frequencies below 0.5 Hz.
No manufacturer of current commercially available sensors has
reported on the combined effect of drift error on hysteresis
error of the voltage response. Here we have seen the greatest
effect of drift on hysteresis for the highest load applied
(10 N). Hysteresis error increased from 8.37% to 19.48% when
accounting for the drift error in the same test. The effect of
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drift on hysteresis is important as this error has to be taken
into account in applications where loading/unloading and static
loading events are present, such as in human movement
(i.e. human interaction with assistive technology, orthoses,
prostheses and exoskeletons [14]).

The sensors presented provide some advantages including:
ability to be made in any shape, have the electronic connec-
tions at any chosen location within the sensor and be of any
size [1], [2], [4]. It is possible to modify the force sensing
range of the sensors by modifying the number of polymer
composite layers used [8], [9]. In this study we used three
layers in order to achieve a measurement of 10 N without
saturating the voltage output. Circuitry is kept simple by using
voltage dividers, without the need for operational amplifiers.

Conductive glue and some pastes based on carbon and
silver, traditionally used only in electron microscopy and
electronic circuit repair applications, can be used for cold
soldering of components in tailored applications. It is also
possible to make a bespoke conductive adhesive [15].

Another potential advantage to these polymer sensors
is their ability to cover an irregular shape. Commercially
available flexible force sensing resistors (FSR) come in a vari-
ety of sizes (circular 11.34 mm?2 to rectangular 6,217.12 mm?2)
however these come in regular shapes only [16], [17]. For
some applications, many sensors in a relatively small area
would be required, usually ruling out the cheaper commer-
cially available sensors which, although have a small active
sensing area (e.g. smallest known commercially available sens-
ing area of a FSR is 11.34 mm?2 by Tekscan Inc.), often have
large and stiff electrode connections with sensor-electrode
interfaces that break when bending. Bespoke force sensors
offer the opportunity of choosing the wiring location and
materials such as conductive thread to replace stiff electrodes
allowing a high degree of flexibility.

As commercial force sensors are relatively expensive, these
bespoke sensors may provide an affordable solution. With
the recent development of open source, and also inexpensive,
hardware and software by Arduino [18], Raspberry Pi [19],
Engduino [20] and LittleBits [21], the possibilities of creating
a reliable and tailored wearable force sensing system are
plentiful.

We have suggested a method of normalizing and removing
the voltage offset of bespoke made sensors before determining
a calibration curve through which the user will be able to
then test and measure forces. Calibration of sensors is a
vital step to perform a reliable measurement application [22].
By calibrating force sensors one removes the bias and
imprecision of the measurement but this is only true for the
conditions under which that calibration is performed for each
individual sensor [23]. For instance, on a flat surface and under
a maximum force of 10 N. Static calibration of these sensors
is feasible if taking into account the drift error as reported
here. For the sensor to provide a reliable measurement we
recommend that its shape and size are adapted such that it
can be installed on a flat hard surface.

These sensors may become vital in designing/studying assis-
tive technology and medical devices where their interaction
forces with the human body are of interest. These sensors are
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not only limited to application with humans, but could also be
used in research with animal biomechanics, robotics, testing
medical devices in veterinary science, or any other application
where the measurement of the force with errors within those
reported here are of interest.

In future, the response of the sensor could be characterized
when installed on curved surfaces and exposed to changes
of temperature. The potential of using these sensors as bend
sensors (modifying its current geometry into different shapes)
should also be evaluated thoroughly.

VII. CONCLUSION

We have chosen and tested conductive materials in order
to build thin and flexible force sensors that can be fabricated
in any shape and size and with the electrical wiring in any
convenient location. A thorough voltage response characteri-
zation has shown that their hysteresis and drift errors are
within those observed in commercially available force sensing
resistors. The hysteresis error will be greater the faster the
load is applied to these bespoke sensors. In applications where
forces are held for less than a minute these bespoke sensors
offer minimal drift error. These bespoke sensors will display
less drift error when used in settings where loads are greater
than 8 N for longer periods of time. A novel test was developed
to account for combined hysteresis and drift errors that could
be observed in applications where loading, unloading and
continuous forces are present, such as in human biomechanics
and human-computer interaction. We have provided a video
fabrication guide and a written implementation guide to min-
imize the effect of manufacturing imperfections that lead to
different voltage offset and resistivity between bespoke sensors
that may look alike otherwise.

APPENDIX
A video depicting the manufacture of a force sensor with
an irregular shape and a file with the response of each sensor
is available in the Supplementary Material.
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