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ABSTRACT

Early Jurassic marine palaeotemperatures have been typically quantified by

oxygen-isotope palaeothermometry of benthic and nektonic carbonate and

phosphatic macrofossils. However, records of Early Jurassic sea-surface tem-

peratures that can be directly compared with general circulation model sim-

ulations of past climates are currently unavailable. The TEX86 sea-surface

temperature proxy is based upon the relative abundance of glycerol dialkyl

glycerol tetraethers preserved in organic-carbon-bearing sediments. This

proxy has been used extensively on Cretaceous and Cenozoic materials and,

in one study, on Middle and Upper Jurassic sediments. Here, TEX86 is

applied, for the first time, to Lower Jurassic (Sinemurian–Pliensbachian) sed-
iments cored at Deep Sea Drilling Project Site 547 in the North Atlantic. The

abundance of glycerol dialkyl glycerol tetraethers in these sediments is very

low, despite biomarker and Rock-Eval data suggesting that thermal maturity

is, generally, low. Sea floor oxygenation and a high input of reworked terres-

trially sourced organic matter may explain the low concentrations. For sam-

ples from which it was possible to quantify the relative abundance of

glycerol dialkyl glycerol tetraethers, TEX86 values range from 0�78 to 0�88,
equating to sea-surface temperatures in excess of >28°C. These temperatures

are broadly comparable with new general circulation model simulations of

the Sinemurian and Pliensbachian stages and support the general view of a

predominantly warm climate. The new proxy data suggest that, under

favourable geological conditions, it is possible to extend the record of TEX86-

based sea-surface temperatures back into the Early Jurassic.

Keywords Jurassic, palaeoclimate, Pliensbachian, Sinemurian, SSTs,
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INTRODUCTION

Although there is a consensus that the Mesozoic
Era was characterized predominantly by warm
‘greenhouse climates’ (e.g. Fischer, 1981; Frakes
& Francis, 1988; Frakes et al., 1992), the spatial
and temporal variability in climate during the
Mesozoic is, generally, uncertain. The abun-
dance of available records and the variety of
proxies also tends to decrease with increasing
age, such that there are relatively more data
available for the Cretaceous than the Jurassic
Period. These factors limit the understanding of
past climate dynamics and sensitivity, particu-
larly during intervals of major environmental
change, and hinder the ability to compare the
geological record with General Circulation
Model (GCM) simulations of past climates.
Many studies have compiled oxygen-isotope
records from carbonate and phosphate fossils to
reconstruct Mesozoic temperatures and tempera-
ture trends (e.g. Veizer et al., 1999; Jenkyns
et al., 2002; Puc�eat et al., 2003; Prokoph et al.,
2008; Dera et al., 2011; Friedrich et al., 2012;
Price et al., 2013; Korte et al., 2015). However,
interpretation of these datasets can be compli-
cated by a number of modifying factors includ-
ing diagenesis, uncertainties regarding the
oxygen-isotopic composition of local and global
seawater, and the palaeoecology and physiology
of the organism used (for example, the water
depth inhabited by the organism, geographic
and water depth migration, ontogeny and ‘vital
effects’).
Reconstructing sea-surface temperatures

(SSTs) for the geological past allows spatial and
temporal palaeoclimatic variability to be investi-
gated and directly compared with palaeoclimate
simulations generated by General Circulation
Models (GCMs). For the Cenozoic, numerous
SST reconstructions have been generated, based
on a wide range of proxies, including the geo-
chemistry (d18O or Mg/Ca ratios) of planktonic
foraminifera or the alkenone unsaturation index
(UK0

37). Although planktonic foraminifera
become relatively abundant in the fossil record
in the Middle Jurassic, at least in the European–
Atlantic region (e.g. Caron & Homewood, 1983;
Hart et al., 2002), their palaeoceanographic util-
ity is limited to the mid-Cretaceous onwards
when they become more abundant and with
suitable preservation for geochemical studies
(e.g. Leckie, 1989). Similarly, the oldest known
alkenones are of Early Cretaceous age (Brassell &
Dumitrescu, 2004), but their preservation is

insufficient in Mesozoic sediments investigated
to date to allow reconstruction of SSTs and the
application of UK0

37 is therefore limited to the
last ca 55 Myr (Brassell, 2014). Hence, to recon-
struct SSTs prior to the mid-Cretaceous, other
proxies must be sought and tested.
Another approach for reconstructing SSTs is

the TetraEther indeX of tetraethers consisting of
86 carbon atoms (‘TEX86’) organic palaeother-
mometer (Schouten et al., 2002, 2003, 2013). Iso-
prenoid glycerol dialkyl glycerol tetraethers
(isoGDGTs) are membrane lipids produced by
Archaea with varying numbers of cyclopentane
rings and, in the case of crenarchaeol and its
regioisomer, a cyclohexane ring. Culture studies
show that with increasing temperature the rela-
tive abundance of isoGDGTs containing higher
numbers of cyclopentane rings increases, as
does the relative abundance of the regioisomer
of crenarchaeol (reviewed in Schouten et al.,
2013); this is captured in the TEX86 ratio
(Schouten et al., 2002). Marine core-top studies
suggest that TEX86 best correlates with mean
annual sea-surface temperature (e.g. Kim et al.,
2010), although it is widely acknowledged that
the depth interval of maximum isoGDGT pro-
duction is not the sea surface itself and that the
timing of peak production during a year is not
consistent globally (reviewed in Schouten et al.,
2013; Taylor et al., 2013): TEX86 has been used
to reconstruct SSTs through much of the Ceno-
zoic and Cretaceous (e.g. Littler et al., 2011; Lin-
nert et al., 2014) and, in one study, has been
applied to immature Middle and Upper Jurassic
sediments (Jenkyns et al., 2012). In order to
extend the TEX86 record to other Jurassic sites,
it is necessary to identify organic-carbon-bearing
sediments of low thermal maturity. Artificial
maturation studies showed that the concentra-
tion of GDGTs within a sample and the TEX86

ratio decrease rapidly with increased thermal
maturation, while naturally thermally mature
sedimentary rocks are devoid of GDGTs (Schou-
ten et al., 2004, 2013). In the study presented
here, the occurrence of isoGDGTs is reported
from Lower Jurassic (Sinemurian–Pliensbachian,
ca 191 Ma) sediments using samples from Deep
Sea Drilling Project (DSDP) Site 547 in the sub-
tropical North Atlantic. Consideration of the
thermal maturity of the organic matter and the
distributions of isoGDGTs allows the first recon-
struction of TEX86-based SSTs in sediments of
this age, which are then compared with new
GCM simulations for the Sinemurian and Pliens-
bachian. Importantly, the new data demonstrate
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the potential of TEX86 for reconstructing SSTs
in sediments much older than the Cretaceous,
provided that depositional and diagenetic condi-
tions were favourable for preservation and ther-
mal maturity is low. Furthermore, the new
model and proxy results provide palaeoclimate
insights into an interval of the Jurassic that has
not been simulated by climate models with
modern, IPCC-class GCMs (cf. Chandler et al.,
1992).

MATERIALS

Deep Sea Drilling Project (DSDP) Site 547 is
located in the Atlantic Ocean, off the Moroccan
coast (Fig. 1A) and provides a discontinuous
sedimentary record from the uppermost Triassic
to Quaternary (Shipboard Scientific Party, 1984).
During the Early Jurassic, the site was located
on the margins of the proto-North Atlantic
basin, which, during the Hettangian–Sinemurian
(ca 201 to 191 Ma), was a large, low-latitude
marine embayment connected only to the Tethys
Ocean and north-west European shelf (e.g. Zieg-
ler, 1990; Fig. 1B). The so-called ‘Hispanic Cor-
ridor’, connecting the Tethys Ocean with
Panthalassa in the west, opened during the Sine-
murian–Pliensbachian transition (ca 191 Ma),
but only widened, with large-scale migration of
faunas between the Tethyan and Pacific realms
around the Pliensbachian–Toarcian transition
(ca 183 Ma; Aberhan, 2001; Porter et al., 2013).
At Site 547, three wells were cored, of which

only Hole 547B penetrated Lower Jurassic sedi-
ments (Fig. 2). The oldest sediments recovered

in Hole 547B (below 932�5 metres below sea
floor; mbsf) were sandy mudstones containing
gypsum veins with rare dolomite that were
interpreted as being deposited in a non-marine
environment and dated as Rhaetian–Hettangian
(Shipboard Scientific Party, 1984). Between
932�5 mbsf and 846�0 mbsf in Hole 547B (most
of lithological Subunit VIB; Shipboard Scientific
Party, 1984), a diversity of sediment types were
recovered and dated as Early Jurassic. The basal
portion of this interval (932�5 to 891�0 mbsf) is a
complex mixture of lithologies including mud-
stones, nodular limestones, limestones and dolo-
mitic breccias. At the base (Hole 547B, cores 23
and 24) a laminated micrite resembling a stro-
matolite and breccias of stromatolite occur that
could represent tidal-flat deposits (Winterer &
Hinz, 1984). The overlying sediments were
interpreted as being deposited in a pelagic, mar-
ine environment (radiolaria and calcareous nan-
nofossils are present) with water depths of ca
100 m and influenced by down-slope transport
(Winterer & Hinz, 1984). Between 891 and 846
mbsf, the sediments are interbedded claystones
and nodular micritic limestones that were
deposited in a pelagic environment, with less
influence from downslope transport. Impor-
tantly, relatively immature, organic-carbon-rich
sediments generally bearing 0�5 to 2�0% total
organic carbon (TOC) have been reported (e.g.
Shipboard Scientific Party, 1984). Samples were
taken from cores 23 to 15 from Hole 547B with
an emphasis on fine-grained, hemipelagic sedi-
ments. Lower Jurassic breccias and Middle–
Upper Jurassic pelagic limestones recovered
above 846 mbsf were not sampled due to their
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Fig. 1. (A) Present-day map
showing the location of DSDP Site
547 (as indicated by the star).
Generated using the ODSN
Plate Tectonic Reconstruction
Service (http://www.odsn.de/odsn/
services/paleomap/paleomap.html).
(B) Sinemurian–Toarcian
palaeogeographic reconstruction of
Europe, northern Africa and part of
North America showing the location
of DSDP Site 547 (as indicated by
the star). Adapted from Ziegler
(1990).
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extremely low TOC contents (Shipboard Scien-
tific Party, 1984) and likely unsuitability for
organic geochemistry.

METHODS

Nannofossil biostratigraphy

Calcareous nannofossils were analysed using
simple smear slides and standard light micro-
scope techniques (e.g. Bown & Cooper, 1998).
Data were collected semi-quantitatively using a
Zeiss photomicroscope (Carl Zeiss AG, Oberko-
chen, Germany) at 91000 magnification. Abun-
dance and preservation categories are given in
Table S1. Biostratigraphy is described with ref-
erence to the Jurassic NJ zones of Bown &
Cooper (1998) and age calibrations for indivi-
dual biohorizons are sourced from Gradstein

et al. (2012)/Time Scale Creator 6.1, unless sta-
ted otherwise.

Rock-Eval pyrolysis

Rock-Eval analysis was performed with the
Rock-Eval VI unit from Vinci Technologies
(Nanterre, France), at the Department of Earth
Sciences, University of Oxford. Samples were
homogenized and ca 50 mg of sample was sub-
sequently analysed by heating (with incremental
temperature increases from room temperature to
up to 850°C) in the oxidation and pyrolysis
ovens. Mineral carbon content was calculated
from the S3MINC and S5 peaks, resulting from
the CO and CO2 flux from the sample and anal-
ysed by infrared detector. The TOC content was
simultaneously obtained in the same sample-run
and was calculated from the combined CO and
CO2 fluxes representing the Pyrolysable Carbon
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(PC: S1 + S2 + S3CO + S3CO2
) and the Residual

Carbon (RC: S4CO + S4CO2
). Precision and accu-

racy of the Rock-Eval analyses was checked by
regular measurement of the in-house standard
SAB134 (a Lower Jurassic shale) and the inter-
national reference standard IFP160000. Repeated
long-term analyses of the mineral carbon content
of SAB134 yields a standard deviation of better
than �0�37%. The long-term analyses of
IFP160000 yield an average mineral carbon con-
tent of 3�20%, with a standard deviation of
0�02%, within error of the referenced value
(3�26 � 0�12%). For TOC, repeated analyses of
SAB134 yields a standard deviation of better
than �0�39%. The long-term average TOC value
of IFP160000 is 3�27%, with a standard devia-
tion of 0�04% (again within error of the reported
value of 3�28 � 0�14%). During the measurement
of the samples from Site 547, 20 analyses of the
in-house SAB134 standard indicate standard
deviations of �0�06% for TOC, 0�08% for min-
eral carbon-content, �8 mgHC/gTOC for hydro-
gen indices (HI), �2�8 mgCO2/gTOC for oxygen
indices (OI), and �1�7°C for Tmax.

Biomarkers

Approximately 4 to 7 g of powdered sample was
ultrasonically extracted using methanol, then
dichloromethane (DCM)/methanol (1:1, v/v) and,
finally, 100% DCM. All extracts were combined
and dried under N2 at 40°C. Water was removed
from the samples by passing the extracts [dis-
solved in DCM/methanol (3:1, v/v)] over a col-
umn containing anhydrous Na2SO4. Extracts
were split into apolar and polar fractions by col-
umn chromatography, using hexane/DCM (9:1,
v/v) and DCM/methanol (1:1, v/v) sequentially
and Al2O3 as the stationary phase. The polar
extract was dissolved in hexane/propanol (99:1,
v/v) and then filtered through a PTFE (polyte-
trafluoroethylene) 0�45 lm filter.
The polar extract was analysed at the Univer-

sity of Oxford using high-performance liquid
chromatography/atmospheric pressure positive
ion chemical ionization mass spectrometry
(HPLC/APCI-MS), using an Agilent 1200 series
LC, coupled to a G6130A single quadrupole
mass spectrometer. The analytical protocol fol-
lowed was as described in Schouten et al.
(2007a). The abundance of isoprenoid GDGTs
was measured in selective ion monitoring mode
(m/z 1302, 1300, 1298, 1296, 1292, 1022, 1020,
1018, etc.). Ion peaks of the respective GDGTs
were integrated to determine the relative

abundance of each compound. The abundances
of the isoGDGTs were used to determine the
TEX86 value using Eq. 1:

TEX86 ¼ GDGT-2þ GDGT-3 þ Cren0

GDGT-1þ GDGT-2þ GDGT-3þ Cren0

ð1Þ

where Cren0 represents the regioisomer of cre-
narchaeol. Repeat analysis of an in-house stan-
dard following the same analytical sequences as
samples reported here suggests an analytical
precision on TEX86 of �0�01 (1r, n = 10).
The apolar fractions were re-dissolved in 10 to

50 lL hexane before analysis with a Thermo ISQ
series single quadropole gas chromatography-
mass spectrometry (GC–MS) system (Thermo
Fisher Scientific, Waltham, MA, USA) at the
University of Bristol to determine the C31

homohopane 17b,21b(H)/[17b,21b(H) + 17b,21a(H)
+ 17a,21b(H)] ratio (22R + 22S isomers com-
bined), an indicator of the degree of thermal
maturity (Mackenzie et al., 1980). After injection
of 1 lL onto a Zebron-I non-polar column
(50 m 9 0�32 mm 9 0�10 lm film thickness),
the GC oven programme was: 70°C (1 min hold)
to 130°C at 20°C min�1, then to 300°C (held
24 min) at 4°C min�1. The mass spectrometer
continuously scanned between m/z 50 and 650.
Hopanes were integrated using m/z 191.

Climate modelling

Global climate, including sea-surface tempera-
tures, was simulated using the UK Met Office
coupled ocean–atmosphere General Circulation
Model HadCM3L version 4.5, configured with
Sinemurian and Pliensbachian palaeogeogra-
phies. Lunt et al. (2016) gives experimental
details for an equivalent set of Cretaceous,
Palaeocene and Eocene simulations. The Jurassic
simulations here are set up identically to those
simulations, except for the use of Early Jurassic
palaeogeographies and solar constant. In sum-
mary, the model has a resolution of 3�75° in lon-
gitude by 2�5° in latitude, in both the atmosphere
and ocean, with 19 vertical levels in the atmo-
sphere and 20 vertical levels in the ocean. The
present study used Sinemurian and Pliens-
bachian palaeogeographies created by Getech Plc,
using methods based on those of Markwick &
Valdes (2004) and downscaled to the model reso-
lution to produce the topographic and bathymet-
ric boundary conditions required by the model.
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Atmospheric CO2 in the model simulations has a
value of 1120 ppm (four times pre-industrial val-
ues, 4 9 PAL), within the range of CO2 estimates
for the Early Jurassic based upon proxies and car-
bon-cycle models; as summarized in Breecker
et al. (2010) and Franks et al. (2014). The insola-
tion at the top of the atmosphere (Total Solar
Irradiance, TSI) was calculated following Gough
(1981), with a modern orbital configuration. Both
simulations are run for a total of 1422 model
years allowing the model to reach near equili-
brium, and the climatic means presented here are
calculated from the final 30 years of the simula-
tions. For model-data comparisons, the modern
latitude and longitude of Site 547 is rotated back

to the Sinemurian and Pliensbachian based on
the GETECH plate model, for consistency with
the model simulations. Where the rotated site
falls on land due to the course resolution of the
model, the nearest ocean grid-box on the same
latitude is utilized.

RESULTS

Nannofossil biostratigraphy

These results were originally presented in an
unpublished PhD thesis (University College Lon-
don) of Paul Bown (Bown, 1986) and are revised
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here in light of recent advances in nannofossil
biostratigraphy. The presence of Crepidolithus
crassus and Orthogonoides hamiltoniae
(Table S1) constrains most of the depth interval
studied (below 847�53 mbsf in Hole 547B) to
nannofossil Zone NJ3, which is, predominantly,
of late Sinemurian age. The lowest occurrence
of Similiscutum cruciulus at 847�53 mbsf and
the presence of Crepidolithus pliensbachensis to
the top of the section, indicates the presence of
the NJ4a subzone of early Pliensbachian age
(Bown & Cooper, 1998). The data suggest that

the studied sequence falls in the age range 194�3
to 189�0 Ma and is stratigraphically equivalent
to the Oxynoticeras oxynotum, Echioceras rari-
costatum and Uptonia jamesoni ammonite
zones, extending across the Sinemurian–Pliens-
bachian boundary (Gradstein et al., 2012).

Rock-Eval pyrolysis

Results of the Rock-Eval pyrolysis are shown in
Figs 2 and 3, and Table S2. Total organic content
(TOC) varies from 0 to 1�8%, with a mean of 0�7%
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Fig. 4. Core recovery and stratigraphy of Hole 547B with C31 homohopanes and TEX86 data, and estimated sea-
surface temperatures. The dashed vertical line on the C31 homohopane graph indicates a value of 0�5, above
which samples are considered immature enough to yield GDGTs that have not been affected by diagenesis
(Schouten et al., 2004). Sea-surface temperatures are calculated using the linear and TEX86

H calibrations (Eqs 2
and 3) and BAYSPAR. For visual clarity, error bars for the linear and TEX86

H SST calibrations are not shown but
are �1�7 and �2�5°C, respectively. See text for details. Actual values are provided in Table 1. e.Pl. = early
Pliensbachian.
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(1r = �0.4%, n = 49). There are no clear strati-
graphic trends, with most of the variability result-
ing from changes in lithology between claystones
and limestones. Inorganic carbon content varies
from 1�5 to 10�6% with a mean of 5�3%
(1r = �2.7%, n = 49). Due to the presence of both
dolomite and calcite (Shipboard Scientific Party,
1984) inorganic carbon content is not converted
to CaCO3. The Tmax values range from 370 to
538°C with an average of 428°C (1r = �28°C, n =
49). Hydrogen indices (HI) range from 0 to
385 mg HC/gTOC. Oxygen indices (OI) range
from 52 to 1125 mg CO2/gTOC.

Biomarkers

From the polar extracts, it was possible to quan-
tify the abundance of isoGDGTs in nine samples
(out of 68 attempted), all of which are Sine-
murian in age. In many samples, GDGTs could
not be detected or were present at extremely low
abundance. Of the nine successful samples,
three contained sufficient isoGDGTs to be anal-
ysed multiple times (Tables 1 and S3), yielding
analytical reproducibilities for TEX86 in these
three samples of �0�01 (1r, n = 4), �0�02 (1r,
n = 5) and �0�02 (1r, n = 4), comparable to the
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Fig. 5. General circulation model
(GCM) simulations of mean annual
SST for (A) Sinemurian
palaeogeography and (B)
Pliensbachian palaeogeography.
Model topography is shaded in
grey. Insets in both (A) and (B)
show the region of interest (15°E–
15°W, 15°N–45°N), with the dashed
line indicating the area for which
mean regional SST is calculated.
The purple squares show the centre
of the grid square containing Site
547; for clarity in the inset in panel
(B) the star shows the likely actual
position of Site 547 (cf. Fig. 1).
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internal standard analysed in the same analyti-
cal sequences (1s = �0�01, n = 10). The TEX86

values of the nine successful samples range from
0�78 to 0�88 (Fig. 4 and Table 1) with an average
of 0�83 � 0�04 (1r, n = 9). It should be noted
that at low concentrations there are likely to be
analytical effects on TEX86 values (Schouten
et al., 2007a), which may lead to an additional
source of error (probably less than �0�1). There is
no clear stratigraphic trend in TEX86 values but,
interestingly, no samples below 894 mbsf yielded
sufficient isoGDGTs for quantification of TEX86

values. This depth coincides broadly with a litho-
logical change at 891 mbsf (Fig. 4), from sedi-
ments containing abundant evidence for
downslope transport (below 891 mbsf) to those
interpreted as deposited in a hemipelagic environ-
ment with limited downslope contributions
(above 891 mbsf; Winterer & Hinz, 1984). In every
sample analysed, branched GDGTs (brGDGTs)
were either below detection limit or insufficiently
abundant to be quantified and hence Branched
versus Isoprenoid Tetraether index (BIT index;
Hopmans et al., 2004) values are not reported.
From the apolar extracts, C31 homohopane

bb/(bb + ba + ab) ratios were calculated for all
of the samples that yielded isoGDGTS and for
six additional samples that did not yield
GDGTs. The C31 homohopane bb/(bb + ba + ab)
ratios range from 0 to 0�65, with an average of
0�55. Of the 15 samples analysed, the majority
(13) have C31 hopane bb/(bb + ba + ab) ratios
higher than 0�5 (Fig. 4).

Climate model simulations

Figure 5 shows the modelled annual mean SST
for the Sinemurian and Pliensbachian simula-
tions. Globally, the highest SSTs in the Sine-
murian and Pliensbachian are 32�5°C and
33�4°C, respectively, and occur in the Tethyan
tropics (Fig. 5). On a regional scale the GCM
simulates mean annual SSTs of 29�02°C and
26�97°C for the Sinemurian and Pliensbachian,
respectively (quoted values are the mean of all
ocean grid squares directly surrounding the
nearest grid square to Site 547; Fig. 5). One diffi-
culty in determining the modelled temperature
for the location of Site 547 is that the palaeogeo-
graphic reconstructions have too coarse a geogra-
phy to be able to represent the intricate
archipelago and semi-restricted basin configura-
tion depicted in Fig. 1. For both simulations,
this complication may have a bearing on the
estimated SSTs because they will be formed

under local oceanographic conditions different
from those that existed in reality. Sub-grid scale
processes within the (semi-) restricted North
Atlantic may have had a large dynamical control
on local SSTs.

DISCUSSION

Maturity of the organic matter

Schouten et al. (2004) demonstrated in artificial
maturation experiments that increasing thermal
maturity results in lower TEX86 values (due to
preferential loss of isoGDGTs containing two or
more cyclopentane rings) and lower total abun-
dances of isoGDGTs. With sufficient burial, ther-
mal maturity increases to a level at which all
isoGDGTs are lost. Thus, before interpreting the
TEX86 data from Site 547 it is important to con-
sider the thermal maturity of the organic matter,
especially given the age of the materials and the
observation that many samples did not yield
quantifiable amounts of isoGDGTs. The majority
of samples analysed by Rock Eval (41 of 49)
have Tmax values <435°C (Fig. 2), indicating that
the organic matter is broadly immature. Three
samples between ca 847 to 846 mbsf have
exceptionally high Tmax values >470°C, suggest-
ing that they are extremely mature. Because
these samples occur at the shallowest burial
depths of the sample set, it could suggest that
reworked, more mature, organic matter is pre-
sent in these samples. Many of the samples with
high Tmax values are also characterized by high
OI values (Fig. 3), indicating that the organic
matter is very oxidized, which could also indi-
cate an allochthonous origin. Unsurprisingly,
these samples did not yield GDGTs. The GDGTs
were only recovered from samples with Tmax

values <430°C (Table 1). The C31 homohopane
bb/(bb + ba + ab) ratios of >0�5 in most GDGT-
bearing samples support the interpretation of
low-maturity organic matter and suggest that the
TEX86 values reported here have not been com-
promised by catagenesis (Schouten et al., 2004).
The one sample analysed with a C31 hopane
bb/(bb + ba + ab) ratio of 0 (i.e. containing no bb
hopanes) did not yield GDGTs. Intriguingly,
many samples did not yield sufficient GDGTs
despite being immature as indicated by low
Tmax values and, where available, C31 hopane
bb/(bb + ba + ab) ratios >0�5. More biomarker
data are required to explore this relationship,
but the preliminary findings suggest that
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maturity alone cannot explain the abundance of
GDGTs in the Lower Jurassic sediments at Site
547. Neither does the presence or absence of
GDGTs seem to be related to TOC; successful
sediments span a range of TOC contents from
0�5 to 1�8%, and some high-TOC sediments did
not contain detectable GDGTs. The low HI-
values and moderate OI-values of the GDGT-
bearing samples suggest that the organic matter
is predominantly from a terrigenous source
(Type III) or is partially oxidized, as previously
suggested by Rullk€otter et al. (1984). The very
low abundances of branched GDGTs from Site
547 suggest that the contribution of soil organic
matter to the terrigenous organic matter pool
was very low, and that higher plant organic mat-
ter supply dominated.
The factors described here and other aspects

of the depositional environment (for example,
archaeal productivity, bottom-water oxygenation
and sedimentation rates; e.g. Schouten et al.,
2004; Littler et al., 2014) could have been more
important than diagenesis or total rates of
organic-matter accumulation in determining the
concentration of GDGTs deposited during the
Early Jurassic at Site 547. It is important to note
that, although there is clear evidence for oxida-
tion of organic matter, oxic degradation is not
thought to significantly affect TEX86 ratios (see
discussion in Schouten et al., 2013). The coinci-
dence between a decrease in the abundance of
downslope transport of sediments at ca 891
mbsf and the increase in the abundance of
GDGTs (as determined by the ability to calculate
TEX86 ratios) at ca 894 mbsf supports a primary
oceanographic or depositional control on GDGT
preservation and/or abundance.

Other possible factors influencing TEX86

values

In addition to diagenesis, other factors, such as
contamination by GDGTs sourced from soils (e.g.
Weijers et al., 2006) or in situ production of
GDGTs within the sediment pile by methano-
genic and methanotrophic Archaea (e.g. Sin-
ninghe Damst�e et al., 2012; Zhang et al., 2011),
can affect TEX86 values and prohibit their inter-
pretation as a proxy for SSTs. The absence, or
extremely low abundances, of branched GDGTs
in all samples suggests that the input of soil-
sourced GDGTs was extremely low (despite the
possible input of terrestrially sourced organic
matter: Rullk€otter et al., 1984) and, therefore, was
not an influencing factor on the TEX86 values.

In situ production of GDGTs by methanogenic
and methanotrophic archaea can be assessed
through the use of the %GDGT-0 (e.g. Sinninghe
Damst�e et al., 2012) and the methane index (MI;
e.g. Zhang et al., 2011). GDGT-0 (and to a lesser
extent GDGT-1, GDGT-2 and GDGT-3) can be syn-
thesized by sedimentary methanotropic Archaea
(Koga et al., 1993; Weijers et al., 2006). Using
data from culture studies, it has been suggested
that if the %GDGT-0 (relative to %Cren) is greater
than 67%, there could be an additional, non-
water column, source of GDGT-1, GDGT-2 and
GDGT-3 (e.g. Sinninghe Damst�e et al., 2012),
thereby influencing the obtained TEX86 value.
The %GDGT-0 values for the Site 547 samples are
all <15% (Table 1). The methane index (MI) relies
upon the observation that normal marine sedi-
ments typically have MI values <0�3, whereas
sediments influenced by high rates of methane
production have values >0�5. The MI values for
Site 547 are all <0�2 (Table 1), suggesting marine
conditions and a lack of GDGT production by
methanotrophs.
Zhang et al. (2016) have suggested a new

index for assessing the influence of non-thermal
factors on TEX86 that also identifies data that
deviate from modern analogues. The Ring Index
(RI) is a weighted average of the cyclopentane
moieties and, in the modern core-top dataset, is
significantly correlated with TEX86. Zhang et al.
(2016) suggest that geological samples that devi-
ate from this relationship may not be used for
palaeothermometry with confidence, and use the
offset between the RI value of a sample and the
modern TEX86-RI relationship (termed ‘DRI’)
to identify spurious samples, with absolute DRI
(|DRI|) values >0�3. The samples from Site 547
all have |DRI| values of ≤0�3 and, therefore, do
not seem in any way unusual compared to the
modern dataset.

Early Jurassic sea-surface temperatures from
DSDP Site 547

The absence of diagenetic or other confounding
factors that may have compromised the GDGT
distributions measured from Site 547, allows for
the use of the TEX86 data to reconstruct Sine-
murian SSTs for the proto-North Atlantic. The
TEX86 values from Site 547 are higher than
almost all values found anywhere in the modern
ocean, with the exception of data from the Red
Sea (Kim et al., 2010; Tierney & Tingley, 2015),
suggesting that subtropical sea-surface tempera-
tures were as warm, or warmer, than modern
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during the Early Jurassic. The low %GDGT-0
provides additional evidence for high SST (i.e.
Schouten et al., 2002).
In the modern core-top calibration data, TEX86

values from the Red Sea deviate slightly from
the modern calibration and yield higher than
observed SSTs, possibly due to the presence of a
phylogenetically distinct archaeal population
(Trommer et al., 2009). For geological samples, it
is not yet easy to distinguish between ancient
GDGT distributions that were the consequence
of warmer than modern SSTs or ancient ‘Red
Sea-like’ populations (e.g. Inglis et al., 2015;
Zhang et al., 2015). In the case of many open-
ocean records formed during the Cretaceous and
Cenozoic it is unlikely that their high TEX86 val-
ues are the consequence of restricted oceano-
graphic conditions like those found in the
modern Red Sea or Mediterranean, which might
have led to atypical populations of Thaumar-
chaeota. However, the North Atlantic Basin in
the Early Jurassic would, potentially, have had
similarities with those modern basins, because it
was situated at low latitudes and likely pos-
sessed only a single connection to the global
ocean until the Early Pliensbachian (Aberhan,
2001), suggesting that the SSTs calculated from
the GDGT data should be treated with some cau-
tion. Nonetheless, it is interesting to note that
the nannofossil assemblages show relatively high
diversities and abundances for this time interval
(with the exception of barren samples), that are
comparable with other open-marine Tethyan sec-
tions, suggesting normal conditions at Site 547
and good connectivity with the ‘global’ ocean.
A number of approaches exist for calculating

SST from TEX86 data (Kim et al., 2008, 2010;
Schouten et al., 2013; Tierney & Tingley, 2014,
2015) and the different methodologies remain
active areas of research and debate. Here, Early
Jurassic SSTs are estimated using three
approaches, all of which require extrapolation of
modern SST–TEX86 relationships. Firstly, a lin-
ear calibration (Eq. 2; Kim et al., 2008) is used
that excludes modern core-top data from the
Red Sea:

TEX86 linear SSTð�CÞ
¼ 56�2� ðTEX86Þ � 10�78
ðcalibration error:� 1�7�CÞ

ð2Þ

Equation 2 is favoured over the linear calibra-
tion of Kim et al. (2010), because that calibration

included cold-water data (<5°C) that may not
conform to the linear SST–TEX86 relationship
observed at warmer temperatures. A linear rela-
tionship between TEX86 and SST up to 40°C is
supported by mesocosm experiments (Schouten
et al., 2007b), yet the linear calibrations avail-
able (e.g. Kim et al., 2008, 2010) yield very high
temperatures at high TEX86 values, which some
authors consider to be unrealistic (e.g. Hay &
Floegel, 2012).
Secondly, a Bayesian model approach is

applied, BAYSPAR (Tierney & Tingley, 2014,
2015), that compares measured TEX86 values
with similar values in the modern core-top data-
set to derive linear regression parameters: BAY-
SPAR fully propagates uncertainties in the core-
top data into resulting temperature predictions
(Tierney & Tingley, 2014).
Thirdly, a logarithmic calibration (TEX86

H,
Eq. 3) from Kim et al. (2010) is applied, which
yields lower estimates of SSTs at high TEX86

values than the linear calibration. Although this
approach is commonly used in many palaeocli-
matic studies, it is not supported by mesocosm
studies (reviewed in Schouten et al., 2013) and
is associated with structural residuals at high
values (Tierney & Tingley, 2014, 2015):

TEXH
86 SSTð�CÞ

¼ 68�4� ðlogðTEX86ÞÞ þ 38�6
ðcalibration error:� 2�5�CÞ

ð3Þ

Sinemurian SSTs are estimated (Table 1 and
Fig. 4) to be between ca 33°C and 39°C using
the linear calibration (Eq. 2); ca 28° to 32°C
using BAYSPAR; and ca 31 to 35°C using the
logarithmic calibration (TEX86

H , Eq. 3). All three
calibrations are within error of each other for
each sample (Table 1). During the Sinemurian,
Site 547 was at a palaeolatitude of ca 25°N and
it was at ca 30°N in the Pliensbachian. Creta-
ceous and early Cenozoic estimates of SSTs from
similar palaeolatitudes, based upon both TEX86

and d18O of well-preserved planktonic foramin-
fera, are broadly in the same range (e.g. Forster
et al., 2007; Bornemann et al., 2008; Littler
et al., 2011; Linnert et al., 2014; Inglis et al.,
2015), suggesting that the Early Jurassic SSTs
are consistent with those derived for other past
greenhouse worlds. North-west European Sine-
murian–early Pliensbachian palaeotemperatures
of ca 15 to 25°C have previously been recon-
structed using d18O (e.g. Hesselbo et al., 2000;
Dera et al., 2009; Suan et al., 2010; Gomez et al.,
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2016). Given that much of these data come from
benthic or nektobenthic organisms (for example,
bivalves, belemnites, brachiopods and demersal
fish) that record sub-sea-surface environments,
and are from higher palaeolatitudes (up to 40°N)
than Site 547, a temperature offset between
these different datasets and the TEX86 data pre-
sented here is unsurprising. On the former
point, for Cretaceous sediments where it has
been possible to measure belemnite d18O and
TEX86 from the same stratigraphic sections
deposited in hemipelagic settings, significant
offsets of 4 to 14°C have been recorded (e.g.
Mutterlose et al., 2010; Jenkyns et al., 2012).
The Early Jurassic SSTs predicted from the

nearest grid squares (29°C and 27°C) in the cli-
mate model simulations of the Sinemurian and
Pliensbachian (Fig. 5) are at the lower end of
the range of average values predicted by TEX86

(Table 1), The GCM temperatures are within the
error margins predicted by BAYSPAR (Table 1).
Irrespective of the choice of calibration, the sim-
ilarity between the TEX86 and GCM SSTs sug-
gests that the GCMs provide a favourable
approximation of Early Jurassic climates using a
pCO2 level of 1120 ppm (4 9 PAL), albeit with
slightly lower average SSTs. The differences
between the average SSTs calculated by TEX86

from Site 547 and the GCM simulations could
be due to a number of factors. The complex
palaeogeography of the North Atlantic in the
Early Jurassic may not be sufficiently well repre-
sented in the climate models and may not accu-
rately reproduce ocean circulation on a local
scale. Although 1120 ppm is within the range of
pCO2 estimates for the Early Jurassic based upon
proxies and carbon-cycle models (summarized
in Breecker et al., 2010; Franks et al., 2014),
there is potential that CO2 levels were slightly
higher (or lower) than this, which would lead to
higher (or lower) SSTs. If additional SST data
could be generated for multiple Sinemurian and
Pliensbachian localities and palaeolatitudes it
would then be possible to determine whether
the GCM simulations can reliably predict the
correct patterns of SST differences between sites
and at what pCO2 level the GCMs predict the
most similar temperatures to those estimated
from the geological record.

CONCLUSIONS

The glycerol dialkyl glycerol tetraethers (GDGT)
data from Site 547 indicate that, under the right

depositional and burial conditions, it is feasible
to extract and determine the distributions of
these lipids for intervals of geological time
much older than previously reported. However,
the results here indicate that Site 547 is not an
ideal site to reconstruct Early Jurassic sea-sur-
face temperatures (SSTs) by TEX86 because
there is evidence to suggest that the action of
syn-depositional processes, such as bottom-
water oxygenation, may have reduced the abun-
dance of GDGTs. Furthermore, it is possible
that the Sinemurian North Atlantic was a
warm, semi-restricted basin. Because some
modern analogues of such basins are character-
ized by GDGT distributions that deviate slightly
from the global TEX86–sea-surface temperature
relationships, further work is required to ascer-
tain whether the open-ocean relationships are
applicable in this palaeogeographic setting.
Nonetheless, the TEX86 data indicate that mean
sea-surface temperatures in the Early Jurassic
were at least as warm as anywhere in the mod-
ern ocean and, probably, in excess of 28°C,
comparable with similar palaeolatitudes during
other intervals of the Cretaceous and Early
Cenozoic. The reconstructed temperatures are
generally slightly warmer than those indicated
by climate-model simulations using an atmo-
spheric CO2 level four times greater than pre-
industrial values, but there are considerable
uncertainties regarding Early Jurassic atmo-
spheric pCO2 levels. Modelling at higher CO2

concentrations is likely to yield a better fit with
the proxy evidence from Site 547.
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the online version of this article:

Table S1. Stratigraphic range chart for calcareous
nannofossils from Site 547. Species abundance: A
>10/field of view (FOV), C 1-10/FOV, F 1/2-10 FOV, R
1/11-100FOV. Nannofossil zones are after Bown &
Cooper (1998).
Table S2. Rock-Eval data.
Table S3. Fractional abundances of isoprenoid

GDGTs.
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