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ABSTRACT 
 

CD5 is constitutively expressed on T cells and a subset of mature normal and leukemic B cells 

in patients with chronic lymphocytic leukaemia (CLL). Important functional properties are 

associated with CD5 expression in B cells, including STAT3 activation, IL-10 production and 

the promotion of B lymphocyte survival and transformation. However, the pathway(s) through 

which CD5 influences the biology of B cells and its dependence on B cell receptor (BCR) co-

signaling remain unknown. In this study we show that CD5 expression activates a number of 

important signaling pathways including Erk1/2 leading to IL-10 production through a novel 

pathway independent of BCR engagement. This pathway is dependent on extracellular calcium 

(Ca2+) entry facilitated by upregulation of the transient receptor potential channel 1 (TRPC1) 

protein. We also show that Erk1/2 activation in a sub-group of CLL patients is associated with 

TRPC1 overexpression. In this subgroup of CLL patients, small inhibitory RNA (siRNA) for 

CD5 reduces TRPC1 expression. Furthermore, siRNAs for CD5 or for TRPC1 inhibit IL-10 

production. The findings provide new insights into the role of CD5 in B cell biology in health 

and disease and could pave the way for new treatment strategies for treating patients with B-

CLL. 
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INTRODUCTION 
 

 

CD5 is expressed on T cells and a sub-population of B cells, B1 cells.1 B1 cells make up a 

large subset of B lineage cells during early life but their frequency among all B cells declines 

with age.2 The B1 subset plays important roles in the immune system; produces natural 

antibodies and contributes to innate immunity. However, these cells can also give rise to 

leukemic B cells in patients with chronic lymphocytic leukaemia (CLL).3 The involvement of 

CD5 in the pathophysiology of B-CLL remains to be conclusively established but there is 

evidence that CD5 is involved in B-CLL development, at least through IL-10 production.4 

Thus, CD5+ B cells produce IL-10 and are the main B cell source of the cytokine.5 This ability 

is relevant to B-CLL pathophysiology since IL-10 acts as a growth factor for B cells owing to 

its stimulatory6,7 and anti-apoptotic properties.8 Furthermore, IL-10 production is associated 

with the outcome of CLL9 and with a malignant genotype.10 

 

 

Recently, we revealed that CD5 induces IL-10 production by activating the signal transducer 

and activator of transcription 3 (STAT3) and nuclear factor of activated T cells 2 (NFAT2) in a 

subset of B-CLL cells.11,12 Interestingly, the activation of these transcription factors influences 

disease progression in patients with B-CLL.13,14 

 
 

CD5 is a member of the conserved scavenger receptor cysteine-rich (SRCR) superfamily.15 It 

has a cytoplasmic tail with no enzymatic activity but has a conserved motif with a threonine 

and 4 tyrosine residues. Two tyrosines (Y429 and Y441) serve as docking sites for 

phosphorylated Src homology 2 (SH2) domain containing proteins.16 In T and B lymphocytes, 

CD5 associates with Src kinases, e.g. Lyn, which phosphorylates the SH2 domain of CD5 

creating docking sites for Lck, Zap70, PI3K, c-Cbl and the SH2/SH3 RasGap.17,18 In contrast, 

the phosphatase SHP1 binds CD5 on Y378.19 In the yeast two-hybrid system, CD5 associates 

with CAM kinase IIδ and casein kinase II (CK2) that phosphorylate CD5 serine 459 (Ser459) 

and serine 461 (Ser461).20,21 CD5+ B lymphocytes exhibit delayed JNK activation and lack the 
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ability to induce p38 MAPK and NF-κB activation upon BCR cross-linking although Erk1/2 

and NFAT2 are constitutively active.22 Furthermore, CD5 reduces intracellular Ca2+ 

mobilization upon BCR engagement.23 Based on these findings, CD5 has been implicated in B 

lymphocyte tolerance and leukemic transformation.24 

 

In this study, we report changes in multiple intracellular signaling pathways resulting from 

CD5 expression. Thus, CD5 promotes constitutive MAPK activation through a Ca2+-dependent 

pathway leading to Erk1/2 phosphorylation (pErk1/2) and IL-10 production. This IL-10 

production is independent of BCR engagement but is associated with the expression of a non-

selective channel permeable to Ca2+, transient receptor potential channel 1 (TRPC1). In 

addition, CD5 promotes the activation of the PI3K/Akt/mTOR pathway which has important 

roles in B cell survival and proliferation. These effects occur through the ability of CD5 to 

activate a range of key kinases.25 Furthermore, we show that in pErk1/2 positive CLL B cells, 

siRNA to CD5 suppresses TRPC1 expression while siRNAs for CD5 or TRPC1 inhibit IL-10 

production.   
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MATERIALS AND METHODS 
 

 

Patients 
 

Twenty six patients who fulfilled the criteria for CLL26 were recruited at the Centre of 

Ressources Biologiques (CRB)-santé in Brest (Table 1). Disease assessment included Binet 

stage determination, progression free survival (PFS), CD38 expression, cytogenetic 

abnormalities and lymphocyte counts. Informed consent was obtained from all patients and the 

Ethical committee at Brest University Medical School Hospital approved the study. B cells 

were enriched to >96% using an enrichment kit (StemCell Technologies). 

 

Cell culture 
 

The CD5-negative hairy B cell leukemia cell line Jok-127, which has phenotypic  characteristics 

of B CLL cells28, was transfected with cDNA for either the membrane isoform of CD5, E1A 

(Jok-E1A) or the cytoplasmic E1B isoform (Jok-E1B).11 Cells were maintained in RPMI-1640 

containing 10% fetal calf serum (FCS), antibiotics and 0.5mg/ml G418 (Sigma-Aldrich). For 

activation, 106 cells/mL were stimulated with 10μg/mL goat F(ab’)2 anti-human IgM coated 

onto Sepharose beads (Bio-Rad). For inhibition experiments, 106 cells/ml were incubated for 

48h with 50-100µM PD98059 (inhibits Mek1; Calbiochem), 100µM lanthanum (La3+; blocks 

extracellular Ca2+ entry; Sigma-Aldrich) or 50µM LY294002 (inhibits PI3K; Sigma-Aldrich), 

and 10ng/mL rapamycin (inhibits mTOR; Pfizer, NY). The level of IL-10 in culture 

supernatants was quantified by ELISA (BD OptiEIATM). 

 

Antibodies 
 

Antibodies (Abs) to Erk1/2, phosphorylated-Erk1/2 (pErk1/2), Syk/pSyk, Btk/pBtk, 

PLCγ2/pPLCγ2, SHP1/pSHP1, SHIP/pSHIP were from Insight Biotechnology. Abs to Lyn, c-

Cbl, Vav1, CD79a, S6K/pS6K T389, STAT3/pSTAT3 S727, STAT1/pSTAT1 S727, Akt/pAkt 

S473 were from Abcam. The anti-CD5 clone UCHT2, the rabbit anti-extracellular TRPC1, and 

the mouse anti-β-actin Abs were from BD Biosciences, and Sigma-Aldrich, respectively. 
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Western blotting and immunoprecipitation 
 

Cell lysates in 1% NP-40 buffer (1% NP-40, 150mM NaCl, 2mM EDTA, 10mM Tris-HCl pH 

7.4, 5mM NAF) containing protease/phosphatase inhibitors were separated on 10% SDS-

PAGE, blotted onto PVDF membranes, probed with Abs and revealed with HRP-conjugated 

secondary Abs and enhanced chemiluminescence (ECL) (Amersham-Pharmacia). For 

immunoprecipitation, lysates were cleared by centrifugation and carried out with Abs coupled 

to protein G-Sepharose, washed and analysed by Western blotting. 

 

Flow cytometry 
 

Expression of TRPC1 was detected with specific rabbit Ab followed by FITC-conjugated goat 

(Fab’)2 anti-rabbit IgG (Immunoresearch). Data were acquired and analysed using the FC500 

flow cytometer (Beckman-Coulter) relative to staining with the isotype control. Results were 

expressed as mean fluorescence intensity (MFI). 

 

Intracellular calcium (iCa2+) level measurement 

 

Imaging was used to monitor iCa2+ mobilization in B cells loaded for 30min at 37°C with 2µM 

Fura-2/AM. B cells in 6 independent experiments were washed and attached onto cell-Taq pre-

coated coverslips. Fura-2-fluorescence was excited sequentially at 340 and 380nm, emission 

recorded at 520nm and excitation/emission ratios calculated. Extracellular Ca2+ depletion was 

used to measure iCa2+ release. Repletion at 1.8mM Ca2+ was used to determine Ca2+ entry and 

subsequent addition of 100µM La3+ used to block entry. In selected experiments, ratios were 

normalized to basal values (F0) at the beginning of each experiment and provided as (ΔF/F0). 

 

Transfection with small interfering RNA (siRNA) 
 

10
6
 cells were transfected with siRNA at 3pM using a B cell nucleofector transfection kit 

(Lonza). Small interfering RNAs (siRNAs) to CD5 RNA plus control siRNA were purchased 

from Ambion (Life Technologies). The siRNAs to TRPC1 (3‘-GCAUCGUAUUUCACAUU 

CU-3’; 5’-UGAGCCUCUUGACAAACGA-3’) were obtained from Eurogentec. 
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Kinome array analysis 
 

The kinome array (Pepscan Systems) was performed as described.25 Briefly, 106 Jok-1, Jok-

E1A or Jok-E1B cells were lysed in 50μL lysis buffer and analysed. The array has 1024 

peptides representing phosphorylation sites in protein substrates of all known kinases spotted 

onto glass slides. Ten μL of the peptide array in incubation mix (50% glycerol, 50μM ATP, 

0.05% v/v Brij-35, 0.25mg/ml BSA, [33P] ATP (1MBq)) was added to the lysates, loaded onto 

the chips and allowed to phosphorylate for 90min at 37°C. Washed and dried slides were 

exposed to a phosphor-imager for 72h and data acquired (Storm™, Amersham-Biosciences). 

The level of incorporated radioactivity, which corresponds to the level of phosphorylation was 

quantified by array software Scanalyze (Eisen Software). Differential kinase activation in Jok-

E1A and Jok-E1B cells were quantified as significant fold changes in the ratio of 

phosphorylated peptides compared with un-transfected Jok-1 cells. All analyses were carried 

out in triplicates and repeated on two separate occasions. 

 

Construction of CD5 mutants 
 

Two deletion mutants, S398Mstart and S415Mstart and 3 proteins with amino acid replacements 

were generated. Both deletion mutants had the extracellular domains and transmembrane (Tm) 

regions deleted. The SHP-1 and the CaM-binding motifs were removed from the S398Mstart 

mutant plus the first CK2 motif from the S415Mstart mutant. These mutants were generated by 

PCR using ATG-containing sense/anti-sense primers, cloned into the pDNR-dual and 

subcloned into the pLPcmv vector using the Cre-recombinase system (BD-Biosciences). The 

E1A-CD5 cDNA was mutated at 3 amino acid positions using the Quick-Change Site-Directed 

Mutagenesis kit (Agilent Technologies). Point mutations were induced into the serine 

phosphorylation sites (422AS423  422VD423; 428EYS430  428AAA430; 459SDS461  459VDG461). 

All constructs were validated by sequencing. 
 
 

cDNA microarray 
 

This was performed according to Agilent Technologies’ instructions as described.29 Thirteen 

μg mRNA were reverse-transcribed and fluorescence-labelled using cyanine 3-CTP-RNA 

Quick Amplification kit. Labelled cDNAs were hybridized to the Agilent Whole Human 
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Genome Oligo Microarray (4x44k). Each sample was hybridized with 3 arrays in biological 

replicates and slides washed, dried and the fluorescence quantified using a scanner (Agilent-

G2565AA). The signals were analysed after subtracting background outliers using the Feature 

Extraction Software. Signal values were calculated as the ratio between the intensity of signals 

from the Jok-E1A or Jok-E1B cells to Jok-1 cells. The data can be viewed in the National 

Center for Biotechnology Information’s (NCBI) Gene Expression Omnibus (GEO) database 

(accession number GSE50714). Data normalization, quality control and probe list processing 

were all carried out with GeneSpring GX using the feature extractor plug-in as.29 

 

 

RT-PCR and quantitative RT-PCR 
 

RNA was extracted using the RNeasy kit (Qiagen) and reverse-transcribed using oligo-dT. RT-

PCR was used for CD5 (sense: 5’-TCGGACGGCTCAGCTGGTATGAC-3’; antisense: 5’-

TGC CATCCGTCCTTGAGGTAGAC-3’); TRPV2 (sense: 5’-

TCACCGCTGTTGCCTACCATCA 3’; antisense: 5’-AGGGCTACAGCGAAGCCGAAAA-

3’); TRPC1 (sense: 5’-ACCTTCCATT CGTTCATTGG-3’; antisense: 5’-

TGGTGAGGGAATGATGTTGA-3’, and GAPDH (sense: 5’-

TGCACCACCAACTGCTTAGC-3’, antisense: 5’-GGCATGGACTGTGGTCATG AG-3’). 

Amplification used 150ng cDNA, 20ng genomic DNA, 200nM primers and 2.5unit Taq 

polymerase (Thermo-Fisher Scientific). The protocol consisted of denaturation at 94°C for 

5min, 40 cycles of 94°C for 40s, 60°C for 40s and extension at 72°C for 1min and one last 

cycle at 72°C for 10min. For quantitative RT-PCR, taqman gene expression assays FAM/MGB 

probes (Hs 00901640_m1-human TRPV2, Hs 00608195_m1 human TRPC1, and Hs 

99999905_m1 human GAPDH) were from Applied Biosystems (Foster City, USA). For CD5, 

500nM specific primers were used (sense: 5’-TCGGACGGCTCAGCTGGTATGAC-3’; 

antisense: 5’-TGCCAT CCGTCCTTGAGGTAGAC-3’) plus 1XSYBR green PCR master mix 

(Applied Biosystems). The level of mRNA was normalized to GAPDH and cycle thresholds 

compared using the 2-ΔΔct method. 



 
 

 

9 
 

 

Gene ontology and the analysis of biological pathways 
 

The FatiGO web-interface was used to carry out data mining using the Gene Ontology database 

(www.geneontology.org). The signaling pathways were grouped by functional classes and 

pathways. 

 

Statistical analyses 
 

Differences between the lines were analysed using student’s t test and/or the Mann-Whitney U 

test when appropriate. P values were determined using the GraphPad Prism Version 6.0 

statistical software package and values less than 0.05 were considered significant. 
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RESULTS 

 

CD5 promotes constitutive activation of pErk1/2 

A key signaling molecule in normal and B-CLL cell survival and IL-10 production is Erk1/2.13 An 

association between CD5 expression, constitutive Erk1/2 phosphorylation (pErk1/2) and IL-10 

production has been suggested.22 To assess this directly, we compared pErk1/2 levels in 

untransfected and CD5-transfected Jok-1 cells. The results revealed that Jok-1 transfection with 

either the membrane isoform of CD5 (Jok-E1A) or the cytoplasmic isoform (Jok-E1B) enhanced 

constitutive pErk1/2 markedly (Figure 1a). To explore the molecular mechanism(s) underpinning 

increased pErk1/2 by CD5, we transfected Jok-1 cells with CD5 mutants (Figure 1b). Transfection 

with CD5 lacking the extracellular-transmembrane domains, S398Mstart or S415Mstart, or with 

mutations in the intracellular domain, 422AS423 422VD423 or 459SDS461 459VDG461 did not 

affect constitutive pErk1/2 and IL-10 production (Figures 1c/d). However, transfection with CD5 

mutated in the intracellular domain 428EYS430  428AAA430 reduced pErk1/2 and IL-10 

production with levels of both similar to untransfected Jok-1 cells (IL-10: 99.7±5.5pg/mL with 

native CD5 versus 19.3±5.5pg/mL in 428AAA430 CD5, P<0.05). This indicates that the 

428EYS430 motif, which encompasses the Src kinase docking site Y429, irrespective of the 

subcellular location of CD5, is critical for constitutive pErk1/2 and IL-10 production. 

 

Constitutive Erk1/2 phosphorylation is independent of BCR engagement 

The canonical BCR-dependent Erk1/2 phosphorylation involves activating the 

Syk/Btk/PLCγ2 pathway, which is regulated by two phosphatases, SHP1 and SHIP.30 To 

determine if constitutive Erk1/2 phosphorylation in Jok-E1A/E1B cells occurs as a result of 

an association between CD5 and the BCR, we determined the phosphorylation status of Syk, 

Btk, PLCγ2, SHP1 and SHIP in non-activated Jok-1 and Jok-E1A/E1B cells. The results 

showed that pSyk, pBtk, pPLCγ2 and pSHIP were not different in Jok-1 compared with Jok-

E1A/E1B cells (Figure 2a). However, the level of pSHP1 was higher in Jok-E1A/E1B cells 

compared with Jok-1 cells as previously reported in CD5+ CLL B cells.18 
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To further test the hypothesis that constitutive pErk1/2 is BCR-independent in CD5+ B cells, 

we carried out immunoprecipitation with anti-CD5 mAb (clone UCHT2) and Western blotting 

(Figure 2b). These experiments confirmed that CD5 was not associated with the BCR 

complex (CD79a) when the BCR is not engaged, while engagement with the F(ab’)2 anti-IgM 

resulted in co-precipitation of CD79a with CD5. In contrast, SHP1 co-precipitated with CD5 

in Jok-E1A cells only when the BCR was not engaged. These data are consistent with our 

previous findings showing that CD79a associates with CD5 in B-CLL only after BCR 

engagement.31 

 

To rule out that the findings are due to defective BCR-mediated signaling in Jok-1 cells, the 

kinetics of PLCγ2 and Erk1/2 phosphorylation were studied before and after BCR 

engagement with the F(ab’)2 anti-IgM. As shown Figure 2c, the level of pPLCγ2 was similar 

in all 3 lines before BCR engagement. PLCγ2 phosphorylation increased after 5min and 

continued until 30min post-BCR engagement confirming that BCR-mediated signaling is 

functional in Jok-1 cells (Figure 2c). Phosphorylation of Erk1/2 in the three lines with BCR 

engagement was highest at 2.5min and declined thereafter (Figure 2d). Importantly, levels of 

pErk1/2 increases were merely additive and proportional to the baseline in the 3 lines. The 

data, therefore, indicates that enhanced Erk1/2 phosphorylation by CD5 occurs independently 

of the BCR and through different pathways. 

 

CD5 expression induces multiple signaling pathways 

To identify the signaling pathway(s) through which CD5 enhances constitutive pErk1/2, the 

effect of the plasma membrane and intracellular CD5 isoform expression on intracellular 

signaling was assessed by kinome array analyses. Significant changes (P<0.05) in the 

phosphorylation of 1024 substrates of all known kinases are reported when the increase was 

≥2 folds higher, while decreases are reported when levels were half or less. The 

phosphorylation of 154 substrates was increased and of 29 decreased in Jok-E1A/E1B cells 
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compared with Jok-1 cells (key ones shown in Table 2). Analyses of kinases and biological 

pathways reflected in these changes using FatiGO revealed that at least 2 pathways, one that 

drives Ras/Erk, Calmodulin and PKC through Ca2+ activation and the other, the one that 

drives PI3K/Akt/mTOR pathway, were either activated, or activation enhanced in the 

presence of CD5 (summarized in Figure 3a). Activation of PI3K/Akt/mTOR was further 

studied by Western blotting (Figure 3b) which confirmed an increase in the constitutive 

phosphorylation of Akt and S6K in Jok-E1A/E1B cells compared with Jok-1 cells. Activation 

of the PI3K/Akt/mTOR pathway could be related to the association between CD5 and the p85 

unit of PI3K as established by immunoprecipitation with a mAb to CD5 (Figure 3c). 

Moreover, we established a link between CD5 and Lyn as well as with the U3 ubiquitin ligase 

c-Cbl, and the kinase Vav1 as previously described in thymocytes.32 

 

Comparing the effect of membrane versus cytoplasmic CD5 revealed overlaps between the 

effect of the two isoforms on kinase activation but also differences on how they impact 

signaling (Table 3). Both isoforms activated the Ca2+-dependent Ras/Erk, PKC and the 

PI3K/Akt/mTOR pathways. 

 

CD5 expression impacts the Ca2+ pathway 

 

The kinome analysis indicated that constitutive Erk1/2 phosphorylation in CD5+ B cells is 

dependent on the Ca2+ pathway. To verify this proposition, we carried out single-cell video 

microscopy and observed an elevated resting initial fluorescence ratio suggesting an increase 

in basal level of iCa2+ in Jok-E1A compared with Jok-1 cells (340/360: 1.155±0.009, n=1,723, 

in Jok-E1A versus 1.067±0.007,  n=1,623, in Jok-1; P<0.001, Figure 4a and b). Jok-E1B cells 

were excluded from this analysis as these cells constitutively express the fluorescent marker 

GFP. Based on the observation that such effects could be reversed when depleting Ca2+ from 

media in the absence of stimulation (Figure 4b), we next assessed whether this increase could 
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be the consequence of an elevated constitutive extracellular Ca2+ entry. To test this, we carried 

out Ca2+ repletion experiments followed by the addition of the non-selective plasma 

membrane Ca2+ channel blocker La3+. The results revealed that with Ca2+ repletion, iCa2+ 

increased in resting Jok-E1A (ΔF/F0: 0.16±0.01 Jok-E1A versus 0.08±0.01 Jok-1, P<0.001) 

(Figure 4c-d). In addition, the experiments confirmed that this effect can be reversed with 

La3+. These findings confirm that the effect of CD5 is dependent on membrane Ca2+ channels. 

 

We next carried out inhibition experiments to confirm the dependence of Erk1/2 phosphorylation 

by CD5 on Ca2+ using PD98059 and La3+. PD98059 inhibits MEK/Erk activation while La3+ 

inhibits extracellular Ca2+ entry. In addition, since increases in iCa2+ and Ca2+ influx in 

lymphocytes could involve the PI3K/Akt/mTOR pathway, which is activated in resting CD5+ B 

cells as shown in this study, pErk1/2 activation was evaluated in the presence of LY294002, 

which inhibits PI3K, and rapamycin, which inhibits mTor.33,34 Interestingly, LY294002 and 

rapamycin had no effects on pErk1/2 in contrast to PD98059 and La3+ (Figure 5a). To confirm 

this observation, we assessed whether phosphorylation of STAT1/3 S727 also occur 

independently of the PI3K/mTor pathway.35 Again, PD98059 and La3+, but not LY294002 or 

rapamycin, inhibited pSTAT1/3 S727 in Jok-E1A/E1B. Furthermore, PD98059 and La3+ also 

inhibited IL-10 production (Figure 5b). These data, therefore, indicate that iCa2+ increase and 

constitutive Erk1/2-STAT1/3 phosphorylation when CD5 is expressed in B cells and bypasses the 

PI3K/Akt/mTOR pathway and may result from transient upregulation of Ca2+ membrane 

channel(s). 

 

CD5 expression alters the transcriptome of B lymphocytes 

To provide further insight into the impact of CD5 on B cell biology we analysed the 

transcriptome of the Jok-E1A and Jok-E1B lines compared with the Jok-1 line using the 

whole human genome oligonucleotide microarray. The analyses revealed that the expression 

level of 621 unique genes changed in Jok-E1A cells compared with Jok-1 cells. The analyses 

revealed that the expression level of 621 genes changed in Jok-E1A cells compared with Jok-
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1 cells. The expression of 502 (80.8%) genes increased by >1.5 fold in CD5-E1A compared 

with Jok-1 cells while the expression of 119 (19.1%) genes decreased by >1.5 in CD5-E1A 

compared with Jok-1 cells. These results show similarities of some of the altered genes with a 

previous study in Daudi cell B cells transfected with CD5 (Supplementary data). Thus, among 

genes whose expression is altered by >2.0 folds, the expression of 45 genes was found up-

regulated and 7 down regulated in both cell lines. Some of the genes whose expression was 

altered were genes encoding cytokines and chemokines (IL-10, IL2RG, and CCL3), signaling 

molecules (MKNK2, RGS1), apoptosis inhibitors (Bcl-2), transcription factors (NF-KB2, Spi-

C), and cell surface receptors (CD83, CD74, CD54/ICAM1, CD69).10 With the exception of 4 

genes (TRIM68, FRDM6, DYNLRB1 and FLJ11710), no differences were observed between 

Jok-E1A and Jok-E1B cells. 

 

Analysis of changes in Ca2+-permeable channel expression revealed upregulation of genes 

encoding the cationic channel TRPV2 and the transient receptor potential channel 1 (TRPC1) 

in both Jok-E1A and Jok-E1B cells compared to Jok-1 cells. Upregulation of both TRPV2 and 

TRPC1 genes was confirmed by RT-PCR in Jok-E1A/E1B (Figure 6a). 

 

CD5 drives TRPC1 expression and IL-10 production in pErk1/2 positive B-CLL cells 

 

To verify that CD5 drives IL-10 production through up-regulating TRPC1 and/or TRPV2, B 

cells from 26 patients with CLL segregated into two groups according to the phosphorylation 

status of pErk1/2 by Western blotting (Figure 6b, and data not shown). As expected, pErk1/2 

activation was associated with IL-10 production (P<0.01) in B CLL cells (Figure 6c). TRPV2 

was detectable at low levels in B cells from some CLL patients but no differences were 

observed between pErk1/2+ and pErk1/2- B-CLL with regards to TRPV2 transcripts by 

quantitative RT-PCR (Fig 6c). In contrast, TRPC1 transcripts were detectable at significantly 

higher levels in pErk1/2+ B-CLL patients compared with pErk1/2- B-CLL patients (P<0.001). 

Of note was that TRPV2 and TRPC1 were not detectable in B or T cells from healthy controls 
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(data not shown). Flow cytometry confirmed that the TRPC1 protein was expressed on B cells 

from pErk1/2+ CLL patients (MFI TRPC1: 1.9±1.3 in pErk1/2+ CLL versus 0.4±0.1 in 

pErk1/2- CLL, P< 0.05) (Figure 6d). This data is consistent with the expression of TRPC1 in 

the Jok-E1A line (MFI: 5.9±2.4 versus 0.4±0.3 in Jok-1, P<0.01). The level of Erk1/2 

phosphorylation and TRPC1 expression were independent of age, sex, CLL stage, disease 

progression, CD38 expression or the cytogenetic status of patients. 

 

Finally, to confirm that CD5 induces TRPC1 expression and, promotes IL-10 production, we 

used siRNA for CD5 and TRPC1 to transfect B-CLL cells from 3 pErk1/2+ and 3 pErk1/2- 

patients. After two days of culture, CD5 reduction was determined at mRNA level in CD5 and 

TRPC1 siRNA transfected B-CLL cells from both groups. The expression of TRPC1 was 

reduced with cd5-siRNA and TRPC1-siRNA in pErk1/2+ B-CLL cells (Figure 6e). In both 

cases the siRNAs resulted in inhibiting IL-10 production in pErk1/2+ B-CLL cells. 

Collectively, these results indicate that in pErk1/2+ B-CLL cells, CD5 promotes IL-10 

production through a BCR-independent Ca2+-dependent pathway that involves the non-

selective Ca2+ channel protein TRPC1. 
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DISCUSSION 

 

This study reveals that CD5 directly alters the biology of B cells including inducing IL-10 

production. The molecular pathways through which CD5 modulates B cell biology appear to 

be mediated through Erk1/2 activation in a Ca2+-dependent pathway and involving the non-

selective Ca2+ channel TRPC1. Interestingly, the changes induced by CD5 are distinct from its 

negative modulating effects on BCR-signaling. Furthermore, the data reveal that pathways 

induced by CD5 in B cells are similar to those activated in B-CLL since induced CD5 

expression replicates several characteristics of neoplastic B cells including constitutive basal 

Erk1/2 phosphorylation. This observation is consistent with previous studies13 as is the ability 

of CD5 to activate STAT1/335 and IL-10 production;8 all features of neoplastic B-CLL cells. 

In addition, CD5 expression led to perturbation in Ca2+ homeostasis leading to increased basal 

iCa2+.36 

 
 

Consistent with our observation that expression of CD5 induces biological changes distinct 

from its role in modulating effects on BCR-mediated signaling is the distinct effect on Ca2+ 

mobilization in the two settings.31 The characteristics noted in CD5+ B cells are similar to 

anergic37,38 B cells and CD5+ transitional B cells.39-41 Such "anergic signature" was previously 

shown to be a characteristic feature of B-CLL cells.42 Interestingly, the anergic phenotype of 

B cells was shown to be reversed in hen egg lysozyme (HEL) transgenic mice when the mice 

were made CD5 deficient.24 

 

The current study also provides an in-depth insight into pathways leading to the constitutive 

activation of Erk1/2 and IL-10 production in B-CLL cells. Thus, the study shows that a Ca2+ 

influx-dependent pathway is involved in constitutive Erk1/2 phosphorylation and IL-10 

production. Unlike conventional CD5- B2 cells in which Erk1/2 phosphorylation is mediated 

through Syk/BTK/PLCγ2 and PI3K activation following BCR engagement,43 constitutive 
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Erk1/2 phosphorylation by CD5 occurs independently of this pathway. This is revealed based 

on the finding that Syk, BTK and PLCγ2 were not activated in unstimulated CD5+ B cells and 

that inhibition of PI3K with LY294002 was ineffective in suppressing constitutive Erk1/2 

phosphorylation in contrast to the effectiveness of the non-selective Ca2+ channel blocker 

La3+. The newly-identified pathway is compatible with the observations that inhibition of 

Erk1/2 phosphorylation in B-CLL cells does not occur immediately after BTK inhibition44 

and that Erk1/2 phosphorylation in leukemic B cells in patients with CLL failed to mobilize 

Ca2+ upon BCR cross-linking.13,42 

 

Since CD5+ B cells in healthy individuals and patients with autoimmune diseases, such as 

systemic lupus erythematosus and also patients with CLL cells express both isoforms of 

CD545 but at different levels, we studied whether the two isoforms impact intracellular 

signaling differently. The results revealed that there were no major differences in the effect 

the two isoforms have on intracellular signaling in B cells except that the E1B-CD5 down-

regulated the level of CD5 expression on the membrane.12,45 These results indicate that the 

428EYS430 motif is functional in both isoforms. This is in agreement with previous studies 

showing that the CD5 Y429 is constitutively phosphorylated in B-CLL cells,10 most probably 

by Lyn,18 and that this has a positive effect on transcription but a negative one on BCR-

mediated signaling. 

 

Mechanisms through which CD5 plays a dual role in modulating B cell signaling and biology, 

however, remains unclear. This is in part due to the capacity of CD5 to activates a large array 

of kinases and phosphatases as shown in our current study. Consistent with the inhibitory 

effect of CD5 on BCR-mediated signaling, we observed that CD5 associates with SHP1 and 

c-Cbl in resting cells but with CD79a following BCR engagement. The positive effect of CD5 

on gene transcription, however, appears to be due to the recruitment of key kinases including 

Lyn, the p85 unit of PI3K and Vav1. However, the molecular mechanism(s) through which 

CD5 modulates Ca2+ homeostasis and the role of TRPC1 in the process remains to be defined. 
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The expression of TRP channels has been associated with cancer, and in particular TRPC1 

overexpression was described in transformed CD5+ chicken DT-40 cell line and in human B 

lymphoblast cell lines (BLCL).46,47 In DT-40 cells, TRPC1 was linked with intracellular Ca2+ 

increase and NFAT2 activation,46 a signaling cascade that leads to cytokine/chemokine 

production in B-CLL cells. Interestingly, mice deficient in TRPC1 have defective B cell 

functions similar to what is seen in NFAT2 deficient mice.48 Consequently, TRPC1 up-

regulation in CD5+ B cells may be an important mechanism that promotes B-CLL cell 

survival. 

 

CONCLUSIONS 
 

This study provides molecular evidence that CD5 expression per se alters B cell biology 

including constitutive activation of key signaling pathways leading to IL-10 production. 

Pathways and transcription factors activated by CD5 include those involved in regulating B 

cell survival, proliferation, cytokine/chemokine production and transformation. The findings 

reported in this study could help in better understanding of the biology and regulatory 

properties of CD5+ B cells in health and in diseases including in patients with B-CLL and how it 

could, potentially, contribute to B cell abnormalities. These findings could have beneficial 

effects in designing new treatment strategies, particularly in CLL patients identified as 

refractory to currently available treatments. Such treatment strategies could involve the use of 

monoclonal antibodies to membrane proteins relevant to B-CLL cell transformation such as 

TRPC1 or CD5 as mono or combination therapies.49 Alternatively, signaling pathways 

mediated by CD5 and involved in B-CLL cell transformation could be targeted.  For example, 

high basal Ca2+ levels,50 or upstream kinases could be targeted as has successfully been used 

to treat patients with autoimmune diseases.51 
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FIGURE LEGENDS 

 

Figure 1: Constitutive Erk1/2 activation and IL-10 production in CD5-expressing B cells is 

dependent on the phosphorylation of Y429 in the CD5 molecule. (a) The upper panel depicts 

Western blotting analysis of phosphorylated Erk1/2 (pErk1/2) in untransfected Jok-1 cells and 

Jok-1 cells transfected with membrane (E1A-CD5) or cytoplasmic (E1B-CD5) CD5. The lower 

panel shows total level of Erk1/2. (b) Cartoons representing full length CD5 and mutants 

generated in this study to identify sites in CD5 involved in Erk1/2 activation. CD5 has 3 

extracellular domains (1-3), a transmembrane (Tm) region and a cytoplasmic domain. Truncated 

CD5 molecules (S398Mstart and S415Mstart) are named according to their start codons. (c) 

Western blotting of constitutive Erk1/2 phosphorylation in untransfected Jok-1 cells (labelled c), 

cells transfected with native CD5 (1) or with the mutants generated as shown in the cartoons; 

and (d) ELISA results for the level of IL-10 produced by the corresponding cells in (c). The cells 

were cultured for 48hrs. The data in (c) and (d) represent three independent experiments. 

Statistical analyses were by the Mann-Whitney U test for IL-10 production. * indicates P<0.05 

for statistical difference in IL-10 production between Jok-1 cells transfected with the 428AAA430 

compared with the full length CD5 molecule. 

 

Figure 2: Constitutive Erk1/2 phosphorylation in CD5-expressing B cells is BCR- 

independent. (a) Western blotting (WB) analysis of Syk, BTK, PLCγ2, SHP1 and SHIP 

phosphorylation in Jok-1, Jok-E1A and Jok-E1B cells. (b) Anti-CD5 immunoprecipitation (IP: 

αCD5) followed by Western blotting of Jok-E1A cell for the association between CD5 and the 

BCR complex in resting and F(ab’)2 anti-human IgM (α-IgM) stimulated Jok-E1A cells. The left 

panel shows CD5, CD79a, and SHP1 in the Jok-E1A cell lysate (WB) tested as controls. The 

panel on the right depicts the association between CD5 and CD79a after α-IgM stimulation 

following immunoprecipitation (IP) with anti-CD5 mAb (c) Western blotting for the kinetics of 

PLCγ2 phosphorylation in unstimulated Jok-1, Jok-E1A and Jok-E1B cells or cells stimulated 
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with anti-IgM. The upper 3 panels depict the kinetics of PLCγ2 activation from times 0-10min 

after BCR engagement with the anti-IgM. The blots are for phosphorylated PLCγ2 (pPLCγ2), 

middle for total PLCγ2 protein (PLCγ2) and lower for β-actin protein. The bottom 3 panels 

depict the level of pPLCγ2 at time points 0, 20 and 30 minutes with anti-IgM. (d) Analysis of 

the kinetics of pErk1/2 following BCR engagement arranged as in (c). The two graph panels to 

the right of the Western blots represent semi-quantification data for the level of pPLCγ2 as in (c) 

and pErk1/2 in (d) of the signaling molecules represented as the ratio of band intensity for the 

phosphorylated proteins to that of the total protein. 

 

Figure 3: Key signaling pathways affected by CD5 expression. (a) A cartoon representing the 

main kinases and signaling pathways whose activities are affected by CD5 expression in Jok-1 B 

cells. Only the major kinases and signaling pathways are shown based on the kinome array 

analysis and Western blotting in the current study and data from the literature. (b) Western 

blotting showing phosphorylation (top) and total protein levels (bottom) of Akt, and S6K in Jok-

1, Jok-E1A and Jok-E1B cells. (c) Immunoprecipitation with anti-CD5 mAb in Jok-E1A cells 

reveals that CD5 associates with Lyn, the p85 regulatory unit of PI3K, c-Cbl, and Vav1. 

Representative of 3 independent experiments. TK: tyrosine kinase; ITAM: immune receptor 

tyrosine-based activation motifs. 

 

Figure 4: CD5 expression modulates the Ca2+ pathway in B cells. (a) CD5 expression in Jok-

E1A cells increases the basal level of intracellular Ca2+ (iCa2+) compared with Jok-1 cells. (b) 

Histograms representing basal levels of iCa2+ in Jok-1 and Jok-E1A cells. The increase in basal 

iCa2+ in Jok-E1A cells is sensitive to extracellular Ca2+ depletion (no Ca2+) as can be noted in (a) 

and confirmed in (c). Re-addition of extracellular Ca2+ to resting Jok-1 and Jok-E1A cells as 

shown in (c) reveals a high extracellular and constitutive Ca2+ influx in Jok-E1A. This influx can 

be reversed in the presence of lanthanum (La3+) and ratios normalized to basal values (F0) 

indicated as (∆F/F0). The mean and standard error of the mean (SEM) of the ∆F/F0 values in (c) 
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are from 6 independent experiments are presented in histograms in (d). *** indicate P<0.001 

values for the difference between the two cell lines as determined by Student’s t test. 

 

Figure 5: CD5 promotes the phosphorylation of Erk1/2 and STAT1/STAT3 S727 and IL-

10 production that are dependent on extracellular Ca2+ entry. (a) Analysis of constitutive 

Erk1/2 phosphorylation; STAT1 S727 phosphorylation; STAT3 S727 phosphorylation and (b) 

IL-10 production in Jok-1, Jok-E1A and Jok-E1B cells after 48h culture in the presence of 

PD98059 (at 50µM for Western blotting and at 100µM for IL-10 production), lanthanum (La3+), 

rapamycin (Rapa) or Ly294002 (Ly29). PD98059 inhibits MEK1 and 2; La3+ blocks 

extracellular Ca2+ entry; rapamycin inhibits PI3-K/mTOR and Ly294002 inhibits PI3K/Akt. 

Cells cultured without inhibitors are used as controls and marked “c”. Levels of IL-10 produced 

by cells cultured either alone or with the above indicated inhibitors were determined by ELISA 

and IL-10 levels are expressed as percentage of basal values and % reduction is presented as 

mean and SEM for 3 independent experiments. Basal value of IL-10 in Jok-1 cells was 

32±6.9pg/mL and 105±8.7pg/mL for the CD5 transfected cells. * indicates P<0.05 for the 

statistical difference in the level of IL-10 production in the presence of a given inhibitor 

compared with the cultured cells without inhibitors using the Mann-Whitney U test. 

 

Figure 6: TRPC1 regulates extracellular Ca2+ entry by CD5 in Jok-1 B cells and B cells 

from Erk1/2+ B-CLL patients. (a) transcripts of CD5, TRPV2, TRPC1 and GAPDH in Jok-1, 

Jok-E1A and Jok-E1B B cells determined by RT- PCR. (b) B-CLL patients were divided into 

two groups based on the phosphorylation status of Erk1/2 protein by Western blotting. # 

indicates B cells from CLL patients positive for constitutively-phosphorylated Erk1/2. (c) Levels 

of IL-10 (n=26 patients), TRPC1 (n=26) and TRPV2 (n=12) transcripts relative to GAPDH 

mRNA as determined by real time-PCR in B cells from pErk1/2+ and pErk1/2- B-CLL patients. 

** indicates P<0.01 and *** indicates P<0.001 for the statistical differences using Student’s t 

test in the relative level of IL-10 and TRPC1 transcripts between pErk1/2+ and pErk1/2- B-CLL 
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patients, respectively. (d) Representative FACS of extracellular TRPC1 protein expression 

(black histograms) in CLL#2 (pErk1/2-), CLL#15 (pErk1/2+), Jok-1, and Jok-E1A cells. MFI= 

Mean fluorescence intensity for each cell is indicated and isotype controls are presented as grey 

histograms. (e) Histograms depicting levels of TRPC1, CD5 and IL-10 transcripts in B cells 

from pErk1/2+ (black histograms) and pErk1/2- (white histograms) B-CLL patients following 

transfection with control siRNAs (c-siRNA), CD5-siRNA and TRPC1-siRNA. The top two 

histograms depict relative levels of CD5 (left) and TRPC1 (right) transcript to GAPDH mRNA. 

The lower two histograms represent relative levels of IL-10 transcripts to those of GAPDH in 

pErk1/2+ (left panel) and pErk1/2- (right panel). B cells from three pErk1/2+ and three pErk1/2- 

B-CLL patients were studied in these experiments. * indicates P<0.05 for the statistical 

difference in the level of transcripts for CD5, TRPC1 and IL-10 when using siRNA for CD5 or 

TRPC1 compared with c-siRNA. The statistical analyses were carried out using Student’s t test.  
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Table 1. Demographic, clinical and immunological information on patients with chronic 

lymphocytic leukaemia (CLL) included in the study. 

 

CLL 

Age 

years Sex Binet 

Follow-

up 

 

PFS Ly CD19+ CD5+ 

Cytogenetic 

pErk1/2 

status*  (years) (months) (x109/L) CD38+ (%) 
        

 1 53 F B 4 36 38,2 1% del13q14 neg 
 2 55 M A 10 >120 41,7 0% del13q14 neg 

 3 65 M C 2 26 42,1 88% del13q14 neg 

 4 86 F A 7 >84 23,9 2% del13q14 neg 

 5 73 M A 8 102 38,2 7% del13q14 neg 

 6 74 M B 6 57 25,8 2% del13q14 neg 

 7 67 F A 5 >60 14,3 4% normal neg 

 8 63 M B 1 10 56 30% 
 

del11q/ATM, neg 
  del 13q14 
          

 9 65 F B 3 18 20.6 0% del13q14 neg 

 10 85 M A 9 >108 35,6 8% normal neg 

 11 53 F A 8 >96 26,8 0% del13q14 neg 

 12 67 F A 4 >54 9,5 64% trisomy 12 neg 

 13 77 F A 6 >77 20,4 0% del13q14 neg 

 14 88 F A 20 >240 19,8 7% ND pos 

 15 77 M B 16 126 96 50% del13q14 pos 

 
16 71 M B 7 

 

72 

 

69,2 20% 

 

trisomy 12, pos 
   del13q14 
         

 17 83 M A 5 65 57,8 11% del13q14 pos 

 18 76 M A 10 >120 31,3 7% del13q14 pos 

 19 79 M A 2 >24 14,9 4% ND pos 

 20 74 F B 10 123 45,7 7% del13q14 pos 

 21 74 F A 5 >57 41.8 48% del13q14 neg 

 22 77 M A 3 >36 16.7 26% normal pos 

 23 66 M A 12 >130 62.5 0% del13q14 neg 

 24 63 F B 9 90 60.4 8% del13q14 neg 

 

 
25 84 F B 5 46 61.9 23% 

 

del17p/TP53, 

del13q14 

pos 

 26 56 F B 7 36 35.3 1% del13q14 pos 

 

PFS: progression free survival; Ly: lymphocytes numbers. * Indicates CLL patient divided on 

the basis of the phosphorylation status of MAPK Erk1/2 in their B cells into neg= negative 

(pErk1/2-) ; pos= positive (pErk1/2+). ND= not determined. 
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Table 2. Kinase activation profiles and change in their activity in Jok-E1A and Jok-E1B relative to 

untransfected Jok-1 cells. 
 
 Peptide with    

E1A E1B/ 
 

 phosphorylation Protein substrate Kinase Function Change 
 site    /Ctrl Ctrl  
       
        

 FIGEHYVHVNA HGFR/MET (Y1349) Abl, autoP TK receptor 4.7 3.5 Up 

 PESIHSFIGDG MTOR (S2481) Akt, autoP Akt/mTOR 2.7 2.2 Up 

 EVPRRSGLSAG MBD3 (S24 S26) Aurora A  4.4 3.4 Up 

 PGMKIYIDPFT EPHB1 (Y594) autoP TK receptor 4 3.9 Up 

 DIKSDSILLTS CDC42/PAK5 (S573) autoP, Ca
2+ 

Prot Kinase 6.1 5 Up 

 CEEEFSDSEEE HDAC1 (S421 S423) autoP, CK2 Cell cycle, DNA repair 2 2.4 Up 

 ETPAISPSKRA dUTPase/DUT (S99) CDC2 Enzyme 5.6 5.2 Up 

 GDAAETPPRPR MEK1/MAP2K1 (T286) CDK1 MAPK/Erk 5.3 4.3 Up 

 DPWGGSPAKPS EPN1 (S357) CDK1 Vesicle formation 7.5 9 Up 

 SASPYTPEHAA TP73 (T86) CDK1/2, CDC2, autoP Cell cycle 5.6 6.1 Up 

 LSRMGSLRAPV E2F1 (S364) CHK2 TF 3.3 3.2 Up 

 PELARYLNRNY HRS/HGS (Y329) EGFR/MET Vesicle formation 4 4.9 Up 

 DYDDMSPRRGP HNRNPK (S284) Erk RNA binding 3.5 2.7 Up 

 AEVLPSPRGQR TOP2A (S1213) Erk1, CDK1 Cell cycle 3.7 3.5 Up 

 GPHRSTPESRA PSEN1 (S353 S357) GSK3B MAPK/Erk 4.1 4.2 Up 

 RSGLCSPSYVA MYC (S71) MAPK/JNK TF 2.3 2.3 Up 

 EKPRLSFADRA PKC theta (S676) nd PKC 4.9 4.1 Up 

 ALRRESQGSLN RGS14 (S260) PKA GTPase 9.8 11 Up 

 SAWPGTLRSGM HSPB8 (T63) PKC Small HSP 3.5 3.2 Up 

 TTCVDTRWRYM HIR/KCNJ4 (T53) PKC K receptor 3.1 2.8 Up 

 KSFTRSTVDTM CD88/C5AR1 (S334 S338) PKC G protein 3.8 3.6 Up 

 AGIQTSFRTGN DDX5 (S557) PKC, autoP RNA binding 2.7 2.9 Up 

 LLREASARDRQ TRPV1 (S801) PKCalpha, Ca
2+ 

Ca receptor 3 2.8 Up 

 EHRKSSKPIME HES1 (S37-38) PKCalpha, Ca
2+ 

TR 6.3 5.2 Up 

 ESLESTRRILG SNAP23 (S23 T24) PKCalpha, Ca
2+ 

Vesicle 2.5 2.8 Up 

 EGKHLYTLDGG Rack1/GNB2L1 (Y228) Src kinase G protein 3.4 2.2 Up 

 SRLSAYPALEG CD5 (Y465) Src kinase PI3K 2.8 2.9 Up 

 EVERTYLKTKS GRIN2A (Y1105) Src kinase (Fyn) Ca receptor 4.1 3.1 Up 

 PCTTIYVAATE CD150/SLAM (Y307) Src kinase (Fyn) ITAM receptor 2.7 2 Up 

 EEGEGYEEPDS CD19 (Y409) Src kinase (lyn) ITAM receptor 2.3 2.5 Up 

 GTDLEYLKKVR OGT (Y989) Src kinase, INSR Enzyme 2.5 2.3 Up 

 GSPSVRCSSMS SMAD2 (S464 S465 S467) TGFBR, BMPR1 TF 3.8 4.7 Up 

 FMRRTSLGTEQ PTGER4 (S222) unknown G protein 5 5 Up 

 LDRFLSLEPVK CCND1 (S90) unknown Cell cycle 2.2 4 Up 

 HSLPFSLPSQM CBL (S623) unknown TK regulation 2.9 2.8 Up 

 TDGNRSSHSRL BID (S64 S65) unknown TF 2.4 2.3 Up 

 ASKMDTCSSNL F2R/PAR1 (S406) unknown G protein 0.3 0.5 Down 
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The table lists peptide substrates whose phosphorylation status is different in Jok-1 cells 

transfected with the E1A or E1B isoforms of CD5, corresponding protein substrates, kinases 

whose activity is altered and the ratio of activity of the kinase in the transfected cells compared 

with untransfected Jok-1 cells (according to phosphositeplus database at 

http://www.phosphosite.org). Ratio: refers to the ratio of activity of the kinase in Jok-E1A/E1B 

cells compared with Jok-1 cells. The analyses were carried out in triplicates for each cell line 

and the analysis repeated on two separate occasions. Differences were analyzed using student’s t 

test. P<0.05 are considered significant and shown in the table. Change: indicates whether 

activity of the kinase in question was upregulated (Up), or down regulated (Down). 

Abbreviations: CK2: casein kinase 2; Ctrl: control, refers to activity of the kinase in the 

untransfected Jok-1 cells; RTK: receptor tyrosine kinase; TF: transcription factor; TK: tyrosine 

kinase; TF: transcription factor; TR: transcription repressor; autoP: autophosphorylated. 
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Table 3. Altered phosphorylation of kinase substrates by CD5 expression in Jok-1 B 

cells. 

 

  CD5-E1A  CD5-E1B 

 Kinase up down up down 

 PI-3K/Akt/mTOR 6 0 3 0 

 CaMkII 4 0 1 0 

 Cell cycle (CDK, CDC) 12 0 15 0 

 CK1/CK2 2 4 4 1 

 GSK3B 2 0 5 0 

 NF-κB 1 0 1 0 

 Jak/STAT 1 0 0 0 

 Ras-Erk 6 0 9 1 

 PKA 9 0 11 0 

 PKC 11 0 11 3 

 Src kinases 9 0 12 0 
      

 

Table 3 lists the number of target peptide substrates whose phosphorylation status is 

upregulated (up) or down regulated (down) in Jok-E1A and Jok-E1B cells when compared 

with untransfected Jok-1 cells. The analysis was carried out as described in Table 2 legend and 

is drawn on data summarized in the same Table. 
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