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Abstract

MicroRNA-122 (miR-122) is abundant in the liver and involved in lipid homeostasis, but its 

relevance to the long-term risk of developing metabolic disorders is unknown. We therefore 

measured circulating miR-122 in the prospective population-based Bruneck Study (n=810; survey 

year: 1995). Circulating miR-122 was associated with prevalent insulin resistance, obesity, 

metabolic syndrome, type-2 diabetes, and an adverse lipid profile. Among 92 plasma proteins and 

135 lipid subspecies quantified with mass spectrometry, it correlated inversely with zinc-alpha-2-

glycoprotein and positively with afamin, complement-factor H, VLDL-associated apolipoproteins, 

and lipid subspecies containing monounsaturated and saturated fatty acids. Proteomics analysis of 

livers from antagomiR-122-treated mice revealed novel regulators of hepatic lipid metabolism that 

are responsive to miR-122 inhibition. In the Anglo-Scandinavian Cardiac Outcomes Trial 
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(ASCOT, n=155), 12-month atorvastatin reduced circulating miR-122. A similar response to 

atorvastatin was observed in mice and cultured murine hepatocytes. Over up to 15 years of follow-

up in the Bruneck Study, multivariable adjusted risk ratios per 1-SD higher log miR-122 were 1.60 

(95% confidence interval: 1.30-1.96; P<0.001) for metabolic syndrome and 1.37 (1.03-1.82; 

P=0.021) for type-2 diabetes. In conclusion, circulating miR-122 is strongly associated with the 

risk of developing metabolic syndrome and type-2 diabetes in the general population.

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression 

(1). The predominant miRNA in the liver, microRNA-122 (miR-122), has been proposed to 

play a central role in the regulation of lipid and glucose metabolism (2,3). Inhibition of 

miR-122 in mice (4,5) and non-human primates (6,7) induces fatty acid oxidation, reduces 

lipid synthesis, and thereby leads to lower levels of total cholesterol.

In humans, it has been suggested that miR-122 may have adverse metabolic effects and may 

be associated with metabolic diseases. However, as highlighted by our recent review (3), 

evidence from existing epidemiological studies is sparse and has important limitations. 

Published studies have focused on correlations with major lipids (8), whereas a breakdown 

into lipid subspecies would add resolution and help improve our understanding of the 

regulation of lipid homeostasis by miR-122. Importantly, previous studies had cross-

sectional or case-control designs (3) and hence were unable to inform about long-term 

associations of circulating miR-122 with the development of new-onset disease outcomes 

over time.

To address this gap in the current literature, we conducted a series of analyses in the 

prospective Bruneck Study, the randomised controlled Anglo-Scandinavian Cardiac 

Outcomes Trial (ASCOT), and experiments in mice and cell culture, combining lipidomics, 

proteomics, and miR-122 data. Our aims were four-fold. First, to assess cross-sectional 

correlates of circulating miR-122, including lipidomics and proteomics profiles. Second, to 

provide mechanistic insight into the putative regulatory function of miR-122 in lipid 

metabolism with animal studies of antagomiR-122 interventions and statin treatment. Third, 

to study the effect of statin allocation on serum miR-122 in participants of ASCOT. Fourth, 

to quantify the – to date unknown – associations of circulating miR-122 with the long-term 

risk of developing metabolic syndrome and type-2 diabetes (T2DM).

Research Design and Methods

The Bruneck Study

The Bruneck Study is a prospective, population-based study (9–13). In 1990, 1,000 

individuals aged 40 to 79 years were recruited as a random sample of Bruneck inhabitants 

and were re-examined every 5 years since, with participation rates exceeding 90% at all 

surveys. The present study used the 1995 survey as baseline. Full medical records were 

available on clinical endpoints occurring between 1995 and 2010 (1995-2005 for metabolic 

syndrome) for all individuals, including those who did not participate in later evaluations or 

died during follow-up (100% follow-up for clinical endpoints). Metabolic syndrome was 

diagnosed if three out of the five following characteristics were present: (i) waist 
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circumference in men ≥102 cm and women ≥88 cm; (ii) fasting triglycerides ≥150 mg/dl or 

on drug treatment for elevated triglycerides (fibrates and nicotinic acids); (iii) HDL 

cholesterol in men <40 and women <50 mg/dl or on drug treatment for reduced HDL 

cholesterol (fibrates and nicotinic acids); (iv) blood pressure ≥130/≥85 mmHg or 

antihypertensive drug treatment in a patient with a history of hypertension; and (v) fasting 

glucose ≥100 mg/dl or on drug treatment for elevated glucose. T2DM was diagnosed 

according to 1997 American Diabetes Association criteria or if the participant had a clinical 

diagnosis of T2DM and received anti-diabetic treatment. CVD was defined as myocardial 

infarction, stroke, or vascular death. Fatal and nonfatal myocardial infarction were deemed 

confirmed when World Health Organization criteria for definite disease status were met. 

Ischaemic stroke and transient ischaemic attacks were classified according to the criteria of 

the National Survey of Stroke. Self-report of disease was always confirmed by reviewing the 

participant’s medical records available from their general practitioners and the Bruneck 

Hospital.

Risk factors were ascertained by validated standard procedures as previously described (9–

13). Socioeconomic status was defined on a three-category scale (low, medium or high) on 

the basis of information on occupational status and educational level of the person with the 

highest income in the household. High socioeconomic status was assumed if the participant 

had ≥12 years of education or an occupation with an average monthly income ≥$2,000 

(baseline salary before tax). Low socioeconomic status was defined by ≤8 years of education 

or an average monthly income ≤$1,000. Physical activity was assessed using the validated 

Baecke Score (14). Waist and hip circumferences were assessed with a plastic tape measure 

at the levels of the umbilicus and the greater trochanters respectively. Blood samples were 

taken after an overnight fast. Lipidomics profiling in plasma samples of the Bruneck cohort 

was performed with mass spectrometry, which allowed quantification of 135 distinct lipid 

species (9). HbA1c was quantified using high performance liquid chromatography (DCCT-

aligned assay). The degree of insulin resistance by homeostasis model assessment (HOMA-

IR) was estimated using the formula fasting plasma glucose in mmol/l × fasting serum 

insulin in mU/l divided by 22.5, with higher HOMA-IR values indicating higher insulin 

resistance (15). MiR-122 was measured in serum taken at the 1995 examination (n=810) as 

well as in serum and plasma taken at the 2000 examination (n=695).

The Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)

ASCOT is a double-blind randomised 2x2 factorial study of blood-pressure-lowering and 

lipid-lowering treatment (16–18). A total of 14,412 patients (aged 40-79 years) were 

randomized between 1998 and 2000 using a computer-generated optimum allocation 

mechanism blinded for any person involved in the undertaking of the study. Patients 

randomized to the lipid-lowering arm had low to moderate cholesterol levels (serum total 

cholesterol≤6.5 mmol/l) and were allocated atorvastatin (10mg/day) or placebo. Serum 

miR-122 levels were measured at baseline and 1 year after randomisation (median 13 [range 

12 to 16] months) in participants of the hypertension-associated cardiovascular disease sub-

study (HACVD-ASCOT) who were of European ancestry and did not have T2DM at study 

entry.
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AntagomiR Treatment in Mice

Mice were injected intraperitoneally with antagomiR-122 and control antagomiRs (65 

mg/kg; n = 5 per group) on three consecutive days as previously described (19). AntagomiRs 

were purchased from Fidelity Systems with the following sequences: antagomiR-122 - 

C*A*AACACCAUUGUCACACU*C*C*A*Chol*-T; controls - 

A*A*GGCAAGCUGACCUGAA*G*U*U*Chol-T. Mice were sacrificed at day 7. Liver 

and serum samples were harvested for analysis. Total and HDL-cholesterol were 

enzymatically measured using the T-Cholesterol and HDL-C Assay Kits (Wako Diagnostics) 

with blood samples were collected by retro-orbital venous plexus puncture after a 12h 

overnight fast. We measured hepatic miRNA-122 expression using Northern blot, and 

miR-122 and other miRNAs in liver and serum using quantitative reverse transcription real 

time polymerase chain reaction (qRT-PCR). Selected genes were also quantified by qRT-

PCR (for details, see Supplementary material online).

Statin Treatment in Mice and Primary Murine Hepatocytes

Six-week old, female C57Bl/6 mice were injected once a day with 20mg/kg atorvastatin 

intraperitoneally (Sigma Aldrich, Taufkirchen, Germany) for 5 days, and were sacrificed on 

day 5. Serum was collected by cardiac puncture. The liver was perfused with ice-cold 

phosphate-buffered saline and tissue specimens from the left lower lobe were either snap 

frozen or placed in RNAlater (Qiagen, Hilden, Germany) until further processing. Details 

are provided in the Supplementary material online.

Proteomics Analyses

Targeted proteomics profiling in plasma samples of the Bruneck Study (year 2000 

evaluation) was performed using multiple reaction monitoring (PlasmaDive kits, Biognosys 

AG), which allowed quantification of 92 proteins (for details, see Supplementary material 

online). During continuous operation over 2 weeks, the inter-day relative standard deviation 

was <20% and <5% without and with adjustment for the peak area of the authentic standard 

peptides, respectively.

Proteomic analysis of livers from antagomiR-treated mice was performed after an in-

solution digest by liquid chromatography tandem mass spectrometry (LC-MS/MS). 

Differential protein expression was assessed by two methods (for details, see Supplementary 

material online): by spectral counting using a high mass accuracy instrument (Q-Exactive 

HF, ThermoFisher) and by labelling with TMT Mass Tags (ThermoFisher) using the triple-

stage mass spectrometry (MS3) capability on an Orbitrap Fusion Tribrid MS 

(ThermoFisher). MS3 can overcome the inherent interference of more commonly used two-

stage (MS2) workflows when isobaric labeling strategies are used with complex samples 

(20).

miR-122 Measurement using Quantitative Real-time PCR (qRT-PCR)

We measured miRNA-122 in samples of the Bruneck Study, ASCOT and statin experiments 

using qRT-PCR, as previously described (11,21). Briefly, total RNA was extracted using the 

miRNeasy kit (Qiagen, Hilden, Germany). For plasma, serum or cell culture supernatants, a 

fixed volume of 3µl of the 25µl RNA eluate was used as input for reverse transcription (RT) 
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reactions. For RNA from cells or tissue, 100ng input material was used for RT. MiRNAs 

were reversely transcribed using Megaplex Primer Pools (Human Pool A version 2.1 or 

Rodent Pool A, Life Technologies, Darmstadt, Germany) and products were further 

amplified using Megaplex PreAmp Primers (Primers A v2.1). Both RT and PreAmp 

products were stored at -20°C. Taqman miRNA assays were used to assess the expression of 

individual miRNAs. Diluted pre-amplification product (0.5µl) or RT product (corresponding 

to 0.45ng input) were combined with 0.25µl Taqman microRNA assay (20×) (Life 

Technologies) and 2.5µl Taqman Universal PCR Master Mix No AmpErase UNG (2×) to a 

final volume of 5µl. qRT-PCR was performed on an Applied Biosystems 7900HT 

thermocycler at 95°C for 10min, followed by 40 cycles of 95°C for 15s and 60°C for 1min. 

All samples were run in duplicate. Laboratory technicians were blinded to the participants’ 

disease status. Relative quantification was performed using the software SDS2.2 (Life 

Technologies). U6 and exogenous C. elegans spike-in control (Cel-miR-39) were used for 

normalization purposes in cell and tissue experiments. For conditioned media, normalization 

was achieved by cultivating the same cell number in the same volume of medium with the 

spike-in control being used to adjust for any experimental variability in the isolation 

procedure.

Statistical Analysis

The statistical analysis was conducted according to a pre-specified analysis plan. MiR-122 

values were log-transformed for analysis. Cross-sectional associations of miR-122 levels 

with other participant characteristics were quantified using Spearman correlation coefficients 

and linear regression models adjusted for age and sex. In the survival analysis, the principal 

outcomes were metabolic syndrome and T2DM, and a secondary outcome was CVD. We 

used Cox proportional hazard regression with updated covariates for CVD and T2DM and 

pooled logistic regression (22) for metabolic syndrome. Both techniques make full use of the 

repeat measurements of miR-122 available at the 1995 and 2000 examination. Hazard ratios 

and odds ratios were assumed to represent the same measure of relative risk and are 

collectively described as risk ratios (RR). Participants with prevalent disease were excluded 

from the respective analyses. Models were adjusted for age and sex, plus socio-economic 

status (low, medium, high), smoking (yes, no), physical activity and alcohol consumption 

(“multivariable model”). A sensitivity analysis further adjusted for the potential mediators/

confounders body mass index and waist-hip ratio. The proportional hazards assumption for 

CVD and T2DM was tested using Schoenfeld residuals and was met. We investigated effect 

modification with formal tests for interaction across groups defined by age, sex, statin 

intake, and obesity. Principal analyses used significance levels of two-sided P<0.05. 

Exploratory analyses used Bonferroni-corrected P values to limit the risk of false positive 

results (i.e. 0.00037 for analyses of lipid subspecies; 0.00054 for proteins; 0.0042 for 

interaction tests). Analyses were performed using Stata software, version 12.1.

Study Approval

The Bruneck Study protocol was approved by the local ethic committee of Bolzano 

(‘Comitato etico del comprensorio sanitario di Bolzano’; approval number 28–2010). The 

ASCOT protocol was approved by central and regional ethics review boards in the UK and 

by national ethics and statutory bodies in Ireland and the Nordic countries. Animal 
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experiments were approved by the Austrian authorities (licensed to A. R. Moschen No 

BMWF-66.011/0040-II/10b/2009) and UK authorities (licensed to Q. Xu No. PPL70/7266). 

The participants’ written informed consent was obtained prior to their inclusion in the 

Bruneck and ASCOT studies.

Results

miR-122 and Major Clinical Characteristics in Participants of the Bruneck Study

We successfully quantified circulating miR-122 levels in 810 out of 826 participants of the 

Bruneck Study. MiR-122 levels in serum and plasma were strongly correlated (r = +0.86; 

95% confidence interval: 0.84-0.88). The within-person correlation of repeat serum miR-122 

measurements taken five years apart was +0.24 (0.17-0.31; Supplementary Fig. 1), which is 

comparable to the range previously reported for other plasma miRNAs (23). Table 1 shows 

baseline clinical characteristics of the Bruneck participants and their correlations with 

miR-122. The mean age of participants was 63 years (SD, 11) and 50% were female. 

Circulating miR-122 was associated with higher levels of liver enzymes, adiposity, 

inflammation, insulin resistance, and an adverse lipid profile (higher triglycerides and lower 

HDL-C) (Table 1). Participants with a diagnosis of metabolic syndrome compared to those 

without had 160% higher circulating miR-122 levels (P<0.001); participants with a 

diagnosis of T2DM compared to those without had 214% higher circulating miR-122 levels 

(P<0.001). No difference in circulating miR-122 levels was observed in participants with a 

history of CVD compared to participants without a history of CVD (P=0.969).

miR-122 and Lipidomic and Proteomic Profiles in Participants of the Bruneck Study

To provide novel insight into the complex correlation patterns of miR-122 beyond those with 

major clinical characteristics, we quantified cross-sectional correlations of miR-122 with 

lipidomic and proteomic profiles. Of the 135 distinct lipid subspecies available in the 

Bruneck Study (9), miR-122 showed a specific correlation with lipid subspecies comprised 

of monounsaturated and saturated fatty acids within the lipid classes triacylglycerols and 

cholesterol esters (Fig. 1A).

The proteomics assessment, over 4 orders of magnitude in abundance by mass spectrometry, 

covered 92 plasma proteins, including apolipoproteins, complement and coagulation factors 

(Fig. 1B; for full results, see Supplementary Fig. 2). Circulating miR-122 was most strongly 

associated with afamin (r=+0.42; P=4x10-30), complement factor H (r=+0.21; P=3x10-8), 

and zinc-alpha-2-glycoprotein (r=-0.28; P=10-13). Focused analyses of apolipoproteins 

revealed significant positive correlations with APOB, APOC2, APOC3, APOE, and APOL1, 

and significant inverse correlations with APOA4 and APOD.

Treatment with AntagomiR-122 in Mice and Effect on the Hepatic Proteome

To scrutinise the role of miR-122 in the regulation of hepatic lipid metabolism, we inhibited 

miR-122 in mice using antagomiRs and studied consequences thereof at the miRNA, lipid, 

gene expression, and protein level. AntagomiR-122 led to an almost complete inhibition of 

miR-122 expression (Fig. 2A), with a secondary effect on hepatic miR-33 expression, but no 

effects on the expression of other miRNAs relevant to the hepatic liver metabolism, 
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including miR-27b and miR-148a (Fig. 2B). The marked inhibition of hepatic miR-122 

expression by antagomiR-122 treatment was reflected in a >10-fold reduction in the mean 

serum levels of circulating miR-122 (P=0.032, n=10 mice per group, data not shown). 

Consistent with previous reports (3), antagomiR-122 treatment resulted in a reduction of 

total cholesterol levels (Fig. 2C). Gene expression in the liver was down-regulated in the 

liver for ATP citrate lyase (Acly), microsomal triglyceride transfer protein (Mttp), and sterol 

regulatory element-binding protein 1 (Srebp1) (Fig. 2D).

At the protein level, we analysed consequences of antagomiR-122 treatment using both a 

label-free and a TMT-labelling approach (Fig. 2E and Supplementary Tables 1 & 2). Eleven 

proteins were returned as differentially expressed in both datasets and included proteins with 

an apparent connection to lipid metabolism, i.e. carnitine O-palmitoyltransferase 1 

(CPT1A), prolow-density lipoprotein receptor-related protein 1 (LRP1), and histidine triad 

nucleotide-binding protein 1 (HINT1). Few are predicted miR-122 targets (Supplementary 

Table 3), and the proteomics changes were not accompanied by corresponding changes in 

gene expression (Supplementary Fig. 3A). However, we observed a modest but significant 

downregulation of the GTPase Rab27a (Supplementary Fig. 3B), a key regulator of exosome 

release (24).

Effect of Statin Therapy on miR-122 Levels

We next assessed the effect of statin treatment on miR-122 levels. In the placebo-controlled 

clinical HACVD-ASCOT trial, 12-month atorvastatin treatment led not only to the expected 

reduction in total cholesterol and low-density lipoprotein cholesterol but also to a marked 

reduction in serum miR-122 levels (all P<0.001; Fig. 3A). In contrast, other miRNAs 

quantified in the same samples remained unchanged (data not shown).

In mice, atorvastatin treatment had only modest effects on hepatic miR-122 expression 

(+23%, P=0.038), but reduced serum miR-122 levels (-61%, P=0.082; Fig. 3B). Short-term 

treatment with statins in mice did not result in a reduction of total cholesterol levels (data not 

shown), which is in agreement with previous reports (25). Similarly, in murine primary 

hepatocytes, increasing doses of atorvastatin did not affect cellular miR-122 levels 

(Ptrend=0.575), but markedly reduced miR-122 in the culture medium (Ptrend<0.001; Fig. 

3C). Thus, the inhibitory effect of atorvastatin on circulating miR-122 is independent of lipid 

levels and hepatic miR-122 expression.

Association of miR-122 with Development of new-onset Metabolic syndrome and T2DM

Among participants of the Bruneck free of pre-existing disease at baseline, we recorded 

new-onset of 136 events of metabolic syndrome and 57 events of T2DM. Age and sex-

adjusted risk ratios comparing top vs. bottom third of miR-122 levels were: 2.85 (1.78-4.56; 

P<0.001) for metabolic syndrome and 2.92 (1.34-6.35; P=0.007) for T2DM (Fig. 4). Age- 

and sex-adjusted risk ratios per 1-SD higher log miR-122 were 1.59 (1.30-1.95; P<0.001) for 

metabolic syndrome and 1.39 (1.05-1.84; P=0.021) for T2DM. Risk ratios were virtually 

identical when further adjusted for socioeconomic status, smoking, physical activity, and 

alcohol consumption: 1.60 (1.30-1.96; P<0.001) for metabolic syndrome and 1.37 

(1.03-1.82; P=0.029). Risk ratios were somewhat attenuated upon further adjustment for 
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body mass index and waist-hip ratio or for ln HOMA-IR. Results were broadly similar for 

women and men, and in subgroups according to statin intake and clinical categories of 

adiposity (Supplementary Fig. 4). miR-122 was not significantly associated with new-onset 

CVD events in the overall study (RR=1.10; 0.90-1.33; P=0.350), although subgroup 

analyses indicated a possibly stronger and significant association in participants aged <60 

years compared to participants aged ≥60 years (P for interaction=0.006) (Supplementary 

Fig. 5).

Discussion

In the present study, we use a multi-dimensional ‘omics approach in a population-based 

study to identify metabolic signatures associated with miR-122. We report a number of 

important and entirely novel results based on miRNA measurements in >2000 human blood 

samples (from the 1995 and 2000 evaluations in the Bruneck Study plus ASCOT) combined 

with experimental follow-up to provide a mechanistic context as summarised in Fig. 5.

First, circulating miR-122 levels are elevated in people with prevalent metabolic syndrome 

or T2DM and correlate strongly with lipid subspecies containing saturated and 

monounsaturated fatty acids. In a prospective setting, elevated serum levels of miR-122 

antedate the manifestation of metabolic syndrome and T2DM, but not CVD. Second, serum 

levels of miR-122 positively correlate with major lipids (triglycerides, LDL- and HDL-C) in 

the general community and substantially decline with cholesterol-lowering statin therapy 

(atorvastatin 10 mg). We further corroborate this observation by in vitro and in vivo 
experiments demonstrating a reduction of miR-122 in the supernatant of atorvastatin-treated 

murine hepatocytes and in serum of atorvastatin-treated wild-type mice and confirmed 

miR-122 effects on enzymes involved in lipid metabolism in the liver. Overall, we provide 

strong evidence for circulating miR-122 being a marker of hepatic lipid metabolism.

System-wide Relations of Circulating miR-122

MiR-122, which is primarily expressed in the liver, has been suggested to regulate the 

expression of various genes associated with cholesterol and fatty acid metabolism (2). In 

mice, inhibition of miR-122 led to markedly lower plasma cholesterol levels, halted hepatic 

lipid synthesis, and enhanced hepatic fatty acid oxidation (4,5). Two studies in non-human 

primates reported similar reductions in cholesterol (6,7).

In line with these reports, our study showed that inhibition of miR-122 in mice using 

antagomiR-122 led to a down-regulated expression of genes implicated in lipid metabolism 

(Fig. 2D), such as ATP citrate lyase (Acly), microsomal triglyceride transfer protein (Mttp), 

and sterol regulatory element-binding protein 1 (Srebp-1) (26). This is further corroborated 

by the notion that miR-122 knockout mice express less Mttp, an essential enzyme that 

regulates the assembly of lipoproteins (27,28). Furthermore, our proteomic analysis of liver 

extracts from antagomiR-122-treated mice (Fig. 2E) revealed increases in carnitine O-

palmitoyltransferase 1 (CPT1A), a rate-limiting enzyme of fatty acid oxidation, that was not 

observed at the gene expression level (Fig. 2D, CPT1), and prolow-density lipoprotein 

receptor-related protein 1 (LRP1), which plays a key role in cholesterol biosynthesis (29), 

HDL secretion from hepatocytes (30), and the removal of atherogenic lipoproteins, including 
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VLDL (31). The proteomic analysis also identified a decrease in histidine triad nucleotide-

binding protein 1 (HINT1), which – based on data from Hint-1-deficient mice – is expected 

to contribute to reductions of total and esterified cholesterol (32).

These data provide mechanistic underpinning for our observation in the Bruneck Study that 

circulating miR-122 levels are positively associated with lipid subspecies that can be 

produced by hepatic de novo lipogenesis (Fig. 1A). We and others have previously shown 

that these lipid subspecies, comprised of saturated and monounsaturated fatty acids, are 

associated with a higher risk of CVD (9) and T2DM (33). We also identified strong positive 

correlations with apolipoproteins found on VLDL (apoB100, apoC1, apoC2, apoE), and 

inverse correlations with plasma apoD (present mainly in HDL) and apoA4 (a major 

component of HDL and chylomicrons) (Fig. 1B). Moreover, our comprehensive assessment 

of plasma proteins returned a positive correlation with afamin, which was previously linked 

to prevalent and new-onset metabolic syndrome and all its components (34), a positive 

correlation with complement factor H, a protein that binds malondialdehyde epitopes and 

protects from oxidative stress (35), and an inverse correlation with zinc-alpha-2-

glycoprotein, an adipokine that leads to lipid degradation and higher insulin sensitivity in 

adipocytes (36,37).

Circulating miR-122 as Novel Biomarker

In the current study, we show – for the first time – that baseline levels of miR-122 are 

associated with development of metabolic syndrome and with T2DM (Fig. 4). Notably, 

associations did not vary by degree of adiposity, a strong determinant of cardiometabolic 

risk (38,39). Statin treatment decreased both lipoprotein and miR-122 release from the liver. 

Since miR-122 is either absent from lipoproteins, including VLDL and HDL 

(Supplementary Table 4), or only present at very low levels, i.e. in LDL (40), the 

pronounced effect of statins on circulating miR-122 levels cannot be explained by effects on 

plasma lipoproteins. Instead, it is probably caused by reduced secretion of liver exosomes 

(Fig. 5), in which miR-122 has been localized in abundance (41,42). Circulating miR-122 is 

undetectable in exosome-depleted serum (42). By inhibiting cholesterol synthesis, statins 

also modulate protein prenylation (43). This posttranslational modification promotes the 

membrane localisation of proteins, in particular of Rab27 proteins that control the different 

steps of exosome secretion (24,44). Statins may reduce circulating miR-122 levels by 

inhibiting the prenylation of Rab proteins and hepatic exosome secretion. The latter might 

constitute a novel part of the beneficial pleiotropic effects of statins. This is further 

corroborated by our findings in mice, demonstrating a reduction of circulating miR-122 

levels after short-term treatment with atorvastatin without concomitant reduction in total 

cholesterol levels and reduced gene expression of Rab27a in response to antagomiR-122 

treatment, the key effector GTPase that drives the exosome-release process (Supplementary 

Fig. 3B).

Strengths and Limitations

The prospective Bruneck cohort is extremely well-characterized with a 100% follow-up and 

high-quality ascertainment of clinical endpoints and potential confounders. MiR-122 was 

measured in serum and plasma. We incorporated repeat measurements of miR-122 in our 
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statistical models, which is particularly important given that the within-person variability of 

miR-122 was high (correlation coefficient over 5 years: 0.24). In contrast to platelet-related 

miRNAs, which are reduced in diabetic patients (21,45), miR-122 levels showed positive 

associations with metabolic syndrome and T2DM and were highly correlated in serum and 

plasma. Expression data in the human liver would be a more direct measure, but, clearly, this 

is not feasible in population studies. The Bruneck Study was conducted in an entirely 

Caucasian population. Thus, it remains to be determined whether these findings equally 

apply to other ethnicities.

Conclusions

High circulating miR-122 levels correlate with complex lipids containing saturated and 

monounsaturated fatty acids that can be derived from hepatic de novo lipogenesis and an 

adverse metabolic profile. Inhibition of HMG-CoA reductase by atorvastatin reduces 

miR-122 release. Circulating miR-122 levels are associated with future development of 

metabolic syndrome and T2DM in the general population.

Supplementary material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cross-sectional correlation of serum miR-122 levels with lipid subspecies (Panel A) and 

selected proteins related to lipid metabolism (Panel B) in the Bruneck Study. In Panel A, 

lipid species are arranged by lipid class in 8 panels according to the number of total carbon 

atoms and number of double bonds. Lipid species highlighted with a yellow halo showed 

statistically significant correlations after Bonferroni-correction. For better visibility, those 

lipid species with alkyl ether linkage are shifted upwards, whereas their alkyl-ether-free 

counterparts are shifted downward. In Panel B, P values significant after Bonferroni-
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correction are shown in bold. The full panel of proteins are shown in Supplementary Figure 

2. Abbreviations: AFAM, afamin; CE, cholesteryl ester; CFAH, complement factor H; LPC, 

lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PE, 

phosphatidylethanolamine; PS, phosphatidylserine; SM, sphingomyelin; TAG, 

triacylglycerol; and ZA2G, zinc-alpha-2-glycoprotein.
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Figure 2. 
Effects of antagomiR-122 injection in mice. Liver miR-122 expression was assessed by 

Northern blotting (Panel A); expression of other hepatic miRNAs involved in lipoprotein 

metabolism (Panel B); serum cholesterol (Panel C); gene expression (Panel D); and hepatic 

proteome profile (Panel E). Two proteomics methods were used for quantitation: a label-free 

method based on spectral counting and a 10-plex experiment using TMT labelling. Proteins 

that were returned as differentially expressed by both techniques are highlighted (for details, 

see Supplementary Tables 1 & 2). Abbreviations: Acc1, acetyl-CoA carboxylase; Acly, ATP 
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citrate lyase; Aldo, aldolase; Ampk, 5' AMP-activated protein kinase; CP2AC, cytochrome 

P450 2A12; Cpt1, carnitine palmitoyltransferase 1; CPT1A, liver isoform of carnitine O-

palmitoyltransferase 1; Fasn, fatty acid synthase; GRN, granulins; HINT1, histidine triad 

nucleotide-binding protein 1; Hmgcr, HMG-CoA reductase; Ldlr, LDL receptor; LRP1, 

prolow-density lipoprotein receptor-related protein 1; Mttp, microsomal triglyceride transfer 

protein; RL23A, 60S ribosomal protein L23a; RL37A, 60S ribosomal protein L37a; RS16, 

40S ribosomal protein S16; RS18, 40S ribosomal protein S18; Scd1, Stearoyl-CoA 

desaturase-1; and Srebp, sterol regulatory element-binding protein.
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Figure 3. 
Effects of atorvastatin treatment on total cholesterol, LDL cholesterol (Panel A), and serum 

miR-122 in ASCOT participants (Panel B), serum miR-122 in mice (Panel C), and miR-122 

secretion from primary hepatocytes (Panel D).
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Figure 4. 
Association of miR-122 with new-onset metabolic syndrome and T2DM in the Bruneck 

Study. *Age, sex, socio-economic status, smoking, physical activity, and alcohol 

consumption. Asterisks indicate level of significance: *P<0.05; **P<0.01; ***P<0.001.
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Figure 5. 
Summary of the key findings.
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Table 1

Baseline characteristics and cross-sectional correlates of miR-122 in the Bruneck Study.

Variable Mean (SD) or n (%) Age- and sex-adjusted difference in miR-122 per SD or compared to 
reference (95% CI)*

P value

Questionnaire-based

Age, years 63 (11) -3% (-19, 17%)   0.753

Female sex, n (%) 405 (50%) +31% (-10, 89%)   0.153

Current smoker, n (%) 159 (20%) -22% (-51, 26%)   0.314

Physical activity, Baeke score 2.3 (0.9) +1% (-18, 24%)   0.932

Alcohol consumption, g/d 24 (31) -1% (-21, 23%)   0.919

Statin treatment, n (%) 26 (3%) -12% (-69, 151%)   0.808

Socioeconomic status

      Low, n (%) 494 (61%) [Reference]

      Middle, n (%) 176 (22%) -30% (-56, 14%)   0.150

      High, n (%) 140 (17%) +65% (-2, 177%)   0.058

Liver enzymes

Alanine transaminase, U/l 23 (13) +112% (76, 155%) <0.001

Aspartate aminotransferase, U/l 24 (9.3) +81% (51, 118%) <0.001

Adiposity measures

Body mass index, kg/m2 26 (3.9) +41% (17, 69%) <0.001

Waist-hip ratio 0.93 (0.072) +44% (17, 76%) <0.001

Markers of inflammation

Log hsCRP, mg/l -1.7 (1.0) +42% (17, 71%) <0.001

Markers of dysglycaemia

Fasting plasma glucose, mg/dl 102 (25) +23% (2, 48%)   0.030

HbA1c, % [mmol/mol] 5.6 (1.8) [38 (20)] +4% (-14, 25%)   0.704

Log HOMA-IR 1.1 (0.6) +67% (39, 101%) <0.001

Major lipids

Total cholesterol, mg/dl 230 (43) +19% (-1, 43%)   0.070

LDL cholesterol, mg/dl 145 (38) +21% (1, 46%)   0.043

HDL cholesterol, mg/dl 59 (16) -34% (-45, -21%) <0.001

Log triglycerides, mg/dl 4.8 (0.5) +62% (35, 94%) <0.001
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