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Abstract

TREM2 is an innate immune receptor expressed on the surface of
microglia. Loss-of-function mutations of TREM2 are associated with
increased risk of Alzheimer’s disease (AD). TREM2 is a type-1 protein
with an ectodomain that is proteolytically cleaved and released
into the extracellular space as a soluble variant (sTREM2), which
can be measured in the cerebrospinal fluid (CSF). In this cross-
sectional multicenter study, we investigated whether CSF levels of
sTREM2 are changed during the clinical course of AD, and in cogni-
tively normal individuals with suspected non-AD pathology (SNAP).
CSF sTREM2 levels were higher in mild cognitive impairment due
to AD than in all other AD groups and controls. SNAP individuals
also had significantly increased CSF sTREM2 compared to
controls. Moreover, increased CSF sTREM2 levels were associated

with higher CSF total tau and phospho-tau181P, which are
markers of neuronal degeneration and tau pathology. Our data
demonstrate that CSF sTREM2 levels are increased in the early
symptomatic phase of AD, probably reflecting a corresponding
change of the microglia activation status in response to neuronal
degeneration.
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Introduction

Heterozygous missense mutations in the gene encoding the trigger-

ing receptor expressed on myeloid cells 2 (TREM2) have been

recently described to significantly increase the risk of late onset

Alzheimer’s disease (AD) with an odds ratio similar to that of carry-

ing an apolipoprotein E (APOE) e4 allele (Guerreiro et al, 2013a;

Jonsson et al, 2013). Heterozygous missense mutations in TREM2

also increase the risk for other neurodegenerative diseases (Borroni

et al, 2013; Rayaprolu et al, 2013; Cuyvers et al, 2014), and

homozygous loss-of-function mutations in TREM2 cause Nasu–

Hakola disease (NHD) (Paloneva et al, 2002) and frontotemporal

dementia (FTD)-like syndrome (Guerreiro et al, 2013b), which are

both early-onset neurodegenerative diseases presenting as a frontal

syndrome. Together, these findings indicate that TREM2 may be a

common denominator in the pathogenesis of several different

neurodegenerative diseases.

TREM2 is a type-1 transmembrane glycoprotein with an

immunoglobulin-like extracellular domain, one transmembrane

domain and a short cytosolic tail (Klesney-Tait et al, 2006). It

belongs to the TREM family of innate immune receptors and is

expressed in cells of the monocytic lineage (Bouchon et al, 2001;

Schmid et al, 2002; Paloneva et al, 2003; Kiialainen et al, 2005). In

the central nervous system (CNS), it is selectively expressed by

microglia and involved in regulating phagocytosis and removal of

apoptotic neurons as well as in the inhibition of microglia proin-

flammatory response (Takahashi et al, 2005; Klesney-Tait et al,

2006; Hsieh et al, 2009; Wang et al, 2015). We have shown that

loss-of-function of TREM2 impairs the phagocytic activity of micro-

glial cells and reduces clearance of amyloid b-peptide (Ab; Klein-
berger et al, 2014), suggesting that TREM2 may play an important

role in the development of AD pathology and neurodegeneration

during the course of the disease.

TREM2 undergoes proteolytic processing, releasing its ectodo-

main into the extracellular space as a soluble variant (sTREM2) via

shedding by ADAM proteases (Wunderlich et al, 2013; Kleinberger

et al, 2014), and can be detected in human plasma and cere-

brospinal fluid (CSF) (Piccio et al, 2008; Kleinberger et al, 2014).

Piccio et al found that CSF sTREM2 levels were increased in multi-

ple sclerosis and other neurological inflammatory diseases (Piccio

et al, 2008). We described that sTREM2 was almost undetectable in

the CSF and plasma of a FTD-like patient carrying a homozygous

TREM2 p.T66M mutation. This mutation leads to misfolding of the

full-length protein, which accumulates within the endoplasmic retic-

ulum. Due to the lack of cell surface transport, shedding is dramati-

cally reduced, which explains the absence of sTREM2 in patients

with the homozygous TREM2 p.T66M mutation (Kleinberger et al,

2014). In contrast, we observed a slight decrease in CSF sTREM2

levels in AD dementia patients compared to elderly cognitively

normal subjects (Kleinberger et al, 2014). While our manuscript

was under consideration, we learned that two groups independently

found that CSF sTREM2 was increased in AD patients (Heslegrave

et al, 2016; Piccio et al, 2016). Taken together, these results suggest

that CSF sTREM2 levels are altered not only in subjects with TREM2

mutations but also in sporadic cases of neurodegenerative diseases.

In AD, amyloid plaques and neurofibrillary tangles, the major

pathological hallmarks of the disease, develop decades before the

onset of clinical symptoms (Morris et al, 1996; Braak & Braak, 1997;

Hulette et al, 1998; Price & Morris, 1999). Increased microglial

activation and neuroinflammation frequently accompanies the

early development of Ab and tau pathology (Mosher & Wyss-

Coray, 2014; Streit et al, 2014; Heneka et al, 2015; Tanzi, 2015).

Since TREM2 is a key protein involved in the activation of

microglia, the question arises whether TREM2 levels are patho-

logically altered in the early course of AD. If so, CSF sTREM2

would be an attractive biomarker candidate for tracking of the

disease and as a potential outcome parameter for future clinical

trials focusing on TREM2 and neuroinflammation. However, it is

not known whether CSF sTREM2 levels change during the dif-

ferent stages of AD, a question that we addressed in the current

study.

The main aim of this cross-sectional multicenter study was to

determine whether the levels of CSF sTREM2 change across the

continuum of AD. We tested CSF TREM2 in subjects with preclinical

AD, mild cognitive impairment (MCI) due to AD (MCI-AD), and AD

dementia and controls, defined by clinical and CSF biomarker crite-

ria as recommended by the National Institute on Aging-Alzheimer’s

Association (NIA-AA) criteria (Albert et al, 2011; McKhann et al,

2011; Sperling et al, 2011). We also tested whether CSF sTREM2

levels are associated with the core AD CSF biomarkers Ab1–42, total
tau (T-tau) and tau phosphorylated at threonine 181 (P-tau181P)

(Blennow et al, 2010). As a secondary aim, we investigated whether

CSF sTREM2 levels are altered in cognitively normal subjects with

suspected non-AD pathology (SNAP) and MCI subjects without CSF

biomarker evidence of AD pathology (MCI-noAD). SNAP is a

recently defined diagnostic category that comprises those individu-

als with abnormal neurodegeneration biomarkers (T-tau and

P-tau181P) but without evidence of underlying amyloidosis (Jack

et al, 2012) and might thus represent neurodegenerative diseases

different from AD.

Results

Study population

The current study included 150 controls and 63 preclinical AD, 111

MCI-AD as well as 200 AD dementia subjects (Table 1). The diag-

nostic criteria of each group were defined according to the NIA-AA

criteria, which uses a combination of clinical diagnosis and the CSF

biomarker profile including Ab1–42, T-tau, and P-tau181P (Albert

et al, 2011; McKhann et al, 2011; Sperling et al, 2011). Decreased

Ab1–42 was a requisite for preclinical AD, and the combination of

decreased Ab1–42 and increased T-tau and/or P-tau181P for MCI-AD

and AD dementia. The control group consisted of asymptomatic

cognitively normal individuals with all three AD CSF core biomark-

ers within the normal range. The diagnostic criteria are described in

more detail in the methods section. The cutoff values to define

abnormal CSF values for each of the three AD CSF core biomarkers

were defined for each center and are displayed in

Appendix Table S1 (Antonell et al, 2011; Alcolea et al, 2014; Van

der Mussele et al, 2014).

The demographic and CSF core biomarkers values of control,

preclinical AD, MCI-AD, and AD dementia subjects are shown in

Table 1. All patients in the AD continuum group were older and had

a higher frequency of APOE e4 carriers than the control group.
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Age and APOE e4 status did not differ between the three AD

subcategories. As expected, groups differed with regard to their CSF

biomarkers profiles. There were no differences in gender between

groups.

CSF sTREM2 is influenced by age

Age was positively correlated with CSF sTREM2 in the pooled group

of subjects (Pearson r = +0.391, P < 0.0001). The correlation was

still significant when tested within each diagnostic group, including

the control group (Pearson r = +0.177, P = 0.030), preclinical AD

(Pearson r = +0.510, P < 0.0001), MCI-AD (Pearson r = +0.289,

P = 0.002), and AD dementia (Pearson r = +0.310, P < 0.0001)

(Fig 1). Levels of CSF sTREM2 were not significantly affected by

gender (F1,521 = 0.1, P = 0.719) nor by APOE e4 status (F1,377 = 0.4,

P = 0.552), controlled by age and center, when tested within the

entire sample or each diagnostic group.

Increase of CSF TREM2 levels in MCI due to AD

CSF sTREM2 differed between diagnostic groups, controlled for age,

gender, and center (F3,517 = 4.9, P = 0.002). Levels of CSF sTREM2

were significantly higher in MCI-AD than in controls (P = 0.002)

and AD dementia (P = 0.013) groups. There was a tendency for

higher CSF sTREM2 levels in MCI-AD compared to preclinical AD

(P = 0.062). No other group differences were found (Fig 2 and

Table 2). In order to confirm the robustness of the results, we also

calculated the means and 95% CI of CSF sTREM2 in each diagnostic

group based on 1,000 bootstrap samples and the group comparison

based on the overlap of the 95% CI confirmed the significant

increase of CSF sTREM2 in MCI-AD compared to the control and AD

dementia groups.

Given that the control group was significantly younger, we took

additional measures to ensure that the group differences in CSF

TREM2 between the control and the MCI-AD groups were not attri-

butable to age differences. We repeated the regression analysis, this

time restricted to those subjects who were 65 years or older. In this

subgroup of older subjects, CSF sTREM2 remained significantly

increased in MCI-AD compared to the control group (P = 0.0005),

despite the fact that the ages between the two groups were not

significantly different (Appendix Table S2).

From these findings, we conclude that CSF sTREM2 is increased

in individuals with MCI-AD.

Association between CSF TREM2 levels and core CSF
biomarkers of AD

We studied the relationship between CSF sTREM2 and the core

AD CSF biomarkers using linear mixed-effects models, controlled

for age, gender, and center. In the whole sample of subjects

including the controls and all the AD continuum groups, increased

CSF sTREM2 was associated with higher levels of T-tau

(b = +0.336, P = 0.001) (Fig 3A and B) and P-tau181P (b = +0.370,

P = 0.001) (Fig 3C and D), and lower levels of Ab1–42 (b = �0.098,

P = 0.014) (Fig 3E and F). Within each diagnostic group, the posi-

tive association between CSF sTREM2 and T-tau or P-tau181P was

present (Fig 3A–D), except for the association between CSF

sTREM2 and T-tau in the MCI-AD group (b = +0.184, P = 0.098).

On the other hand, higher CSF sTREM2 levels showed a tendency

to be associated with higher Ab1–42 in the control group

(b = +0.159, P = 0.060), but with lower Ab1–42 in the MCI-AD

group (b = �0.291, P = 0.002) (Fig 3E and F). We conclude that

higher CSF sTREM2 correlates with higher levels of markers of

neuronal injury and tau pathology (i.e. T-tau and P-tau181P)

Table 1. Demographic and clinical characteristics of the control and AD continuum groups.

Variable Control (n = 150)

AD continuum (n = 374)

P-value (group effect)Preclinical AD (n = 63) MCI-AD (n = 111) AD dementia (n = 200)

Females, % 59 60 60 62 0.940

APOE e4 carriers, % 21 58* 52* 62* <0.0001

Age, years 62.4 (11) 70.8 (11)* 74.3 (9)* 73.8 (10)* <0.0001

CSF biomarkers

Ab1–42, pg/ml 796 (159) 414 (98)* 426 (107)* 408 (113)* <0.0001

T-tau, pg/ml 218 (81) 450 (428)† 737 (410)*,‡ 920 (564)*,§,¶ <0.0001

P-tau181P, pg/ml 43 (12) 66 (39)* 95 (32)*,§ 102 (44)*,§ <0.0001

Ab, amyloid b-peptide; AD, Alzheimer’s disease; APOE, apolipoprotein E; CSF, cerebrospinal fluid; MCI-AD, MCI due to AD; P-tau181P, tau phosphorylated at
threonine 181; T-tau, total tau.
Data are expressed as percent (%) or mean (SD), as appropriate. Probability values (P) denote differences between groups.
APOE genotype was available in 103 controls (69%), 39 preclinical AD (62%), 89 MCI-AD (80%), and 148 AD dementia (74%). Only Ab1–42 values measured by the
INNOTEST ELISA are included; Ab1–42 values from Bonn group (measured with MSD platform) are excluded.
Chi-square statistics were used for the group comparisons of gender and APOE e4 carrier. One-way ANOVA was used to compare age and CSF biomarkers
between groups. The P-values indicated in the last column refer to the group effects in these tests. Significant group effects were followed by Bonferroni-
corrected pair-wise post hoc tests.
*P < 0.0001 versus controls.
†P = 0.002 versus controls.
‡P = 0.0001 versus preclinical AD.
§P < 0.0001 versus preclinical AD.
¶P = 0.002 versus MCI-AD.
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suggesting an early response of TREM2 to first symptoms of

neurodegeneration.

CSF TREM2 levels in cognitively normal SNAPs and in
MCI-noAD subjects

As a secondary aim, we studied CSF samples from cognitively

normal individuals with SNAP (n = 39), that is, individuals with

abnormal neurodegeneration biomarkers (T-tau and/or P-tau181P)

without the presence of significant amyloid pathology (as

measured by abnormally decreased Ab1–42) (Jack et al, 2012). We

compared them with the rest of cognitively normal individuals,

namely controls and preclinical AD group. Interestingly, we

found that CSF sTREM2 levels differed between groups

(F2,242 = 7.5, P = 0.0007) and were particularly increased in the

SNAP group compared to the control (P = 0.0004) and the

preclinical AD group (P = 0.024) (Fig 4A). These findings may

indicate that an increase in CSF sTREM2 levels in response to

neuronal injury (as measured by CSF tau levels) can occur with-

out amyloidosis.

Next, we tested CSF TREM2 levels in subjects clinically diag-

nosed with MCI but showing no CSF biomarker profile of AD pathol-

ogy (MCI-noAD), that is, biomarkers do not indicate a high

likelihood that the MCI syndrome is due to AD (Albert et al, 2011).
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Figure 1. CSF sTREM2 is associated with age.
Scatter plot representing CSF sTREM2 as a function of age in the different
diagnostic groups. Solid lines indicate the linear regression for each of the groups;
the dashed line indicates the linear regression within the entire sample. P-values
were assessed by Pearson product-moment correlations..

Figure 2. CSF sTREM2 levels in the different diagnostic groups.
Scatter plot showing levels of CSF sTREM2 (log-transformed) in the different
diagnostic groups. Red bars represent the mean and the 95% CI. P-values were
assessed by a linear mixed model adjusted by age and gender (fixed effects) and
center (random effects).

Table 2. Summary of the linear mixed model analysis with CSF sTREM2 as outcome variable and diagnostic group, gender, age, and center as
predictor variables.

Diagnostic group Unadjusted mean 95% CI Adjusted mean* 95% CI n

Control �0.367 �0.398, �0.337 �0.294 �0.387, �0.201 150

Preclinical AD �0.289 �0.368, �0.211 �0.273 �0.371, �0.175 63

MCI-AD �0.149†,‡§ �0.191, �0.106 �0.171¶,**,†† �0.265, �0.077 111

AD dementia �0.259† �0.273, �0.188 �0.261 �0.353, �0.168 200

AD, Alzheimer’s disease; CI, confidence interval; CSF, cerebrospinal fluid; MCI-AD, MCI due to AD.
CSF sTREM2 levels are expressed in their log-transformed values. They are shown as unadjusted means and 95% CI (P-values calculated by one-way ANOVA) and
adjusted (*) for gender and age (fixed effects) and center (random effects) in a linear mixed model.
Adjustments based on age mean = 70.26. Post hoc comparisons (Bonferroni):
†P < 0.0001 versus control.
‡P = 0.004 versus preclinical AD.
§P = 0.048 versus AD dementia.
¶P = 0.002 versus control.
**P = 0.062 versus preclinical AD.
††P = 0.013 versus AD dementia.
Note that the increase of CSF sTREM2 in MCI-AD compared to the control and the AD dementia groups is still significant after adjusting by gender, age, and
center.
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We compared the MCI-noAD group with the MCI-AD group and the

controls, and we observed that the levels of CSF sTREM2 differed

within these three groups (F2,349 = 16.7, P < 0.0001). Particularly,

MCI-noAD patients showed lower levels of CSF sTREM2 compared

to the MCI-AD patients (P < 0.0001) but were similar to those of

controls (Fig 4B).
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Figure 3. Association of CSF sTREM2 with the AD CSF core biomarkers.

A–F Scatter plots representing association of CSF sTREM2 with T-tau (A, B), P-tau181P (C, D), and Ab1–42 (E, F) in the control and AD continuum groups. Each point
depicts the value of CSF sTREM2 of a subject, and the solid lines indicate the regression line for each of the groups calculated by a linear mixed-effects model
adjusted by age and gender (fixed effects) and center (random effects). The standardized regression coefficients (b) and the P-values are also shown. The sample
contained some extreme values of T-tau and P-tau181P. We did not exclude any value, but we performed a bootstrapping for each association in order to ensure
that the associations were not driven by these extreme values.

EMBO Molecular Medicine Vol 8 | No 5 | 2016 ª 2016 The Authors

EMBO Molecular Medicine CSF sTREM2 is increased in MCI-AD Marc Suárez-Calvet et al

470

Published online: March 3, 2016 



When restricting the sample to subjects who were 65 years or

older, the results of the regression analysis confirmed that CSF

sTREM2 levels were significantly higher in SNAPs than in the

control group (P = 0.004) and in MCI-AD than MCI-noAD

(P < 0.0001), suggesting that the group differences in CSF TREM2

levels are not due to age differences.

Discussion

In the present study, we demonstrate that the levels of CSF sTREM2

are elevated in MCI-AD compared to controls and AD dementia

subjects. We also found that CSF sTREM2 levels were closely associ-

ated with markers of neuronal injury and tau pathology (T-tau and

P-tau181P), even if there is no evidence of underlying amyloidosis as

shown in the SNAP group.

While our manuscript was under consideration, two related

studies were published (Heslegrave et al, 2016; Piccio et al, 2016).

Both of them measured CSF sTREM2 in an AD case–control data

set and found that sTREM2 is slightly increased in CSF of AD

patients. We, in contrast, analyzed CSF sTREM2 in different stages

of AD, from preclinical to dementia stages, as a proxy of longitudi-

nal changes. We found that the levels of CSF sTREM2 dynamically

change during the AD continuum and peak at the MCI stage of

AD. In the dementia stage, CSF sTREM2 levels are still higher than

in the control group but that increase does not reach statistical

significance after adjusting by age. Thus, our study does not only

expands the previous results in a larger sample, but it also

provides the unique finding that the highest levels of CSF sTREM2

occur in early stages of AD progression, coinciding with the

appearance of the first symptoms. A similar pattern of change, that

is a peak in earlier stages of the disease, has been described for

IL-18 and MCP-1 in plasma and in IP-10 in CSF (Galimberti et al,

2006a,b; Motta et al, 2007; Craig-Schapiro et al, 2011; Brosseron

et al, 2014). Previously, we described that AD dementia patients

show a mild but significant decrease in CSF sTREM2 compared to

controls (Kleinberger et al, 2014), while two recent studies

reported an increase of CSF TREM2 in AD dementia (Heslegrave

et al, 2016; Piccio et al, 2016). In the current study, we did not

find any significant difference between controls and AD dementia.

The likely reason for this discrepancy between studies is that AD

dementia severity may have varied between studies.

Our results of increased sTREM2 levels in MCI-AD raise the

question if they are a cause or consequence of disease progres-

sion. Although this cannot be answered currently, we find a

strong association between CSF sTREM2 levels and P-tau181P and

T-tau, markers of neuronal and axonal cell injury and neurofibril-

lary tangles, but only very little if any correlation to Ab1–42.
Moreover, CSF sTREM2 levels were also elevated in the SNAP

group, which suggests that CSF sTREM2 increases with neuronal

injury even in the absence of amyloid pathology. These findings

suggest that changes of CSF sTREM2 may indeed be associated

with neuronal injury and are consistent with studies that propose

that TREM2 recognizes apoptotic neurons and mediates their

A B

Figure 4. CSF sTREM2 levels in cognitively normal SNAPs and in MCI-noAD.

A Scatter plot showing CSF sTREM2 levels across different groups of cognitively normal individuals: SNAP, suspected non-AD pathophysiology (n = 39); control subjects
(n = 150); and preclinical AD (n = 63).

B Differences in CSF sTREM2 in MCI-AD (n = 111) compared to MCI-noAD (n = 103) and controls (n = 150).

Data information: The red bars represent the mean and the 95% CI. P-values were assessed by a linear mixed-effects model adjusting by age and gender (fixed effects)
and center (random effect).
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phagocytosis (Takahashi et al, 2005; Wang et al, 2015). Given the

strong association between CSF levels of sTREM2, P-tau181P, and

T-tau, one might argue that these markers provide redundant

information. In this regard, it is important to highlight the

completely different origin of these two proteins. While CSF

sTREM2 is physiologically produced and shed by microglia, T-tau

and P-tau181P are passively released into CSF by dying neurons.

Moreover, sTREM2 production depends on its active transport to

the cell surface, where shedding takes place (Kleinberger et al,

2014). This makes CSF sTREM2 a potential candidate of micro-

glial activity. Increased sTREM2 due to microglial activation is

consistent with the findings that TREM2 expression (Matarin

et al, 2015) and GE-180 uptake (Liu et al, 2015) are increased in

elderly mouse models of AD. If the early increase of sTREM2

reflects, a protective or detrimental response remains to be

shown. Data obtained from AD mouse models crossed with

TREM2 knockouts are controversial by demonstrating either an

increase or a decrease of amyloid plaque load (Jay et al, 2015;

Wang et al, 2015). However, our finding that CSF sTREM2

increases during normal aging may be in line with a protective

response to rather mild neuroinjury. Moreover, dramatically

reduced CSF levels of sTREM2 in NHD patients with the T66M

mutations (Kleinberger et al, 2014; Piccio et al, 2016) are also in

favor of a protective role of sTREM2. In that regard, misfolding

of mutant TREM2 prevents its maturation and consequently

microglial phagocytosis, which depends on the presence of full-

length TREM2 at the plasma membrane (Kleinberger et al, 2014).

However, the AD-associated R47H mutations did not show

decreased shedding in cellular models (Kleinberger et al, 2014)

and was even found to be increased in CSF samples of carriers

(Piccio et al, 2016). This clearly demonstrates that disease-

associated TREM2 mutations may have different and seemingly

opposite cellular mechanisms. However, increased shedding as

observed by Piccio et al may also be consistent with reduced cell

surface TREM2 and the corresponding functions of membrane-

associated TREM2.

The strengths of the current study are the large sample size

and the use of both clinical and CSF biomarkers data as a diag-

nostic criteria. This allowed us to study patients in preclinical

stages of AD and to enrich the sample with patients with AD

underlying pathology. Many of the inconsistencies observed in

biomarkers for neuroinflammation in other studies may be due to

the fact that the sample was only clinically characterized and

other pathologies besides AD may have been accidentally

included. However, our study also has some limitations. First, we

found a significant variability in the CSF sTREM2 measurements

between centers. Taking into account that the ELISA measure-

ments were performed in the same laboratory, there may be some

pre-analytical issues that may influence its measurements that

need further investigation. In order to control for the center effect,

we include the center as a random covariate in a linear mixed

model analysis. Second, we did not screen the included subjects

for possible TREM2 mutations. However, it is very unlikely that

the possibility of TREM2 mutations in the current patient sample

affected our results because TREM2 mutations show a low

prevalence in the population and even in AD dementia patients

(Guerreiro et al, 2013a; Jonsson et al, 2013). Third, this is a

cross-sectional study, thereby limiting any conclusion about

progression. The results should thus be replicated in subjects with

longitudinal data to analyze whether CSF sTREM2 levels are asso-

ciated with disease progression. Such a study may be performed

with the DIAN cohort.

Materials and Methods

Study design and participants

We conducted a cross-sectional multicenter study in which we stud-

ied individuals from five experienced European memory clinics

(Appendix Table S3 and S4). The clinical assessment, the lumbar

puncture, and the AD CSF core biomarker measurements (Ab1–42,
T-tau, and P-tau181P) were performed in each of the centers. Taken

into account that our aim was to study CSF sTREM2 in different

stages of AD, we enriched our sample with AD patients that had

both the clinical phenotype of AD and the CSF biomarker profile of

AD. In previous studies, the measurement of the AD CSF core

biomarkers has clearly demonstrated to increase the accuracy of the

diagnosis of AD, to predict whether AD is the underlying pathology

responsible of the cognitive symptoms and has shown to be valu-

able in detecting the earlier stages of the disease (Clark et al, 2003;

Shaw et al, 2009; Molinuevo et al, 2014). Likewise, the normality of

the AD CSF core biomarkers is useful to exclude underlying

amyloidogenesis and/or neurodegeneration and hence recruit a

more specific control group. Therefore, the diagnostic criteria of the

present study were based both on the clinical diagnosis and on the

AD CSF core biomarker profile, following NIA-AA recommendations

(Albert et al, 2011; McKhann et al, 2011; Sperling et al, 2011). The

cutoff values to define abnormal CSF values for each biomarker

were defined for each center and are displayed in the

Appendix Table S1.

The control group consisted of asymptomatic and cognitively

normal elderly subjects who were recruited by different strategies

depending on the centers and described in detail in the

Appendix Supplementary Methods. However, all controls fulfilled at

least the following criteria: (i) no cognitive complaints (hence,

subjective cognitive decline, SCD, were not included); (ii) cognitive

deterioration was ruled out after evaluation by a neurologist and/or

by means of neuropsychological screening; (iii) no evidence of

stroke, neuroinflammatory, or neurodegenerative diseases according

to the evaluation by a neurologist; (iv) normal levels of all three AD

CSF core biomarkers. The control group also contained 22 patients

with psychiatric or other neurological diseases unrelated to the CNS

(see Appendix Supplementary Methods for detailed description of

the control group).

Following the NIA-AA criteria (Sperling et al, 2011), we defined

preclinical AD in terms of normal cognitive test performance as

cognitively normal subjects (asymptomatic or with SCD) and

decreased CSF Ab1–42. The classification SCD was assigned to

subjects presenting with memory complains but without an objec-

tive cognitive impairment. We did not use T-tau or P-tau181P as

criteria in this group in order to also include the earliest preclinical

AD stage characterized by decreased Ab1–42 but not yet increased

T-tau or P-tau181P.

Patients with mild cognitive impairment due to AD (MCI-AD)

were classified according to the NIA-AA criteria (Albert et al,
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2011). In brief, these subjects were clinically diagnosed as MCI

(following standard criteria) (Winblad et al, 2004) or with

CDR = 0.5 or CDR-SOB = 0.5–4, in combination with decreased

Ab1–42 and increased T-tau and/or P-tau181P. Thus, the criteria for

“MCI due to AD” of high likelihood were fulfilled (Albert et al,

2011). Likewise, AD dementia was defined following NIA-AA crite-

ria (McKhann et al, 2011) for probable AD, with the requirment of

decreased Ab1–42 and increased T-tau and/or P-tau181P. Therefore,

the criteria for probable AD dementia with high evidence of AD

pathophysiological process were fulfilled (McKhann et al, 2011).

All clinical diagnoses were made by neurologists with expertise on

neurodegenerative diseases. We did not include age as an inclu-

sion criterion since we did not know a priori if CSF sTREM2 was

influenced by age. However, all analyses were adjusted by age.

In addition to the subjects included in the main analysis, we also

received and measured CSF samples of subjects who did not fulfill

the diagnostic criteria for the control group or preclinical AD, MCI-

AD, or AD dementia groups. These samples comprise cognitively

normal subjects with increased T-tau and/or P-tau181P (cognitively

normal SNAPs) (Jack et al, 2012) and clinically diagnosed MCI

subjects who did not fulfill the NIA-AA criteria for “MCI due to AD”

with high likelihood, namely they did not accomplish the requisite

of decreased Ab1–42 in combination with increased T-tau and/or

P-tau181P, and referred in the text as MCI-noAD. Appendix Tables S3

and S4 depict a complete list of the groups along with summary

statistics of their demographic and clinical data.

In total, we studied CSF of 706 individuals, but we excluded

40 of them from the analysis due to different reasons: (i) miss-

ing data in 30 subjects, since we only included those subjects

for which the following data were available: age, gender, clinical

diagnosis, and CSF levels of Ab1–42, T-tau, and P-tau181P; the

excluded subjects did not have different CSF sTREM2 levels than

the rest of the participants; (ii) seven subjects had a CSF

sTREM2 measurement in the ELISA with an intraplate coefficient

of variation (CV) > 15%; (iii) 1 control and 2 AD dementia

subjects were considered as outliers defined as CSF sTREM2

levels > 3 standard deviations (SD) below or above the group

mean CSF sTREM2 level. Among the 666 samples analyzed, 374

of them fulfilled the NIA-AA criteria for one of AD continuum

stages (including 63 preclinical AD, 111 MCI-AD, and 200 AD

dementia) and 150 were considered as controls. APOE was geno-

typed in these patients by standard methods in each participat-

ing center, and it was available in 74% of the subjects. The

sample studied also contained the following diagnosis: cogni-

tively normal SNAPs (n = 39) and MCI-noAD (n = 103).

CSF collection and biochemical procedures

CSF samples were obtained by lumbar puncture following standard

procedures, collected in polypropylene tubes, and immediately

frozen at �80°C until use. All centers participating use a similar

standardized operating procedure (SOP) for pre-analytical sample

handling and follow international consensus recommendations

(Blennow et al, 2010; Vanderstichele et al, 2012).

The values of Ab1–42, T-tau, and P-tau181P were provided by

each participating center; all of them have experience in CSF

biomarker determination and have participated in the Alzheimer’s

Association external quality control program (Mattsson et al,

2011) and/or the Alzheimer’s Biomarkers Standardization Initia-

tive (ABSI) for CSF biomarkers (Molinuevo et al, 2014). In all

centers, these biomarkers were measured by the commercially

available INNOTEST ELISA kits for Ab1–42 (INNOTEST

b-amyloid1–42; Fujirebio Europe), T-tau (INNOTEST hTAU Ag;

Fujirebio Europe), and P-tau181P (INNOTEST Phospho-Tau181P;

Fujirebio Europe), except for the Bonn group that measured

Ab1–42 and T-tau with the MesoScale Discovery platform (MSD,

Gaithersburg, MD, USA). As already reported, Ab1–42 measure-

ments were higher using the MSD platform (Mattsson et al,

2011). Therefore, we excluded them in the association analysis

between CSF sTREM2 and Ab1–42.

Soluble TREM2 (sTREM2) measurement

CSF sTREM2 was measured by an ELISA previously established by

our group using the MSD Platform (Kleinberger et al, 2014). The

characteristics of the ELISA are described in detail in the

Appendix Supplementary Methods. All the samples were measured

in duplicate, and the operator was blinded to the clinical diagno-

sis. The mean intraplate CV was 2.9% and the interplate CV

12.9%. Duplicate measures with an intraplate CV > 15% were

discarded. A dedicated CSF sample (internal standard, IS) was

loaded in all plates, and in order to account for the interplate vari-

ability, all the measurements were expressed in relation to the IS

of each plate. The absolute values (ng/ml) are reported in the

Appendix Table S3.

Statistical analysis

Differences in the demographic data and the CSF core biomarkers

between diagnostic groups were assessed by Pearson chi-square test

for categorical variables, and one-way ANOVA for continuous vari-

ables followed by Bonferroni post hoc tests. The association between

CSF sTREM2 and age was studied with Pearson product-moment

correlation test.

To investigate the differences in CSF sTREM2 between the

diagnostic groups or other group categories (gender, APOE e4
status), we first log10-transformed the outcome variable (CSF

sTREM2) to approach the assumptions of Gaussian normal distribu-

tion. In order to assess whether there are differences in CSF sTREM2

levels between control, preclinical AD, MCI-AD, and AD dementia

groups, we performed a linear mixed-effects regression analysis

with CSF sTREM2 as dependent variable and diagnostic group,

gender, and age as independent fixed variables. To control for the

intercenter variation, center was introduced in the mixed model as a

random intercept effect. Post hoc tests were used for pair-wise

comparisons of CSF TREM2 levels between the diagnostic groups,

using Bonferroni correction. In order to confirm the robustness

of the results, we also calculated the CSF sTREM2 means and

95% confidence intervals (CI) in each diagnostic group by boot-

strapping with 1,000 resampling iterations. The same approach was

implemented for assessing differences in sTREM2 between the

SNAP and the MCI-noAD groups. The association of CSF sTREM2

and the AD CSF core biomarkers were also studied with a linear

mixed-effects model with age and gender as a fixed effects and the

center as a random effect. The standardized regression coefficients

(b) are reported. In order to rule out that the associations were
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driven by extreme values, the P-values were again calculated by

bootstrapping.

Statistical analysis was performed in SPSS IBM, version 20.0,

statistical software, and the free statistical software R (http://

www.r-project.org/). All tests were two-tailed, with a significant

level of a = 0.05. Figures were built using GraphPad Prism or the

free statistical software R.

Patient consent

All participants or their relatives gave their written consent. The

ethics committee at each center approved the study and was in

accordance with the Declaration of Helsinki.

Expanded View for this article is available online.
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