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Background: Genome-wide association studies (GWAS) have identified 18 loci associated with serous ovarian cancer (SOC)
susceptibility but the biological mechanisms driving these findings remain poorly characterised. Germline cancer risk loci may be
enriched for target genes of transcription factors (TFs) critical to somatic tumorigenesis.

Methods: All 615 TF-target sets from the Molecular Signatures Database were evaluated using gene set enrichment analysis
(GSEA) and three GWAS for SOC risk: discovery (2196 cases/4396 controls), replication (7035 cases/21 693 controls; independent
from discovery), and combined (9627 cases/30 845 controls; including additional individuals).

Results: The PAX8-target gene set was ranked 1/615 in the discovery (PGSEAo0.001; FDR¼ 0.21), 7/615 in the replication
(PGSEA¼ 0.004; FDR¼ 0.37), and 1/615 in the combined (PGSEAo0.001; FDR¼ 0.21) studies. Adding other genes reported to
interact with PAX8 in the literature to the PAX8-target set and applying an alternative to GSEA, interval enrichment, further
confirmed this association (P¼ 0.006). Fifteen of the 157 genes from this expanded PAX8 pathway were near eight loci associated
with SOC risk at Po10� 5 (including six with Po5� 10� 8). The pathway was also associated with differential gene expression after
shRNA-mediated silencing of PAX8 in HeyA8 (PGSEA¼ 0.025) and IGROV1 (PGSEA¼ 0.004) SOC cells and several PAX8 targets near
SOC risk loci demonstrated in vitro transcriptomic perturbation.

Conclusions: Putative PAX8 target genes are enriched for common SOC risk variants. This finding from our agnostic evaluation is
of particular interest given that PAX8 is well-established as a specific marker for the cell of origin of SOC.
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Epithelial ovarian cancer (OC) is the most common cause of
gynaecological cancer death in the United Kingdom (Cancer
Research UK, 2016). The high mortality associated with the disease
is in part because it is often diagnosed at an advanced stage and a
better understanding of germline genetic predisposition to OC
may eventually lead to precision screening and earlier diagnosis
(Bowtell et al, 2015). Genome-wide association studies (GWAS)
have so far identified 18 loci associated with susceptibility to all
invasive OC or to its most common histological subtype, serous
OC (SOC), that accounts for B70% of all cases (Song et al,
2009; Bolton et al, 2010; Goode et al, 2010; Bojesen et al, 2013;
Couch et al, 2013; Permuth-Wey et al, 2013; Pharoah et al,
2013; Kuchenbaecker et al, 2015). Post-GWAS studies that
integrate molecular phenotypes with GWAS findings are
essential to elucidate the function of the known loci in SOC
development and to unravel the potential role of loci that just fail
to reach the threshold for genome-wide statistical significance
(Po5� 10� 8; Freedman et al, 2011; Kar et al, 2015; Lawrenson
et al, 2015).

The vast majority of single-nucleotide polymorphisms (SNPs)
associated with cancer susceptibility lie in non-coding regions
of the genome and so do not have any impact on protein
structure and function. A growing body of evidence suggests that
many inherited common risk variants instead fall into non-
coding regulatory elements, such as enhancers or transcription
factor (TF)-binding sites (Sur et al, 2013). Different alleles of
these SNPs impact the biological activity of the regulatory
elements and thus modify expression of a local (cis-acting) target
gene or genes.

Expression of many TFs occur in a tissue-specific manner, and
binding sites and transcriptional target genes for such lineage-
specific TF drivers of cancer can be enriched at risk loci, also in a
tissue-specific manner. For example, breast cancer risk SNPs are
enriched for binding sites of the TFs ESR1 and FOXA1 in breast
cancer cells while prostate cancer risk variants are enriched for
androgen receptor-binding sites in prostate cells (Cowper-Sal lari
et al, 2012; Lu et al, 2012; Jiang et al, 2013; Chen et al, 2015).
However, for SOC, similar links between TFs and genetic risk have
not been evaluated. This is partly because the TF-target gene
networks active in SOC and SOC precursor cells are poorly
characterised. Moreover, genome-wide TF-binding sites have not
been profiled by chromatin immunoprecipitation combined with
sequencing (ChIP-Seq) in SOC precursor and SOC tissues by
initiatives such as the Encyclopedia of DNA Elements and the
Nuclear Receptor Cistrome projects that enabled the correspond-
ing studies for breast and prostate cancers (Tang et al, 2011;
ENCODE Project Consortium, 2012).

In the absence of such data, we searched for an in silico
resource that would allow an agnostic evaluation of association
between putative target genes of many different TFs and
susceptibility to SOC. The Molecular Signatures Database
(MSigDB) is a compendium of annotated functional pathways
that includes 615 TF-target gene sets (Subramanian et al, 2005).
All genes in each set share the same upstream cis-regulatory
motif that is a predicted binding site for a particular TF and
they thus represent the inferred target genes of that TF. The
motifs themselves are regulatory motifs of mammalian TFs
derived from the TRANSFAC database (Matys et al, 2006). In this
study, we undertook pathway analysis using gene set enrichment
(Subramanian et al, 2005) to test for overrepresentation of signals
associated with SOC risk in these 615 TF-target gene sets using the
two largest SOC GWAS data sets currently available for discovery
and for independent replication. We further confirmed our top
replicated gene set – targets of the TF PAX8 – using an alternative
pathway analysis approach and used in vitro transcriptomic
modelling to demonstrate perturbation of this gene set in the
cellular context of SOC.

MATERIALS AND METHODS

Discovery, replication, and combined study populations. The
discovery pathway analysis was performed on a meta-analysis of a
North American and UK phase 1 GWAS of 2196 SOC cases and
4396 controls. The replication pathway analysis used data
from 7035 SOC cases and 21 693 controls that were independent
of the discovery participants and obtained from 43 case-control
studies genotyped under the Collaborative Oncological Gene-
environment Study (COGS) project. The two GWAS and the
COGS studies have been described previously (Song et al, 2009;
Permuth-Wey et al, 2011; Pharoah et al, 2013). The combined
pathway analysis was based on a total of 9627 SOC cases and
30 845 controls from a meta-analysis that included the North
American and UK GWAS, the COGS, and additional cases and
controls from the Ovarian Cancer Association Consortium
(OCAC) as reported previously (Kuchenbaecker et al, 2015). All
participants were of European ancestry, provided informed
consent, and had been recruited under protocols approved by a
local ethics committee.

Single-nucleotide polymorphism data. The discovery, replica-
tion, and combined pathway analyses used summary findings
(P-values) for association between SNP germline genotype and SOC
susceptibility in the respective study populations. The discovery
stage included 2 508 744 SNPs that had either been genotyped or
imputed with imputation accuracy, r240.3 and had a minor allele
frequency (MAF)41% in both the North American and the
UK GWAS. Samples were genotyped on Illumina (San Diego,
CA, USA) platforms (317K/550K/610K) and imputed into the
HapMap II (release 22) Utah residents with Northern and
Western European ancestry (CEU) reference panel. As with most
gene-based common variant association tests (Petersen et al,
2013), the gene-ranking procedure described below (Saccone
et al, 2007; Christoforou et al, 2012) had been developed for
HapMap-imputed GWAS and this guided our choice of HapMap-
imputed SNP data over the more heavily correlated 1000
Genomes-imputed SNP data, which were also available. The
replication stage was based on summary findings from COGS for
a subset of 2 421 023 SNPs out of the B2.5 million SNPs from the
discovery stage that had either been genotyped on the Illumina
iCOGS custom array or imputed into the 1000 Genomes (March
2012) European reference panel with r240.3 and had a
MAF41% in the COGS studies. The combined pathway scan
was also based on data for the same subset of SNPs but from
association analysis in the combined study population. Sample
and genotyping quality control, imputation, association- and
meta-analysis steps for generating these three data sets have been
described previously (Song et al, 2009; Permuth-Wey et al, 2011;
Pharoah et al, 2013; Kuchenbaecker et al, 2015).

Gene-set enrichment analysis. Pathway analysis was conducted
using the Preranked tool in the GSEA software (version 2.2.1;
(Subramanian et al, 2005)) with default settings, 1000 permuta-
tions (unless otherwise specified), and no restrictions imposed on
the size of gene sets that could be included. GSEA requires a list of
genes ranked by any metric and a collection of annotated biological
pathways or gene sets.

All 615 TF target genes sets (containing between 5 and 2657
genes; median¼ 219 genes) annotated in the Molecular Signatures
Database (MSigDB version 5.0-C3; www.broadinstitute.org/gsea/
msigdb) were tested in the GSEA. Each of these gene sets
represents a group of genes that share a single TF-binding site
motif defined in the TRANSFAC database (version 7.4; www.gene-
regulation.com; (Matys et al, 2006)). The gene sets are named after
the corresponding TRANSFAC TF-binding site matrix identifier
and additional details of their curation and nomenclature is
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available online (www.broadinstitute.org/cancer/software/gsea/
wiki/index.php/MSigDB_collections#Transcription_factor_targets_.
28TFT.29).

The ranked list of genes for GSEA was generated from the
genome-wide SNP data by the following steps: (1) start and end
positions for 23 161 genes that were unambiguously mapped were
downloaded using R version 3.0.3 (Vienna, Austria; TxDb.Hsapien-
s.UCSC.hg19.knownGene: Annotation package for TxDb object(s).
Version 2.8.0); (2) all SNPs that lay between these start and end
positions were assigned to the corresponding genes; (3) the most
significant P-value among all SNPs within the boundaries of each
gene was adjusted for the number of SNPs in the gene by a
modification of Sidak’s correction (Saccone et al, 2007; Christoforou
et al, 2012) that has been shown to reduce the effect of gene size on
the P-value and account for correlations due to linkage disequilibrium
between SNPs (Segrè et al, 2010); (4) the genes were ranked in
descending order of the negative logarithm (base 10) of the most
significant P-value (after adjustment). These steps were applied to
SNPs and their P-values from the discovery (19 540 genes contain-
ingX1 SNP), replication, and combined data (19 364 genes contain-
ingX1 SNP). Quantile–quantile plots of these gene-level P-values
were plotted for each data set (Supplementary Figure S1).

PAX8 target genes and pathway. The MSigDB gene set for
putative targets of the TF PAX8, termed V$PAX8_B, contained
106 genes (Supplementary Table S1). These genes were grouped
together because their promoter regions (±2 kb around transcrip-
tion start site) contained at least one instance of the TRANSFAC
motif NCNNTNNTGCRTGANNNN that matches annotation for
a PAX8-binding site. Four of these genes were open reading frames
and excluded from pathway analyses (Supplementary Table S1).

We used Qiagen’s Ingenuity Target Explorer (targetexplorer.-
ingenuity.com) to identify 55 additional genes (Supplementary
Table S2) that were known to interact with PAX8 according to the
literature, though not necessarily by binding PAX8 as a TF
(description and citation for each interaction in Supplementary
Table S3). We refer to the 157 genes (102 from MSigDB and 55
from Ingenuity) collectively as the PAX8 pathway.

PAX8 pathway analysis by interval enrichment. The INRICH
tool (Lee et al, 2012) was also used to test for enrichment of genes
from the PAX8 pathway within genomic intervals associated with
SOC susceptibility. The 45 intervals for INRICH were generated by
taking all (n¼ 47; Supplementary Table S4) linkage-disequilibrium
independent SNPs with Po10� 5 for association with SOC risk in
the combined data set, adding 1 Mb on either side of each SNP to
capture genes potentially cis-regulated by each SNP (van Heyningen
and Bickmore, 2013), and merging overlapping intervals. INRICH
was used to generate 5000 sets of 45 intervals of the same width and
reasonably matched to these observed intervals in terms of gene and
SNP density in each interval. The number of PAX8 pathway genes
overlapping the observed and permuted intervals was compared,
counting multiple PAX8 pathway genes whether they overlapped a
single interval, separately.

Cell culture and cell lines. IGROV1 and HeyA8 cells were
cultured in Dulbecco’s Modified Eagle’s medium (Caisson,
Smithfield, UT, USA) containing 10% fetal bovine serum (FBS;
Seradigm, Radnor, PA, USA) and Roswell Park Memorial Institute
medium (Lonza, Basel, Switzerland) containing 10% FBS, respec-
tively. IGROV1 cells were labelled with firefly luciferase and a
neomycin resistance cassette by lentiviral transduction (super-
natants from Children’s Hospital Los Angeles Vector Core) and
selected for by supplementing the culture media with 300 mg ml� 1

G418 (Sigma-Aldrich, St Louis, MO, USA). PAX8 was silenced
using individual short hairpin RNAs (shRNAs) expressed from
the pLKO.1 vector (Sigma-Aldrich) and delivered by lentiviral
transduction. Negative control cells were infected with a non-

targeted (scrambled) hairpin. Infected clones were selected using
200 (IGROV1) and 800 (HeyA8) ng/ml puromycin (Sigma-
Aldrich) and PAX8 silencing confirmed using gene expression
analysis performed using TaqMan probes (Life Technologies,
Carlsbad, CA, USA; Supplementary Figure S2). Cell line authenti-
cation was performed on knockdown and control lines by profiling
short tandem repeats using the Promega Powerplex 16HS Assay
(performed at the University of Arizona Genetics Core facility). All
cultures were confirmed to be free of Mycoplasma using a
Mycoplasma-specific PCR.

Microarray profiling and data analysis. RNA was extracted from
the knockdown models (n¼ 2 per cell line), cells expressing a
scrambled shRNA, and parental (untreated) cells in triplicate, at
independent passages. We tested five PAX8 targeting shRNAs and
measured PAX8 expression levels using targeted real-time
quantitative PCR performed using TaqMan gene expression
probes. We then performed whole transcriptomic profiling on
the samples with the greatest knockdown. Microarray profiling was
performed using the Illumina HumanHT-12 v4 Expression
BeadChips at the University of Southern California Epigenome
Core and University of California at Los Angeles Neuroscience
Genomics Core, using standard manufacturer protocols.

GenePattern (version 3.9.5; Reich et al, 2006) was used to
extract signal intensity data, for cubic spline normalisation of
probe expression levels (Schmid et al, 2010), and for differential
expression and microarray GSEA. For differential expression,
P-values from two-tailed t-tests, false discovery rate (FDR) by the
Benjamini-Hochberg method, and fold changes were calculated for
the following comparisons: HeyA8 untreated plus scrambled
controls vs HeyA8 treated with PAX8 shRNA-1 and shRNA-2
and luciferase-labelled IGROV1 plus scrambled controls vs
IGROV1 treated with PAX8 shRNA-3 and shRNA-4 (all experi-
ments in triplicate). For microarray-GSEA, phenotype labels for
these comparisons were permuted 1000 times and the standard
signal-to-noise ratio was used to rank genes. Of the 157 PAX8
pathway genes, 154 were profiled on the Illumina HT-12 (three
genes not profiled: LUC7L3, PKM, TMA16). Two-sided exact
binomial test P-values calculated using the binom.test function in
R version 3.0.3 were used to evaluate the proportion of PAX8
pathway genes that were differentially expressed.

PAX8-binding sites from chromatin immunoprecipitation with
sequencing data. While we were completing our study, genome-
wide maps of PAX8-binding sites compiled from ChIP-Seq of three
immortalised fallopian tube secretory epithelial cell (FTSEC) lines
(FT33, FT194, and FT246) and three ovarian cancer cell lines
(OVSAHO, Kuramochi, and JHOS4) were published (Elias et al,
2016). We downloaded the ChIP-Seq peaks and their absolute
summits called by Elias et al at FDRo0.01 from the Gene
Expression Omnibus (accession number GSE79893) and defined
PAX8-binding sites by extending each narrow peak to include the
500 base pair flanking sequence on either side (Heinz et al, 2010;
Bailey and Machanick, 2012). We intersected SNPs at Po10� 5 for
association with SOC risk in the combined study population
described above (n¼ 930 genotyped or 1000 Genomes-imputed
SNPs within 1 Mb of the eight unique index SNPs listed in Table 2
representing the eight intervals identified by INRICH) with these
binding sites using BEDOPS version 2.4.20 (Neph et al, 2012).

RESULTS

We began by testing the association between each of the 615 TF-
target gene sets in MSigDB/TRANSFAC and SOC susceptibility by
GSEA using P-values for B2.5 million SNPs from a meta-analysis
of a North American and UK phase 1 GWAS of 2196 SOC cases
and 4396 controls of European ancestry (Song et al, 2009;
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Permuth-Wey et al, 2011). SNPs were mapped to genes and the
most significant SNP P-value for association with SOC risk in each
gene was used to rank genes genome-wide for the GSEA. In this
discovery pathway scan, 77 of the 615 TF-target gene sets
were associated with SOC risk at PGSEAo0.05 (Supplementary
Table S5) and putative target genes of the TF PAX8 (designated
‘V$PAX8_B’) emerged as the top ranked set (Po0.001;
FDR¼ 0.21; Table 1). Next, we sought to replicate these findings
using genetic association results from independent samples not
included in the discovery step. We performed a second GSEA for
all 615 TF-target gene sets using association P-values for B2.4
million SNPs genome-wide in 7035 SOC cases and 21 693 controls
from the Collaborative Oncological Gene-environment Study. In
this replication pathway scan, 54 of the 615 TF-target gene sets
were associated with SOC risk at PGSEAo0.05 (Supplementary
Table S6), including 22 gene sets identified at the same significance
level in the discovery analysis. The gene set containing targets of
PAX8 was ranked 7th out of 615 (P¼ 0.004; FDR¼ 0.37; Table 1)
and none of the six gene sets with a higher rank than the PAX8
targets were among the top 10 TF-target gene sets identified by the
discovery step (Table 1). In order to obtain a consensus ranking of
all 615 TF-target gene sets, we conducted a third GSEA using
P-values for association with SOC risk from a total of 9627 SOC
cases and 30 845 controls that included all discovery and
replication samples and additional cases and controls from the
Ovarian Cancer Association Consortium. In this combined study
population, the PAX8 target gene set was once again ranked top
(Po0.001; FDR¼ 0.21; top 10 gene sets in Table 1 and full results
in Supplementary Table S7).

The MSigDB/TRANSFAC PAX8 target gene set contained 102
genes (after excluding four open reading frames; Supplementary
Table S1), 92 of which were covered by at least one SNP that was
assessed in the genetic association studies. We expanded this gene
set into what we term a PAX8 pathway by adding all genes (n¼ 55;
Supplementary Table S2) known to interact with PAX8 according
to the literature, though not necessarily by binding PAX8 as a TF
(description and citation for each interaction in Supplementary
Table S3). This expanded 157-gene PAX8 pathway (137 of which
were overlapped by at least one SNP) was also strongly associated
with SOC risk in the combined study population (PGSEA¼ 10� 4

after 10 000 permutations). Next, we confirmed the association
between the PAX8 pathway and SOC susceptibility using an
alternative pathway analysis method called interval-based enrich-
ment (INRICH; (Lee et al, 2012)) and used it to pinpoint specific
PAX8 target genes likely driving the pathway-level signal. We
identified all uncorrelated SNPs (n¼ 47; Supplementary Table S4)
associated with SOC risk at Po10� 5 in the combined study
population, generated two-megabase-wide intervals centred on
each SNP, and merged overlapping intervals to yield 45 intervals.
Fifteen of the 157 genes from the PAX8 pathway were located in
eight of these 45 intervals (PINRICH¼ 0.006 compared to 5000
permuted sets of 45 two-megabase-wide intervals). The Po10� 5

index SNP at the center of five of these eight intervals was in fact
genome-wide significant (Po5� 10� 8; Table 2). The SNP
anchoring a sixth interval (rs2268177), though just short of
genome-wide significance in the combined study population
(P¼ 9.5� 10� 7), has previously achieved this threshold in a
meta-analysis of samples from OCAC with samples from the
Consortium of Investigators of Modifiers of BRCA1/2 that were not
included in this combined study population (Kuchenbaecker et al,
2015). Although we used a megabase flanking each Po10� 5

SNP to define these intervals (to capture long-range SNP-gene
cis-regulatory effects (van Heyningen and Bickmore, 2013)), in five
of the eight intervals the nearest PAX8 pathway gene was less than
100 kb from the central SNP and only for two intervals did this
distance extend beyond 200 kb (Table 2).

Finally, we tested whether the PAX8 pathway that had thus
far been defined by combining annotations from MSigDB/
TRANSFAC and curation of the published literature (that
included experiments conducted in non-ovarian cell types) was
cell- and cancer-type relevant. PAX8 expression was stably
silenced by shRNAs in the ovarian cancer cell lines HeyA8 and
IGROV1 (Supplementary Figure S2) and gene expression micro-
array profiling performed in knockdown and control cultures.
The 157-gene PAX8 pathway, of which 154 genes were profiled
on the microarray, was significantly associated with differential
gene expression after PAX8 silencing in both cell line models
(Pmicroarray-GSEA¼ 0.03 for HeyA8; Pmicroarray-GSEA¼ 0.004 for
IGROV1; Supplementary Figure S3). In HeyA8 cells, 45 of these
154 genes from the PAX8 pathway were differentially expressed at
Po0.05 (corresponding to a FDRo0.31; 14/154 at FDRo0.05;
Pexact binomialo2.2� 10� 16 for 45/154 against 7.7/154 expected
under the null hypothesis at the 5% a-level; Supplementary
Table S8). In IGROV1 cells, 41 of the 154 PAX8 pathway genes
were differentially expressed at Po0.05 (FDRo0.28; 17/154 at
FDRo0.05; Pexact binomialo2.2� 10� 16; Supplementary Table S9).
Overall, 69 of the 154 genes were differentially expressed at
Po0.05 in at least one of, and 17 genes differentially expressed in
both, the cell lines after PAX8 silencing (Pexact binomial¼ 0.002 for
17/154 against 7.7/154 expected). On cross-examining results from
the differential expression and INRICH analyses, we observed that
of the 15 PAX8 pathway genes in eight intervals associated with
SOC risk at Po10� 5 (Table 2), BNC2, TNF, and NCL were
differentially expressed at Po0.05 in both cell lines, HOXB5,
HOXB7, HOXB8, and SP6 in IGROV1 cells only, and TERT and
OSBPL7 in HeyA8 cells only (Table 3). Notably, BNC2 and HOXB7

Table 1. Top 10 transcription factor target gene sets from
pathway analysis (GSEA) in each study population

Transcription factor target gene sets
Number of

genes P-value FDR

Discovery study population (2196 cases/4396 controls)
V$PAX8_B 92 0 0.21
GGARNTKYCCA_UNKNOWN 70 0 0.21
V$SOX5_01 241 0 0.31
RRAGTTGT_UNKNOWN 232 0 0.33
V$SRY_02 230 0 0.35
V$AP1_Q2 251 0 0.38
V$SRF_Q5_01 196 0 0.41
V$RSRFC4_Q2 199 0.001 0.39
AAANWWTGC_UNKNOWN 180 0.001 0.39
YAATNRNNNYNATT_UNKNOWN 100 0.002 0.22

Replication study population (7035 cases/21 693 controls)
CAGNYGKNAAA_UNKNOWN 68 0 0.15
V$MAF_Q6 231 0 0.37
V$E2F_01 60 0.001 0.16
V$YY1_01 218 0.002 0.42
V$CART1_01 202 0.003 0.38
V$PPARA_01 36 0.004 0.24
V$PAX8_B 91 0.004 0.37
TCCATTKW_UNKNOWN 210 0.004 0.43
V$IRF2_01 108 0.005 0.43
YKACATTT_UNKNOWN 258 0.005 0.52

Combined study population (9627 cases/30 845 controls)
V$PAX8_B 91 0 0.21
TTGCWCAAY_V$CEBPB_02 55 0 0.24
YAATNRNNNYNATT_UNKNOWN 98 0 0.27
YCATTAA_UNKNOWN 501 0 0.46
V$POU3F2_01 89 0.001 0.19
V$IRF2_01 108 0.001 0.28
V$CART1_01 202 0.001 0.43
V$OCT1_04 201 0.001 0.44
CAGNYGKNAAA_UNKNOWN 68 0.002 0.17
V$NKX25_01 112 0.002 0.28

Abbreviations: FDR¼ false discovery rate; GSEA¼gene set enrichment analysis.
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were PAX8 target genes within 200 kb of a genome-wide significant
index SNP at the 9p22.2 and 17q21.32 SOC risk loci, respectively,
and differentially expressed in IGROV1 cells at FDRo0.05
(Table 3). While we were completing our study, genome-wide
ChIP-Seq maps of PAX8 binding in three FTSEC and three
additional ovarian cancer cell lines were published (Elias et al,
2016). We intersected these PAX8-binding sites with all SNPs at
Po10� 5 for association with SOC risk in the combined data set
within the eight intervals identified by INRICH (þ /� 1 Mb of the

eight unique index SNPs listed in Table 2). SNPs at the 9p22.2,
17q21.32, and 19p13.11 genome-wide significant SOC risk loci
overlapped PAX8 ChIP-binding sites in at least two of the three
ovarian cancer cell lines with the most significant binding site SNP
at each locus having Po7.1� 10� 8 for association with SOC risk
(Supplementary Table S10).

DISCUSSION

This is the first analysis to demonstrate that genes potentially
targeted by the TF PAX8 are enriched for common genetic
variation associated with SOC risk, suggesting that PAX8 may be a
master transcriptional regulator of susceptibility to SOC. The
emergence of the PAX8 pathway from our agnostic genome-wide
approach evaluating overrepresentation of SOC risk SNPs in 615
gene sets each containing putative targets of a different TF followed
by replication in independent samples and methodological
replication is highly significant given recent calls for an improved
understanding of the role of PAX8 in SOC biology (Bowtell et al,
2015). PAX8 encodes a member of the paired box family of TFs
that contains a partial homeodomain (Chi and Epstein, 2002). It is
essential for normal embryonic development of the Müllerian
ducts (Mittag et al, 2007). A systematic, genome-wide RNA
interference screen that included 25 ovarian cancer cell lines
previously demonstrated that PAX8 is an ovarian cancer lineage-
specific dependency, that is, it was the only gene that met three
criteria: (a) essential for the survival and proliferation of ovarian
cancer cell lines; (b) focally amplified in primary high-grade
serous ovarian tumours; and (c) differentially overexpressed in
ovarian cancer cell lines (Cheung et al, 2011). PAX8 has also been
shown to be a key player in the proliferation, migration, and
invasion of ovarian cancer cells and silencing this gene
significantly inhibited anchorage-independent growth in vitro
and tumour formation in a nude mouse xenograft model in vivo
(Di Palma et al, 2014). Furthermore, PAX8 has been shown to
drive murine SOCs originating in the fallopian tube (Perets et al,
2013). PAX8 is routinely used clinically as an epithelial marker to
identify primary or metastatic tumours of Müllerian origin

Table 2. Interval-based enrichment analysis (INRICH) results for the PAX8 pathwaya

Interval number Index SNP Chr
Position
(hg19) P-valueb Gene

Gene start
(hg19)

Gene end
(hg19)

SNP-gene
distance (kb)

1 rs2268177 1 22415410 9.5E�07 WNT4 22443798 22470385 28

2 rs6755777 2 177043226 9.0E�14 HOXD12 176964530 176965488 78

2 rs6755777 2 177043226 9.0E�14 HOXD8 176994422 176997423 46

3 rs10172595 2 232387063 5.6E�06 NCL 232319459 232329205 58

4 rs10069690 5 1279790 2.0E�10 TERT 1253287 1295162 0

5 rs187759744 6 32539152 2.1E�05 TNF 31543344 31546112 993

6 rs4631563 9 16913286 2.9E�34 BNC2 16409501 16870786 43

7 rs7207826 17 46500673 9.3E�13 OSBPL7 45884733 45899147 602

7 rs7207826 17 46500673 9.3E�13 SP6 45922280 45933240 567

7 rs7207826 17 46500673 9.3E�13 HOXB4 46652869 46655743 152

7 rs7207826 17 46500673 9.3E�13 HOXB5 46668619 46671103 168

7 rs7207826 17 46500673 9.3E�13 HOXB7 46684595 46688383 184

7 rs7207826 17 46500673 9.3E�13 HOXB8 46689708 46692301 189

7 rs7207826 17 46500673 9.3E�13 ATP5G1 46970148 46973232 469

8 rs4808075 19 17390291 4.9E�20 SLC5A5 17982782 18005983 592

Abbreviations: Chr¼ chromosome; SNP¼ single-nucleotide polymorphism.
aShowing eight 2-megabase wide intervals containing a total of 15 genes from the PAX8 pathway and the index SNP (Po10� 5) at the centre of each interval.
bP-value for association with serous epithelial ovarian cancer susceptiblity in the combined study population.

Table 3. Differential expression analysis results for the 15
PAX8 pathway genes within 1 Mb of a Po10�5 risk SNPa

IGROV1 cells HeyA8 cells

Gene P-value FDR
Fold

change P-value FDR
Fold

change
TNF 2.4E� 05 0.004 2.55 6.5E� 03 0.097 1.12

BNC2 6.1E� 04 0.024 1.16 3.8E� 03 0.068 1.16

HOXB7 7.6E� 04 0.028 1.22 7.3E� 02 0.374 1.06

NCL 1.8E� 03 0.047 1.22 1.3E� 04 0.009 1.21

SP6 2.0E� 02 0.189 1.23 7.1E� 01 0.912 1.02

HOXB5 2.2E� 02 0.200 1.18 4.6E� 01 0.796 1.09

HOXB8 2.5E� 02 0.212 1.26 3.6E� 01 0.731 1.03

ATP5G1 5.4E� 02 0.325 1.12 3.4E� 01 0.719 1.07

WNT4 8.1E� 02 0.398 1.10 1.3E� 01 0.499 1.02

HOXD8 9.0E� 02 0.417 1.13 7.7E� 01 0.931 1.01

OSBPL7 2.6E� 01 0.658 1.05 2.7E� 04 0.014 1.26

HOXB4 5.3E� 01 0.842 1.02 1.4E� 01 0.510 1.10

SLC5A5 5.3E� 01 0.839 1.02 4.2E� 01 0.772 1.01

HOXD12 7.1E� 01 0.917 1.01 4.3E� 01 0.781 1.02

TERT 9.6E� 01 0.989 1.00 5.8E� 03 0.090 1.16

Abbreviations: FDR¼ false discovery rate; Mb¼megabase; SNP¼ single-nucleotide
polymorphism.
aList sorted by IGROV1 P-value.
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(Ozcan et al, 2011a, b) because the TF is lineage-specific for
FTSECs and ovarian surface epithelial cells (OSECs), both of
which are contenders for being the cell of origin of SOC (Ozcan
et al, 2011b; Adler et al, 2015).

The FDR for the PAX8-target gene set in the discovery,
replication, and combined GSEA was 0.21, 0.37, and 0.21,
respectively, suggesting that the result may be valid four out of
five times or three out of five times. However, the convergence of
orthogonal pieces of evidence: independent replication of the
PAX8 GSEA findings across two of the largest genetic association
studies and by INRICH, confirmation of the pathway-level
association signal on including additional genes known to interact
with PAX8 curated from published experiments, and significant
perturbation of several of the putative PAX8 target genes near SOC
risk loci in the transcriptomes of two ovarian cancer cell line
models after abrogating PAX8 expression; all strongly support the
observed association between this gene set and SOC risk. This
convergence of evidence from integration of GWAS and cellular
models also provides new insight into the potential transcriptional
regulatory network of PAX8 and highlights 15 genes that are likely
to be driving the association between the PAX8 pathway and risk
of developing SOC (Table 3). Among these, BNC2 and HOXB7 are
particularly noteworthy. BNC2 lies at 9p22.2, the first SOC risk
locus to be identified (Song et al, 2009), and several functional
SNPs in this region reside in enhancer elements and in a
scaffold/matrix attachment region sequence that targets BNC2
(Buckley et al, under review). We have previously implicated
HOXB7 at the 17q21.32 SOC risk locus in network analysis
combining SOC GWAS data with SOC gene expression profiles
from The Cancer Genome Atlas (Kar et al, 2015). HOXB7
overexpression in OSECs is associated with increased prolifera-
tion via fibroblast growth factor signalling (Naora et al, 2001).
Our identification of SOC risk SNPs in PAX8 ChIP-binding sites
at the BNC2 and HOXB7 loci further support involvement of
these two genes in SOC susceptibility potentially through a
PAX8-regulated mechanism. A critical next step after this
pathway-based study will involve systematic genome-wide
discovery of additional specific SOC risk alleles in PAX8-binding
sites and/or variants that are involved in the regulation of genes
that are also regulated by PAX8 (Freedman et al, 2011; Sur et al,
2013). This link between SOC risk alleles and the PAX8-target
gene network may be established through dynamic expression
quantitative trait locus analyses undertaken against a background
of PAX8 knockdown in the relevant cell types (Califano et al,
2012; Fletcher et al, 2013).

Overall, consistent with recent pathway-level results in other
cancers (Hung et al, 2015; Qian et al, 2015), the present study
suggests that the genetic architecture of SOC susceptibility may be
underpinned by a complex interplay between genes at the known
genome-wide significant risk loci and at as yet unidentified loci
that just fail to reach genome-wide significance but are functionally
related to the known loci. We have demonstrated that genes
interacting up- and downstream of PAX8 harbour SNPs strongly
associated with SOC risk and a more comprehensive exploration of
these targets may eventually open up opportunities for rational
pathway-guided biomarker and therapeutic development to
combat this lethal disease in its earliest stages.

ACKNOWLEDGEMENTS

This work was in part supported by a Gates Cambridge Scholar-
ship and a Junior Research Fellowship in Clinical Medicine from
Homerton College, Cambridge (to SPK) and by a K99/R00
Pathway to Independence Award (R00CA184415) from the United
States National Cancer Institute (to KL). The COGS project was

funded by the European Commission’s Seventh Framework
Programme under grant agreement HEALTH-F2-2009-223175.
This project was also in part funded by the National Cancer
Institute GAME-ON Post-GWAS Initiative U19-CA148112. The
Ovarian Cancer Association Consortium (OCAC) is supported by
a grant from the Ovarian Cancer Research Fund thanks to
donations by the family and friends of Kathryn Sladek
Smith (PPD/RPCI.07). Funding for the constituent studies of
OCAC were provided by (these are listed by funding agency
with grant numbers in parentheses): The American Cancer
Society (CRTG-00-196-01-CCE); the California Cancer Research
Program (00-01389V-20170, N01-CN25403, 2II0200); the
Canadian Institutes for Health Research (MOP-86727); Cancer
Council Victoria; Cancer Council Queensland; Cancer Council
New South Wales; Cancer Council South Australia; Cancer
Council Tasmania; Cancer Foundation of Western Australia;
the Cancer Institute of New Jersey; Cancer Research UK
(C490/A6187, C490/A10119, C490/A10124, C536/A13086,
C536/A6689); the Celma Mastry Ovarian Cancer Foundation;
the Danish Cancer Society (94-222-52); the ELAN Program of the
University of Erlangen-Nuremberg; the Eve Appeal; the Helsinki
University Central Hospital Research Fund; Helse Vest; Imperial
Experimental Cancer Research Centre (C1312/A15589); the
Norwegian Cancer Society; the Norwegian Research Council;
the Ovarian Cancer Research Fund; Nationaal Kankerplan of
Belgium; Grant-in-Aid for the Third Term Comprehensive
10-Year Strategy for Cancer Control from the Ministry of Health
Labour and Welfare of Japan; the L & S Milken Foundation; the
Polish Ministry of Science and Higher Education (4 PO5C 028 14,
2 PO5A 068 27); Malaysian Ministry of Higher Education
(UM.C/HlR/MOHE/06) and Cancer Research Initiatives Founda-
tion; the Roswell Park Cancer Institute Alliance Foundation; the
US National Cancer Institute (K07-CA095666, K07-CA143047,
K22-CA138563, N01-CN55424, N01-PC067010, N01-PC035137,
P01-CA017054, P01-CA087696, P30-CA15083, P50-CA105009,
P50- CA136393, R01-CA014089, R01-CA016056, R01-CA017054,
R01-CA049449, R01-CA050385, R01-CA054419, R01- CA058598,
R01-CA058860, R01-CA061107, R01-CA061132, R01-CA063682,
R01-CA064277, R01-CA067262, R01- CA071766, R01-CA074850,
R01-CA076016, R01-CA080742, R01-CA080978, R01-CA083918,
R01-CA087538, R01- CA092044, R01-095023, R01-CA106414,
R01-CA122443, R01-CA112523, R01-CA114343, R01-CA126841,
R01- CA136924, R01-CA149429, R03-CA113148, R03-CA115195,
R37-CA070867, R37-CA70867, U01-CA069417, U01- CA071966,
K07-CA80668, P50-CA159981, R01CA095023, MO1- RR000056,
R01-CA063678, UM1-CA186107, P01-CA87969, UM1-CA176726,
UM1-CA182910, and Intramural research funds); the US Army
Medical Research and Material Command (DAMD17-98-1- 8659,
DAMD17-01-1-0729, DAMD17-02-1-0666, DAMD17-02-1-0669,
W81XWH-10-1-02802); the National Health and Medical
Research Council of Australia (199600 and 400281); the German
Federal Ministry of Education and Research of Germany
Programme of Clinical Biomedical Research (01 GB 9401); the
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Bowtell DD, Böhm S, Ahmed AA, Aspuria P-J, Bast RC, Beral V, Berek JS,
Birrer MJ, Blagden S, Bookman MA, Brenton JD, Chiappinelli KB,
Martins FC, Coukos G, Drapkin R, Edmondson R, Fotopoulou C,
Gabra H, Galon J, Gourley C, Heong V, Huntsman DG, Iwanicki M,
Karlan BY, Kaye A, Lengyel E, Levine DA, Lu KH, McNeish IA, Menon U,
Narod SA, Nelson BH, Nephew KP, Pharoah P, Powell DJ, Ramos P,
Romero IL, Scott CL, Sood AK, Stronach EA, Balkwill FR (2015)
Rethinking ovarian cancer II: reducing mortality from high-grade serous
ovarian cancer. Nat Rev Cancer 15: 668–679.

Califano A, Butte AJ, Friend S, Ideker T, Schadt E (2012) Leveraging models of
cell regulation and GWAS data in integrative network-based association
studies. Nat Genet 44: 841–847.

Cancer Research UK (2016) Ovarian Cancer Statistics [Online]. Available at
http://www.cancerresearchuk.org/health-professional/cancer-statistics/
statistics-by-cancer-type/ovarian-cancer (accessed on February 2016).

Chen H, Yu H, Wang J, Zhang Z, Gao Z, Chen Z, Lu Y, Liu W, Jiang D,
Zheng SL, Wei G-H, Issacs WB, Feng J, Xu J (2015) Systematic
enrichment analysis of potentially functional regions for 103 prostate
cancer risk-associated loci. Prostate 75: 1264–1276.

Cheung HW, Cowley GS, Weir BA, Boehm JS, Rusin S, Scott JA, East A,
Ali LD, Lizotte PH, Wong TC, Jiang G, Hsiao J, Mermel CH, Getz G,
Barretina J, Gopal S, Tamayo P, Gould J, Tsherniak A, Stransky N, Luo B,

PAX8 and ovarian cancer susceptibility BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2016.426 7

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/ovarian-cancer
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/ovarian-cancer
http://www.bjcancer.com


Ren Y, Drapkin R, Bhatia SN, Mesirov JP, Garraway LA, Meyerson M,
Lander ES, Root DE, Hahn WC (2011) Systematic investigation of
genetic vulnerabilities across cancer cell lines reveals lineage-specific
dependencies in ovarian cancer. Proc Natl Acad Sci USA 108:
12372–12377.

Chi N, Epstein JA (2002) Getting your Pax straight: Pax proteins in
development and disease. Trends Genet 18: 41–47.

Christoforou A, Dondrup M, Mattingsdal M, Mattheisen M, Giddaluru S,
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Moorman PG, Moysich K, Narod S, Phelan C, Pye C, Risch H,
Runnebaum IB, Severi G, Southey M, Stram DO, Thiel FC, Terry KL,
Tsai Y-Y, Tworoger SS, Van Den Berg DJ, Vierkant RA, Wang-Gohrke S,
Webb PM, Wilkens LR, Wu AH, Yang H, Brewster W, Ziogas A,
Houlston R, Tomlinson I, Whittemore AS, Rossing MA, Ponder BAJ,
Pearce CL, Ness RB, Menon U, Kjaer SK, Gronwald J, Garcia-Closas M,
Fasching PA, Easton DF, Chenevix-Trench G, Berchuck A, Pharoah PDP,
Gayther SA (2009) A genome-wide association study identifies a new
ovarian cancer susceptibility locus on 9p22.2. Nat Genet 41: 996–1000.

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005)
Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci USA
102: 15545–15550.

Sur I, Tuupanen S, Whitington T, Aaltonen LA, Taipale J (2013) Lessons from
functional analysis of genome-wide association studies. Cancer Res 73:
4180–4184.

Tang Q, Chen Y, Meyer C, Geistlinger T, Lupien M, Wang Q, Liu T, Zhang Y,
Brown M, Liu XS (2011) A comprehensive view of nuclear receptor cancer
cistromes. Cancer Res 71: 6940–6947.

van Heyningen V, Bickmore W (2013) Regulation from a distance: long-range
control of gene expression in development and disease. Philos Trans R Soc
Lond B Biol Sci 368: 20120372.

This work is published under the standard license to publish agree-
ment. After 12 months the work will become freely available and
the license terms will switch to a Creative Commons Attribution-
NonCommercial-Share Alike 4.0 Unported License.

BRITISH JOURNAL OF CANCER PAX8 and ovarian cancer susceptibility

10 www.bjcancer.com | DOI:10.1038/bjc.2016.426

http://www.bjcancer.com


1Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1
8RN, UK; 2Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive
Cancer Center, Los Angeles, CA 90033, USA; 3Department of Oncology, University of Cambridge, Strangeways Research
Laboratory, Cambridge CB1 8RN, UK; 4Bioinformatics and Computational Biology Research Center, Department of Biomedical
Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; 5Samuel Oschin Comprehensive Cancer Institute, Cedars-
Sinai Medical Center, Los Angeles, CA 90048, USA; 6Department of Epidemiology, Director of Genetic Epidemiology Research
Institute, UCI Center for Cancer Genetics Research & Prevention, School of Medicine, University of California Irvine, Irvine, CA
92697, USA; 7Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA;
8University Hospital Erlangen, Department of Gynecology and Obstetrics, Friedrich-Alexander-University Erlangen-Nuremberg,
Comprehensive Cancer Center Erlangen Nuremberg, Universitaetsstrasse 21-23, Erlangen 91054, Germany; 9Department of
Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA; 10Radiation Oncology Research Unit,
Hannover Medical School, Hannover 30625, Germany; 11Division of Cancer Epidemiology and Genetics, National Cancer Institute,
Bethesda, MD 20892, USA; 12Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki 00100,
Finland; 13Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne,
VIC 3002, Australia; 14Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia; 15The Beatson West of
Scotland Cancer Centre, Glasgow G12 0YN, UK; 16German Cancer Research Center, Division of Cancer Epidemiology, Heidelberg
69120, Germany; 17University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20246,
Germany; 18Division of Epidemiology and Biostatistics, Department of Internal Medicine, University of New Mexico, Albuquerque,
NM 87131, USA; 19Obstetrics and Gynecology Epidemiology Center, Brigham and Women’s Hospital, Boston, MA 02215, USA;
20Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; 21Department of Pathology, The
Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland; 22Department of
Epidemiology, The Geisel School of Medicine—at Dartmouth, Hanover, NH 03756, USA; 23Gynaecology Research Unit, Hannover
Medical School, Hannover 30625, Germany; 24Department of Gynecology, Jena-University Hospital-Friedrich Schiller University,
Jena 07737, Germany; 25Faculty of Medicine, University of Southampton, Southampton SO16 5YA, UK; 26Division of Hematology
and Oncology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles,
CA 90095, USA; 27Department of Surgery & Cancer, Imperial College London, London SW7 2AZ, UK; 28Department of Women’s
Cancer, Institute for Women’s Health, University College London, London W1T 7DN, UK; 29The Beatson West of Scotland Cancer
Centre, Glasgow G12 0YN, UK; 30Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MI
55905, USA; 31Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los
Angeles, CA 90048, USA; 32Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-
Sinai Medical Center, Los Angeles, CA 90048, USA; 33International Hereditary Cancer Center, Department of Genetics and
Pathology, Pomeranian Medical University, Szczecin 70-001, Poland; 34Department of Gynecology and Gynecologic Oncology,
Kliniken Essen-Mitte/ Evang. Huyssens-Stiftung/ Knappschaft GmbH, Essen 45136, Germany; 35Department of Gynecology and
Gynecologic Oncology, Dr Horst Schmidt Kliniken Wiesbaden, Wiesbaden 65199, Germany; 36Department of Epidemiology, The
University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; 37Department of Virus, Lifestyle and Genes, Danish
Cancer Society Research Center, Copenhagen 2100, Denmark; 38Molecular Unit, Department of Pathology, Herlev Hospital,
University of Copenhagen, Copenhagen 1165, Denmark; 39The Juliane Marie Centre, Department of Gynecology, Rigshospitalet,
University of Copenhagen, Copenhagen 2100, Denmark; 40British Columbia’s Ovarian Cancer Research (OVCARE) Program,
Vancouver General Hospital, BC Cancer Agency and University of British Columbia, Vancouver, BC V5Z 1L3, Canada;
41Departments of Pathology and Laboratory Medicine and Obstetrics and Gynaecology, University of British Columbia,
Vancouver, BC V5Z 1L3, Canada; 42Department of Molecular Oncology, BC Cancer Agency Research Centre, Vancouver, BC V5Z
1L3, Canada; 43Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center,
Los Angeles, CA 90048, USA; 44Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29435,
USA; 45Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen 6500 HB, The Netherlands;
46Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark; 47Department of
Pathology, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland; 48Vesalius
Research Center, VIB, Leuven 3000, Belgium; 49Laboratory for Translational Genetics, Department of Oncology, University of
Leuven 3000, Belgium; 50Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
10065, USA; 51Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute,
Boston, MA 02215, USA; 52Medical College of Xiamen University, Xiamen 361102, China; 53Department of Cancer Epidemiology
and Prevention, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland; 54Department
of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; 55Radboud University
Medical Center, Radboud Institute for Molecular Life Sciences, Department of Gynaecology, Nijmegen 6500 HB, The Netherlands;
56Department of Health Research and Policy—Epidemiology, Stanford University School of Medicine, Stanford, CA 94305, USA;
57Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Beatson Institute for Cancer
Research, Glasgow G12 0YN, UK; 58Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive
Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; 59Department of Epidemiology, University of

PAX8 and ovarian cancer susceptibility BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2016.426 11

http://www.bjcancer.com


Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)

Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15213, USA; 60Ovarian Cancer Center of Excellence, Womens Cancer
Research Program, Magee-Womens Research Institute and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA;
61Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA; 62Department of Cancer Prevention and
Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA; 63The University of Texas School of Public Health, Houston, TX
77030, USA; 64Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki 00100,
Finland; 65The Beatson West of Scotland Cancer Centre, Glasgow G12 0YN, UK; 66Department of Epidemiology, University of
Michigan School of Public Health, Ann Arbor, MI 48109, USA; 67Department of Obstetrics & Gynecology, Oregon Health &
Science University, Portland, OR 97239, USA; 68Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239,
USA; 69Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
70Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA;
71Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; 72Department of Chronic Disease
Epidemiology, Yale School of Public Health, New Haven, CT 06510, USA; 73Program in Epidemiology, Division of Public Health
Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; 74Department of Epidemiology, University of
Washington, Seattle, WA 98109, USA; 75Department of Gynecology and Obstetrics, Haukeland University Horpital, Bergen 5058,
Norway; 76Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen 5058, Norway;
77Department of Community and Family Medicine, Duke University Medical Center, Durham, NC 27710, USA; 78Cancer Control
and Population Sciences, Duke Cancer Institute, Durham, NC 27710, USA; 79Department of Gynaecological Oncology, Glasgow
Royal Infirmary, Glasgow G4 0SF, UK; 80Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne,
Melbourne, VIC 3002, Australia; 81Obstetrics and Gynecology Epidemiology Center, Brigham and Women’s Hospital, Boston, MA
02215, USA; 82Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; 83Division of
Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center
Medicine, Nashville, TN 37232, USA; 84Department of Epidemiology, University of California Irvine, Irvine, CA 92697, USA;
85Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; 86The Eli and Edythe L. Broad
Institute, Cambridge, MA 02142, USA; 87Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
90048, USA and 88Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center,
Los Angeles, CA 90048, USA

BRITISH JOURNAL OF CANCER PAX8 and ovarian cancer susceptibility

12 www.bjcancer.com | DOI:10.1038/bjc.2016.426

http://www.nature.com/bjc
http://www.bjcancer.com

	title_link
	Materials and methods
	Discovery, replication, and combined study populations
	Single-nucleotide polymorphism data
	Gene-set enrichment analysis
	PAX8 target genes and pathway
	PAX8 pathway analysis by interval enrichment
	Cell culture and cell lines
	Microarray profiling and data analysis
	PAX8-binding sites from chromatin immunoprecipitation with sequencing data

	Results
	Table 1 
	Discussion
	Table 2 
	Table 3 
	A4
	ACKNOWLEDGEMENTS
	A5
	A6




