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ABSTRACT 

The computer program Structure implements a Bayesian method, based on a population genetics 

model, to assign individuals to their source populations using genetic marker data. It is widely 

applied in the fields of ecology, evolutionary biology, human genetics and conservation biology for 

detecting hidden genetic structures, inferring the most likely number of populations (K), assigning 

individuals to source populations, and estimating admixture and migration rates. Recently, several 

simulation studies repeatedly concluded that the program yields erroneous inferences when samples 

from different populations are highly unbalanced in size. Analysing both simulated and empirical 

datasets, this study confirms that Structure indeed yields poor individual assignments to source 

populations and gives frequently incorrect estimates of K when sampling is unbalanced. However, 

this poor performance is mainly caused by the adoption of the default ancestry prior, which assumes 

all source populations contribute equally to the pooled sample of individuals. When the alternative 

ancestry prior, which allows for unequal representations of the source populations by the sample, is 

adopted, accurate individual assignments could be obtained even if sampling is highly unbalanced. 

The alternative prior also improves the inference of K by two estimators, albeit the improvement is 

not as much as that in individual assignments to populations. For the difficult case of many 

populations and unbalanced sampling, a rarely used parameter combination of the alternative 

ancestry prior, an initial ALPHA value much smaller than the default and the uncorrelated allele 

frequency model is required for Structure to yield accurate inferences. I conclude that Structure is 

easy to use but is easier to misuse because of its complicated genetic model and many parameter 

(prior) options which may not be obvious to choose, and suggest using multiple plausible models 

(parameters) and K estimators in conducting comparative and exploratory Structure analysis.  

 

Introduction 

Pritchard and coworkers (Pritchard et al. 2000; Falush et al. 2003, 2007; Hubisz et al. 2009) 

developed a Bayesian method to assign individuals with multilocus genotypes into discrete clusters, 

each corresponding to a Mendelian population characterized by a set of allele frequencies at each 

locus. The method is based on a population genetics model, and yields parameter estimates and 

assignment results with well-defined and easy-interpretable biological meanings. The method, 

implemented in the computer program Structure (Pritchard et al. 2000), has been widely applied in 

the fields of ecology, evolutionary biology, human genetics, and conservation biology. It proves to 

be highly popular, being cited tens of thousands of times by published scientific papers 

(Puechmaille 2016). Among other purposes, the method has been extensively used to detect hidden 
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population structure, to estimate the most likely number of populations contributing to a sample of 

individuals, to assign individuals to their source populations, to infer admixtures (hybridizations) 

and migrations between inferred populations (Porras-Hurtado et al. 2013).  

 Several recent simulation studies concluded, however, that Structure does not reliably 

recover the actual population structure when sampling is uneven among populations (e.g. 

Kalinowski 2011; Neophytou 2014; Puechmaille 2016). They demonstrated that, when the samples 

from different source populations are highly unbalanced in sizes, Structure tends to underestimate 

the number of contributing populations and merge populations represented by small samples. They 

also showed that the pathological results of Structure are not caused by the lack of marker 

information or the lack of population differentiation, because their simulations used 1000 highly 

polymorphic microsatellites to infer the structure of populations with high FST values of ~0.1 

(Kalinowski 2011).  

 If the problem identified by the simulation studies were true, then Structure would be 

seriously questioned as an efficient or even appropriate tool because real data rarely have balanced 

sample sizes. One of the strengths of Structure is its ability to reveal, using purely genetic data, 

cryptic or hidden population structures that are difficult to detect using visible characters such as 

sampling locations or phenotypic traits (Pritchard et al. 2000). This is in contrast to the traditional 

population genetic structure analysis approaches such as FST analysis (e.g. Weir & Cockerham 1984) 

which rely on predefined populations. A typical example is the mixed stock analysis (Smouse et al. 

1990), where individuals are sampled from the same location but are contributed by an unknown 

number of phenotypically indistinguishable but genetically differentiated source populations. In 

such a situation, we have no idea of the populations represented by the samples, let alone the sizes 

of the samples from the populations. Indeed, if Structure relied on balanced sample sizes to obtain 

reliable results, then its usefulness would be greatly compromised in practice. 

Being a Bayesian method, Structure bases its inferences on various priors as well as 

genotype data (Pritchard et al. 2000). One of the priors is used to model individual ancestry 

distributions among populations (Falush et al. 2003). In Structure’s admixture model of K assumed 

populations, the prior ancestry of individual i being from population j (j=1, 2, …, K), 𝑞𝑗
(𝑖)

, follows 

the Dirichlet distribution 𝑞(𝑖)~𝒟(𝛼1, 𝛼2, ⋯ , 𝛼𝐾), where 𝑞(𝑖) = (𝑞1
(𝑖), 𝑞2

(𝑖), ⋯ , 𝑞𝐾
(𝑖)
), 0 ≤ 𝑞𝑗

(𝑖)
≤ 1, 

and ∑ 𝑞𝑗
(𝑖)
= 1𝐾

𝑗=1 . Structure has two options for this ancestry prior, “Use a Uniform Prior for α” 

and “Separate α for each Population”. The first option is the default of the program, which uses a 

single α value for all assumed K populations (i.e. 𝛼1 = 𝛼2 = ⋯ = 𝛼𝐾). It specifies that each 
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individual has its ancestry originating from each of the assumed K populations at an equal prior 

probability of 1/K (i.e. 𝑞1
(𝑖) = 𝑞2

(𝑖) = ⋯ = 𝑞𝐾
(𝑖) = 1/𝐾 in expectation).  The second option assumes 

distinct α values for the assumed K populations, and an individual may have its ancestry originating 

from the assumed K populations at K different prior probabilities (proportions). Structure estimates 

the one α value (option 1) or K different α values (option 2), and uses the one or K estimated α 

values in assigning individuals to populations. Obviously, the default option suits for balanced 

sampling, but becomes increasingly inappropriate with an increasing difference in the sizes of 

samples from different populations. The alternative prior applies to unbalanced as well as balanced 

sampling, although it could incur some cost in accuracy when applied to balanced sampling. A 

close inspection of the simulation studies (Kalinowski 2011; Neophytou 2014; Puechmaille 2016) 

described above shows that they invariably used the default ancestry prior in analysing the 

simulated data. In other words, it could be the misuse of the Structure program that led to the 

conclusion that the program does not reliably recover the actual population structure when sampling 

is uneven. 

This study has six objectives. First, I use simulations to confirm the conclusion of previous 

simulations that Structure does not perform well with unbalanced sampling when the default 

ancestry prior is used. Second, I demonstrate that Structure does yield accurate individual 

assignments to populations in the presence of highly unbalanced sampling when the alternative 

ancestry prior is used and when the number of populations is not very large. Third, I show that the 

alternative ancestry prior also improves the inferred number of populations, K. Fourth, I show that 

the alternative ancestry prior has no detectable cost in inference accuracy when sampling is 

balanced. Fifth, I show that, combined with some further prior parameter and model adjustments, 

the alternative ancestry prior makes accurate individual assignments to populations when K is very 

large (say, K > 40) and sampling is highly unbalanced. In contrast, the default ancestry prior always 

yields poor results in such a situation. Sixth, I analyse a human dataset comparatively with the two 

ancestry priors to show the importance of choosing the right prior in practice. In conclusion, I 

recommend the wide use of the alternative ancestry prior in Structure analysis. I suggest that, when 

sampling is (or is suspected to be) highly unbalanced, caution must be exercised about the inferred 

K, and about the prior and parameter choices in conducting Structure analysis when K is large. I 

also encourage the use of Pritchard et al. (2000) original method for inferring the most likely 

number of populations in place of, or in additional to, the popular ΔK method proposed by Evanno 

et al. (2005). 

Methods 
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Simulations: The power and accuracy of Structure analyses depend on, among other factors, marker 

informativeness for individual ancestry (Rosenberg et al. 2003) or relatedness (Wang 2006), the 

pattern (e.g. island, stepping-stone, and isolation-by-distance models; hierarchical structures) and 

extent of genetic differentiation among populations, and the sampling scheme and sampling 

strength of individuals from the populations. This study focusses on unbalanced sampling, and 

considers its impact on Structure analysis when it is expected to be powerful: highly informative 

marker data from highly differentiated populations in the simple island model. 

  I assumed the simple situation of a number of K discrete populations in Wright’s (1931) 

island migration model. The populations had reached equilibrium among mutation, drift and 

migration, where drift was the dominating evolutionary force leading to a high equilibrium FST 

value. A number of ni individuals were drawn at random from population i (i=1, 2, …, K), and each 

sampled individual was genotyped at a number of L microsatellite loci, each having M codominant 

alleles. In the simulations presented in this study, M was fixed at 10, but other M values did not 

change the conclusions. 

 For a given locus l (l =1, 2, …, L), the ancestral allele frequencies, p0l ={p0l1, p0l2,…, p0lM}, 

were drawn from a uniform Dirichlet distribution 𝒟(1,1, … ,1). Conditional on p0l, the allele 

frequencies of a population i, pil ={pil1, pil2,…, pilM}, were drawn from the Dirichlet distribution 

𝒟(𝑓𝑝0𝑙1, 𝑓𝑝0𝑙2, … , 𝑓𝑝0𝑙𝑀), where 𝑓 =
1

𝐹𝑆𝑇
− 1 (Nicholson et al. 2002; Falush et al. 2003) and 𝐹𝑆𝑇 is 

the assumed equilibrium genetic differentiation among the K populations. Given pil, a diploid 

genotype at locus l was drawn at random from population i at Hardy-Weinberg equilibrium, by 

sampling two alleles independently. The multilocus genotype of a sampled individual was obtained 

by combining single locus genotypes independently, assuming linkage equilibrium. The n={n1, 

n2, …, nK} multilocus genotypes were then pooled and subjected to Structure analysis. 

 My simulations considered different numbers of populations (K=3, 6, 12, 24, 48), loci (L=10, 

20, 40, 50) and sampled individuals per population (ni=5, 10, …, 1365), and different differentiation 

levels (𝐹𝑆𝑇=0.05, 0.1, 0.2) among populations. For each parameter combination, 100 replicate 

datasets were simulated and analysed by Structure under different prior and parameter settings as 

detailed below. 

Structure analysis: The simulated data were analysed by the program Structure 2.3.4 (Pritchard et al. 

2000) to infer the number of populations and to assign individuals to the inferred populations. For 

each Structure analysis, I used the admixture model and the correlated allele frequency model 

(Falush et al. 2003), as were used by the above described simulation studies (Kalinowski 2011; 
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Neophytou 2014; Puechmaille 2016) and frequently in empirical data analyses. My preliminary 

simulations showed that Structure becomes increasingly sensitive to the assumed allele frequency 

models with an increasing K. For the case of many populations, therefore, I also used the 

uncorrelated allele frequency model for comparison with the correlated allele frequency model. I 

used a burn-in length of 104 and 5×105 iterations in analysing data simulated with K=3 and K≥6 

populations, respectively. In both cases, a run length of 104 iterations was run after the burn-in. 

Increasing either the burn-in (up to 2×106) or the run length did not substantially change the results 

in test datasets. All other parameters in Structure were left as default, except for the prior of 

individual ancestry, the initial α value, ALPHA, and the allele frequency model. 

 Each simulated dataset was analysed comparatively using the default or the alternative prior 

of individual ancestry. As explained in the Introduction, the default prior assumes all presumed 

populations contribute equally to the sampled individuals. With this prior, Structure adopts the 

Dirichlet distribution 𝑞(𝑖)~𝒟(𝛼, 𝛼,⋯ , 𝛼) for the prior ancestry distribution of an individual i, and 

estimates the single parameter 𝛼 in this distribution jointly with other parameters. The alternative 

prior assumes that different populations may contribute variably to the sampled individuals. In other 

words, the prior proportional (or probability of) ancestry of an individual i from population j (j=1, 

2, …, K), 𝑞𝑗
(𝑖)

, may vary with j. With this prior under an assumed number of K populations, 

Structure uses the Dirichlet distribution 𝑞(𝑖)~𝒟(𝛼1, 𝛼2, ⋯ , 𝛼𝐾) for the prior ancestry of an 

individual i, and estimates the K parameters 𝛼𝑗 (j=1, 2, …, K) in this distribution jointly with other 

parameters. 

 For both the default and alternative priors, Structure program requires an initial value of 𝛼, 

ALPHA, to start a Markov chain Monte Carlo which is used to update estimates of 𝛼 and other 

parameters. The default value of ALPHA is 1.0, which was used, except when explicitly stated, in 

analysing the simulated and empirical datasets. However, I found by simulations that the inferences 

of both K and individual ancestry by Structure are affected by ALPHA, and are increasingly so with 

an increase in K. For the case of many populations, therefore, different ALPHA values 

(0.03125~1.0) were also used in both the default and the alternative ancestry priors to show this 

ALPHA effect in general, and to show that both the alternative prior and a much smaller ALPHA 

value than the default (1.0) are required for Structure to deliver accurate inferences of K and 

individual ancestry in the case of unbalanced sampling from many populations. 

 For assessing the accuracy of individual ancestry assignments, a number of 20 independent 

runs were conducted for each dataset, assuming a 𝐾̂ value equal to the simulated K. The average 

assignment accuracy (see below) was assessed across runs and across datasets. For assessing the 
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accuracy of estimated number of populations 𝐾̂, 20 runs were carried out for each assumed 𝐾̂ value 

ranging from K-2 to K+2 for each dataset. The most likely number of populations was inferred from 

the ΔK statistic of Evanno et al. (2005), denoted by 𝐾̂𝐸. It was also inferred from Pr⁡[𝑋|𝐾] (the 

probability of obtaining the genotype data X given K) of Pritchard et al. (2000), denoted by 𝐾̂𝑃. For 

calculating 𝐾̂𝑃, the mean value of Pr⁡[𝑋|𝐾] across the 20 replicate runs for each assumed 𝐾̂ value 

was obtained, and the 𝐾̂⁡value that had the highest mean Pr⁡[𝑋|𝐾] was returned as 𝐾̂𝑃. In evaluating 

the qualities of 𝐾̂𝐸 and 𝐾̂𝑃, I was concerned only with the accuracy (below) and bias, not with the 

exact value when the estimate is different from K.   

Accuracy assessments: For the inference of the number of populations (K) represented by a sample 

of individuals, the estimate 𝐾̂𝐸 or 𝐾̂𝑃 was compared with the actual (simulated) value of K, and the 

estimation accuracy was measured by the proportion of replicated datasets in which the estimate 

was equal to K. For a number of m replicates simulated under a given parameter combination, the 

accuracy of estimator 𝐾̂𝑌 was calculated by Pr(𝐾̂𝑌 = 𝐾) = 1

𝑚
∑ (𝐾̂𝑌𝑗 = 𝐾)𝑚
𝑗=1 , where the estimator 

Y=E for the ΔK method (Evanno et al. 2005) and Y=P for the Pr⁡[𝑋|𝐾] method (Pritchard et al. 

2000). 

Measuring the accuracy of individual ancestry assignments is more difficult, because of the 

symmetry of the clustering model (Pritchard et al. 2000; Stephens 2000). A sample of individuals 

can be assigned to K populations in K! (labelling) ways with exactly the same likelihood, and the 

same biological meaning. For example, 4 individuals A, B, C and D can be assigned to K=3 

populations, indexed by 1 to 3, in 6 equivalent partitions in which one population is represented by 

both A and B while the other two populations are represented by C and D respectively. These are 

{{A,B}, {C}, {D}}; {{A,B}, {D}, {C}}; {{C}, {A,B}, {D}}; {{C}, {D}, {A,B}}; {{D}, {A,B}, 

{C}}; {{D}, {C}, {A,B}}. In each partition, the jth (j=1, 2, 3) set of individuals is assigned to 

population j. Here population labels, 1 to 3, are arbitrary, and the 6 partitions have the same 

likelihood and the same biological meaning. At most, the MCMC algorithm of Structure returns one 

of the K! equivalent partitions (Pritchard et al. 2000). Different runs of the same data with different 

random number seeds and/or starting points may land on different ones of the K! equivalent 

partitions. 

 As the labels of the inferred populations are insignificant, I calculate the difference between 

the simulated (known) and estimated coancestry for pairs of individuals in a sample to measure the 

quality of individual ancestry inferences. For a total number of 𝑛0 = ∑ 𝑛𝑗
𝐾
𝑗=1  individuals sampled 

from K populations, the average assignment error, AAE, is measured by 
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𝐴𝐴𝐸 = (
1

𝑛0(𝑛0 − 1)/2
∑ ∑ (∑𝑞̂𝑗

(𝑖)
𝑞̂𝑗
(𝑖′)

𝐾̂

𝑗=1

−∑𝑞𝑗
(𝑖)
𝑞𝑗
(𝑖′)

𝐾

𝑗=1

)

2𝑛0

𝑖′=𝑖+1

𝑛0

𝑖=1

)

1/2

 

where K and 𝐾̂ are the simulated (or known) and assumed numbers of populations, 𝑞𝑗
(𝑖)

 and 𝑞̂𝑗
(𝑖)

 are 

the simulated (or known) and estimated ancestry of individual i (i=1, 2, …, 𝑛0) coming from 

population j (j = 1~K and j = 1~𝐾̂ for 𝑞𝑗
(𝑖)

 and 𝑞̂𝑗
(𝑖)

 respectively), and 𝑞𝑗
(𝑖′)

 and 𝑞̂𝑗
(𝑖′)

 are similarly 

defined for another individual i'. Obviously, AAE is invariable with label switching. Its minimum 

value is 0, when ancestry assignment is perfect (i.e. 𝐾̂=K, 𝑞̂𝑗
(𝑖)
= 𝑞𝑗

(𝑖)
 for i=1~n0 and j=1~K). Its 

maximum value is 1, when individuals from different populations are assigned to the same 

population and individuals from the same population are assigned to different populations. AAE was 

calculated for each of 20 runs of each of m=100 replicate datasets simulated with a given parameter 

combination, and the average across runs and replicates was reported. 

An empirical dataset: To demonstrate the impact of unbalanced sampling and the effect of ancestry 

priors on Structure analysis in practice, I analysed a subset of the human data published in 

Rosenberg et al. (2005). The subset consists of 51 Palestinian individuals from Israel, 13 

Colombian individuals from Colombia, and 24 Mandenka individuals from Senegal. Each 

individual was genotyped at 783 microsatellite loci. The three populations are well differentiated, 

and the sample of 88 individuals can be easily clustered into the 3 source populations (Palestinian, 

Colombian and Mandenka) with little admixture by Structure using genotype data only, no matter 

which (the default or the alternative) ancestry prior is used (Fig. S1, Supporting Information).  

To investigate the impact of unbalanced sampling and ancestry prior, I generated 

subsamples by bootstrapping over individuals and over loci. Each subsample was obtained by 

keeping the original 51 Palestinian individuals, and by drawing at random (without replacement) 5 

individuals from the 13 Colombian and 5 individuals from the 24 Mandenka. The genotypes of each 

individual in a subsample were obtained at a number of L (=10, 20, 40, 80, 160, 320, 640) loci, 

drawn at random (without replacement) from the original 783 microsatellites. For each L value, 200 

subsamples were generated by the above procedure of bootstrapping over individuals and loci. Each 

subsample was then analysed by Structure using the admixture and correlated allele frequency 

models, a burn-in and running length of 104 iterations, and the default or the alternative ancestry 

priors. The assumed K value varied in the range [1, 5], and 20 replicate runs were conducted for 

each assumed K value. The most likely number of populations represented by the sampled 61 

individuals was estimated by 𝐾̂𝐸 and 𝐾̂𝑃 as for the simulated data. The accuracy of 𝐾̂𝐸 and 𝐾̂𝑃 was 
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calculated by 𝑃(𝐾̂𝐸 = 𝐾) and 𝑃(𝐾̂𝑃 = 𝐾) respectively, where K=3. The assignment errors were 

calculated as AAE, assuming no individual has mixed ancestries as shown by the whole data (88 

individuals, 783 microsatellites) analysis (Fig. S1, Supporting Information) and assuming a number 

of K=3 populations. 

 

Results 

Ancestry assignments: The default ancestry prior works well and yields accurate individual 

assignments (Fig. 1, 2) only when sampling is balanced (i.e. when n1/ni is close to 1, where i≥2). 

However, when sampling is unbalanced with roughly n1/ni >5 in the case of K=3 (Fig. 1), 

individuals in the small samples from populations 2 and 3 are frequently assigned to a single cluster 

while individuals in the big sample from population 1 are frequently split into two or more clusters 

(see Fig. S2, Supporting Information). Similarly, individual ancestry assignments are also very poor 

for larger K values under unbalanced sampling (Fig. 2). An increasing extent of population 

differentiation measured by FST (Fig. S3, Supporting Information) and an increasing amount of 

marker information (Fig. 1) do not improve much of the assignment quality under this prior. 

 In contrast, the alternative prior yields highly accurate individual ancestry assignments (Fig. 

1, 2; Fig. S3, Supporting Information), except when sampling is highly unbalanced and when either 

the actual number of populations is large (K>12, Fig. 2), the number of markers (L =10) is small 

(Fig. 1) or FST is low (0.05) (Fig. S3). In the case of a small number of populations (K=3, 6), almost 

perfect assignments were obtained by using the alternative prior, even when the larger sample is 38 

times larger than the smaller samples (Fig. 1, 2). However, the superiority of the alternative prior 

decreases with an increasing number of populations, K (Fig. 2). When K is very large (≥24), the 

choice of prior has little effect on individual assignment accuracy, which is predominantly 

determined by the imbalance of sample sizes among populations (Fig. 2). An examination of 

assignment results shows that frequently the population represented by the large sample is split into 

two or more populations, while the populations represented by small samples are accurately 

reconstructed (Fig. S4, Supporting Information) under both priors. With many populations (K=48), 

the default prior performs slightly better than the alternative prior (Fig 2). 

 The poor performance of Structure when K is large and sampling is unbalanced (Fig 2) is 

caused mainly by its default ALPHA value. This default initial α value, ALPHA=1.0, seems to be 

too large that it impedes the mixing of the MCMC sampler to move to lower α values («1) which 

encourage the inference that each individual’s ancestry comes mostly from a single population (i.e. 
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no admixture). With an increasing K and an increasing imbalance in sampling, the problem 

becomes increasingly severe, as is clear from Fig 3. Under the alternative ancestry prior, the 

individual assignments to populations improve quickly with a decreasing ALPHA value (Fig 3). 

This is true especially when the uncorrelated allele frequency model is used. In contrast, the default 

prior always leads to poor individual assignments to populations, regardless of the adopted allele 

frequency models and the values of ALPHA (Fig 3). Similar results were obtained for even larger K 

values (K=48). It can be concluded that the alternative ancestry prior, a non-default ALPHA value 

of about 1/K, and the non-default uncorrelated allele frequency model are required for Structure to 

give accurate inferences when K is large and sampling is unbalanced. 

With balanced sampling (i.e. n1/ni close to 1), the alternative prior has the same assignment 

accuracy as the default prior. This is true for different numbers of markers (Fig. 1), different 

numbers of populations (Fig. 2) and different levels of population differentiation (Fig. S3, 

Supporting Information). There seems to be little accuracy cost of assuming the alternative prior in 

analysing data with balanced sampling. 

Population number estimates: With balanced sampling, the number of populations represented by 

the sampled individuals, K, is estimated accurately by both estimators of 𝐾̂𝐸 and 𝐾̂𝑃, no matter 

which (default or alternative) prior of individual ancestry is used (Fig. 4; Fig. S3, Supporting 

Information). However, with an increasing difference in sample size between populations, both 

estimators deteriorate quickly, especially when the default prior was used. A close inspection of the 

results indicates that overestimates of K in some datasets and underestimates of K in other datasets 

were obtained by both 𝐾̂𝐸 and 𝐾̂𝑃 estimators. This is not surprising because, while the population 

represented by the large sample may be split, the populations represented by small samples may be 

merged in Structure analysis (Fig. S2, S4, Supporting Information). Most often 𝐾̂𝐸 under-estimates 

while 𝐾̂𝑃 over-estimates K.  

Estimator 𝐾̂𝑃 under the alternative prior works noticeably better than the other estimator and 

prior combinations for the entire range of sample size differences (n1/n2 = 1~38) (Fig. 4; Fig. S3, 

Supporting Information). Overall, estimator 𝐾̂𝑃 is more accurate than 𝐾̂𝐸, no matter which (default 

or alternative) prior is used. While 𝐾̂𝐸 is reasonably accurate under balanced sampling, its 

performance deteriorates rapidly with increasing imbalance in sample sizes (Fig 4; Fig. S3, 

Supporting Information), and becomes highly inaccurate even when one sample is only 2 times 

larger than any of the other samples. The observations are consistent across different numbers of 

loci (Fig 4) and different differentiation levels (Fig. S3, Supporting Information).  
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The behaviour of 𝐾̂𝑃 under the default prior is complicated and perplexing. Its accuracy has 

two maxima when n1/n2 is about 1 and 10 respectively, and two minima when n1/n2 is about 5 and 

large, respectively (Fig. 4). This pattern is consistent across the cases of L=10, L=20 and L=40, and 

is thus unlikely due to insufficient replications. This erratic pattern is also observed cross different 

levels of population differentiation (Fig. S3, Supporting Information). 

Empirical data analysis results: Better assignments with fewer assignment errors were obtained by 

using the alternative ancestry prior than the default ancestry prior (Fig. 5). The superiority of the 

alternative prior is substantial when the number of loci is small, and the assignment quality becomes 

independent of the priors when the number of loci is greater than 300.  

 Similar to the simulation results, 𝐾̂𝑃 is more accurate than 𝐾̂𝐸 when the number of loci is 

high (L > 40) (Fig. 5). The accuracy of 𝐾̂𝐸 is always smaller than 60%, no matter how many 

markers and which ancestry prior is used. In contrast, the accuracy of 𝐾̂𝑃 can reach a value as high 

as 85% when L > 80. It is puzzling that the accuracy of 𝐾̂𝑃 decreases gradually with an increasing L 

when L≥100 (Fig. 5). The alternative prior leads to a more accurate 𝐾̂𝑃 than the default prior when 

markers are numerous. These results confirm the conclusion from simulations that 𝐾̂𝑃 with the 

alternative prior provides the best estimate of K when sampling is unbalanced. 

Discussion 

My analyses of simulated and empirical datasets confirm the conclusions of previous studies 

(Kalinowski 2011; Neophytou 2014; Puechmaille 2016) that unbalanced sampling has a large 

impact on Structure analysis. It reduces the quality of individual assignments to populations, and 

the accuracy of the estimated number of populations using both the method (𝐾̂𝐸) of Evanno et al. 

(2005) and the original method (𝐾̂𝑃) of Pritchard et al. (2000). These effects become more severe 

with an increasing imbalance in size among samples from different populations, and cannot be 

removed by using many more markers (Fig. 1) or by increasing the levels of differentiation among 

populations (Fig. S3, Supporting Information). However, I showed that these adverse effects of 

unbalanced sampling on Structure analysis can be largely overcome by simply switching to the 

alternative ancestry prior, at least when the number of populations is not large. Under this 

alternative prior, each assumed population has a specific α value (which defines the prior 

proportional contribution of a population to the sample) which can be different from those of other 

populations. Under this alternative ancestry prior, Structure can yield highly accurate inferences of 

individual ancestries (Fig. 1, 2; Fig. S3) and reasonably good estimates of the number of 
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populations, K, (Fig. 4) represented by the sampled individuals, when sampling is unbalanced and K 

is not large. 

 In their simulations, Kalinowski (2011), Neophytou (2014), and Puechmaille (2016) 

considered 4, 3 and 10 populations, respectively. They showed that Structure yielded inaccurate 

inferences when sampling was unbalanced, as confirmed by the present study. This is mainly 

because the default ancestry prior was used in their Structure analyses. If the alternative prior, 

which is apparently more suitable for these unbalanced sampling situations, were used, the 

individual assignments to populations and the inference of K should be much improved, as 

demonstrated by the present study (Fig. 1~4).  

Previous simulations have not considered many (say, K>20) populations. I showed that in 

the more difficult case of many populations, although Structure can still yield quality inferences of 

individual ancestry and K when sampling is balanced, it gives rather poor inferences when sampling 

is highly unbalanced, no matter which ancestry prior (default or alternative) is used, how 

differentiated the populations are, and how much marker information is available. My simulations 

demonstrate that further parameter and model adjustments in additional to individual ancestry prior 

are necessary for Structure to deal with this difficult situation of many populations under 

unbalanced sampling. Reducing the default ALPHA value (1.0) to approximately 1/K could 

improve the inferences substantially under the alternative prior (Fig 3). Adopting the best 

combination of the alternative prior, ALPHA ~ 1/K, and the uncorrelated allele frequency model, 

Structure can yield highly accurate individual assignments even when K is extremely large (48) and 

sampling is highly unbalanced (Fig 3). These results imply that caution needs to be exercised about 

the default parameter settings in Structure, especially in difficult situations such as many 

populations and unbalanced sampling. In reality, the parameter K and the sample structure (whether 

balanced or not) for a dataset are unknown and are parts of the Structure inferences. It is therefore 

impossible to determine, a priori, the most suitable parameter settings for conducting a Structure 

analysis. I suggest, therefore, using multiple exploratory parameter combinations to make a 

comparative Structure analysis of the same dataset. These combinations should include the one with 

the alternative ancestry prior, an ALPHA value much smaller than the default (1.0) (say, ~ 1/K 

where K is the assumed number of populations), and the uncorrelated allele frequency model.    

 While the alternative prior can greatly improve individual assignments to populations (Fig. 1, 

2, 3, 5; Fig. S3, Supporting Information), it does not help a lot in improving K inference (Fig. 4, 5; 

Fig. S3, Supporting Information). With balanced sampling, both 𝐾̂𝐸 and 𝐾̂𝑃 are accurate. However, 

the accuracy of both estimators deteriorates quickly with an increasing level of unbalanced 
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sampling (Fig. 4; Fig. S3, Supporting Information). When the sample size ratio n1/n2 is far from 1, 

both methods have a low frequency of recovering the actual number of populations. This is true 

regardless of individual ancestry priors, marker information contents and population differentiation 

levels. Relatively, 𝐾̂𝑃 outperforms 𝐾̂𝐸 substantially when sampling is unbalanced, and 𝐾̂𝑃 under the 

alternative prior yields the most accurate estimates of K (Fig. 4; Fig. S3, Supporting Information) at 

different levels of unbalanced sampling.  

The simulation results highlight the difficulties of inferring K by Structure, as stressed by 

the authors (Pritchard et al. 2000) of the program. It is understandable that two or more optimal K 

values may exist to explain the genetic structure represented by a sample of individuals. Such a case 

occurs when samples are taken from hierarchically structured populations (Evanno et al. 2005), 

where different optimal K values may correspond to the numbers of populations defined at different 

hierarchical levels (e.g. continents, regions, sub-regions, …). It is also understandable that K may be 

arbitrary, depending on the sampling scheme. This is true when samples are taken from a large 

continuous population in Wright’s (1946) neighbourhood migration model. However, my 

simulations considered a number of K well and equally differentiated populations in an island 

model, such that a single best K value should exist. Indeed, the frequency that K=3 is correctly 

recovered by both 𝐾̂𝑃 and 𝐾̂𝐸 estimators can reach 100% when sampling is balanced (Fig. 4), but 

reduces to about 20% when sampling is highly unbalanced. It is unclear why K is so poorly 

estimated while individual assignments to populations can be fairly accurate, when the alternative 

prior is applied to highly unbalanced sampling and when marker information and population 

differentiation are high.  

My simulation and empirical data analyses show that 𝐾̂𝑃 is more accurate than 𝐾̂𝐸 when the 

sizes of samples from different populations are highly variable, and has a high accuracy similar to 

that of 𝐾̂𝐸 otherwise. In practice, however, the most widely applied estimator is 𝐾̂𝐸, being used 

thousands of times in published studies (Puechmaille et al. 2016). My results suggest that 𝐾̂𝑃 is 

preferable to 𝐾̂𝐸 in the simple situation of the island migration model where all populations are 

differentiated more or less equally without a hierarchical structure. However, more simulations 

considering more complicated situations, such as hierarchically structured populations (Evanno et al. 

2005), populations differentiated to different degrees from the ancestral (or pooled) population in 

the otherwise island model, are needed to compare 𝐾̂𝑃 and 𝐾̂𝐸 before a general conclusion can be 

reached. In the meantime, I suggest use both estimators in inferring K in practice. 

 A survey of published studies shows that none explicitly stated that the alternative ancestry 

prior and a non-default ALPHA value were used in Structure analysis. Frequently the default 
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parameter settings of Structure, including the default ancestry prior and ALPHA=1.0, were adopted 

without justification. This is not surprising, as the genetic model of Structure is complicated with 

many parameters requiring initial values (like ALPHA=1.0), prior distributions (like prior 

individual ancestry) and model selection (like correlated and uncorrelated allele frequency models), 

and the choice of some parameter settings is not always obvious. With almost every parameter 

having a default value/prior which is easily accepted by users without a second thought, it is all too 

easy to run Structure analysis. It is however also easier to misuse Structure because the default 

parameter settings may not be suitable for a particular dataset. Given the ubiquity of unbalanced 

sampling, and the large advantage and low cost of the alternative (population specific) ancestry 

prior as demonstrated in this study, I suggest the authors of Structure to set the population specific 

ancestry prior and ALPHA=1/K as the defaults, where K is the assumed number of populations in a 

particular Structure analysis. I also suggest users of the program to choose the population specific 

ancestry prior and ALPHA=1/K in analysing their data, and to infer K using both 𝐾̂𝑃 and 𝐾̂𝐸. I 

further suggest the authors and users of Structure to pay more attention to the uncorrelated allele 

frequency model, although it can be argued that population allele frequencies are usually correlated 

as measured and modelled by FST. At a minimum, this model should be explored together with the 

alternative ancestry prior and an ALPHA value much smaller than 1.0 when the default parameter 

setting in Structure does not work well for a dataset. The most likely number of populations 

estimated by Structure should be taken with caution, especially when sampling is suspected to be 

unbalanced or/and the number of populations is large.  
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Data Accessibility 

Source code and (Windows) executable for simulating genotype data, preparing input files for 

Structure, and running Structure: DRYAD entry DOI: http://dx.doi.org/10.5061/dryad.f8n5j 

Source code and (Windows) executable for generating bootstrapping subsamples of the human 

dataset, preparing input files for Structure, and running Structure: DRYAD entry DOI: 

http://dx.doi.org/10.5061/dryad.f8n5j 

 

Supporting Information 

Additional Supporting Information may be found in the online version of this article: 

Fig. S1 The inferred membership of 88 human individuals in K=3 populations by Structure. Each 

individual was genotyped at 783 microsatellites. The results were obtained from Structure using a 

burn-in length and a run length of 104 iterations, the admixture and correlated allele frequency 

models, the default (upper panel) or the alternative (lower panel) ancestry prior, and all other 

parameters at default values. Each individual is represented by a thin line partitioned into K 

coloured segments that represent the individual’s estimated membership fractions in K populations. 

Fig. S2 The inferred membership of individuals in an example simulated dataset by Structure. The 

dataset has 200 simulated individuals drawn from K=3 populations in the island model at drift-

migration-mutation equilibrium with FST =0.10. Individuals 1~180, 181~190, and 191~200 (ordered 

from left to right on the x axis) were sampled from populations 1, 2, and 3, respectively, and each 

individual was genotyped at 40 loci with each having 10 alleles. The analysis results were obtained 

from Structure using a burn-in length and a run length of 104 iterations, the admixture and 

correlated allele frequency models, the default (upper panel) or the alternative (lower panel) 

ancestry prior, and all other parameters at default values. Each individual (on the x axis) is 

represented by a thin line partitioned into K=3 coloured segments that represent the individual’s 

estimated membership fractions in K populations. 

Fig. S3 Quality of individual assignments to populations and inferences of K by Structure. Three 

equally differentiated populations (K =3) with FST =0.05, 0.10 or 0.20 in the island model were 

simulated. Each individual has genotypes at L=20 loci, each having 10 alleles. The sample size was 

https://webmail.zsl.org/owa/redir.aspx?SURL=W-H2DP4ByM0Ht4e_XSFpFRlmzTk1LhdeRCokGNckDmtj-V7bUCrUCGgAdAB0AHAAOgAvAC8AZAB4AC4AZABvAGkALgBvAHIAZwAvADEAMAAuADUAMAA2ADEALwBkAHIAeQBhAGQALgBmADgAbgA1AGoA&URL=http%3a%2f%2fdx.doi.org%2f10.5061%2fdryad.f8n5j
https://webmail.zsl.org/owa/redir.aspx?SURL=W-H2DP4ByM0Ht4e_XSFpFRlmzTk1LhdeRCokGNckDmtj-V7bUCrUCGgAdAB0AHAAOgAvAC8AZAB4AC4AZABvAGkALgBvAHIAZwAvADEAMAAuADUAMAA2ADEALwBkAHIAeQBhAGQALgBmADgAbgA1AGoA&URL=http%3a%2f%2fdx.doi.org%2f10.5061%2fdryad.f8n5j
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ni for population i (i=1, 2, 3), with n2 ≡ n3 and 𝑛1 + 𝑛2 + 𝑛3 ≡ 200. At each FST value, 100 

replicate datasets were analysed by Structure using the default (Dft) and alternative (Alt) priors. The 

inference quality was measured by average assignment errors (AAE) in panel A, and by 𝑃(𝐾̂𝐸 = 𝐾)  

and 𝑃(𝐾̂𝑃 = 𝐾) in panels B, C, and D, as a function of the extent of unbalanced sampling measured 

by the sample size ratio, n1/n2 (x axis). A burn-in and run length of 104, the admixture and 

correlated allele frequency models, and the default values of other parameters were used in 

Structure analyses. 

Fig. S4 The inferred membership of an example simulated dataset of 1600 individuals from K=24 

populations by Structure. Individuals 1~680, 681~720, 721~760, …, 1561~1600 (ordered from left 

to right on x axis) were sampled from populations 1, 2, 3, …, 24 respectively, the sample size being 

680 for the first population, and 40 for each of the other 23 populations. Each individual was 

genotyped at 50 loci with each having 10 alleles. The populations were at drift-migration-mutation 

equilibrium with FST =0.20. The analysis results were obtained from Structure using a burn-in 

length 5×105 and a run length 104 iterations, the admixture and correlated allele frequency models, 

the default or the alternative ancestry prior, and all other parameters at default values. Each 

individual (on the x axis) is represented by a thin line partitioned into K=24 coloured segments that 

represent the individual’s estimated membership fractions in K populations. 


