
 

 

 

Title:  Elevated Body Mass Index is associated with reduced integration of 

sensory-driven with internally-guided resting-state functional brain networks 

 

Authors:  Gaelle E. Doucet1, Natalie Rasgon2, Bruce S. McEwen3, Nadia Micali1†, 

Sophia Frangou1†* 

Affiliations: 

1 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, USA 

2 Center for Neuroscience in Women’s Health, Stanford University, USA 

3 Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The 

Rockefeller University, USA 

 

* Corresponding author: 

Sophia Frangou, MD, PhD, FRCPsych 

Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, NY, NY 10029, USA 

Email:sophia.frangou@mssm.edu; tel: +1 212-659-1668 

† Joint senior authors  

 

Running title: Effect of body mass index on brain functional organization 

 

 

 

 



2 

 

Abstract 

Elevated body mass index (BMI) is associated with increased multi-morbidity and 

mortality. The investigation of the relationship between BMI and brain organization has 

the potential to provide new insights relevant to clinical and policy strategies for weight 

control. Here, we quantified the association between increasing BMI and the functional 

organization of resting-state brain networks in a sample of 496 healthy individuals that 

were studied as part of the Human Connectome Project. We demonstrated that higher 

BMI was associated with dysconnectivity of the Default-Mode (DMN), Central Executive 

(CEN), Sensorimotor (SMN) and Visual (VN) Networks and their constituent modules. In 

siblings discordant for obesity, we showed that person-specific factors contributing to 

obesity are linked to compromised cohesiveness of the sensory networks (SMN and 

VN). We conclude that higher BMI is associated with widespread disruption in brain 

networks that balance sensory-driven (SMN, VN) and internally-guided states (DMN, 

CEN) which may augment sensory driven behavior leading to overeating and 

subsequent weight gain. Our results suggest the need for wider societal policies that 

incorporate modifications to eating environments (including exposure and proximity to 

food) and to the visual presentation and branding of food products. 

 

Keywords: body mass index, brain networks, functional connectivity, resting-state, 

siblings. 
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Introduction 

The prevalence of overweight and obesity is increasing worldwide (Ng M et al. 2014). 

This is concerning because overweight, as measured by the Body Mass Index (BMI; the 

weight in kilograms divided by the square of the height in meters), is reliably associated 

with increased morbidity and all-cause mortality (Aune D et al. 2016). The rise in BMI 

has been attributed to multiple interacting factors relating to the increased availability of 

calorie dense food (Chandon P and B Wansink 2011; Egger G et al. 2012) and to 

genetic (Curran JE et al. 2013; Locke AE et al. 2015) and neurobiological mechanisms 

(Ziauddeen H et al. 2012; Vainik U et al. 2013) that regulate individual behavior. BMI 

shows significant heritability, estimated between 0.58 and 0.87 (Elks CE et al. 2012; Min 

J et al. 2013). However, the familial contribution to BMI reduces over the lifespan 

(Silventoinen K and J Kaprio 2009) and person-specific factors account for nearly half of 

the variance in BMI changes during adulthood (Romeis JC et al. 2004). Behavioral 

evidence suggests that higher BMI is associated with reduced inhibitory control and 

increased responsiveness to food-related stimuli (Davis C and J Fox 2008; Smith E et 

al. 2011; Vainik U et al. 2013). Higher BMI may therefore reflect dysfunction in brain 

networks that balance sensory-driven and internally-guided states. Congruent with this 

notion, higher BMI has been associated with abnormal activity and connectivity in brain 

regions involved in sensory processing and reward valuation of food stimuli (Wang GJ 

et al. 2002; Grill HJ et al. 2007; Stice E et al. 2008; Garcia-Garcia I et al. 2013). Further, 

higher BMI has been linked to abnormal brain activity (Volkow ND et al. 2009; 

Willeumier K et al. 2012) and functional connectivity (Kullmann S et al. 2012) of core 

regions of the default-mode network (DMN) and the central executive network (CEN), 
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two internally-guided networks that are involved the integration of cognitive control with 

information about somatic and emotional states (Bressler SL and V Menon 2010). 

 

These findings suggest the need for a better understanding of the influence of BMI on 

brain organization as a means to develop neuroscience-informed public health and 

clinical interventions for the prevention and treatment of obesity. To this aim we used 

the rich dataset of the Human Connectome Project (HCP) comprising publically 

released sociodemographic, cognitive and neuroimaging data from 496 participants, 

including 209 fully-related sibling pairs (Van Essen DC and DM Barch 2015). Using 

resting-state functional magnetic resonance imaging (rs-fMRI) data we identified four 

major networks corresponding to the DMN, CEN, Sensorimotor (SMN) and Visual (VN) 

Networks and their constituent modules. We tested two hypotheses. First, we predicted 

that higher BMI would disrupt the functional integration of networks involved in the 

sensory processing of external stimuli (SMN, VN) and in the representation of internal 

states and goals (DMN, CEN). Second, we tested the contribution of familial and 

person-specific factors by comparing siblings discordant for obesity. The results 

presented here have direct implications for clinical and policy interventions for weight 

control. First, they suggest that interventions that target cognition and behavior (dietary 

restriction, recommendations for exercise) need to be expanded to include modifications 

to individuals’ eating environment (visibility of and proximity to food). We also argue that 

our findings point to the need of public policy strategies to address how food, especially 

calorie dense food, is displayed, advertised and packaged.   
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Materials and Methods 

Study Sample 

We used data from 496 participants (291 women) of the Human Connectome Project 

(HCP) database (http://www.humanconnectome.org). The study sample included 209 

full sibling pairs (50 monozygotic twin pairs and 159 full fraternal sibling pairs). 

Participants had a mean age of 29 years (range 22–37 years) and mean BMI of 26.6 

(range 16.8 to 47.8). When categorizing participants according to BMI, we followed the 

world health organization definitions for obesity (BMI>30.0), overweight (BMI 25.0-29.9), 

normal weight (BMI 18.5-24.9) and underweight (BMI<18.5) (Organization WH 2013). 

Based on this definition, the sample comprised 109 obese and 165 overweight 

individuals, 213 normal-weight participants and 9 underweight individuals. 

Data used in this work were obtained from the MGH-USC HCP database 

(https://ida.loni.usc.edu/login.jsp).  

 

HCP Non-imaging Subject Measures 

The HCP database includes structural and functional imaging data and non-imaging 

data on demographic characteristics (e.g., age, sex), physical health, lifestyle and 

personality measures (e.g., smoking, drug use) and neurocognitive measures derived 

from tests included in the National Institute of Health (NIH) Toolbox 

(http://www.nihtoolbox.org) and HCP-specific tests (details at 

wiki.humanconnectome.org). We focused on variables relating to sex, age, smoking and 

alcohol use that are known to affect brain function independent of BMI and on 

stimulating thyroid levels as they may independently affect BMI. Based on previous 

http://www.nihtoolbox.org/
https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+500+Subject+Release
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literature (Vainik U et al. 2013), we also examined the relationship of BMI to 

performance on Regional Taste Intensity test and on the Flanker Inhibitory Control and 

Attention Task, both from the NIH Toolbox. The former measures perceived intensity of 

quinine (a bitter tastant) and salt, administered in liquid solutions. The latter tests the 

executive control of attention, measured by the ability to ignore distracting flanker 

stimuli, and response inhibition, measured by the ability to suppress responses to task-

incongruent stimuli. To ensure completeness, we also examined univariate correlations 

between BMI and 103 non-imaging measures for which we had no a priori hypothesis 

(Fig. S1-S4). As functional connectivity is related to brain structural integrity we also 

examined correlations between BMI and brain volumes (Fig. S5). These measures 

extracted by the HCP team and are available to download from 

http://www.humanconnectomeproject.org/data/.  

 

Neuroimaging Acquisition and Preprocessing  

Resting-state functional magnetic resonance imaging data were acquired on a Siemens 

Skyra 3T scanner using “left-to-right” phase encoding; image matrix = 104 x 90; number 

of volumes = 1200; pixel resolution = 2.0 mm isotropic; slice thickness = 2.0 mm; 

repetition time = 720 ms; echo time = 33.1 ms; field of view = 208 x 180 mm; flip angle = 

52 degrees. Data were de-identified prior to release as described by van Essen and 

Barch (Van Essen DC and DM Barch 2015). Also, the influence of potential head 

movement artefacts was minimized in the functional data by using strict inclusion criteria 

regarding head motion as well as strict overall quality control (Van Essen DC and DM 

Barch 2015). Termemon et al. (Termenon M et al. 2016) recently showed that when 
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considering more than 100 subjects, 600 volumes from the HCP rs-fMRI data were as 

reliable as the full 1200 volumes available. Therefore, for each individual, 600 resting-

state fMRI volumes were preprocessed using Statistical Parametric Mapping software 

(SPM12; http://www.fil.ion.ucl.ac.uk/spm/software/spm12). A six-parameter variance 

cost function rigid body affine registration was used to realign all images to the first 

volume. Motion regressors were computed and later used as regressors of no interest. 

To maximize mutual information, coregistration between the functional scans and the 

average anatomical T1 scan was carried out using six iterations and resampled with a 

7th-Degree B-Spline interpolation. Functional images were then normalized into 

standard space (MNI) and segmented into gray matter, white matter (WM), and 

cerebrospinal fluid (CSF). All normalized images were smoothed by convolution with a 

Gaussian kernel, with a full width at half maximum of 6 mm in all directions.  

Previous studies have underscored the importance of correcting for participant head 

motion (Power JD et al. 2012; Satterthwaite TD et al. 2012) and physiological noise 

(Chang C and GH Glover 2009) in functional connectivity studies to avoid spurious 

correlations between brain regions. Therefore, additional temporal preprocessing steps 

were performed to regress out the effects of participant motion (i.e., the six realignment 

parameters from rigid-body registration) and physiological motion (i.e., the time-courses 

of WM and CSF masks). For each individual, the time-courses of both WM and CSF 

were estimated in the relevant brain tissue classes defined at the segmentation step.  

 

Head motion effect 

In addition to regressing out the head motion from the data, we took great care in 

minimizing potential movement artifacts by including strict inclusion criteria based on 
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maximal head motion: less than 2 mm translation or 0.5 degree rotation, resulting in the 

exclusion of 5 individuals. We also examined the relation between obesity and relative 

head motion and did not find any significant difference in average or maximum head 

motion between obese, overweight individuals and normal-weight individuals (p>0.05, 

Bonferroni corrected) (Table S1). Lastly, no significant correlation was found between 

head motion and BMI, in any direction (|r|≤0.1, p>0.05, Bonferroni corrected). 

 

Functional Network Construction  

In each individual, we averaged regional mean blood oxygenation level-dependent time 

series from each of 638 cortical and subcortical regions (Zalesky A et al. 2010; Crossley 

NA et al. 2013) that were used as nodes in our network modeling. We applied a wavelet 

decomposition to the raw time series to extract information in the frequency interval of 

approximately 0.01 to 0.11 Hz, as wavelet-based methods have significant advantages 

in terms of denoising (Fadili MJ and ET Bullmore 2004), robustness to outliers (Achard 

S et al. 2006), and utility in null model construction (Breakspear M et al. 2004). This 

frequency scale was chosen to minimize the impact of high frequency physiological 

noise (i.e., heartbeat, respiration) while maximizing the degrees of freedom available for 

wavelet correlation (Lo CY et al. 2015). In the specific frequency interval, all-pairwise 

functional connections between these nodes were estimated using Pearson correlation 

coefficients, which were then Fisher r-to-z transformed, resulting in 638*638 

connectome matrix for each participant. Using k-means clustering algorithm, we 

partitioned the functional connectome of each participant into groups of densely 

functionally interconnected brain regions. The objective function optimized in the 

estimation is defined in terms of time course similarity in each subset: 
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where yv is the time course of voxel v, mk(v) is the mean time course of the voxel’s 

assigned cluster, and d2 is the squared distance function [defined as: 1 – r(x,y)]. This 

formulation leads to a non-linear optimization problem that is solved iteratively. This 

method minimizes the within-cluster sums of point-to-cluster-centroid distances and can 

identify consistent networks based on the fMRI data rather than any regularization 

property of a particular clustering method (Golland Y et al. 2008). We employed a 

robust estimation procedure in determining the mean time course of each network 

during clustering. In each reiteration of the k-means algorithm, all voxels assigned to a 

particular network participate in the initial estimate of its mean time course. The final 

partition was defined using a commonly used approach of defining similarity between 

time courses based on their correlation coefficient: 

 

where x and y are the time courses of length T, and  and  are the mean value of 

vectors x and y, respectively. Identification of network was performed both at the 

individual and at the group level. For the latter, we used the average functional 

connectivity matrix of all participants as the input of the k-means algorithm. The average 

group partition was used in further analysis as the normative reference partition.  

For each individual, we calculated two global properties: (1) the variance in network size 

to test whether the networks were similarly sized; (2) the index of spatial similarity (Z-

score of Rand Coefficient; Z-Rand) to evaluate the consistency of partitions (Traud A et 

al. 2011). We also calculated two local properties to examine the roles of each network 
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within the global brain architecture: (1) the within-network connectivity (a measure of 

functional cohesion of a network) and (2) the between- network connectivity (a measure 

of functional integration of a network). The within-network connectivity measures the 

mean strength of functional connectivity between all nodes in a given network. The 

between-network connectivity measures the mean strength of functional connectivity 

between the nodes of one network and the nodes of all the others (Gu S et al. 2015). 

 

Statistical Analyses  

The effect of BMI on functional brain organization was examined using non-parametric 

correlations. Analyses were conducted with and without potential confounders (age and 

education); the latter were retained if they contributed to the results. The network 

metrics tested were variance in network size, Z-Rand and within- and between- network 

functional connectivity; the threshold for statistical significance was set at P<0.05 using 

False Discovery Rate (FDR) correction.  

We used correlations and tests of group differences, as appropriate, to examine the 

relationship of BMI to age, sex, smoking status (current smokers vs. non-smokers), 

alcohol use (number of alcoholic drinks per day), the regional taste intensity test and the 

Flanker Test. As these variables were determined a priori the level of statistical 

significance was P < 0.05. We conducted exploratory correlations between BMI and  

variables relating to cognition, personality, health, lifestyle and brain structure that were 

available through the HPC database; correlations of at least moderate strength (i.e., 

correlation coefficient > 0.2) that were significant at P<0.05, uncorrected, were 

considered potentially informative (Hinkle DE et al. 2006).  
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Sibling analyses 

We estimated the familial similarity in BMI in sibling pairs using the intraclass correlation 

coefficient (ICC). We tested the relative contribution of familial and person-specific 

factors to obesity (BMI>30) based on the extent to which the mean BMI of the full 

siblings of obese individuals regresses to the rest of the population mean (n=395). This 

approach has been used to determine familial vs. person-specific contributions to 

complex quantitative traits such as height (Chan Y et al. 2011) and cognitive ability 

(Reichenberg A et al. 2016). If the mean BMI of siblings of obese participants (BMI>30) 

was comparable to the mean BMI of the total sample that would indicate the relative 

predominance of person-specific as opposed to familial factors to the etiology of 

obesity. If the mean BMI of the siblings of obese individuals was significantly higher 

than the mean BMI of the total sample that would indicate the relative importance of 

familial factors for obesity. Finally, we used the discordant sibling pair paradigm to 

examine the contribution of familial and person-specific factors to BMI-related rs-fMRI 

changes by comparing the network configuration of sibling pairs in which one sibling 

was obese (BMI≥30) and the other was of normal weight (BMI 18-25), using paired t-

tests. To allow potentially meaningful moderator effects to be considered in future study 

designs, the threshold for statistical significance for this analysis was set at P<0.05. 

 

Results  

BMI association with non-imaging and brain structural subject measures 
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Here we report on a priori considered correlations based on previous literature between 

non-imaging measures and BMI relating to age, sex, thyroid function, substance use, 

taste perception and executive function (Davis C and J Fox 2008; Smith E et al. 2011; 

Vainik U et al. 2013; Ng M et al. 2014; Aune D et al. 2016). BMI was associated with 

age (r=0.1, p=0.03) and level of education (r=-0.16, p=3.10-4) but not with sex (men: 

26.9±4.5; women: 26.4±5.8; p=0.2), level of thyroid stimulating hormone (r=0.04, p=0.5) 

and number of alcoholic drinks per week (r=-0.06, p=0.38). The difference in BMI 

between current smokers (22% of the sample) and non-smokers was just below the 

conventional threshold of statistical significance (p=0.08). We found no correlation with 

task performance on either the regional taste intensity test (r=-4.10-3, p=0.9) nor the 

Flanker Inhibitory Control and Attention Task (r=-0.03, p=0.6). Additionally, no 

differences in either test (both p>0.2) were identified when obese participants (BMI>30) 

were compared to the rest of the sample.  

To capitalize on the rich phenotypic information available through the HCP we 

conducted exploratory analyses of 103 non-imaging cognitive, personality, lifestyle and 

physical health variables as shown in Figures S1-S4. Significant correlations were only 

found between BMI and systolic (r=0.36, p=7.10-17) and diastolic (r=0.31, p=4.10-12) 

blood pressure and age at menarche (r=-0.3, p=2.10-7), which accord with prior findings 

(Fernandez-Rhodes L et al. 2013; Prentice P and RM Viner 2013) (Fig. S1).  

Additionally, we explored correlations between BMI and brain morphological variables 

provided by the HCP (http://www.humanconnectomeproject.org/data/). Given, the 

variability in the extant literature (Curran JE et al. 2013; Medic N et al. 2016) we had no 
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a priori hypotheses but we found that BMI showed negative but minimal correlations 

with all whole brain and regional gray and white matter volumes tested (Fig. S5).  

 

Networks and constituent modules     

We used rs-fMRI data acquired from 496 HCP participants to estimate functional 

connectivity (edges) between 638 cortical and subcortical brain regions (nodes) and 

applied k-means algorithm to partition the functional connectome of each participant into 

networks. We identified four major networks corresponding to the Default Mode Network 

(DMN), Central Executive Network (CEN), Somatosensory Network (SMN) and Visual 

Network (VN) (Fig. 1). We further decomposed these networks into their constituent 

modules (Fig. 2). Consistent with previous literature (Andrews-Hanna JR 2012), the 

DMN partitioned in four modules comprising the anterior DMN (including the anterior 

medial prefrontal and the anterior cingulate cortex), the posterior DMN (including the 

ventral precuneus and posterior cingulate cortex), the medial temporal DMN centered in 

the middle temporal cortex, and the dorsal medial prefrontal cortical DMN (also 

including the angular gyrus and the inferior temporal gyrus). The CEN partitioned into 

the salience, lateral frontoparietal and subcortical modules (Seeley WW et al. 2007; 

Bressler SL and V Menon 2010). The SMN partitioned into the dorsal (hand) and ventral 

(oral) module. The VN partitioned into four modules centered in the lateral and medial 

occipital cortex, and in the dorsal central and posterior precuneus.  

 

Disrupted Network reconfiguration with increasing BMI 
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We tested the effect of BMI on the consistency of network configuration using the Z-

Rand which is the Z-score of the Rand Coefficient (i.e., a measure of the similarity 

between data clusters). We found a negative correlation between BMI and Z-Rand for 

all four networks (ρ=-0.14; p=0.009) and for their constituent modules (ρ=-0.18; 

p=0.001), confirming that elevated BMI disrupts the composition of functional brain 

networks. 

 

Altered network connectivity with increasing BMI 

We then tested whether the BMI-associated disruption in network configuration 

observed above was driven by alterations in the functional cohesion (within-network 

connectivity) or the functional integration (between-network connectivity) of brain 

networks. We found that higher BMI was associated with reduced functional cohesion of 

the DMN (ρ =-0.12, p=0.02) coupled with increased between-network connectivity of the 

DMN (ρ =0.15, p=0.008) and the SMN (ρ=0.11, p=0.02). Analyses at the level of the 

constituent modules provided further evidence for an effect of BMI on the DMN and 

yielded additional findings regarding the CEN and VN. Within the DMN, higher BMI was 

associated with reduced cohesion of the anterior (ρ=-0.15, p=0.007) and posterior (ρ=-

0.17, p=0.001) DMN modules and increased between-network connectivity of the dorsal 

medial prefrontal (ρ=0.11, p=0.04) and anterior DMN (ρ =0.14, p=0.01) modules. In the 

CEN and VN, we found evidence of reduced within-network connectivity of the salience 

(ρ =-0.18, p=0.001), frontoparietal (ρ =-0.13, p=0.02) and medial occipital (ρ =-0.13, 

p=0.02) modules.  
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Sibling Analyses  

The intraclass correlation coefficient of BMI was 0.82 and 0.6 in monozygotic twin and 

fraternal sibling pairs respectively. The mean BMI (mean=27.6; sd=4.8) of the siblings 

(n=96) of obese study participants was higher than that of the remaining sample 

(mean=24.6; sd=3.6) (Fig. 3). Confirming the influence of familial factors, the average 

BMI Z-score of the siblings of obese participants was 0.3 (95% CI: [0.1, 0.5]) while that 

of the rest of the sample was -0.4 (95% CI: [-0.4,-0.3]); this difference was significant 

(t=-5.8, p< 0.001).  

We then tested for person-specific influences on BMI using a discordant sibling design. 

We identified 34 sibling pairs discordant for obesity (within the fraternal sibling pairs). 

Each pair consisted of an obese (BMI range: 30-44; mean BMI=34.1) and a normal-

weight sibling (BMI range: [18-25]; mean BMI=22.6). The majority were same sex 

sibling pairs (41.7% females and 16.7% males). Of the remaining sibling pairs, 11.0% 

comprised of a normal-weight male and an obese female and 30.6% of a normal-weight 

female and an obese male. The discordant siblings did not differ in age (p=0.3), 

education (p=0.8), sex distribution (p=0.2), or head motion while scanned (p>0.05, 

Bonferroni corrected, for any directions). Compared to their normal-weight counterparts, 

obese siblings showed reduced spatial definition of network modules (Z-Rand; p=0.001, 

Cohen’s d=0.63). In more detail, obese siblings showed reduced functional connectivity 

of medium effect size within the dorsal SMN (p=0.003, Cohen’s d=0.67) and within the 

medial occipital VN module (p=0.012, Cohen’s d=0.49) (Fig. 4). The functional 

connectivity of the DMN and CEN did not differ between obese and normal-weight 

siblings (both: p>0.05). 
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Discussion  

We examined the effect of BMI on the functional architecture of the brain using rs-fMRI 

data from participants of the Human Connectome Project. We found that elevated BMI 

was associated with disrupted functional integration of sensory-driven (SMN, VN) with 

internally-guided (DMN, CEN) networks, implicating increased attention to sensory 

stimuli as a possible mechanism underpinning overeating and weight gain.  

 

The effect of Body Mass Index on the Default Mode Network 

The DMN is a robust resting-state network, that although characteristically more 

engaged during conditions of spontaneous mental activity (Raichle ME et al. 2001), 

plays a central role in the integration of information that underpins conscious processing 

during both spontaneous and task-related mental activity (Buckner RL et al. 2008; 

Andrews-Hanna JR 2012; Braga RM et al. 2013; Vatansever D et al. 2015). This is 

reflected in its functional profile which is defined by high within- and high between-

network connectivity (Meunier D et al. 2009; Gu S et al. 2015).  Based on these 

features, Gu et al. (Gu S et al. 2015) described the DMN as a “cohesive connector” 

system. The results presented here suggest that higher BMI alters the role of the DMN 

to that of an “incoherent connector” by reducing its differentiation and internal 

cohesiveness and increasing its integration with other networks. This change in status 

has been found to impair efficient processing of internal functions in obese individuals 

(Volkow ND et al. 2009; Willeumier K et al. 2012). For example, Garcia-Garcia and 

colleagues (Garcia-Garcia I et al. 2013) have shown that DMN dysfunction in obese 
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compared to normal-weight individuals, is associated with abnormal processing of food 

and non-food related reward. Abnormalities in the locus coeruleus/norepinephrine (LC-

NE) system may offer a pathophysiological explanation for the observed reduction in 

DMN cohesion with increasing BMI (Corbetta M et al. 2008). DMN cohesion depends 

the tonic activity of the LC-NE system (Adan RA et al. 2008; Mittner M et al. 2016) 

which may be decreased in obesity based on recent findings of reductions in 

norepinephrine turnover and in norepinephrine transporter (NET) availability in obese 

individuals (Adan RA et al. 2008; Li CS et al. 2014; Melasch J et al. 2016).  

 

The effect of Body Mass Index on the Central Executive Network 

Within the CEN, we show that increasing BMI was associated with diminished 

connectivity within the frontoparietal and salience modules. The frontoparietal network 

has been implicated in a wide range of functions that require cognitive control, including 

attention, working memory, performance monitoring, planning, and response inhibition 

(Niendam TA et al. 2012). In this study, BMI showed a minimal and non-significant 

negative correlation with task performance on the Flanker Task, the HPC measure of 

executive control of attention and response inhibition. It is possible that the Flanker 

Task is insensitive to subtle BMI-changes in brain connectivity or that executive 

dyscontrol related to BMI may be more evident in tasks that involve food-related stimuli.     

We found diminished connectivity within the salience network that implicates 

abnormalities in the functional integration of its constituent brain regions that include the 

insula and dorsal anterior cingulate cortex (ACC). The insula is integral to food 

perception, regardless of body weight, as it forms part of the primary gustatory cortex 
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(Rolls ET 2006). Together with the ACC, it responds to the cognitive, homeostatic, or 

emotional salience of stimuli in order to guide behavior (Seeley WW et al. 2007; Menon 

V and LQ Uddin 2010). Elevated BMI has been shown to influence insula function 

leading to reduced connectivity at rest (Kullmann S et al. 2012) and increased activation 

and connectivity in response to food and food-related cues [reviewed by Frank et al. 

(Frank S et al. 2013)].   

 

The effect of Body Mass Index on Somatosensory and Visual Networks  

The VN and the SMN are reliably and robustly activated during perception of food 

images and tastes (Huerta CI et al. 2014). Typically, these sensory-driven networks 

have a competitive interaction with internally-guided networks (Doucet G et al. 2011; 

Huang S et al. 2015) and their optimal function within the brain connectome is 

characterized by high within-network and low between-network connectivity (Gu S et al. 

2015). We found that higher BMI was associated with increased between-network 

connectivity of the SMN and reduced within-network connectivity of the VN and SMN, 

the latter being most evident in the discordant sibling analyses. We infer that these 

changes in SMN and VN connectivity, in conjunction with reduced DMN and CEN 

cohesiveness, may favor sensory-driven over internally-guided processing,  consistent  

with reports of persistently increased responsiveness to food stimuli in obese individuals 

even when not hungry (Pursey KM et al. 2014). Our findings also provide indirect 

support for the popular concept of “see food” diet, which describes sensory-driven food 

consumption even when internal states (e.g., satiety) or goals (e.g., maintaining well-

being) indicate the opposite action. Although our data do not allow us to test whether 
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increased sensory-driven responsiveness is a cause or consequence of elevated BMI 

(Stoeckel LE et al. 2016), prior studies suggest that sensory-driven food consumption is 

causally related to overeating as obese individuals behave in ways that make food more 

visible and more convenient to reach (Wansink B and CR Payne 2008; Wansink B and 

M Shimizu 2013; Wansink B et al. 2016).   

 

Methodological Considerations 

Despite this being the largest and most comprehensive assessment of the relationship 

between BMI and brain organization, the study has two important limitations. First, the 

cross-sectional design precludes conclusion about the direction of causality of the 

observed effects. Second, we did not have any measures of adiposity, other than BMI, 

so we could not examine whether the observed effects were associated or mediated by 

specific aspects of body fat distribution or other metabolic factors. However, as the HCP 

sample consists of healthy young adults we were able study the phenotypic relationship 

between BMI and brain and cognition unhindered by medical comorbidity. This is 

particularly important in terms of cognition where the association between elevated BMI 

and cognitive dysfunction appears, to a large extent, influenced by medical 

comorbidities (Elias MF et al. 2003; Cournot M et al. 2006; Gunstad J et al. 2007; 

Nilsson LG and E Nilsson 2009; Sabia S et al. 2009). We show that the average 

correlation between cognitive measures (number of variables considered=83) and BMI 

was 9.10-3 (Fig. S1-S4) which is low and consistent with that found in large population 

studies (Marioni RE et al. 2016) and meta-analyses of relevant data (Vainik U et al. 

2013). Conversely, the HCP sample does not include elderly who are an age-group of 
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particular interest since beyond the 6th decade of life higher BMI appears to mitigate 

against cognitive decline (Buchman AS et al. 2005; van den Berg E et al. 2007). Hsu 

and colleagues (Hsu CL et al. 2015) showed that obese adults aged 70-80 years had 

better preserved DMN and better cognitive performance at 12-month follow-up than 

their normal-weight peers. The underlying reasons are unclear but unintentional weight 

loss in old age is likely to reflect degenerative process affecting both body and brain 

(Grundman M et al. 1996) and contributing to general frailty (Rockwood K et al. 2007). 

Further studies are needed to examine BMI-related brain disorganization in underweight 

individuals (BMI<18.5) because only 9 HCP participants met this definition.  Although 

we focus on resting-state brain networks, a sizable body of literature has used task-

related fMRI to investigate brain responses to food-related stimuli (images, odors, actual 

food) [reviewed by Ziauddeen et al. (Ziauddeen H et al. 2012) and Vainik et al. (Vainik U 

et al. 2013)]. An important extension of this work would be the joint examination of 

resting-state connectivity with changes observed in fMRI datasets acquired while food-

related information is actively processed. The interaction between intrinsic and task-

related connectivity would complement our understanding of the neural mechanisms 

involved in regulating eating behaviors.  

The influence of potential head movement artefacts was minimized in the functional 

data by using strict inclusion criteria regarding head motion as well as strict overall 

quality control (Van Essen DC and DM Barch 2015). Lastly, the construction of brain 

graphs from fMRI data entails multiple methodological choices regarding analyses. We 

therefore tested the robustness of our key results by examining the effect of BMI both 

on the spatial topology and the connectivity of brain networks. 
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Clinical and Translational Implications for addressing overweight and obesity  

The current results provide a neurobiological context for understanding the association 

between BMI and brain functional organization while accounting for familial and person-

specific influences. The widespread effect of elevated BMI on the intrinsic functional 

organization of the brain establishes overweight and obesity as multisystem challenges 

for healthcare. Of particular relevance to the planning of clinical and public health 

policies and interventions is the association of elevated BMI with disrupted integration of 

sensory-driven networks with networks that process internally generated states and 

goals. The results presented here suggest that weight control interventions should go 

beyond the current focus on individual cognitive and behavioral (dietary restriction, 

recommendations for exercise) modification. They underscore the role of the eating 

environment (visibility of and proximity to food) as an important moderator of eating 

behavior. Environmental modification could be implemented at the individual or 

household level (Wansink B et al. 2016) but should also include public policy strategies 

to address how food is displayed, advertised, packaged and priced.   
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Figure Captions 

 

Fig. 1: Brain functional organization into four major systems.  Central Executive 

Network (CEN) is shown in blue; Default Mode Network (DMN) is shown in green; 

Somatosensory network (SMN) is shown in brown; Visual Network (VN) is shown in 

orange. 

 

Fig. 2: Description of the 13 constituent modules composing the four major systems. 

(A) Default Mode Network (DMN), (B) Central Executive Network (CEN), (C) Visual 

Network (VN) and (D) Somatosensory network (SMN). 

 

Fig. 3: Distribution of the Body mass index. Three groups are shown: siblings of obese 

individuals (light blue, mean BMI=27.6), obese study participants (dark blue, mean 

BMI=35.4), and the rest of the individuals (black, mean BMI=24.6). 

 

Fig. 4: Within-Network connectivity in the discordant sibling pairs. Dark colors represent 

average within network connectivity in the normal-weight siblings (left-sided bars), light 

colors represent average within network connectivity in the obese siblings (right-sided 

bars). Error bars represent one standard-error. Name of each network community is 

described in Fig. 2. *: p<0.05; **: p<0.005. 

 

 

  


