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ABSTRACT 

    The densification phenomenon in dry or completely drained sands is mainly due to 
the application of dynamic loading, like an earthquake or other kind of vibrations. This 
fact causes a reduction of voids volume and in a consequence the compaction of the 
soil. A finite element model, including the generalized endochronic densification law, 
formulated in cylindrical coordinates, has been developed for simulating the 
vibroflotation soil improvement technique the numerical model. Punctual dynamic 
loadings, like those occurring in vibroflotation treatment, are reproduced in the code. 
There are several other vibration-compacting soil improvement techniques which could 
be modelled like an axi-symmetric problem with this new approach, which includes 
absorbent boundary conditions (silent boundaries). 

1. INTRODUCTION 

     The vibroflotation is a technique for improving the strength and bearing capacity of 
unsaturated, granular soils. It consists of the application of punctual vibrations at 
different depths inside a soil layer, produced by an apparatus called “vibrator”. These 
vibrations could have different amplitudes and frequencies, and causes the application 
of dynamic loadings inside the soil (Fig.1). This technique was first used in Germany in 
the 1930’s, and later, in USA. It is specially indicated for soils with very small fines 
content, and for deep layers, as deep as the vibrator can be introduced within the soil 
(until 20m). For a given soil and vibrator (with its particular amplitude and frequency of 
loading), this procedure requires the definition of several geometrical parameters, i.e. 
the vertical distance of vibrating points at the same hole, as well as the horizontal 
distance between them and time of vibration at each point. In practice, these 
magnitudes are usually defined using empirical relations, making proofs before the 
complete treatment, and using data from successful past experiences. Although it 
seems to be necessary the development of a rational design approach, it is possible to 
affirm that this technique has been applied with success in a number of cases (Mitchell, 
1970; Brown, 1977). 
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Figure 1. Sketch of the vibroflotation soil improvement technique. a) Detail of a hole, 
including the vibrator inside. a) A plant vision of the mesh of holes in the soil layer to be 
improved.
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     It is well known that, when loose sandy soils are subjected to dynamic loadings, they 
tend to acquire denser states, reorganizing their grains. This phenomenon is known as 
densification.
    To model this kind of processes, there are several kinds of approaches. On one 
hand, there are empirical and semi-empirical based models, extrapolating the results of 
densification found in the laboratory for a particular material. These models usually give 
good results, but are far from reproducing the physics of the mechanisms governing the 
real soil behaviour (Seed & Silver, 1972; Martin et al., 1975). On the other hand, it is 
possible to find in the literature advanced elastic-plastic constitutive laws, very efficient 
from the computational cost point of view, but which usually require the calibration of a 
high number of parameters without physical meaning.
     In this research, an endochronic based densification law for sandy material is used. 
The endochronic theory, first developed for metals, was successfully applied to sand 
under vibrations by Cuéllar (Cuéllar, 1974). This law, based in the definition of two 
monotonic functions which increase as the number of harmonic shear strain cycles 
progresses, has been recently updated and generalized for non-harmonic loadings, 
and high number of cycles (Blázquez & López-Querol, 2006).  
     The above mentioned endochronic based densification law has been implemented 
in a Finite Element, axi-symmetric code. One single hole, along with its surrounding soil 
domain, is modelled. The axis of symmetry is located on the hole, where punctual 
vibrations take place at different depths. Aiming to avoid the unrealistic reflection of 
stress waves, those boundaries which do not represent rigid borders, but links to other 
surrounding material, are established as absorbent (silent boundaries).
     The paper begins showing the details of the numerical model, including the 
employed constitutive law, the axi-symmetric FE code, and the formulation of absorbent 
boundary conditions. After that, the model is applied to different materials, and the 
optimal spacing of the vibration points is established.  

2. DESCRIPTION OF THE NUMERICAL MODEL 

2.1 Generalized endochronic densification law. 
     In his pioneer work, (Cuéllar, 1974) established that the densification of sand is due 
to the irreversible rearrangement of grain configurations associated to the application of 
a deviatoric strain. In mathematical form: 

  (1) 

where is called “rearrangement measure”, a function of the deviatoric component of 

the strain tensor, ij. In order to account for the monotonically increasing trend of , the 
differential expression (2) must be a quadratic and finite function:

 (2) 

where Pijkl denotes a set of coefficients which depend on the state of the material.



     The previous expression can be decoupled in terms of normal and shear strains: 

 (3) 

where (I1(…)) is the first invariant of the tensor in parenthesis, and (J2(…)) is the second 
invariant of the same tensor. 
     Taking into account that the volumetric stress has a small influence on the 
densification, P1 can be neglected. On the other hand, shear stresses between grains 
depend on the normal force component between them, and therefore P2 can be 
considered independent on J2(d ij) and I3(d ij), where I3 is the third invariant of the 

incremental stress tensor, d ij. Therefore, P2 only depends on the first invariant of d ij.

Since the invariant is related to the normal stresses, P2 can be taken as a constant: 

     (4) 

Defining a new variable, named “densification measure”, , independent of time, and 
function of the rearrangement measure and the deviatoric stresses:  

  (5) 

the densification, v, can be expressed as follows: 

  (6) 

where Dr0 is the initial relative density of the sand. 

The functions F1 and F2 are taken by Cuéllar as: 

 (7) 

  (8) 

where and n are the two parameters of the densification law, and .

Introducing this new variable in (4): 

  (9) 

and replacing (7) and (8) in (5) and (6), the following densification law (in incremental 
form) is obtained:

(10)



Where

  (11) 

     The negative sign of densification means that the sand behaves in contractive 
manner.

      Although Cuéllar assumed that n and  where independent on the number of cycles, 
N, some posterior research (Blázquez & López-Querol, 2006) demonstrated their 
dependence on this magnitude for high values of N, which is of the next form: 

  (12) 

  (13) 

where A, B, C and D are soil dependent parameters. For quartzitic sands, they can be 
estimated as follows: 

 (14) 

  (15) 

 (16) 

  (17) 

In the above equations, emin and emax respectively denote minimum and maximum 
voids ratio, Dr0 is the initial relative density at the beginning of the dynamic loading, and
C* is the only remaining unknown parameters, which needs to be calibrated by means 
of dynamics tests. 
     The above describe constitutive model has been successfully implemented in FE 
codes to simulate settlements in granular soils due to earthquakes (Blázquez & López-
Querol, 2006). 

2.2 Details on the developed FEM code. 
     Since it has been previously justified, the vibroflotation is a procedure through which 
the stress waves move are transmitted inside the soil from the hole where the punctual 
vibrations are applied. Hence, the problem being axi-symmetric, it seems obvious the 
convenience of formulating the governing equations using cylindrical coordinates. 
Figure 2 represents a sketch of the modeled geometry, along with the definition of the 

employed coordinates (r,  and z) and their corresponding displacements (u, v and w)
(Oñate, 1992).
     The general governing equation of this problem is given by the equilibrium of forces 
in a differential element of the soil (Zienkiewicz et al., 2000): 



  (18) 

where  is the soil density, b is the vector of gravitational accelerations, fext is the vector 
of external forces, D

ep includes the constitutive law of the material, and d represents 
incremental magnitudes. 
     To solve the above equation (18), a code programmed in MatLab has been carried 
out. Triangular, quadratic approximation elements have been used. After applying the 
Galerkin theory (weighted residuals), the weak formulation of the problem yields: 

 (19) 

where {…} represents a column vector,  denotes incremental magnitudes between to 
consecutives instants of time, u is the vector or unknowns (in each node, (u, v, w) - the 
displacements in cylindrical coordinates), and fext are the external forces applied to the 
model. K, C and M are stiffness, damping and mass matrices of the system, after 
assembled, with dimension 3·N (N is the number of nodes). Due to the nature of the 

problem, no displacements are expected in  (v=0), and the problem is two-dimensional 
(Ottosen & Peterson, 1992). 

Figure 2. Finite element mesh of a soil layer in cylindrical coordinates system 

     It is worth to point out that the problem is incrementally solved. In each time step, 

the soil is considered elastic; after the solution, the increment of rz is obtained, and Eqs. 
(9-11) are applied to calculate the increment of densification, as well as the 
accumulated densification in each point. In addition, after every step, the soil becomes 
stiffer, and hence, the value of the shear elastic modulus, G, is updated, by means of 
the following expressions (Papadimitriou et al., 2001): 

                                                   



(20)

     Bg is a model parameter which depends on the type of sand, e is the void ratio, ’v is

the effective confining pressure, and pa is the atmospheric pressure ( ’v, pa and Gmax are
given in the same units). The degradation parameter, T, can be expressed as:

(first loading) 
(unloading and reloading)  (21) 

where Ct is a material constant that depends on the degree of non linearity of the soil 

response, and 0 and sr are, respectively, the current, initial and at last reversal 

values of / ’v.

     Since the modelled problem changes in time, and the governing equation (18) jointly 
involves displacements along with their first and second derivatives in time, a time 
integration scheme is required to completely define the solution. The step-by-step 

Newmark’s method has been implemented in the code, formulated with 1 = 2 = 0.5 
(Zienkiewicz et al., 2000). 

Aiming to reproduce the physics of the problem, and to avoid unrealistic reflection of 
waves at those boundaries which do not represent rigid borders (on the left and right of 
the modelled geometry, where more surrounding soil is confining the domain – see Fig. 
3), absorbent boundary conditions have been implemented, according to (Toshinawa & 
Ohmachi, 1992). 

3. OPTIMIZING THE SPACING OF VIBRATION POINTS 

As it was previously mentioned, one of the key features on designing vibroflotation 
treatments is optimizing the horizontal spacing of holes where vibration takes place. 
Using the above described numerical model, and three different sands for which the 
densification constitutive law has been previously calibrated (Crystal Silica with Dr0=45%
- CS 0.45 - , Crystal Silica with Dr0=80% - CS 0.80, Ottawa Sand with Dr0=77% - OT 
0.77), the optimal horizontal spacing has been obtained in each of them. The values of 
the parameters used for these sands are given in Table 1.

Table 1. Constitutive law parameters for the analysed sands. 

Sand  A B C D Bg Ct

CS 0.45 0.1497 12.720 2.00 0.2720 200 0.5 

CS 0.80 0.1602 12.720 20.00 0.2720 200 0.5 

OT 0.77 0.1072 11.656 1.66 0.1656 200 0.5 



     The model has been applied to a 5 m deep layer. The modelled geometry is a 5m 
high rectangle, with different widths to reproduce several spacing. For instance, if D 
(horizontal spacing, according to Fig. 1b) is 4 m, the model is D/2, hence, 2m (like in 
Fig. 3). Distances of D=1, 2, 3 and 4m have been tried. Just for comparison purposes, 
a unique point of vibration has been applied (Fig. 3). For this single vibrating point, the 
amplitude of horizontal displacement is 5 mm, the frequency is 60 Hz, and the total time 
of vibration is 10 seconds.

     For optimizing the spacing between holes, a comparison between the 
measurements of the mean densification in each one of the geometries, along with the 
total time of treatment, will be carried out: 

- For a given spacing (and its correspondent geometry), after the total time of 

vibration,  we define the “mean densification”, y, as: 

 (21) 

where Ne denotes the total number of elements. 

Figure 3. Finite element mesh for a geometry with an affection radius of 2 m. 



- The time of treatment is directly related to the number of holes in a particular 
zone. For instance, if we need to densify a layer which, in plant, is 100m x 100m 
square, the horizontal spacing between the holes will determine the number of 
them, and hence, the total time spent on completing the ground improvement. If 
in each hole we vibrate only once (at the middle of the layer depth), and in each 
point the vibrator works 10 seconds, the total time of treatment for the analysed 
spacing is calculated in Table 2. By the inspection of this table, it is self evident 
the huge difference in time (in other words, in cost) of this technique as a 
function of the selected separation between holes.

Figure 4. Evolution of the densification in time of vibration at points A, B and C (see 
figure 3) for CS-0.45 sand. 

     As an example of the obtained numerical results, Fig. 4 shows the evolution in time 
of  vibration in three points of the geometry, close to the vibrating point (see Fig. 3), for 
the material CS-0.45. From this figure, it can be concluded that the closer the point to 
the source of vibration, the higher the final densification result. On the contrary, the 
closer that point, the farer from achieving a final asymptotic value of densification. 
However, 10 seconds seem to be enough to get a final result very close to the 
maximum possible in all the points, even in A. 



    Figure 5 shows the values of the mean densification for the different times of 
treatment for the three analysed sands. We can conclude that, the denser the mesh of 
holes, the more the efficient the densification achieved. However, the shapes of the 
calculated curves show that, for the lower times of treatment, it is worth to increase the 
number of holes, since the slope is steeper.
     As a practical hypothesis of this research, we will assume that the minimum possible 
separation between holes which permits this treatment to be used is 1m. Hence, let’s 
assume that the maximum mean densification is that produced for an affection radius of 
0.5m. Let’s take the 75% of the maximum mean densification as our final objective of 

treatment (called y,75). Making the inverse computation, to obtain the distance between 
holes which would give us this objective densification, we get the final optimal results of 
spacing which are presented in Table 3. 

Figure 5. Evolution of the mean densification with the total time of treatment 

Table 2. Total time of treatments for different spacing of holes in a 100mx100m square 

Horizontal spacing 
(D, in m) 

Affection radius 
(D/2, in m) 

Number of holes Time of treatment 
(sec.)

1.0 0.5 10000 100000 

2.0 1.0 2500 25000 

3.0 1.5 1089 10890 

4.0 2.0 625 6250 
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Table 3. Optimal distance between holes of vibration for the analysed sands 

Sand y,75 (%) Optimal time of 

treatment (for y,75)
(in hours) 

Optimal distance 
(m)

CS 0.45 0.19 16.9 1.3 

CS 0.80 0.03 17.4 1.5 

OT 0.77 0.14 18.4 1.4 

CONCLUSION 

      This paper presents a new numerical model as a tool aiding on obtain an optimized 
design of the vibroflotation soil improvement technique for several sandy soils. The 
finite element method model, formulated in cylindrical coordinates to represent the axi-
symmetry of the problem, includes the generalized densification constitutive law, 
previously used with success to reproduce settlement of sandy soils after earthquakes. 
For those borders limiting to the surrounding soil, the boundaries have been formulated 
as absorbent.
     The conclusions derived from this research can be summarized as follows: 

- The used constitutive law is not only valid for earthquakes, but also for higher 
frequency loadings, like for instance, the vibrations produced in this technique. 
The obtain results are in the range of the results observed both in the laboratory 
and in the field.

- Horizontal Distances between holes of 3-4 m produce very small total 
densification, which improves very much as the spacing becomes denser. 

- A practical horizontal distance in the range of 1.3-1.5 m has been obtained as 
optimal to get the 75% of the mean densification in a given sand. For the same 
material, it can be concluded that, the denser it is, the higher could be the 
distance.

     More analyses, modelling deeper layers, more points of vibration in the same hole, 
and other materials, as well as comparisons with real field cases, would be desirable.
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