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Abstract

The influence of surface functional groups on the electrochemical performance of

carbon electrodes was studied by using graphene nanoflakes (GNF), a well-defined

carbon nanomaterial. After characterisation with different techniques, GNF were used

to modify a boron-doped diamond (BDD) electrode and the influence of different edge

terminations on various redox probes was investigated using cyclic voltammetry (CV).

The outer-sphere redox probe ferrocenemethanol (FcMeOH) was found to be

unaffected by the presence of GNF at the electrode surface, confirming that GNF do

not inhibit electron transfer. When proton-coupled electron transfer was investigated, it

was shown that the acid-terminated GNF acted as a non-solution proton source and

sink.

The [Fe(CN6)]
3−/4− redox couple was found to be quasi-reversible and independent of

electrolyte pH at clean BDD and BDD modified with amide-terminated GNF. When

GNF were decorated with COOH functionalities, the reaction became less reversible

and pH-dependent. The reaction was also directly influenced by the electrolyte

concentration, with low concentrations causing the reaction to become more

irreversible.

Potential-induced dissociation of the carboxylic acid edge groups on GNF was

investigated with in situ spectroelectrochemistry combining potentiostatic control with

attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).

Applying a negative electrode potential led to the deprotonation of both electrode-

immobilised groups and species in solution. Acid dissociation was driven by an

increase in interfacial cation activity at the electrode surface that lowered the apparent

pKa of all species at or near the electrode.

Different methods of GNF attachment on the electrode surface were explored,

including direct attachment to gold via thiol edge groups and EDC-mediated amidation

reaction to form covalent bonds with a self-assembled monolayer (SAM) on gold.

Scanning tunnelling microscopy (STM) was used to verify the presence and probe the

orientation of GNF at the surface.
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1 Introduction

1.1 Graphene

For decades, carbon nanomaterials, such as fullerenes and carbon nanotubes, have

been the subject of intense research due to their exceptional electrical and mechanical

properties (for reviews see [1-4]). The building block of these carbon materials is

graphene [5], a one-atom thick sheet of sp2-hybridised carbon arranged in six-

membered rings (Figure 1.1). Graphene has long been studied theoretically, but it was

not isolated experimentally until 2004, when it was successfully prepared by Geim and

Novoselov [6] by peeling thin layers off a graphite surface using Scotch tape. This

method, termed micromechanical cleavage, resulted in samples with few defects as

shown by field effect experiments.
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Figure 1.1 Graphene is a two-dimensional building material for other carbon materials; it can be
wrapped up into 0D buckyballs, rolled into 1D nanotubes or stacked into 3D graphite.

Reproduced from [5] with permission.

Raman spectroscopy is widely used to characterise graphitic materials. The two most

intense Raman bands in graphite are the G peak at ~1580 and 2D peak at ~2700 cm−1

(with 514 nm excitation) resulting from the doubly degenerate zone centre E2g mode

and a second-order two-phonon process of zone-boundary phonons, respectively [7].

Raman spectra of graphite and graphene are presented in Figure 1.2(a). Defects in

graphitic materials give rise to a Raman band termed the D peak at ca. 1350 cm−1, thus

allowing the use of Raman spectroscopy to assess the number of defects in graphene.

Ferrari et al. [7] were the first to show that Raman spectroscopy also produces unique

fingerprints depending on the number of layers in graphene samples. The 2D band,
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sometimes referred to as the G′ band, changes significantly in shape and intensity 

going from single-layer graphene to graphite as shown in Figure 1.2(b-c).

Figure 1.2 (a) Comparison of Raman spectra at 514 nm for bulk graphite and graphene. They
are scaled to have similar height of the 2D peak at ∼2700 cm

−1
. (b) Evolution of the spectra at

514 nm with the number of layers. (c) Evolution of the Raman spectra at 633 nm with the
number of layers. Adapted from [7] with permission.

The remarkable electronic properties of graphene, such as high carrier mobility and

high transport velocity, stem from the sp2-hybridisation of the carbon atoms, where the

pz orbitals remain perpendicular to the graphene lattice and form a conjugated π-bond 

network extending across the basal plane [8]. This electronic structure is disrupted at



1 Introduction

27

defect sites – which is why pristine graphene is desirable for electronic applications –

and at the edges of the graphene sheets.

Graphene edges can adopt two different configurations, referred to as armchair and

zigzag, with an edge often consisting of alternating segments of the two types referred

to as a chiral edge [8] (Scheme 1.1). The zigzag and armchair edges have very

different electron configurations: the armchair edge is more stable due to a triple

covalent bond between the two open edge carbon atoms [9], whereas the zigzag edge

is higher in energy because of the pz electrons confined on each outer carbon atom [8].

Due to these edge states, the zigzag edge is metastable and undergoes planar

reconstruction to pentagonal or heptagonal structures [10].

Scheme 1.1 Schematic representation of different edge configurations. A defect in the basal
plane is shown in orange. Reproduced from [11] with permission.



1 Introduction

28

1.1.1 Graphene synthesis

As mentioned above, the first successful reported experiment to prepare graphene

made use of Scotch tape, which was used to mechanically exfoliate sheets from bulk

graphite [6]. This simple method is cheap to operate but suffers from low throughput as

well as small and irregular sample size, making this method currently not relevant for

commercial electronic applications [12]. More techniques have since been devised and

a selection of the most commonly used methods are summarised in Table 1.1.

Table 1.1: Summary and comparison of some methods for graphene synthesis. Modified from
[13] with permission.

Method Precursor Advantages Disadvantages Ref

Mechanical
exfoliation

Graphite
Low cost, high

electronic
quality

Low
throughput,
broad size
distribution,
small size

[6, 14-16]

Liquid-based
direct exfoliation

Graphite
Scalable,

versatile, mild
conditions

Low monolayer
content, broad
size distribution

[17-23]

CVD
Methane,
ethane,

acetylene

Large-area
graphene,

relatively high
electronic

quality

Polycrystalline,
damaging
transfer
process
required

[24-34]

Electrochemical/
Chemical/
Thermal

reduction of GO

Graphene
oxide (from
oxidation of

graphite)

Low cost, high
throughput

Low electronic
quality

[35-37]

Chemical vapour deposition (CVD) has become the method of choice to prepare

graphene for electronic applications (for a review see [38, 39]). CVD growth utilises

heat, light or electric discharge [38] to deposit carbon onto a substrate from

hydrocarbon precursors, usually methane [32-34]. The thermal decomposition of

methane occurs at a very high temperature, and therefore a substrate that can

simultaneously act as a catalyst is used [38]. The most common substrate is Cu [30,
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31], although the use of Pt [27, 34], Ni [29, 40] and Cu-Ni alloys [32, 33] have also

been reported. CVD allows the fabrication of large-area graphene of relatively high

quality, although not as high as that achieved by mechanical exfoliation due to bilayer

domains and grain boundaries [28, 38]. In addition to the requirement of high

temperature and high vacuum, the major drawback of graphene grown by the CVD

method is the need to transfer the graphene film from the conductive metal substrate

onto an insulating substrate. The conventional wet chemical transfer method involves

attaching a temporary support layer onto the graphene film, etching the metal substrate

off, transferring the film onto the targeted substrate and removing the temporary

support. Commonly used temporary supports are polymers such as polymethyl

methacrylate (PMMA) [25, 26]. This transfer process can be damaging to the structural

integrity of the graphene film due to water trapped underneath the graphene, and leave

behind residue from the etching reagents and the polymer support [28]. Alternative

methods of transfer are the subject of intense research and recent reports of PMMA-

free CVD graphene have been published [28, 41].

Liquid-based direct exfoliation (LBE) is an emerging collection of synthetic methods for

preparing high quality graphene using mild conditions (for a review see [42]). In LBE,

graphite is directly exfoliated into 2D nanosheets in liquid media using ultrasonic,

electrochemical or shear exfoliation. Ultrasonic exfoliation can make use of organic

solvent only [43]; surfactants [17], polymers [19] or polycyclic aromatic hydrocarbons

(PAHs) [20] can be added as stabilisers; and different intercalants such as Li+ [18] or

acids [21] can be used to facilitate exfoliation. In electrochemical exfoliation, a potential

bias is used to achieve intercalation of ionic species into graphite, thus making the

subsequent ultrasonic exfoliation more facile (for a review see [44]). Shear exfoliation

can be performed by ball milling [23] or by rotor and stator [22] in stabilising liquids.
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1.1.2 Graphene Oxide

Aside from electronic applications where large, single-crystalline graphene is needed,

there are various other potential applications for graphene-related materials that don’t

require high electronic quality, defect-free graphene, allowing for cheaper, higher-

throughput synthesis techniques to be used. One method for graphene synthesis

producing high yields is the reduction of graphene oxide (GO). GO has been known

and studied since Brodie first oxidised graphite using potassium perchlorate and

fuming nitric acid more than 150 years ago [45]. Staudenmaier improved on Brodie’s

method but employed the same oxidising agents, with the addition of sulphuric acid to

increase the acidity of the reaction mixture [46]. Later, Hummers replaced KClO3 and

fuming HNO3 with potassium permanganate and sulphuric acid [47]. These three

methods are the main routes to GO [48]. The products show great variation depending

not only on the oxidising agent but also the starting material, which is most commonly

naturally occurring flake graphite, purified to remove heteroatomic contamination but

containing an abundance of inherent localised defects in the π-structure [48]. The 

resulting graphite oxide can be easily exfoliated in many solvents [49], giving individual

sheets of GO which can then be chemically [36], thermally [37] or electrochemically

[35] reduced to give the final product.

The chemical structure of GO is difficult to determine because of its inherently

nonstoichiometric structure and dependence on synthesis method and parameters [50].

Earlier models were based on regular lattices, such as Hofmann and Holst’s structure

consisting of epoxy groups spread across the basal plane of graphite [51] and Ruess’

model based on an sp3-hybridised carbon backbone incorporating hydroxyl groups in

addition to epoxy groups [52]. In current models, the discrete repeat units of regular

lattices are rejected in favour of non-stoichiometric amorphous structures [48]. The

model proposed by Lerf and Klinowski consists of both aromatic regions with
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unoxidised benzene rings and regions with sp3-hybridised 6-membered rings of carbon,

with hydroxyl groups and epoxides above and below the plane and carboxyl and

hydroxyl groups terminating the edges [53]. The supporting evidence for the model

came from NMR and CP/MAS experiments [53]. The main issue with this model, as

pointed out by Szabó and Dékány [54], is the assumption of edge-terminating

carboxylic acid groups being the only carbonyl species, which is not supported by

spectroscopic data and does not explain the planar acidity of GO. A new model

presented by Szabó and Dékány [54] introduces phenolic groups into the bulk of the

layers through carbon-carbon bond cleavage to account for the spectroscopic data and

the acidity; also, the presence of 1,3-ethers is assumed rather than epoxides. The

carbon backbone has a periodic structure of trans-linked cyclohexane chairs and

ribbons of flat hexagons with C=C double bonds; aromaticity is lost early in the

oxidation process [54].

Dimiev et al. [55] have introduced a new dynamic structural model in which interaction

with water, rather than existing acidic functional groups, is the main factor in the acidity

of GO and the functional groups evolve continuously as water incorporates into GO,

transforms it, generates protons and then leaves via different reactions. In this model,

reaction with water results in carbon-carbon bond cleavage, formation of vinylogous

carboxylic acids and generation of protons. The reaction proceeds faster in alkaline

solution. Based on experimental results, Dimiev’s group combine elements from the

two conflicting models: the main functional groups on the basal plane proposed by Lerf

and Klinowski, namely tertiary alcohols and epoxides [53], and the idea of carbonyl

group formation through C-C bond cleavage suggested by Szabó and Dékány [54].

Recent direct imaging experiments support the dynamic interpretation of the structural

evolution of GO [50].
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1.1.3 Graphene Functionalisation

Pristine graphene exhibits remarkable electronic properties. Experimental results show

high charge carrier mobilities at ambient temperatures over a technologically relevant

range of carrier concentrations [16]. Additionally, due to the ambipolarity of graphene,

the charge carriers can be tuned continuously between electrons and holes [5]. This

means that the adsorption of both electron withdrawing and donating groups can lead

to chemical gating of graphene, making graphene a potential material for resistive-type

sensors [56]. These electronic properties, combined with a high surface area, suggest

tantalising possibilities for graphene in applications such as optoelectronic devices [57-

59], supercapacitors [60-62] and electrochemical sensing [63-65].

However, pristine graphene suffers from low solubility in polar solvents and a tendency

to restack irreversibly, making its use problematic in many practical applications. To

improve the water solubility and to prevent restacking of the graphene layers, various

approaches to introduce functionalities onto graphene have been reported, such as

covalent modification [66, 67], π–π interactions [68, 69] and hydrophobic interactions 

[70, 71].

Although covalent functionalisation will in most cases disrupt the π-bonding system of 

graphene, Jeong et al. [66] suggest existing defects can be used as active sites to

minimise introduction of sp3 carbon. They modified thermally exfoliated graphene with

ethanolamine and butyl bromide to introduce cationic ammonium functionalities onto

the graphene basal plane and obtained a product that was stable in solution for months

despite a particle size of around 7 μm. Aminoethyl acrylate –functionalised graphene 

nanosheets bearing cationic functional groups were also shown to effectively resist

restacking and agglomeration [67]. To preserve the electronic structure of the graphene

basal plane, non-covalent methods of functionalisation are needed. Pyrene derivatives

such as 4-(pyren-1-yl)butanal [68] or 1-pyrenebutyric acid hydroxysuccinimide ester
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[69] can be used to functionalise graphene as the pyrene moiety has the ability to form

π–π interactions with the graphene sheet while the end groups introduce a polar 

functionality, thus improving water solubility and preventing stacking due to steric

effects from the bulky molecules.

Non-covalent modification of graphene can also be achieved by exploiting hydrophobic

interactions, for example between the graphene basal plane and the butyl chains in

poly-L-lysine [70] or the PTFE backbone of Nafion [71]. Both graphene hybrid materials

exhibited good stability and dispersibility in aqueous solutions.

1.2 Electrochemistry of Graphene

Traditional consensus has been that electron transfer on graphitic materials is

dominated by the edge plane [72-74], and it has been shown that the intentional

generation of oxygen-containing defects increases the reactivity [72]. However,

recently it has been shown that the basal plane of highly oriented pyrolytic graphite

(HOPG) can exhibit fast electron transfer for outer-sphere redox couples [72, 75-79].

High resolution electrochemical surface imaging studies have shown that electron

transfer at carbon nanotube walls and the graphene basal plane surfaces is fast and

reversible and limited only by available density of states [78, 80-82]. This contrasts with

previous and indeed very recent studies [74, 83] reporting exceedingly sluggish kinetics

at the basal plane of graphitic materials. One possible explanation for these

discrepancies is in preparation of the materials before electrochemical investigation.

Adsorption of organic impurities onto freshly prepared graphene has been shown to

take place within minutes on exposure to a typical laboratory atmosphere [84] and such

a surface layer may lead to inhibition of electron transfer at carbon surfaces.

Notwithstanding the conflicting reports of basal plane activity, it is accepted that the

edge plane of graphitic materials shows enhanced electrochemical activity due to the
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presence of high energy defects such as dangling bonds and oxygen functionalities.

The interaction of various redox species with oxygen functionalities at carbon

electrodes has been investigated extensively by McCreery and co-workers [85-87].

Common redox probes can be classified roughly into three categories: those which are

insensitive to surface termination (FcMeOH, [Ru(NH3)6]
3+/2+); those which interact with

specific oxygen functionalities (such as Fe3+/2+ with C O) and those which are surface

sensitive but apparently do not interact with specific oxygen-containing groups

([Fe(CN)6]
3−/4−) [88].

Graphene has been studied as electrode material using several different redox probes,

such as ferrocenemethanol [41, 89], [Fe(CN)6]
3−/4− [14, 74, 90] and

1,4-benzoquinone/hydroquinone [91, 92]. Due to the variation in the methodology of

graphene synthesis and electrode preparation, comparing the results is not

straightforward. For example, Dryfe’s group [14] fabricated electrodes from

mechanically exfoliated graphene with a well-defined exposed area and controlled level

of defects, thus being able to compare defect-free graphene and graphene with

defects. In contrast with reports of defects improving HET kinetics at basal plane of

graphite [72], Dryfe et al. found no significant difference in the electrochemical

response of [Fe(CN)6]
3− reduction at graphene regardless whether defects were

present [14]. Abruña and Ralph’s group [89] employed a similarly rigorous electrode

fabrication method to both mechanically exfoliated and CVD-grown graphene.

Amemiya’s group [41] reported significantly faster electron transfer kinetics for

ferrocenemethanol at PMMA-free CVD-grown graphene compared to conventionally

transferred CVD graphene contaminated with PMMA residue. Banks and co-workers

[74], on the other hand, used commercially available graphene platelets directly from

the ethanol dispersion in which the platelets were supplied and modified an edge-plane

graphite electrode by the drop-coating method. This method gives very little control

over surface area and coverage of the underlying electrode. Chemically, thermally and
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electrochemically reduced GO samples are also widely employed by immobilisation

onto a glassy carbon electrode surface [93-95]. Aksay et al. [96] have pointed out that

the effect of roughness and porosity of drop-coated films on electrodes can often

dominate the electrochemical response. In some cases, effects stemming from

electrode morphology are unwittingly being measured, rather than effects related to

specific surface chemistry and differences in the HET rates [90, 96].

In addition to variations in oxygen content, defect density and electrode morphology,

the presence of impurities also plays a role in the electrochemistry of graphene-related

materials. The identity of impurities varies from sample to sample and is often

overlooked when results are reported. Exciting electrochemical properties originally

attributed to graphene have subsequently been shown to originate from metallic

impurities [97, 98]. Metallic impurities are inherent in natural graphite and introduced to

both natural and synthetic graphite during milling [99]; they persist in reduced GO

despite the extensive oxidative treatment graphite is subjected to [99]. Additionally, the

use of permanganate in the Hummers method of graphite oxidation has been shown to

lead to Mn impurities at high ppm levels in the graphene oxide product [98]. Different

carbonaceous impurities include the presence of multiple layers due to incomplete

exfoliation [97]; amorphous carbon impurities that persist from precursors to synthetic

graphite [99] and are created during digestion of graphite with strong oxidants [97]. The

use of hydrazine as reducing agent introduces significant amounts of covalently

bonded nitrogen into reduced GO [100-102] with a number of possible configurations

leading to differences in the electronic structure [103].

Different oxygen-containing impurities arise from the oxidation of graphite and its

subsequent incomplete reduction [104] depending on the synthesis method. The

identity of the different oxygen-containing functionalities that remain on reduced GO

and may develop during atmospheric exposure on any graphene material remains

unclear. The presence of carbonyls, epoxy groups and carboxylic acid functionalities
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has been detected by XPS [100]. Epoxy and hydroxyl groups have been suggested

without experimental evidence [105], and IR spectra have been reported without

attempts to assign the observed bands [106]. The amount of oxygen in graphene

samples also varies depending on the preparation steps, with 4.96 % atomic oxygen

reported in commercially available graphene platelets [74] and 6.25 % in “highly

reduced GO” [102].

Given that even the most carefully prepared graphene samples may have some

oxygen content, it seems important to determine the influence of these functionalities

on the electrochemical response. As graphene is increasingly being manufactured via

reduction of graphene oxide, where an array of oxygen groups persist in the final

product, the interaction of oxygen moieties with solution species will influence how well

the material performs in electrochemical applications.

1.3 Graphene Nanoflakes

The work presented in this report was conducted using graphene nanoflakes (GNF)

provided by Dr Salzmann’s group, who have reported the synthesis and

characterisation of this novel graphene-related nanomaterial [107]. The method

involves chemical oxidation of multi-walled carbon nanotubes grown by CVD using

sulphuric and nitric acids, followed by neutralisation with KOH, dialysis and freeze-

drying.

Whereas graphene is defined as “a single carbon layer of the graphite structure,

describing its nature by analogy to a polycyclic aromatic hydrocarbon of quasi infinite

size” [108], the GNF synthesised by Salzmann’s group were, on average, only 30 nm in

diameter [107]. In comparison, commercially available pristine graphene flakes, used

by Banks et al. [74], have an average lateral dimension of 550 nm. Graphene grown
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epitaxially and by CVD is usually aimed for applications in which large areas of pristine

aromatic carbon is desirable.

After purification and dialysis, XPS confirmed the purity of GNF, detecting only carbon

and oxygen [107] (Figure 1.3(a)). The carbon-carbon bonding in GO is only 60 % sp2-

hybridised [109] due to increased defect density leading to sp3-hybridisation. In

contrast, 13C solid state NMR studies by Salzmann’s group show that only COOH and

sp2-hybridised carbon are present [107], indicating that the GNF contain fewer

oxygenated defects on the basal plane and that the oxygen content is concentrated

around the edges. High-resolution spectrum of the C1s region showed the presence of

COOH groups and a complete lack of any alcohol or epoxide groups in GNF [107]

which are often found on the basal plane in GO materials [48], providing further

evidence that the GNF consist of a pristine basal plane with carboxylic acid groups

decorating the edges.
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Figure 1.3 (a) X-ray photoelectron survey spectra of graphene oxide (blue) and GNF (black).
Inset: High resolution XPS spectra of the C1s region of GO (blue) and GNF (black). (b) AFM
image of GNF spin-coated onto highly oriented pyrolytic graphite. (c) Height and (d) diameter
distribution of GNF. (e)

13
C solid state NMR and (f) Raman spectra of GO (black) and GNF

(blue). Adapted from [107] with permission.

The carboxylic acid groups offer useful synthetic routes to flakes terminated with

different functionalities. The experiments included in this report were conducted using

carboxyl-functionalised GNF and amide-functionalised GNF. Schematic

representations of these two functionalities are given in Scheme 1.2.
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Scheme 1.2 Schematic depiction of edge-carboxylated (left) and amide-functionalised GNF.
The images are not to scale; the aromatic region at the core of the flakes is significantly larger

than is depicted here. Reproduced from [110].

In addition to acting as a precursor to other functionalities, the acid groups in GNF-

COOH form strong complexes with divalent cations. This is achieved by deprotonating

the carboxylic acid edge groups of GNF-COOH and subsequently adding an aqueous

solution of a chloride salt of an alkali earth metal. Reaction of the water-soluble GNF

with Ca2+ results in a porous precipitate where the loss of solubility indicates a strong

interaction between the COO− edge groups and the Ca2+ cation.

The use of GNF distinguishes this project from work done by other groups on

graphene-related materials. The small size of the flakes amplifies the importance of the

edge groups. GNF will also bridge pristine graphene and GO in a manner similar to

reduced GO while providing a unique starting point in terms of uniform small size,

controlled introduction of functionalities and low defect density, all of which are absent

from reduced GO.
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1.4 Acid-base Properties of Graphene-related Materials

Many ionisable functionalities are present in GO, such as carboxylic acids and phenols

[48-50, 55, 111-114]. Carboxylic acid groups are commonly found on carbon electrode

surfaces, especially after use at high anodic potentials. Their presence has been

shown to greatly influence the electron transfer kinetics of common redox species at

graphene-modified [110] and BDD [115] electrodes, although the exact nature of the

influence is unclear.

The ability of acidic functional groups to dissociate and carry negative charge means

that they can interact electrostatically with cationic species to form complexes, and this

can be exploited in applications where relatively weak interactions are desirable. For

instance, Loh’s group [116] used the carboxylic acid groups on graphene oxide to

create a charge transfer complex through electrostatic interaction between the

negatively charged GO and a positively charged dye. Additional π–π interactions led to 

fluorescence quenching of the dye through charge transfer. The fluorescence could be

recovered by extracting the dye from the GO-dye complex and DNA was found to be

very efficient in achieving this as DNA formed a stronger electrostatic bond than GO

with the positively charged dye. By monitoring the intensity of the fluorescence, the

GO-dye complex could then be used to detect the presence of DNA in biological

mixtures.

The pKa of a functional group determines the pH at which protonation takes place. pH

differences in biological systems can therefore be exploited to achieve selective

release of molecules from complexes, as demonstrated by Qiu et al. [117]. They used

graphene quantum dots (GQD) functionalised with NH2 groups as a fluorescent carrier

for a common anti-cancer drug. The increased acidic conditions inside cancer cells

compared to healthy tissue caused protonation of the NH2 groups on both the GQDs

and the drug, weakening the interaction and promoting release of the drug.
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1.4.1 Controlling the Protonation State of Electrode-Immobilised

Species

Organic acids do not undergo reversible redox reactions and potentials exceeding +2 V

vs. SCE are required to achieve their irreversible oxidation [118], while reduction

occurs at potentials exceeding −2 V vs. SCE [119]. Even though less extreme 

potentials have been reported to partially reduce graphene oxide electrochemically

[112, 120], COOH groups may not be fully reduced at these potentials. There are,

however, reports of reversible non-Faradaic peaks being observed in CV and

electrochemical impedance spectroscopy (EIS) studies of electrode-confined carboxylic

acid –terminated SAMs [121-124]. Theoretical treatment of this phenomenon attributes

the CV peaks to the change in interfacial differential capacitance induced by the

change in protonation state of the acid, the protonation/deprotonation being driven by

the electric field at the electrode [125-128]. The interfacial potential distribution for a

monolayer of an acid-terminated alkanethiol at a gold electrode is depicted in Figure

1.4 showing the plane of acid dissociation (PAD) [125], the common plane on which all

the acid groups lie. This electrochemically driven reversible acid protonation reaction

has recently been exploited to fabricate a novel supercapacitor electrode material,

making use of the fast charge-discharge response of the electric field driven

protonation of 3,4,9,10-perylene tetracarboxylic acid [129].
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Figure 1.4 (a) Electrostatic potential distribution across a metal/acid monolayer/solution
interface. (b) Schematic representation of a mixed monolayer of 11-mercaptoundecanoic acid
and 1-decanethiol in contact with an electrolyte solution as a function of electrode potential (E)
and pH. Reproduced from [121] with permission. Copyright 1998 American Chemical Society.

Other studies have used in situ quartz crystal microbalance (QCM) [130] and IR

spectroscopy [131-133] to determine the protonation/deprotonation behaviour of

carboxylic acid –terminated SAMs on gold electrodes and have observed protonation

taking place at positive potentials and deprotonation at negative potentials. Instead of

being driven by the electric field, the acid dissociation was thought to be governed by

the concentration of electrolyte cations near the surface that affected the apparent pKa

of the acid groups [130-133].
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Based on these conflicting reports, the nature and response of carboxylic acid groups

at the electrode surface seems quite complex and not entirely understood. Given their

ubiquity, not only as defect sites on carbon electrodes, but also in the polymer

electrolytes employed in solid supercapacitors, the response of organic acids to applied

electrode potential is an essential area of study.

1.5 Methods of immobilising GNF on Electrode

In order to use GNF in an electrochemical investigation, they must be fabricated into an

electrode. Various ways of constructing electrodes from nanomaterials exist, such as

incorporating the sample in a compact paste [134, 135] or screenprinting the sample as

an ink [136, 137], but these methods involve the addition of binders. An alternative

method is immobilisation on the surface of commercially available solid electrodes, and

this is the route chosen for my work. The surface modification can be achieved by

drop-coating, spin-coating or self-assembly.

1.5.1 Drop-coating

In drop-coating, a sample is first suspended in a desired solvent. A known volume of

the suspension is then applied onto the substrate and the solvent is allowed to

evaporate either under atmospheric conditions or under inert atmosphere. Drop-coating

is a quick and easy method of modifying electrodes, and it is widely used in

electrochemical research to immobilise graphene-related materials on electrode

surfaces [93-95]. However, it doesn’t give much control over the structure of the

deposited layer.

1.5.2 Spin-coating

Spin-coating is a technique for depositing thin films on flat substrates. The coating

material in a solution form is applied onto the substrate and the substrate is rotated at



1 Introduction

44

high speed, which causes the coating material to spread by centrifugal force. Spin-

coating offers many advantages, such as the ability to obtain uniform coatings and the

ability to control the thickness of the film by altering the speed of rotation. However, the

wastage is high in this process as >95% of the solution is wicked off the substrate

[138]. Spin-coating is a commonly used technique in microfabrication of solar cells

[139, 140], OLEDs [141] and field-effect transistors [142].

1.5.3 Self-assembly

Self-assembly of molecules at interfaces is a common phenomenon. It is exhibited by

surfactant molecules and lipids that consist of a polar head group and a hydrophobic

tail. Due to this ambiphility they aggregate and form micelles in emulsions and lipid

bilayers in living organisms.

Spontaneous adsorption on a substrate can occur if the substrate environment is

energetically more favourable than solution environment [143]. This process can be

exploited in surface engineering to tailor the interfacial properties of a surface. Self-

assembled monolayers carry several benefits compared to ultra-thin films made by

molecular beam epitaxy (MBE) or CVD. Firstly, they can be formed without expensive

equipment or the use of ultra-high vacuum (UHV). Secondly, highly ordered

monolayers can be formed using self-assembly on substrates of different shapes and

sizes [144]. Thirdly, there is a large variety of molecular structures available in terms of

head groups (thiols [145], silanes [146] and phosphonates [147]); tail groups (alkyl

chains [148], aromatic chains [144]); and end groups (non-polar [149], polar [133],

electroactive [150]).

SAMs of thiols on gold are a good example of spontaneous adsorption due to a very

strong gold-sulphur interaction. Gold is the most studied substrate due to, in part, the

great affinity with which it binds sulphur, but also because gold has many useful
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characteristics: thin films and nanoparticles of gold are straightforward to prepare; it

can be handled in atmospheric conditions due to its inert nature and ability to withstand

oxidation by atmospheric oxygen; it is a commonly used substrate in various

spectroscopic and analytical techniques; and it is compatible with cells [145].

The self-assembly occurs in two distinct kinetic steps: in the first, fast step, the head

groups chemisorb onto the Au substrate, followed by a slow reorganisation of the alkyl

chain tail groups to form a tightly packed, ordered monolayer [151].

In applications, the alkyl chain tail is often functionalised with an end group. Thiols with

a variety of different end groups are commercially available and synthesis procedures

are reported for many others, such as ferrocenyl-terminated alkanethiols [152] for

molecular diodes [150]. The identity of the end group affects interfacial properties [153],

but they can also be tailored to enable attachment of large, complex ligands after SAM

formation either covalently (antibodies for immunosensing [148], polymers for solar

cells [154]) , or via adsorption (proteins for cell adhesion [155], polyelectrolytes for

water purification [156]).

1.6 Aim and Scope of the Thesis

This thesis has three objectives: to examine the effect of specific surface functionalities

present at carbon electrodes on common redox probes; to study the potential-

dependent dissociation of acidic surface functionalities; and to explore different ways of

attaching functionalised carbon nanomaterials onto a surface.

The structure of this thesis is as follows: The main techniques used in this work are

briefly introduced in Chapter 2. Existing literature on GNF was summarised in Section

1.3 and further characterisation is presented in Chapter 3. Transmission electron

microscopy (TEM) was used to image the flakes, while attenuated total reflectance

Fourier transform infrared spectroscopy (ATR-FTIR) was employed to verify the identity
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of functional groups present, and to explore the acid/base properties of the material.

Cyclic voltammetry (CV) was also used to determine the electrochemical properties of

GNF immobilised onto an electrode surface. After characterising the GNF, their

influence on a standard outer-sphere redox couple was studied. Ferrocenemethanol

(FcMeOH) was used as a probe to ascertain whether electrode-immobilised GNF

would inhibit or improve electron transfer. Inner-sphere redox probes and redox

couples exhibiting proton-coupled electron transfer were also investigated to further

elucidate the influence on different electron transfer processes.

Chapter 4 focuses on the redox couple [Fe(CN)6]
3−/4− and examines how it is affected

by the presence of GNF both in solution and immobilised on the electrode surface. CV,

IR and in situ spectroelectrochemical techniques were employed to gain information on

the stability of [Fe(CN)6]
3−/4−.

In Chapter 5, the effect of potential on the carboxylic acid groups present at the GNF

edge is studied in depth. A new experimental protocol was developed for in situ

spectroelectrochemistry that involves applying a series of potential steps to the GNF-

modified electrode and monitoring possible changes to the GNF edge groups. A range

of different solution conditions were examined, including changing the identity of the

electrolyte cation and anion, varying the pH of the electrolyte and changing the ionic

strength of the electrolyte.

Chapter 6 explores different ways of attaching GNF onto a surface. Cysteine and

cystamine were used to form self-assembled monolayers on Au substrates that offered

two different types of head groups onto which GNF were attached. Thiol-functionalised

GNF were also assembled directly onto Au(111). CV, differential pulse voltammetry

(DPV), X-ray photoelectron spectroscopy (XPS) and scanning tunnelling microscopy

(STM) were used to verify the presence of GNF on the surface.
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2 Experimental Theory and Techniques

2.1 Electrochemistry

Electrochemistry studies the relationship between electrical energy and chemical

change. In electrochemical systems, a chemical reaction can be harnessed to produce

electrical energy, or an external current can be supplied to a system to drive a chemical

change. In order for an electrochemical reaction to happen, charge must be transferred

across the interface between the different chemical phases of an electrode and an

electrolyte. The electrode is a solid electronic conductor, typically metal, carbon or a

semiconductor material, whereas the electrolyte is an ionic conductor and can be solid,

liquid or plasma.

The electrode-solution interface behaves much like a capacitor. Due to the potential

difference between the electrode and the solution, charge qM accumulates on the

electrode surface in the form of excess electrons or holes, depending on the potential
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difference. At the same time, charge qS accumulates in a thin layer of solution next to

the electrode in the form of excess anions or cations so that qM = −qS [1]. This

arrangement of charged species and dipoles at the electrode-solution interface,

illustrated in Figure 2.1, is called the electrical double layer. On the solution side, the

structure of the layer changes with distance from the electrode surface, and this affects

the potential profile across the double layer as shown in Figure 2.1. The region closest

to the electrode is called the Helmholtz layer and it is defined by the inner Helmholtz

plane (IHP), the plane through the electrical centres of specifically adsorbed ions.

Solvent molecules will also reside in the inner layer. Solvated ions can only approach

the electrode to a distance called the outer Helmholt plane (OHP) and they will only

interact with the electrode through electrostatic forces. Due to the potential drop

through the double layer, the potential experienced by these non-specifically adsorbed,

solvated ions at the OHP is less than the potential difference between the electrode

and the solution by φ2 − φS. [1]

Figure 2.1 A schematic representation of the electric double layer at the electrode-solution
interface and the potential profile across the double layer region in the absence of specific

adsorption. Adapted from [1] with permission.
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The equilibrium of an electrode reaction is characterised by the Nernst equation that

relates the electrode potential to the bulk concentrations of the reduced and oxidised

species � �
∗ and � �

∗ . For a reaction

O + ne ⇄ R (2.1)

the Nernst equation is

� = � �
�

+
� �

� �
ln
� �

*

� �
*

(2.2)

where E0′ is the formal potential for the reaction. This quantity incorporates the 

standard potential, E0, and activity coefficients of the reduced and oxidised species, γR

and γO:

� �
�

= � � +
� �

� �
ln
� �
� �

(2.3)

Experimentally, charge transfer occurring at a single interface cannot be dealt with in

isolation; instead, we must introduce multiple interfaces that together form an

electrochemical cell [1]. An electrochemical cell usually consists of two or three

electrodes and an electrolyte. The working electrode is the electrode at which the

reaction of interest is taking place. To be able to define and control the potential of the

working electrode, a reference electrode is used. The reference electrode must have a

fixed, stable and well-known potential so that any changes in the cell can be ascribed

to the working electrode [1]. In order to ensure that the potential of the reference

electrode remains stable, a third electrode is introduced called the counter or auxiliary

electrode through which the current is passed. A potentiostat is used to control the

potential at the working electrode with respect to the reference electrode or the current

that flows between the working electrode and the counter electrode.
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A supporting electrolyte is used for several reasons. Firstly, it is used to increase the

conductivity of the solution, which helps to reduce the so-called iR drop, a drop in the

potential between the working and reference electrode caused by solution resistance.

Secondly, using a supporting electrolyte in excess compared to the electroactive

species of interest ensures that practically all current is transported by the electrolyte

and thus the contribution of migration to the mass transport of the electroactive species

is minimised. Thirdly, by using a suitable supporting electrolyte the ionic strength and

pH of the solution can be maintained constant irrespective of reactions occurring at the

electrodes. Fourthly, the use of a supporting electrolyte minimises the thickness of the

electrical double layer, and therefore the potential drop, at the electrode interface. [1]

2.1.1 Cyclic Voltammetry

CV is a widely used electrochemical technique where the voltage is ramped linearly in

time and the resulting current is recorded as a function of potential. A single cyclic

voltammogram can give a multitude of information about the kinetics of heterogeneous

electron transfer (HET), the thermodynamics of a redox reaction and adsorption

processes occurring at the electrode.

Consider the redox couple in Equation (2.1). A CV experiment is carried out initially

with only species R in solution. The potential is swept from Ei (usually Ei is chosen at

which no electrode reactions occur, in this case sufficiently negative of E0′ so that R 

isn’t oxidised) to Eλ at rate v (usually in the range of mV s−1). As the potential

approaches E0′, the current begins to increase rapidly as R is oxidised at the electrode 

to produce O. This depletes R from the vicinity of the electrode surface, creating a

concentration gradient that causes R to diffuse towards the electrode. Up until a

potential Epa somewhat positive of E0′, the mass transfer or R to the electrode surface 

can maintain the ratio of O and R to satisfy the Nernst equation. At Epa the diffusion

layer of R becomes so thick that the flux of R to the electrode is no longer fast enough
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to support equilibrium concentration of R at the electrode surface. At this point the

oxidation becomes controlled by the rate of mass transfer of R and the current begins

to decay1. When Eλ is reached, the scan rate is switched to –v and the potential is

ramped back to Ei. In the reverse sweep, the current response has a similar shape to

the forward sweep and can be explained by the same arguments of mass transfer rate

and concentration gradient. The potential sweep and resulting cyclic voltammogram

are depicted in Figure 2.2.

Figure 2.2 Waveforms in cyclic voltammetry. (a) Potential as a function of time, (b) current as a
function of potential. Adapted from [1] with permission.

CV can be used to assess the reversibility of a reaction. For a Nernstian reaction, the

separation of peak potentials, ΔEp, is given by Equation (2.4)

ΔEp = | Epa – Epc | ≈ 
2.3RT

nF
(2.4)

Equation (2.4) gives ΔEp = 59/n mV at 25 °C. If the standard heterogeneous electron

transfer rate constant k0 is very low, a large overpotential η is required before current 

begins to flow and the peak potentials are pushed further apart. Therefore, ΔEp that

increases with increasing scan rate is indicative of slow HET.

1
At an electrode smaller than the scale of the diffusion layer the current will reach a steady

state instead of decaying.
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The scan rate is an important parameter not only in qualitative determination of kinetics

but also in identifying adsorbed redox species. This can be done because the peak

current, ip, is a function of the scan rate. The Randles-Sevcik equation (2.5) describes

ip for the forward sweep of an electrode reaction involving dissolved species R:

� � = (2.69 × 10 � )�
�
� � � �

∗ � �

�
� �

�
�

(2.5)

where A is the electroactive electrode area, � �
∗ is the bulk concentration of R, DR is the

diffusion constant of R. It can be seen from Equation (2.5) that for a dissolved species,

ip will vary linearly with v1/2. In contrast, for adsorbed species, peak current is given by

� � =
� � � �

4 � �
� � Γ�

∗
(2.6)

where Γ�
∗ is the initial amount of adsorbed R. The peak current is now proportional to v

and not v1/2.

2.1.2 Differential Pulse Voltammetry

Pulse voltammetry techniques were developed as a mechanism to suppress charging

currents arising from the expanding mercury drop at a dropping mercury electrode

(DME). Pulse methods offer improved sensitivity by sampling the current at a point

where the ratio of faradaic current to charging current is largest. In the context of DME,

this would occur at the end of drop lifetime just before it is dislodged. Even though

pulse techniques originated in a polarographic context, the potential waveforms and

measurement strategies are applicable to stationary electrodes and therefore a similar

sensitivity improvement can be seen at disc electrodes, making pulse voltammetry

particularly suitable for trace analysis [1].

In differential pulse voltammetry, small amplitude pulses are superimposed on a

stepped base potential and the current is sampled twice in each step: first at time t = τ′ 
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immediately before the pulse at potential E and second at t = τ towards the end of the 

pulse at potential E + ΔE. The potential waveform for a Nernstian reaction O + � e ⇌ R

is shown in Figure 2.3(a). The current, shown in Figure 2.3(b), is plotted as the

difference of the two sampled values:

� � = � (τ) − � (τ′) (2.7)

The potential step time τ′ is usually around 0.5 to 4 seconds and the pulse width τ − τ′ 

is 5 to 100 milliseconds [1]. Therefore a thick diffusion layer is established by t = τ′, and 

the pulse can only perturb a small part of it. In effect, the purpose of the base potential

is to establish apparent bulk concentrations that vary from pure O to pure R for each

potential step.

Figure 2.3 (a) Potential waveform for a differential pulse voltammetric experiment showing two
full potential steps. (b) Differential current plotted against potential for reaction O + ne ⇌ R.

Adapted from [1] with permission.

When R is initially absent, the apparent bulk concentrations for the pulse are the

surface concentrations at potential E:



2 Experimental Theory and Techniques

63

(� �
∗)� � � = � � (0, � ) = � �

∗ �
� �

1 + � �
�

(2.8)

(� �
∗)� � � = � � (0, � ) = � �

∗ �
�

1 + � �
�

(2.9)

Where � = exp[
� �

� �
(� − � � ′)] and � = (� � � � )⁄ � /�

. In a Nernstian system (� �
∗)� � � and

(� �
∗)� � � are in equilibrium with potential E, so the faradaic current flow after a step from

E to E + ΔE is:

� =
� � � � �

� / �

π� / � � � / �
⋅
� (� �

∗)� � � − � ′(� �
∗)� � � �

(1 + � � ′)

(2.10)

where � ′ = exp[
� �

� �
( � + Δ � − � � ′)]. Substituting Equations (2.8) and (2.9) into (2.10):

� =
� � � � �

� /�
� �
∗

π� / � � � / �
⋅

(� � − � � ′)

(1 + � � )(1 + � � ′)

(2.11)

The differential faradaic current in Equation (2.7) is then:

δ� =
� � � � �

� / �
� �
∗

π� / � (τ − τ′)� / �
⋅

(� � − � � ′)

(1 + � � )(1 + � � ′)

(2.12)

DPV results in a peak current rather than limiting current. This is because the base

potential is made more negative at each step. Clearly at the beginning of the

experiment no faradaic current flows as E >> E0′ and a small amplitude pulse is not 

able to stimulate the reduction of O. As the experiment proceeds past E0′, the base 

potential E reaches the diffusion limited current region and O is reduced at a maximum

rate. A small amplitude pulse is not able to increase the rate further, making the

faradaic current component of i(τ) – i(τ′) equal to zero. Only close to E0′ can a small ΔE

stimulate a significant δi.
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The magnitude of ΔE controls the maximum δi, with larger |ΔE| giving higher δimax.

However, increasing |ΔE| also increases the width of the peak, meaning the resolution

becomes objectionably poor at |ΔE| > 100 mV [1].

2.2 Infrared Spectroscopy

Infrared is electromagnetic radiation extending from 1 mm to 750 nm and is further

divided into far-, mid- and near-infrared regions. Higher energy near-infrared light is

closer to visible light in frequency and can excite a molecule to a second or third

excited state, referred to as an overtone, whereas at the lower end of the infrared

region far-infrared is used for rotational spectroscopy. Mid-infrared frequencies, usually

given in wavenumbers, span the region between 4000 and 400 cm−1 and are used to

study fundamental vibrations.

Interatomic bonds in molecules have different modes of vibrations that absorb at

specific frequencies. When IR light is passed through a sample, it may interact with a

covalent bond in the sample and lose intensity as photons are absorbed by the sample.

The resulting absorbance spectrum will show a peak at the wavenumber at which the

absorption occurred.

Bond vibrations can be described in terms of a simple harmonic oscillator. The

fundamental vibrational frequency ν is given by:

� =
1

2π�
�
�

�
(2.13)

where κ is the force constant and μ is the reduced mass of two atoms with masses m1

and m2:
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� =
� � � �

� � + � �

(2.14)

Transitions between the ground state and the first vibrational quantum level are

virtually unaffected by anharmonicity, although when studying overtones at higher

frequencies anharmonicity will begin to influence the transitions and must be taken into

account.

The minimum set of fundamental vibrations, known as the normal modes, are

described in terms of coordinate axes in three-dimensional space, and all possible

variants of vibrational motion can be reduced to this minimum set. The number of

normal modes of vibration for a molecule with N atoms is given by 3N − 5 for linear 

molecules, and 3N − 6 for non-linear molecules. According to this rule, a CO2 molecule

has 4 vibrations and a H2O molecule has 3.

A vibrational mode is IR active if it causes a change in the dipole moment of the

molecule. A symmetric diatomic molecule such as N2 is not IR active as there is no

change in the dipole moment, whereas H2O and CO2 have both IR active and IR

inactive normal modes. These are illustrated in Figure 2.4. In Figure 2.4(a), the first

two panels show the stretching modes and the panel on the right shows the bending

mode of a water molecule. The out-of-plane stretch on the left causes a change in the

dipole moment of the molecule and hence the vibration is IR active, whereas the in-

plane stretching mode in the middle is IR inactive as there is no change in the dipole

moment. The bending mode shown in the right-hand panel is also IR active due to the

change in the dipole moment of the molecule. Correspondingly, the normal modes of

CO2 are shown in Figure 2.4(b). The first two panels from the left illustrate the IR active

asymmetric stretching mode and the IR inactive symmetric stretching mode,

respectively. The last two panels show the two IR active, mutually perpendicular

bending modes.
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Figure 2.4 Stretching and bending modes of (a) water and (b) CO2 molecule. Reproduced from
[2] with permission.

2.2.1 Attenuated Total Reflectance

In the attenuated total reflectance configuration (Figure 2.5), an infrared beam is

directed into a crystal made of a material that has a high refractive index. Due to the

different refractive indices of the ATR crystal and the medium in contact with the

crystal, the angle of the IR beam can be set so that it exceeds the critical angle at

which total internal reflection occurs. The internal reflection creates an evanescent

wave that extends orthogonally beyond the surface of the crystal. If a sample is placed

into contact with the crystal, some of the energy in the evanescent wave is absorbed by

the sample. The attenuated energy is passed back to the IR beam and back to the

detector. By recording a background of a clean ATR crystal and subtracting that from

the sample spectrum, an absorbance spectrum of the sample can be obtained.

The IR beam enters the ATR crystal with an angle of incidence, θ. Due to the

differences in refractive indices, the angle of refraction, r, will differ from θ according to

Snell’s Law.
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sin �

sin �
=
� �
� �

(2.15)

where n1 and n2 are the refractive indices of the ATR crystal and the sample,

respectively. The critical angle θc is the angle at which r is equal to 90° and it follows

from Equation (2.15) that

� � = � � � � � �
� �
� �
� (2.16)

Figure 2.5 (a) Graphical representation of the evanescent wave. (b) Variation of the angle of
refraction (r) with the angle of incidence (θ). The critical angle θc is the angle of incidence that

leads to r = 90°. Adapted from [2] and [3] with permission.

Refractive indices are wavelength-dependent and are usually measured using the

doublet sodium D line at 589 nm. For a diamond ATR crystal in contact with water, θc

at mid-IR frequencies is ca. 34°.

The graphical depiction of the evanescent wave in Figure 2.5(a) shows that the wave

doesn’t extend very far from the ATR surface; instead, the intensity I of the wave

decays exponentially with distance:

� = � �

�
�
� �

(2.17)

where z is the distance normal to the ATR surface, I0 the intensity at z = 0, and dp is the

penetration depth. dp is defined as the distance at which the electric field amplitude
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falls to 1/e of the value at the surface and it depends on the wavelength of the light (λ),

θ, and the refractive indices of the two phases:

� � =
�

2 � (� �
� sin� � − � �

� )
�
�

(2.18)

Table 2.1 lists values of dp at wavelengths in the mid-infrared region together with

penetration depths at those wavelengths.

Table 2.1: Tabulated values of dp at a diamond ATR crystal-water interface when θ = 45°. The
values of n1 were found in [4] and the values of n2 in [5].

n1 n2 λ / nm � � / cm−1 dp / μm 

2.38 1.22 10000 1000 1.38

2.38 1.33 6667 1500 2.32

2.38 1.33 5000 2000 3.09

2.39 1.35 4000 2500 3.96

2.39 1.43 3333 3000 5.39

2.3 Scanning Tunnelling Microscopy

STM is part of a family of scanning probe microscopy (SPM) techniques. All SPM

techniques use a sharp probe, with a radius of curvature typically in the nanometres or

tens of nanometres, to study the surface properties of a sample. The probe may be in

intermittent contact, constant contact, or near-contact with the sample surface,

depending on the technique used.

In STM, a bias voltage is applied across the probe and the sample. As the probe

approaches the sample, electrons can tunnel across the gap between the tip of the

probe and the sample. For electron tunnelling to occur, both the probe and the sample

must be made of a conductive or semi-conductive material. The tunnelling current, It,

can be described by the following equation:
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� � ∝ � � �
� � � (2.19)

Where e is the electron charge, Vb is a bias voltage between the tip and the surface

and d is the distance between the tip and the surface. c is a constant for a given

material and is given by

c =
2 � 2 � � �

ℏ

(2.20)

where me is the mass of the electron, φ is the work function and ℏ is Planck’s constant.

Atomic resolution can be achieved in STM due to the exponential relationship of It with

d in Equation (2.19) which means that a 0.1 nm increase in d leads to It decreasing by

an order of magnitude.

STM is commonly operated in a constant current mode where a piezoelectric element

controls the tip position and moves it along the z axis to maintain a constant current

while also controlling the movement in the xy-plane for scanning the surface. Because

the tunnelling current depends on not only the tip-to-sample distance but also the local

density of states in the sample, STM images are a convolution of topography and

electronic structure.

As tunnelling current decreases exponentially with distance, the resolution of STM

depends on the ability to precisely control the tip-to-sample distance. The technique is

therefore very sensitive to vibrations and experimental conditions must be carefully

controlled to minimise interference. The tip and sample are placed on a vibration

isolation table inside a solid box lined with contoured foam to reduce the impact of

acoustic waves. The box is mounted on a table with air-damped feet to maximise

isolation from floor vibrations.
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2.4 X-ray Photoelectron Spectroscopy

XPS is a surface-sensitive ionisation technique that can be used in elemental,

quantitative and surface structure analysis. Soft X-rays with energies in the range of 1-

5 keV are used to ionise samples. The photons are sufficiently high in energy to eject

core electrons. Since each core atomic orbital is associated with a characteristic

binding energy, XPS is a chemically specific technique.

The surface-sensitivity of XPS arises from the emission and detection of the ejected

electrons. Even though the penetration depth of the X-rays employed in XPS is

measured in micrometres, the overwhelming majority of electrons ejected from the

sample at those depths will collide with other atoms in the sample before reaching the

surface. These collisions will lead to a loss of energy, making the electrons unable to

escape from the sample. Only electrons from the top 4-5 monolayers are likely to be

ejected and reach the detector without any energy loss.

When a photon of energy hν is incident upon the surface of a sample, the energy can

be absorbed by an electron in the sample. If the frequency of excitation is above the

work function φ, a threshold value representing the energy it takes to remove an

electron from the Fermi level to vacuum, photoemission takes place and the electron is

ejected with a specific kinetic energy EK. For a spectrometer with a calibrated work

function φsp and measuring kinetic energy � �
� , the binding energy of the electron, EB,

can be obtained from:

� � = ℎ� − � � � − � �
� (2.21)

If the photon energy is known and the kinetic energy of the ejected electron can be

measured, the binding energy of the ejected electron can be calculated.

The observed binding energy of an electron depends on the chemical environment of

the atom such as oxidation state and ligand electronegativity. The deviation in binding
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energy caused by the environment is known as a chemical shift and it is readily

observable in XPS. Therefore XPS can be used as a tool to identify not only elemental

composition but also the oxidation state of the elements.

As the XPS signal at a given incident photon energy is proportional to the amount of

species on the surface, the technique can be used for quantitative analysis. To

determine the composition of the surface, the relative peak intensities are examined.

For a homogeneous material with two components, A and B, the ratio of the

concentrations is given by equation

[A]

[B]
≈
� � � �
� � � �

(2.22)

where I is the integrated peak area and S is the atomic sensitivity factor. The atomic

sensitivity factor is derived empirically for each spectrometer and the values are readily

available in literature.

2.5 Transmission Electron Microscopy

The resolution of traditional light microscopes is limited by the wavelength of the light

source. To image nanometre-scale specimens, electron microscopy is often used. The

de Broglie equation gives a relationship between the wavelength λ and momentum p of

a moving particle:

� =
ℎ

�

(2.23)

where h is Planck’s constant. As the electron velocity approaches the speed of light,

the de Broglie equation must be corrected to account for relativistic effects [6]:
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� � =
ℎ

� 2 � � � � 1 +
�

2 � � �
� �

(2.24)

where m0 is the rest mass of the electron, E the energy of the accelerated electron and

c the speed of light.

The source of electrons in electron microscopy is called an electron gun. When a high

voltage is applied to the gun, electrons will be emitted either by thermionic emission or

field emission. The resulting electron beam is accelerated further to achieve higher

energy electrons as this shortens the wavelength and therefore improves resolution.

Electromagnetic lenses are used to focus the electron beam, and changes in

magnification are achieved by changing the current flowing through the lenses. In TEM,

the electron beam is transmitted through a sample, meaning that only very thin

specimens can be imaged. The electrons interact with the sample as they pass through

and the transmitted beam contains information about electron density, phase and

periodicity in the sample. The de Broglie wavelength in a typical electron microscope is

in the picometre range, but in practice it is not possible to achieve that kind of

resolution due to the limitations of the focusing of the electron beam. The resolution of

TEM is typically 2 nm.
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3 Characterisation of GNF

3.1 Introduction

One of the many advantages of carbon as electrode material is its relatively inert

electrochemistry. However, carbon has a rich surface chemistry, and while this

property is useful in that it allows the chemical modification of the electrode surface, it

can also lead to unwanted oxidation in the presence of atmospheric oxygen and

moisture [1, 2]. The interaction of various redox species with oxygen functionalities at

carbon electrodes has been investigated extensively by McCreery et al. [3-5]. Common

redox probes can be classified roughly into three categories: those which are

insensitive to surface termination (FcMeOH, [Ru(NH3)6]
3+/2+); those which interact with

specific oxygen functionalities (such as Fe3+/2+ with C=O) and those which are surface

sensitive but apparently do not interact with specific oxygen-containing groups
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([Fe(CN)6]
3−/4−) [1]. As higher surface area nanomaterials are used, the role of carbon

surface chemistry becomes increasingly important.

A large variety of oxygen functionalities at the electrode surface makes it difficult to

attribute changes in electrochemical response to specific functional groups. Our

approach is to use novel GNF with average lateral dimension of just 30 nm. The basal

plane of the GNF is predominantly defect free and hence contains negligible oxygen

content. In this study we have two very clearly defined types of edge functionality with

which to probe the interaction of different redox probes with carbon electrode surfaces.

The high density of carboxylic acid groups available on the GNF-COOH allows us to

study both the electrostatic interaction between the redox species and acid groups in

different protonation states and the effect of acid/base equilibria on the redox response.

The amide-terminated GNF allows us to probe the influence of the electronegative

carbonyl moieties but in the absence of the deprotonation equilibria exhibited by the

COOH groups. The high density of edge COOH groups makes this an ideal material

with which to study the role of oxygen species on electrochemical response, as their

influence is greatly amplified due to the small size of the flakes. Additionally, the acid-

terminated GNF can be complexed with different cations. The use of divalent alkaline

earth metal cations such as Ca2+ and Ba2+ allows the immobilisation of a thicker layer

of GNF onto an electrode surface, thereby increasing the electroactive surface area.

Complexation of GNF-COOH with redox-active counter cations increases the

electroactive surface area and additionally allows the study of surface-immobilised

redox probes at higher concentrations.

Some of the work presented in this Chapter has been published in [6].

3.2 Experimental Methods

All aqueous solutions were prepared with doubly deionised water, taken from a Milli-Q

water purification system, with a resistivity of not less than 18.2 MΩ cm at 25 °C. 
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3.2.1 Preparation of Complexed GNF

For preparation of GNF complexed with divalent cations 2 mg of GNF dissolved in

water was neutralised with dilute KOH to deprotonate all acidic groups. An aqueous

solution of CaCl2 or BaCl2 was added dropwise and the mixture was agitated between

additions. Addition of the divalent cation resulted in complexation of neighbouring GNF

and hence a loss of solubility. The resulting precipitate suspension was centrifuged and

washed four times.

For preparation of GNF complexed with [Ru(NH3)6]
3+ 2.5 mg of GNF dissolved in water

was neutralised with dilute KOH to deprotonate all acidic groups. An aqueous solution

of [Ru(NH3)6]Cl3 was added dropwise and the mixture was agitated between additions.

The resulting precipitate suspension was centrifuged and washed four times.

3.2.2 X-ray Photoelectron Spectroscopy

XPS was carried out on a Thermo Scientific K-Alpha spectrometer equipped with a

monochromated Al Kα (hv = 1486.6 eV) X-ray source. All survey scans were scanned 3

times with a resolution of 1 eV, 400 μm spot size and 50 ms dwell time. Samples were 

either compacted into wells in a custom-built powder sample plate or pressed into a

piece of indium that was then secured onto a sample plate. Elemental composition

ratios were calculated from survey spectra using the element library function.

3.2.3 Transmission Electron Microscopy

TEM images were recorded using a Jeol JEM 2100 TEM with a 200 kV accelerating

voltage using a LaB6 filament. All nanoparticles were deposited from methanol

dispersions. Holey carbon coated copper TEM grids were used as the nanoparticle

support.
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3.2.4 pH Titration

An equivalence point and approximate pKa for the GNF-COOH was obtained by

titration of an aqueous suspension of dispersed GNF-COOH with NaOH. The

hydrophilic nature of the COOH edge groups means the GNF disperse readily in water

and other polar solvents. The NaOH solution was standardised prior to titration using

potassium hydrogen phthalate (KHP). NaOH and KHP were placed in a desiccator for

12 hours prior to use. Water was either boiled or deoxygenated with argon before use.

All solutions were kept under argon throughout the experiment. A micropipette was

used to measure the volume of NaOH additions.

3.2.5 Electrochemical Experiments

Figure 3.1 A schematic of the electrochemical cell used in this Chapter.

CV was carried out using a µ-Autolab potentiostat (Ecochemie, NL) coupled with GPES

software. The electrochemical cell, depicted in Figure 3.1 was a stoppered glass vial
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with holes in the top to hold electrodes in place. A 3-mm diameter boron-doped

diamond (BDD) disk sealed in polyether ether ketone (PEEK) (Windsor Scientific, UK)

was used as the working electrode, either unmodified or modified with a layer of

adsorbed GNF. A platinum wire, coiled at the end to increase the surface area, served

as a counter electrode. The reference electrode was Ag/AgCl in saturated KCl and all

potentials are reported relative to it. The BDD electrode was polished using

successively finer grades of alumina suspension down to 0.05 μm, rinsed thoroughly 

with ultrapure water after each step and dried using an ambient air flow.

Complexed GNF precipitates were re-suspended in water and sonicated briefly before

each use. The concentration of the suspensions, assuming full conversion of GNF and

one Ca2+ per two carboxylate groups or one [Ru(NH3)6]
3+ per three carboxylate groups,

is estimated to be 4.5 and 3.7 mg/ml for GNF-Ca and GNF-[Ru(NH3)6], respectively.

The GNF samples were drop-coated from aqueous suspensions of known

concentration onto the freshly polished BDD electrode using a micropipette and

allowed to dry under ambient conditions. After drying, the electrode was rinsed

thoroughly with water to remove any poorly adhered material from the surface and

dried using an ambient air flow. The resulting amount of GNF, GNF-Ca and GNF-

[Ru(NH3)6] on the electrode was estimated at (1.5 ± 0.5), (10 ± 2) and (7 ± 2) μg, 

respectively, in all experiments, and all CVs were recorded using a freshly modified

electrode.

Redox probes hydroquinone (H2Q), ferrocenemethanol (FcMeOH) and

hexaammineruthenium(III) chloride were obtained from Sigma-Aldrich and used as

received. For experiments in deoxygenated solutions and with air sensitive chemicals

such as hydroquinone, high purity argon was bubbled through electrolyte solutions for

30 minutes to remove dissolved oxygen, and the gas flow was maintained over the

surface of the solution during electrochemical experiments.
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3.2.6 ATR-FTIR

3.2.6.1 Stability of Aqueous Suspension of GNF

The stability of GNF suspended in water was monitored over 6 months by recording

mid-infrared spectra in ATR mode with a Bruker Tensor 27 spectrometer (Bruker, UK)

fitted with a room temperature DLaTGS detector at 4 cm−1 resolution and a diamond

crystal as the internal reflection element. A background was first collected of the clean

ATR crystal. 0.50 µl of an aqueous suspension of the GNF was then applied directly

onto the ATR crystal using a micropipette and allowed to dry.

3.2.6.2 Solution-Phase Characterisation of GNF

A droplet (volume ca. 50 µl) of an aqueous suspension of the GNF was applied directly

onto the ATR crystal and 2 µl aliquots of 0.1 M KOH were added until the pH of the

solution reached ca. 9 as determined with pH indicator paper. A spectrum was

collected after each addition. Water bands were subtracted from the sample spectra by

recording a background spectrum of water only prior to the experiment. The data was

processed using the atmospheric compensation function of OPUS software. Changes

in concentration due to the addition of aqueous aliquots of base were compensated by

multiplying the spectra by the volume ratio.

To obtain spectra of the Ca2+-complexed flakes 0.5 μl of GNF-Ca precipitate 

suspended in water was applied onto the ATR crystal and the solvent was allowed to

evaporate. A droplet of water was then carefully added to ensure full hydration of the

precipitate. Bulk water bands were subtracted from the sample spectra by recording a

background spectrum of water prior to the experiment. The data was processed using

the atmospheric compensation function of OPUS software.
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3.3 Results and Discussion

3.3.1 Transmission Electron Microscopy

To gain information about the morphology of GNF, both in the acid-terminated form and

when complexed with cations, TEM was employed.

TEM images of the acid-terminated GNF are shown in Figure 3.2(a)-(b). To reduce the

degassing time in the chamber, the GNF were drop-coated onto a holey carbon

covered copper TEM grid from a methanol dispersion. The acid-terminated GNF don’t

dissolve in methanol to the same extent as they do in water, so some aggregation and

stacking of the particles is evident in the images. The flakes can be seen to curl up and

form spherical shapes of concentric sheets.

Figure 3.2 TEM images of the GNF. (a), (b): GNF-COOH. (c), (d): GNF-Ba.
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GNF complexed with Ba2+ were also imaged with TEM and shown in Figure 3.2(c)-(d).

When the divalent cations bind to carboxylate groups, it is sterically favourable for the

flakes to cross-link through COO− groups on two different flakes rather than adjacent

groups on one flake. This is observed in the TEM images where chains of flakes can

be seen at the edges of the clusters of particles. Also discernible in the image is the

porous, three-dimensional nature of the resulting material. The crosslinking of the GNF

leads to the formation of a disordered, three-dimensional structure that, due to its

porosity and the small size of the flakes, possesses a large surface area.

3.3.2 X-ray Photoelectron Spectroscopy

XPS characterisation of GNF-COOH, GNF-amide and GNF-thiol has been reported

previously [7, 8] and the high resolution spectrum of the C1s region of GNF-COOH is

shown in Figure 1.3(a). The conversion of carboxylic acid edge groups was confirmed

by the presence of nitrogen in GNF-amide and both nitrogen and sulphur in GNF-thiol.

Additionally, components at binding energies corresponding to –C–N, –N–C=O and C–

S appeared in the C1s region, further supporting the successful conversion of edge

groups.

Carboxylic acid functional groups are versatile as precursors to other functionalities as

demonstrated in [7, 8]. In addition to conversion to amides, the acid edge groups

present in GNF-COOH can be exploited to form electrostatic complexes. In this thesis,

GNF-COOH are complexed with divalent cations to construct a large surface area

electrode for spectroelectrochemical experiments. GNF-COOH are also complexed

with [Ru(NH3)6]
3+ to study the redox behaviour of the immobilised Ru(III) centre. XPS

was used to confirm complexation of GNF and to estimate the number of edge groups

that remain non-complexed.
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Figure 3.3 Wide scan survey spectra of GNF-COOH (black) and GNF-COOH complexed with
Ca

2+
(red); Ba

2+
(green); [Ru(NH3)6]

3+
(blue). Relevant elements are highlighted with circles.

Spectra are offset for clarity.

Survey spectra of GNF-COOH and GNF-COOH complexed with Ca2+, Ba2+ and

[Ru(NH3)6]
3+ are compared in Figure 3.3. The presence of calcium is evident in GNF-

Ca (red line) from the appearance of a peak at 350 eV corresponding to calcium Ca2p.

Complexation with Ba2+ leads to new peaks at 781 and 90 eV arising from Ba3f and

Ba4d, respectively (green line). Although ruthenium was not detected in the survey

spectrum of [Ru(NH3)6]
3+ complexed GNF (blue line), the presence of nitrogen in the

survey scan at 400 eV shows that [Ru(NH3)6]
3+ is present in the sample. Additionally,

clear peaks were seen in the Ru2d narrow scan. Because the Ru2d binding energies

overlap with C1s, fitting of the region was not attempted.
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From the atomic percentages of oxygen and the complexing cation, the ratio of COOH

groups that are complexed was calculated. In the case of GNF-Ru, the atomic

percentage of ruthenium was taken as 1/6 of the amount of nitrogen. To maintain

charge neutrality, it is assumed that two carboxylate groups are complexed by one

divalent cation and three COO− by one [Ru(NH3)6]
3+ ion. The results are gathered in

Table 3.1. Another method to estimate the ratio for GNF-Ca is presented in Section

5.10.

Table 3.1: Fraction of carboxylic acid groups that are complexed in different materials
calculated from the atomic percentages of oxygen and complexing cation.

GNF-Ca
O / atomic % Ca / atomic % COOH complexed / %

32.3 6.2 76 ± 6

GNF-Ba
O / atomic % Ba / atomic % COOH complexed / %

27.6 2 28 ± 4

GNF-Ru
O / atomic % Ru / atomic % COOH complexed / %

22.4 0.6 16.0 ± 0.1

Of the three cations tested, Ca2+ is most efficient at binding the carboxylate groups.

This is probably due to the higher charge density and smaller size of the cation

compared to Ba2+ and [Ru(NH3)6]
3+. The results show that even complex cations can be

incorporated into the GNF material, thereby allowing the construction of high surface

area redox active assemblies.

3.3.3 Infrared Spectroscopy

Carboxylic acid groups are well suited to characterisation by IR due to the strong

absorption intrinsic to C–O bonds. The deprotonation process can also be followed

using IR because the carbonyl band disappears and two new stretching modes appear

arising from the carboxylate.
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The IR spectrum of dry GNF (Figure 3.4(a)) shows a strong band at 1720 cm−1

assigned to the C=O stretching mode of carboxylic acid. Also present are the

carboxylate asymmetric stretch at 1580 cm−1 and overlapping bands at 1435 and 1350

cm−1 assigned to the symmetric carboxylate stretch. The presence of two bands for the

symmetric stretch is predicted by computational models for situations where the

carboxylate groups occupy distinctly different environments within a molecule [9]. The

feature at around 1220 cm−1 is a convolution of vibrational modes, but can be assigned

partly to the C–O stretch in protonated COOH. The broad absorption features at 3700-

2700 cm−1 are attributed to O–H stretches of adsorbed water (> 3000 cm−1) and O–H

stretches of the carboxylic acid edge groups (< 3000 cm−1). The persistence of the

water band even after lengthy drying suggests water is strongly associated with the

GNF, most likely due to hydrogen bonding to the oxygenated edge groups. Adsorbed

water associated with oxygen groups of graphene oxide is known to persist even after

months of drying [10].

Figure 3.4(b) shows the IR spectrum of GNF-amide. The carbonyl stretch has moved

from 1720 to 1640 cm−1 as the acid has been converted to an amide group. In addition

to ν(C=O), δ(N–H) of the amide and amine groups and δ(O–H) of adsorbed water will

contribute to the absorption band present at 1700–1500 cm−1. The presence of water in

the sample is clear from the broad absorption band above 3000 cm−1 that is attributed

to O–H stretching of water. On top of this broad feature two bands can be discerned at

3380 and 3240 cm−1 that are assigned to the primary amine N-H stretches, although

these are very broad and will probably include absorption by the secondary amide N-H

stretch. Weak features arising from C–H stretches of the edge groups can be seen at

2925 and 2855 cm−1. It is evident from the shoulder at 1720 cm−1 that some carboxylic

acid groups remain in GNF-amide after reaction with ethylene diamine.
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ATR-FTIR spectra of (a) GNF-COOH; (b) GNF-amide; (c) GNF-Ca.
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Reaction of the water-soluble GNF with Ca2+ results in a porous precipitate where the

loss of solubility indicates a strong interaction between the COO− edge groups and the

Ca2+ cation. IR spectrum of the dried GNF-Ca precipitate (Figure 3.4(c)) supports this

observation, showing that the C=O stretching band at 1720 cm−1 and the C–O stretch

at 1220 cm−1 are almost entirely absent and the majority of COOH groups are

converted to carboxylate. The most intense peak for GNF-Ca at 1585 cm−1 is assigned

to the asymmetric stretch in carboxylate and also contains a contribution from the

bending mode of water at 1635 cm−1; this peak is accompanied by the slightly weaker

carboxylate symmetric stretch modes at 1430 and 1350 cm−1. The presence of a strong

stretching band for water at 3700–3000 cm−1 suggests that a significant number of

water molecules remain in the sample. Absorption bands for acid O–H groups at 3000–

2700 cm−1 are much reduced compared to the non-complexed GNF, which is

consistent with the majority of acid groups being found as carboxylate and bound to

Ca2+.

3.3.3.1 Stability

The stability of GNF-COOH suspended in water was monitored over a period of six

months. The sample was stored in a plastic Eppendorf vial in normal laboratory

atmosphere, and no precautions were taken to exclude oxygen or to maintain a specific

temperature. The temperature fluctuated between 18 and 25 °C over the course of the

six months. No changes were observed to the IR spectrum over this time, suggesting

that the GNF are stable in water under atmospheric conditions.

3.3.4 pH Titration

The acid/base properties of the acid-terminated GNF were investigated by pH titration.

When a weak acid, HA, is dissolved in water, a dynamic equilibrium is established:
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HA(aq) + H2O(l) ⇌ H3O
+(aq) + A−(aq) (3.1)

The dissociation constant, Ka, is given by

Ka =
� H3O

+
� [A

� ]

[HA]

(3.2)

The dissociation constants of different acids span several orders of magnitude, and

therefore it is common to work with pKa values of acids. To get an estimate of the pKa

of the flakes, titrations were performed using a sodium hydroxide solution. When a

strong base such as NaOH is added to a solution of a weak acid, the hydroxide ions

react with the dissociated protons, perturbing the equilibrium and causing more of the

weak acid to dissociate. When the number of moles of OH− equals the number of

moles of weak acid present, the pH of the solution will rise sharply. This point is the

equivalence point, and after this any addition of OH− will merely increase the pH. If the

pH of the solution is monitored as a function of NaOH added, a titration curve can be

constructed. By rearranging Equation (3.2) and taking logs, we arrive at Equation (3.3):

pH = pKa + log10�
[� � ]

[� � ]
� (3.3)

Equation (3.3) is the Henderson-Hasselbalch equation, and it tells us that when [HA] =

[A−], pKa = pH. The pKa can therefore be read from the titration curve at the point where

half of the base required to reach the equivalence point is added.
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Figure 3.5 Titration curve of GNF-COOH (black), first derivative (red). Adapted from [6].

Figure 3.5 shows the titration curve for the addition of aliquots of (236 ± 6) × 10−4 M

NaOH to an aqueous suspension of GNF-COOH. As the XPS and IR characterisation

show no detectable concentration of other acidic functionalities present in the flakes,

the observed behaviour can be attributed solely to the COOH edge groups.

When the weak acid COOH edge groups of the GNF-COOH are exposed to water a

dynamic equilibrium is established, where the acid groups become deprotonated:

GNF-COOH + H2O ⇌ GNF-COO− + H3O
+ (3.4)

Addition of a small amount of strong base to the solution results in reaction of OH− with

the solution protons and hence the equilibrium is perturbed. Once the number of moles

of OH− added is equal to the number of moles of weak acid groups (the equivalence

point, found from the first derivative curve), further addition of base results in a rapid

increase in pH. For GNF-COOH we observe more complex behaviour than would be

expected for a single acid species dissolved in water. On addition of ca. 200–400 μl 

NaOH an increase in pH is observed, but this is not the sharp rise expected if all of the

acid groups underwent deprotonation with the same pKa. It is probable that different

bonding environments or electrostatic/hydrogen-bonding interactions between
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neighbouring groups result in a range of acid/base behaviours among the edge-group

population. After addition of further NaOH an inflection point is observed in the first

derivative curve, which we interpret as the point at which all COOH groups are fully

deprotonated and which gives us an equivalence point of pH 8.3. This allows us to

estimate the number of COOH groups as 7 × 10−3 mol of acid groups per gram of GNF

material. The pKa of a weak acid is defined as the pH at which half of the base required

to reach the equivalence point is added and for the GNF-COOH pKa is therefore

estimated as 4.5. However given the wide pH range over which deprotonation is

observed, the usefulness in reporting a single pKa value for the GNF-COOH is

questionable.

To understand the titration data, the spatial distribution of the groups must be

considered. The flakes bear a large number of COOH functionalities that decorate the

edges, making it very likely that these groups are found in close proximity to each

other. In the beginning of the titration, as the added OH− combine with H3O
+, the COOH

groups that dissociate to re-establish equilibrium would be located away from any

existing negatively charged groups, and could also be stabilised by hydrogen bonding

with neighbouring COOH functionalities. As deprotonation proceeds, the remaining

COOH groups begin to experience the electrostatic effect of neighbouring negatively

charged carboxylate groups. Consequently, these remaining COOH functionalities will

be progressively more difficult to deprotonate, and more base needs to be added to

achieve dissociation leading to deprotonation over a wide pH range.

3.3.5 In Situ pH Studies Monitored with Infrared Spectroscopy

The solution-phase IR spectra of solvated GNF are shown in Figure 3.6. Initially, when

only water and GNF are present and no base has been added, the pH of the solution is

approximately 2 as determined with pH indicator paper. Absorption bands can be seen

at 1720 cm cm−1 (C=O stretch), 1590 cm−1 (asymmetric COO− stretch), 1420 cm−1
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(symmetric COO− stretch) and 1260 cm−1 (overlapping C–O stretch and O–H

deformation). The GNF are partially deprotonated already before the addition of base,

as indicated by the low pH of the solution and the peaks corresponding to both

protonated and deprotonated forms of COOH. Adding increasing aliquots of KOH

causes the signal from the C=O and C–O stretches associated with protonated

carboxylic acid to decrease, whereas the two bands from COO− gain intensity with

added base. Changes can also be observed in the O–H stretch region where a

decrease in absorption intensity is seen around 2900 cm−1 and increase around

3300 cm−1. Because a background spectrum of pure water was recorded, the O–H

stretch of water is subtracted from the sample spectra which initially leads to a negative

feature centred at 3300 cm−1. The increase in absorption at 3300 cm−1 upon addition of

base is assigned to increased solvation of the deprotonated carboxylate groups. At the

same time, the intensity of absorption around 2700 cm−1 decreases and this is

attributed to the loss of hydrogen-bonded COOH groups. The final spectrum in is

recorded at pH ca. 7. Thus these in situ pH studies agree with our former observations

that the flakes occupy a range of protonation states in solutions of pH 3-7.
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Figure 3.6 Changes in IR absorption of GNF upon addition of 0.1 M KOH. GNF with no added
base at pH 2 (black), pH 3 (red), pH 5 (green), pH 7 (blue). Reproduced from [11].

3.3.6 Electrochemistry of GNF without Redox Probes

The edge-carboxylated GNF are very water-soluble, so there was a concern that they

would not adhere to the surface of the BDD electrode when immersed in aqueous

solution, and hence we would be unable to probe their electrochemical response using

a drop-coating method. In order to establish the stability of a GNF layer immobilised on

BDD, cyclic voltammetry in the absence of any redox probes was performed in the

potential window −0.3 to +1 V in supporting electrolytes of varying pH. Additionally, 

these experiments show whether there is any inherent redox activity present in the

flakes.
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Figure 3.7 (a) pH 4.6 PBS with oxygen and (b) pH 4.6 PBS without oxygen; clean BDD (black),
acid-terminated GNF (red) and amide-terminated GNF (blue). Adapted from [6].

Figure 3.7(a) shows the response of GNF-COOH, GNF-amide and clean BDD in 0.1 M

KH2PO4 pH 4.6 electrolyte over the potential range −0.3 V to +1.0 V. Figure 3.7(b)

shows the same but in degassed solution. In both solution conditions the response of

the GNF layer can be observed over the background response of the BDD at potentials

above ca. +0.4 V and below −0.2 V. Currents are larger for GNF-amide than GNF-

COOH under the same conditions. No Faradaic peaks are observed for the GNF

modified electrodes in the range 0 to +0.4 V. In deoxygenated solution the cathodic
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currents below −0.2 V are greatly diminished, showing that the reduction currents in 

Figure 3.7(a) can be attributed to oxygen reduction. This indicates that both GNF

samples can catalyse oxygen reduction better than BDD, which is a poor

electrocatalyst for this reaction in comparison to sp2 carbon materials.

These data show that despite their high solubility in water, a few monolayers of the

GNF adhere to the surface of the BDD electrode for the duration of the experiment. At

the present time it is unclear in what orientation the GNF are arranged on the electrode

surface, as their small size and transparency makes the immobilised layer difficult to

characterise. The capacitive current increases only slightly, which could be interpreted

as the flakes adopting a horizontal conformation, lying flat on the electrode surface, as

this orientation would not cause a significant increase the surface area. If the surface

area would change markedly upon modification, a larger increase in the capacitance

would be expected.

Figure 3.8(a) compares the response of GNF-COOH in pH 4.6 and pH 9.2, and (b)

compares the response of GNF-amide in the same conditions. We found a pH-

dependent increase in oxidation current at +0.6 V that closely resembles the response

at a clean BDD electrode and is unaffected by the presence of oxygen in solution.
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Figure 3.8 Cyclic voltammograms of BDD modified with (a) carboxylic acid-terminated GNF and
(b) amide-terminated GNF in pH 4.6 (red) and 9.2 (blue). Electrolyte concentration 0.1 M. Scan

rate 50 mV/s. Adapted from [6].

The CV response of GNF after complexation with Ca2+ was also studied (Figure 3.9).

Again, there are no Faradaic peaks in the range 0 to 0.4 V. Significantly more current

flows when the flakes are complexed with the precipitated flakes compared to acid-

terminated flakes. This is due to the lower solubility of the complexed GNF that results

in a higher coverage of the electrode surface and a larger electroactive surface area.
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Figure 3.9 Cyclic voltammograms in 0.1 PBS at pH 7. Working electrode: clean BDD (black);
BDD modified with GNF-Ca (blue). Red curve shows the response of BDD modified with GNF-

Ca in deoxygenated electrolyte.

3.3.7 Electrochemistry of FcMeOH at GNF-Modified Electrode

Ferrocenemethanol was chosen as the first redox probe because it undergoes a

reversible one-electron oxidation and exhibits near ideal outer-sphere behaviour.

Unlike ferrocene, it is also soluble enough in water to allow its use in aqueous

electrolyte.

Cyclic voltammograms of 0.5 × 10−3 M ferrocenemethanol were measured at a clean

BDD electrode and BDD modified with either GNF-COOH or GNF-amide, and the

results are shown in Figure 3.10. No difference in electrochemical response could be

discerned between the BDD and the GNF-modified BDD under any conditions.

Changing the pH of the supporting electrolyte from 4.6 (Figure 3.10(a)) to 9.2 (Figure

3.10(b)) did not affect the peak height or separation. ΔEp calculated from the CVs in

Figure 3.10(a)–(b) was approximately 65 mV at each electrode and in each pH, which

is very close to the theoretical value for a reversible one-electron process.
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Figure 3.10 Cyclic voltammograms of 0.5 × 10
−3

M ferrocenemethanol at different electrode
modifications. (a) At clean BDD (black), GNF-COOH modified BDD (red) and GNF-amide

modified BDD (blue) in 0.1 M KH2PO4 pH 4.6, scan rate 100 mV s
−1

. (b) At clean BDD (black),
GNF-COOH modified BDD (red) and GNF-amide modified BDD (blue) in 0.1 M K2HPO4 pH 9.2,

scan rate 100 mV s
−1

. Adapted from [6].

Figure 3.11 demonstrates that modification of BDD with GNF-amide resulted in

reversible behaviour at a range of pH values and that scan rates up to 1 V s−1 could be

used without significant increase to the peak separation.
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Figure 3.11 Cyclic voltammograms of 0.5 × 10
−3

M ferrocenemethanol at GNF-amide modified
BDD. Supporting electrolyte: (a) 0.1 M KH2PO4 pH 4.6; (b) 0.1 M K2HPO4 pH 9.2. Scan rate 100

mV s
−1

(black, blue), 1 (red, orange) V s
−1

. Adapted from [6].
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Figure 3.12 (a) Cyclic voltammograms of 0.5 × 10
−3

M ferrocenemethanol at GNF-COOH
modified BDD in 0.1 M KH2PO4 pH 4.6: scan rate 50 (black), 100 (red), 250 (green), 500 (blue),
1000 (light blue) mV s

−1
; (b) peak currents ipa (red) and ipc (blue) plotted against square root of

scan rate v; (c) log ipa (red) and log |ipc| (blue) plotted against log ν. 
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Figure 3.12(a) shows CVs of FcMeOH at GNF-COOH modified BDD recorded at

different scan rates. As was seen for the GNF-amide modified BDD in Figure 3.11,

scan rates up to 1 V s−1 could be utilised without significant irreversibility showing in the

response (ΔEp ca. 80 mV at both electrodes).

The peak currents from Figure 3.12(a) are plotted in Figure 3.12(b) against the square

root of scan rate. The data can be fitted with a linear regression line, confirming that the

redox reaction is diffusion controlled. The log-log plots in Figure 3.12(c) are also fitted

with a linear regression line, and the regression coefficients for both the oxidation and

reduction sweeps are very close to the theoretical value of 0.5 for a diffusion-controlled

process. Selected parameters extracted from Figure 3.12(a) are tabulated in Table

3.2.

Table 3.2: Peak parameters of FcMeOH redox reaction from cyclic voltammetry experiments at
GNF-COOH modified BDD in 0.1 M KH2PO4 pH 4.6.

v / mV s−1 Epa / V ipa / µA Epc / V ipc / µA ΔEp / V ipa / ipc

50 0.267 5.43 0.198 −5.35 0.066 1.02

100 0.266 7.73 0.198 −7.54 0.065 1.03

250 0.270 11.3 0.195 −11.3 0.075 1.00

500 0.270 15.8 0.195 −16.0 0.075 0.989

1000 0.270 21.1 0.190 −21.4 0.083 0.984

It is not unexpected to find that the response of this redox probe is unchanged at the

modified electrode, as the FcMeOH/FcMeOH+ redox couple is known to be relatively

surface-insensitive and outer-sphere in nature. However, adsorption of this species to

graphene [12] has been reported, indicating some surface interaction that could

influence the electrochemical response. In this case no evidence of adsorption is seen

and also no indication that the protonation state of the GNF-COOH plays any role in

the redox response of this probe. An outer-sphere reaction is not necessarily

independent of electrode material and can be influenced by double-layer effects and

effects of the energy and distribution of electronic states in the electrode [13]. In this
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case, the changes in the degree of protonation of the functional groups on the

electrode surface as a function of electrolyte pH do not affect the electron transfer

kinetics. The GNF materials likewise show no electrode blocking effects that inhibit

electrochemical response and no sign of limitation in electron transfer kinetics due to

low density of states or lack of surface adsorption sites. On the other hand no

enhancement in electron transfer kinetics is noted either, although the response at the

underlying BDD is also close to reversible, so it would be difficult to determine any

improvement.

3.3.8 Electrochemistry of Hydroquinone/Benzoquinone at GNF-

Modified Electrode

Scheme 3.1: 1,4-Benzoquinone undergoes a two-proton, two-electron reduction to
hydroquinone.

After having established that GNF do not inhibit electron transfer for an outer-sphere

redox couple, a more complex redox system was investigated. The

1,4-benzoquinone/hydroquinone (Q/H2Q) redox couple (Scheme 3.1) was chosen to

examine how the acidic groups at the GNF edge influence proton-coupled electron

transfer (PET). Phenolic compounds are used in various industrial processes, including

the preparation of petrochemicals [14], cosmetics and pharmaceutical products [15].

Phenols are non-biodegradable and toxic to many organisms, and their release into the

environment from the waste streams of these industrial processes leads to soil and
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water contamination [16]. Therefore, finding ways to detect and degrade phenolic

compounds is of great importance.

Figure 3.13 Cyclic voltammograms of 0.5 × 10
−3

M hydroquinone in 0.1 M PBS: (a) at pH 5; (b)
at pH 8.5. Working electrode: clean BDD (black), BDD modified with GNF-COOH (red) and BDD

modified with GNF-amide (blue). Scan rate 50 mV s
−1

. First scans shown. Adapted from [6].

The oxidation of hydroquinone (H2Q) to benzoquinone (Q) was studied at clean BDD,

GNF-COOH modified and GNF-amide modified electrodes over the pH range 5.0 to

8.5. Figure 3.13 shows cyclic voltammograms recorded for hydroquinone in phosphate

buffer solutions of pH 5 (a) and 8.5 (b). The voltammograms at a clean BDD are shown
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in blue, scans at BDD modified with GNF-COOH are in red, and those at BDD modified

with GNF-amide are in blue. At BDD the response was very irreversible, as has been

reported previously [17] with ΔEp being ca. 200 mV at pH 8 and >450 mV at pH 5.

Modification of the BDD with a layer of GNF-COOH resulted in a decrease in peak

separation (ΔEp ca. 150 mV at pH 8.5, 250 mV at pH 5). A shift in both oxidation and

reduction peaks towards reduced overpotential is observed at the GNF-COOH

electrode; however the shift in oxidation peak potential is greater than that for the

reduction peak. Indeed it was found that the anodic shift in the reduction peak position

of ca. 40 mV compared to the peak at clean BDD was constant and independent of pH

over the range tested. In contrast, the cathodic shift in the oxidation peak for GNF-

COOH compared to BDD was pH-dependent and was greater at lower pH. A small

improvement in electron transfer kinetics is observed for the GNF-amide modified

electrode, with respect to the oxidation peak current, although little change to ΔEp is

observed on modifying the electrode.

3.3.8.1 pH-Dependence of the Q/H2Q Reaction

Consider the reaction

O + mH+ + ne− ⇌ R (3.5)

where O is the oxidised species, R is the reduced species, and m and n are the

stoichiometric numbers of protons and electrons, respectively. The equilibrium

potential, E, is given by the Nernst equation:

� = � ° −
� �

� �
ln

[R]

[O][H � ]�
(3.6)

where E0 is the standard potential, R the gas constant and T is the temperature in

Kelvin. At equilibrium, [O] = [R] and
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E = E � +
� � �

� �
ln[H � ] (3.7)

For the benzoquinone reduction shown in Scheme 3.1, m = n = 2, and replacing the

natural logarithm with base 10 logarithm gives the pH dependence:

� = � � −
2.3 � �

�
pH (3.8)

At 25 °C the equilibrium potential changes by −59 mV per pH unit. The equilibrium 

potential is often estimated from CV data as the average of the oxidation and reduction

peak potentials (Epa + Epc) / 2.

Due to the significant changes in peak position, especially at lower pH, depending on

whether the BDD is clean or modified, further investigation of the ET kinetics was

undertaken. The experiments were repeated in PBS solution of pH ranging from 5 to

8.5. Epa, Epc and ΔEp are plotted in Figure 3.14. The error bars represent one standard

deviation.

Figure 3.14(a) shows how Epa and Epc change with pH of the supporting electrolyte. A

linear relationship is observed between peak position and pH for both oxidation and

reduction at the BDD electrode, but the rate of change is very different. Analysis of the

gradients gives a relationship of 96 and 28 mV per pH unit for Epa and Epc, respectively.

The H2Q/Q redox reaction is usually considered a 2e−/2H+ process:

Q + 2e− + 2H3O
+ ⇌ H2Q + 2H2O (3.9)

Or in alkaline solution:

Q + 2e− + 2H2O ⇌ H2Q + 2OH− (3.10)

A 59 mV shift in peak position with pH is predicted for a Nernstian 2e−/2H+ process.
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Figure 3.14 (a) Peak potential of hydroquinone oxidation (circles) and benzoquinone reduction
(squares); (b) peak separation; (c) E1/2 as a function of pH at clean BDD electrode (black), GNF-

COOH modified BDD (red) and GNF-amide modified BDD (blue). Adapted from [6].
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Figure 3.14(b) shows that ΔEp at clean BDD is roughly linearly dependent on pH,

although the reaction was found to be very surface sensitive and resulted in a large

standard deviation. Because the kinetics of the reaction at BDD are so sluggish, it is

not possible to estimate the equilibrium potential from experimental data. The Nernst

equation describes reversible ET reactions with fast kinetics, which clearly isn’t the

case for the Q/H2Q redox reaction at BDD. E1/2 was calculated as Epa – Epc and plotted

in Figure 3.14(c). E1/2 exhibits pH-dependent behaviour with a gradient of 61 mV per

pH unit at the clean BDD electrode, suggesting that the reaction is a 2e−, 2H+ process.

At both GNF-COOH and GNF-amide modified BDD, Epc has a similar gradient as Epc at

clean BDD. Epa data points follow the linear response for clean BDD in neutral and

alkaline conditions but begin to diverge from them in acidic solution, especially at GNF-

COOH electrode and to a much lesser extent at GNF-amide electrode (Figure 3.14(a)).

At both modified electrodes, ΔEp follows the data for the clean BDD in neutral and

slightly alkaline conditions, but at GNF-COOH electrode, ΔEp becomes independent of

pH below pH 6.5. At GNF-amide modified electrode, the pH dependence of ΔEp follows

that at the clean BDD electrode, but deviates from it slightly at more acidic solutions.

For the GNF-COOH modified electrode two distinct behaviours can be noted. At

pH > 6.5 the relationship between E1/2 and pH is similar to that seen at BDD (61 mV per

pH unit). However at pH < 6.5 a different gradient of 40 mV per pH unit can be fitted to

the data. Clearly a change in reaction mechanism takes place at ca. pH 6.5, or

alternatively the manner in which the H2Q reactant or Q product interacts with GNF-

COOH changes in this pH range. The pH-independent behaviour of ΔEp in acidic

solution can be understood by considering the slopes of Epa and Epc, which are roughly

equal below pH 6.5.

The change in the reaction mechanism occurs in the pH region where COOH groups

are in a dynamic equilibrium with carboxylate groups as seen in the titration curve

(Figure 3.5). At these lower pH values there would be protons readily available at the
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flake edges to participate in proton transfer reactions and to provide hydrogen bonding

sites, thereby creating conditions that differ substantially from those in the bulk solution.

A 40 mV shift with pH unit is close to the theoretical value of 29.5 mV per pH unit

predicted for a 2e−/1H+ process:

Q + 2e− + H3O
+ ⇌ HQ− + H2O (3.11)

Such a reaction mechanism is unlikely in acidic, buffered solution as it requires

hydroquinone to be deprotonated, which is not possible given its pKa is 9.9 [18]. A

mechanism with a 2e−/1H+ relationship would however be possible in the presence of

an additional, non-solution, source of protons, such as the COOH-terminating groups

offered by GNF-COOH:

Q + 2e− + GNF-COOH + H3O
+ ⇌ H2Q + GNF-COO− + H2O (3.12)

In the case of the hydroquinone oxidation reaction it has been shown that modification

of glassy carbon electrodes with phthalate bases (which contain two COOH groups)

shifts the oxidation potential cathodically [19]. The proposed mechanism involves

surface COO− groups accepting the protons liberated in the oxidation of hydroquinone

and thus stabilising the reaction products. In effect the shift in oxidation potential is a

thermodynamic consequence of the change in reaction mechanism rather than an

improvement in electron transfer kinetics.

A similar process may be taking place in our system. Some improvement in electron

transfer kinetics is observed on modifying the BDD electrode with GNF, as can be seen

in the increase in oxidation peak currents for both GNF-amide and GNF-COOH

electrodes (Figure 3.13). The GNF-amide electrode also shows a small cathodic shift

in oxidation potential as pH is lowered, indicating improved electron transfer kinetics.

H2Q/Q can interact with the GNF via hydrogen bonding or electrostatic interactions with

the edge groups or by hydrophobic or π–π interactions with the GNF basal plane. Such 
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surface adsorption has been proposed to explain the improved electron transfer

kinetics for this process (both oxidation and reduction) experienced at sp2 carbon

materials [20] in comparison to BDD, where limited surface adsorption is believed to

take place [21]. It is also possible that some acid groups remain at the GNF, as

discussed in section 3.3.3, and that there are enough of these acid groups to cause a

noticeable difference in the reaction. The marked change in proton concentration

dependence noted at pH < 7 is unique to the acid-terminated GNF and strongly

suggests the COOH groups play a role in the reaction mechanism, as shown in

Equation (3.12). At pH > 7 the solution is sufficiently basic to allow the deprotonation

accompanying hydroquinone oxidation to proceed predominantly via a solution phase

mechanism involving OH− as the base (Equation (3.10)). However at pH < 7 there is a

strong thermodynamic driving force for the COOH edge groups of the GNF to

protonate, concomitant with conditions where there are fewer basic solution species. At

this point a mechanism such as that shown in Equation (3.12) begins to dominate and

is reflected by the change in proton concentration dependence of the oxidation peak

position.

3.3.8.2 Exploring the Mechanism for Hydroquinone Oxidation

Proton-coupled electron transfer (PCET) reactions play a key role in essential

biological processes. Quinone groups are often involved in PCET reactions [22], as is

the case for photosynthesis, where the reduction of plastoquinone and oxidation of the

phenol group of a tyrosine residue are central to the function of photosystem II [23].

PCET can occur stepwise, where either the proton or the electron is transferred first, or

in a concerted fashion (CPET), where both the proton and the electron are transferred

in a single step [24]. The concerted pathway avoids high-energy intermediates and

therefore tends to exhibit a lower overpotential [25]. For a long time, significant effort

has been made to elucidate the mechanism of various PCET reactions in order to

understand and mimic the efficiency of enzymatic systems.
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A sequential PCET mechanism can be confirmed if an intermediate can be isolated

experimentally. This may not always be straightforward, and other techniques have

been developed to distinguish the stepwise pathways from a concerted pathway. The

extensive mechanistic studies of phenol oxidation undertaken by Savéant and co-

workers [24, 26] show that cyclic voltammetry experiments in unbuffered media can

confirm or rule out a concerted pathway. If CPET is operative, the oxidation wave is

expected to shift to a higher potential with respect to a buffered electrolyte having the

same pH, while its peak potential should be independent of the pH for pH values below

the pKa of the phenolic OH. The assignment of CPET can be further corroborated by a

kinetic isotope effect which can be revealed by comparing CVs recorded in D2O and

H2O.

In order to explore the mechanism of proton and electron transfer for the H2Q/Q couple,

experiments were carried out in unbuffered media in the pH range 5.5 to 8.2. Cyclic

voltammograms recorded in 0.1 M KCl and the associated oxidation peak potentials

are shown in Figure 3.15. The data show that in unbuffered media the Epa is shifted to

higher potentials compared to buffered solutions and, crucially, the Epa values are

independent of pH over this pH range. The behaviour of hydroquinone in D2O was also

studied. Figure 3.15(c) shows the cyclic voltammogram at clean BDD in D2O. The pD

of the D2O solution, based on the smaller dissociation constant of D2O, is estimated to

be 0.4 units higher than the pH of a corresponding H2O solution and therefore about

6.6. When D2O is used as the solvent, the main oxidation peak potential shifts to higher

values compared to H2O of similar pH.
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Figure 3.15 (a) CVs of 0.5 × 10
−3

M hydroquinone at clean BDD electrode (black line) and GNF-
COOH modified electrode (red line) in unbuffered H2O pH 6.6. (b) Peak potential of

hydroquinone oxidation in unbuffered KCl electrolyte as a function of pH at a clean BDD
electrode (black) and GNF-COOH modified electrode (red). (c) CVs of 0.5 × 10

−3
M

hydroquinone at clean BDD electrode in unbuffered H2O pH 6.5 (black line) and D2O pD 6.6
(red line). Supporting electrolyte: 0.1 M KCl. Scan rate: 50 mV s

−1
. First scans shown. Adapted

from [27].
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A second set of peaks at more negative potentials appear in unbuffered solutions after

the initial oxidation wave. Figure 3.16(a) gives a comparison of the CVs at clean BDD

and GNF-COOH modified BDD at pH 8.21. The ratio of peak heights is plotted in

Figure 3.16(b) as a function of pH. The peak separation of ca. 60 mV is indicative of

reversible kinetics, and the peak potentials are independent of pH over the pH range

examined. The fact that the peak height of this reversible redox wave decreases with

decreasing pH suggests it is due to a stepwise PET as described by Costentin et al

[24]. The reversible kinetics support the assignment of this mechanism. Upon

modification of the electrode with GNF-COOH, there is no shift in Epa, but the height of

peak II is smaller, and the ratio of peak currents at GNF-COOH modified electrode

increases more rapidly under acidic conditions. These observations are in agreement

with the conclusions made above regarding the role played by COOH groups in the

reaction mechanism. When GNF-COOH are present on the electrode surface they can

act as a proton source and sink, allowing the reaction to proceed to a greater extent via

the concerted pathway. The results presented here are in agreement with those

reported by Costentin et al. [24] in the above-mentioned paper and strongly suggest

that the oxidation of hydroquinone at both BDD and GNF-COOH modified BDD follows

the CPET mechanism in buffered media. In unbuffered media, two competing

pathways are operative: CPET, which dominates in acidic solutions, and PET in basic

conditions.
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Figure 3.16 (a) CV of 0.5 × 10
−3

M hydroquinone at clean BDD electrode (black line) and GNF-
COOH modified electrode (red line) in unbuffered H2O. The pH of the H2O electrolyte solution

was adjusted to 8.21 with KOH. Supporting electrolyte: 0.1 M KCl. Scan rate: 50 mV s
−1

.
Second scans shown. (b) Ratio of peak heights of hydroquinone oxidation as a function of pH at

clean BDD electrode (black) and GNF-COOH modified electrode (red). Adapted from [27].
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3.3.9 Electrochemistry of [Ru(NH3)6]
2+/3+ at GNF-Modified Electrode

[Ru(NH3)6]
3+/2+ is considered an outer-sphere redox couple that is often used as a

standard probe as it undergoes a reversible one-electron redox reaction. However,

both the reduced and especially the oxidised species carry a large positive charge and

we can expect the GNF to be negatively charged at pH values above ca. 3. Therefore,

we were interested to see if there was any interaction between the positively charged

redox probe and the negative charge at the modified electrode.

Cyclic voltammograms were recorded in 0.1 M PBS at pH 7 at both clean BDD and

BDD modified with GNF-COOH, and the results are shown in Figure 3.17. Reversible

behaviour was seen in our experiments at a clean BDD electrode (Figure 3.17(a)) with

peaks at −219 mV and −149 mV for reduction and oxidation, respectively. The peak 

potentials are independent of scan rate in the range 50–250 mV s−1 and the peak

separation is 70 mV, which is close to the theoretical value of 59 mV. At GNF-COOH

modified electrode, the current peaks occur at the same potentials as at the unmodified

BDD. There is also a slight increase in the reduction current. However, what is

noticeable especially at higher scan rates (Figure 3.17(b)) is the changed shape of the

current response. The reaction clearly doesn’t follow the usual mass transfer regime at

the GNF-COOH modified electrode, but instead there is an additional set of peaks

appearing at ca. −350 mV (reduction) and −300 mV (oxidation).  
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Figure 3.17 Cyclic voltammograms of 0.5 × 10
−3

M [Ru(NH3)6]Cl3 in 0.1 M PBS pH 7 at (a)
clean BDD and (b) GNF-COOH modified BDD. Scan rates 50 mV s

−1
(black), 250 mV s

−1
(red)

and 500 mV s
−1

(blue).

The additional peaks in Figure 3.17(b) are poorly resolved, possibly because there is

only a small amount of GNF-COOH present at the electrode surface and hence the

surface area has not increased appreciably. To be able to analyse the CVs and

determine the mechanism responsible for the redox peaks, a signal enhancement was

needed. To achieve this, GNF complexed with Ca2+ were used. There will be an

increase in the concentration of GNF material on the electrode surface due to the
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insolubility of the Ca2+ complexed flakes that is expected to increase the intensity of the

additional set of peaks compared to the acid-terminated GNF.

Using GNF-Ca modified BDD, cyclic voltammograms were recorded at scan rates

ranging from 5 to 500 mV s−1 (Figure 3.18). Modifying the electrode with GNF-Ca has

clearly enhanced the second set of peaks compared to Figure 3.17(b).

Figure 3.18 (a) Cyclic voltammograms of 0.5 × 10
−3

M [Ru(NH3)6]Cl3 in 0.1 M PBS pH 3 at
GNF-Ca modified BDD. Scan rates 5 (black), 25 (red), 50 (green), 250 (blue) and 500 (light

blue) mV s
−1

. (b) Cyclic voltammograms from (a) with normalised current.
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The appearance of additional peaks in a cyclic voltammogram may be due to chemical

reactions leading to different species or adsorption onto the electrode surface. The

potential at which the new set of peaks occurs relative to the solution phase process

can reveal whether only the oxidised or the reduced species is adsorbed. Peaks at

potentials more negative than the solution-phase redox peaks are due to the oxidised

species being adsorbed onto the electrode surface. The stronger the adsorption of the

oxidised species, the more the postpeak succeeds the diffusion peak. When adsorption

is weak, the difference in energies for reduction of adsorbed and dissolved species is

small, and a separate postpeak is not observed.

In this case we see a poorly resolved postpeak, especially for the cathodic process,

that could arise from only the oxidised species being adsorbed. To investigate whether

one or both redox states are adsorbed, the scan rate dependence of the peak current

was studied. For a diffusion-controlled redox reaction of a solution species the peak

current increases linearly as a function of the square root of the scan rate, whereas for

an adsorbed species, there is a linear relationship between the peak current and the

scan rate.

The oxidation peak heights, ipa, from Figure 3.18(a) are plotted against either v or v1/2

and shown in Figure 3.19. Only the oxidation peaks were chosen as peak IIa is more

clearly resolved in the cyclic voltammograms than IIc. From Figure 3.19(a), the linear

relationship of ipa confirms that peaks Ia and Ic stem from the solution-phase redox

process:

[Ru(NH3)6]
3+ (aq) + e− ⇌ [Ru(NH3)6]

2+ (aq) (3.13)

As ipa of peak IIa depends linearly on v and not v1/2, it can be concluded that peaks IIa

and IIc arise from adsorbed species:

[Ru(NH3)6]
3+ (ads) + e− ⇌ [Ru(NH3)6]

2+ (ads) (3.14)
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Figure 3.19 (a) Peak current ipa of peak Ia determined from Figure 3.18(a) plotted against the
square root of scan rate ν. (d) ipa of peak IIa determined from Figure 3.18(a) plotted against ν. 
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Figure 3.20 log ipa of (a) peak Ia and (b) peak IIa determined from Figure 3.19(a) plotted
against log ν. 

Logarithms were taken of the peak currents and these were plotted against the

logarithm of scan rate in Figure 3.20. A linear relationship is expected and the gradient

can be used to assess the extent of adsorption contributing to the redox process. A

value of 0.5 is indicative of diffusion control, whereas values above that indicate

adsorption alongside diffusion. Figure 3.20(a) shows that the gradient for peak Ia is

significantly above 0.5, suggesting that adsorption contributes to the diffusion-
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controlled redox reaction. In Figure 3.20(b) the gradient for peak IIa is close to 1,

confirming that only adsorbed species are contributing to this peak.

We assume that a similar adsorption is taking place at the acid-terminated GNF, but

due to the smaller amount of material adhering to the electrode surface the additional

peaks are smaller in size, which restricts any analytical treatment of the peak currents.

GNF-Ca on the other hand is insoluble and therefore will adhere more strongly to the

BDD surface, allowing a greater amount of [Ru(NH3)6]
3+/2+ to adsorb onto the modified

electrode surface, which leads to more intense redox peaks arising from the adsorbed

species.

It is unclear whether the [Ru(NH3)6]
3+/2+ species is adsorbed onto the basal plane of the

GNF or whether it is interacting electrostatically with the negatively charged

carboxylate functionalities. The presence of carboxylic acids in GNF-Ca can be

detected in the IR spectrum (Figure 3.4) and the ratio of free carboxylate groups to

carboxylates complexed with Ca2+ was estimated from XPS data in Section 3.3.2.

Considering that there is a significant number of non-complexed functionalities present,

it is feasible that [Ru(NH3)6]
3+ forms an ion pair with the free COO− groups. To see if the

metal centre could be reduced and oxidised while the ligands are interacting

electrostatically with carboxylate groups, acid-terminated GNF were complexed with

[Ru(NH3)6]
3+. Cyclic voltammetry recorded with different scan rates (Figure 3.21(a))

revealed a poorly resolved reduction peak in the form of a shoulder at −326 mV and an 

oxidation peak at −184 mV when v = 100 mV s−1. Although oxygen was removed from

the electrolyte prior to recording the CVs, residual oxygen may be present that

undergoes reduction at the modified electrode in the same potential range where

[Ru(NH3)6]
3+ is reduced. Additionally, the onset of hydrogen evolution can also interfere

with the current response at more negative potentials, making it difficult to determine

the peak potential and the current arising from [Ru(NH3)6]
3+ reduction. Further analysis

will therefore be confined to the oxidation peak only.
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Figure 3.21 (a) Cyclic voltammograms recorded at a BDD modified with [Ru(NH3)6]
3+

complexed GNF. Scan rates 5 (black), 25 (red), 100 (green), 325 (blue) and 500 (light blue)
mV s

−1
. Electrolyte: 0.1 M K2HPO4. (b) A plot of oxidation peak current ipa against scan rate v.

(c) log ipa plotted against log ν. 
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Scan rate study (Figure 3.21(b)) shows that the oxidation peak current is linearly

dependent on the scan rate, indicating that the redox reaction is not diffusion controlled

and therefore the redox species is bound to the surface. When the scan rate is 5 mV

s−1, several oxidation peaks can be discerned in the current trace. This suggests that

the [Ru(NH3)6]
3+ species exists in more than one environment, perhaps due to various

coordination modes and numbers of the amine ligands to the carboxylate groups at the

flake edges.

Table 3.3 shows the oxidation peak potential values at different scan rates together

with peak currents. It can be seen that the main oxidation peak shifts with scan rate

and varies from −145 mV at v = 25 mV s−1 to −225 mV at v = 500 mV s−1. The cathodic

peak potentials are relatively stable with a slight shift to more negative potentials,

although as mentioned earlier it is difficult to determine the Epc with certainty. The shift

in Epa and the asymmetric shape of the oxidation peak further suggests that the

[Ru(NH3)6]
3+ species exists in various different environments when the precipitate is

formed. Some of the [Ru(NH3)6]
3+ species may be so weakly complexed with the COO−

that the interaction between the charged species can be overcome by immersion in

electrolyte or applying a potential. This results in a population of both surface-bound

and solution-phase [Ru(NH3)6]
3+ that would undergo reduction and consequent

oxidation at different potentials. The solution-phase [Ru(NH3)6]
3+ would give more

prominent redox peaks at lower scan rates while at higher scan rates the adsorbed

species would present more intense redox peaks.

The existence of both adsorbed and solution-phase species is evident when the plot of

log ipa against log ν is examined (Figure 3.21(c)). The data points can’t be fitted with a

linear regression line, and although the regression coefficient is close to 1 at higher

scan rates, at slow scan rates the relationship between log ipa and log ν deviates 

significantly from what is expected of a non-diffusion controlled process.
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Table 3.3: Scan rates, oxidation peak currents and oxidation peak potentials extracted from
Figure 3.21.

ν / mV s−1 Ipa / µA Epa / V

5 0.0129 −0.119 

25 0.0187 −0.145 

100 0.0445 −0.184 

325 0.148 −0.213 

500 0.215 −0.225 

3.4 Conclusion

In this chapter, further characterisation of GNF materials is presented to complement

existing data found in literature [7, 8], focusing on the acid/base properties of GNF-

COOH, IR spectroscopy and electrochemical characterisation using cyclic voltammetry

both with and without redox probes.

Modifying the BDD surface with GNF results in a clearly detectable difference in the

voltammetric response compared to the unmodified surface across the whole pH range

examined. Therefore, CV in the aqueous phase can be employed to study the various

GNF samples by using a BDD electrode modified with a layer of adsorbed GNF.

Neither amide nor carboxylic acid –terminated GNF shows a detrimental effect on

electron transfer rate with respect to the outer-sphere FcMeOH redox couple. This

result is consistent with the observed fast electron transfer kinetics towards these

species obtained using single layer graphene electrodes [12, 28]. The high density of

carboxylic acid or amide functionalities does not appear to perturb the electrochemical

response under these reaction conditions.

pH titration experiments reveal that in solution pH of ca. 4 to 8 the edge groups are

present in a range of protonation states. The response towards hydroquinone reduction
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shows deviation from the response at clean BDD at pH < 7 and in more acidic pH

conditions the edge groups clearly play a role in the reaction mechanism.

At the present time it is unclear in what orientation the GNF are arranged on the

electrode surface, as their small size and transparency makes the immobilised layer

difficult to characterise. However as the coverage and flake orientation will clearly be

important for fully understanding the electrochemical response, further studies into the

determination and control of the electrode layer morphology are needed and these will

be described in Chapter 6.
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4 GNF-COOH and Ferri/Ferrocyanide

4.1 Introduction

The [Fe(CN)6]
3−/4− redox couple is often used as a standard probe to characterise

electrode surface area and to study electrode kinetics, even though some complicating

factors regarding the use of this probe are well documented. Several previous reports

have found that, especially at metal electrodes, the standard heterogeneous electron

transfer rate constant k0 of [Fe(CN)6]
3−/4− depends on the identity and concentration of

the supporting electrolyte [1, 2]. Noel and Anantharaman [3] have observed the cation

dependence at glassy carbon electrodes, showing that the effect is not limited to metal

electrodes. An increase in k0 with increasing potassium ion concentration was

attributed to a transition state complex involving K+ [1], in agreement with previous

reports from Sohr et al.[4, 5] who devised a model of the redox species forming a dimer

via a bridging cation.
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A systematic investigation into the influence of surface oxygen functionalities using

glassy carbon electrodes showed that the [Fe(CN)6]
3−/4− CV response did not show a

dependence on any specific surface oxygen groups, although it was sensitive to the

presence of adsorbates [6]. However, other studies have shown pH dependence in the

electron transfer kinetics of this couple at glassy carbon electrodes, the process

becoming slower as pH is increased [7]. This effect was attributed to the presence of

surface carboxylic acid functionalities that become deprotonated and hence negatively

charged in more alkaline solutions; therefore electrostatic repulsion occurs between the

electrode surface and the negatively charged redox species. At polycrystalline BDD

electrode, the presence of COOH groups slows down the electron transfer kinetics of

[Fe(CN)6]
3−/4− dramatically [8, 9], and due to the pH dependence of the reaction,

electrostatic repulsion was inferred as the cause of the change in kinetics. Yagi et al.

[10] also found that oxygen plasma treatment of BDD caused the HET for this couple to

slow down, and although they weren’t able to identify the oxygen functionalities on the

surface, carboxyl groups were proposed to be present and to act as a repulsive site to

negatively charged redox species.

In light of the considerable evidence summarised above showing that carboxylic acid

groups at the surface of carbon electrodes slow down the HET for [Fe(CN)6]
3−/4−, we

chose to study this redox couple at GNF-modified BDD. The abundance of COOH

groups present at the edge-carboxylated flakes is expected to magnify any effect the

acidic groups may have on this redox couple. At the same time, the amide-terminated

GNF can be used as control to confirm that any differences in the electrochemical

behaviour are due to the COOH groups and not other factors such as carbonyl groups

or increased sp2 carbon present at the surface.

The work presented in this Chapter has been published in [11].
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4.2 Experimental Methods

All aqueous solutions were prepared with doubly deionised water, taken from a Milli-Q

water purification system, with a resistivity of not less than 18.2 MΩ cm at 25 °C. 

4.2.1 Electrochemical Experiments

Potassium ferricyanide (K3[Fe(CN)6]) and potassium hexacyanoruthenate(II)

(K4[Ru(CN)6]) were obtained from Sigma-Aldrich and used as received. GNF-COOH

were drop-coated onto the working electrode surface or added to the solution along

with the redox probe. Other experimental details are described in Section 3.2.5.

4.2.2 Infrared Spectroscopy Experiments

Figure 4.1 Spectroscopy cell used in this Chapter.

The stability of [Fe(CN)6]
3−/4− in solution was investigated by recording the IR

absorption of the cyanide ligands over a 24-hour period. ATR-FTIR spectra were

recorded with a Bruker ISF 66/S spectrometer (Bruker, UK) fitted with a liquid nitrogen-

cooled MCT A detector and a silicon ATR prism at 4 cm−1 resolution. A stainless steel
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cell (Figure 4.1) was placed on top of the IRE with two narrow steel tubes at the top of

the cell that acted as the inlet and outlet for the sample. Plastic tubing was attached to

the steel tubes and the sample was introduced at one end via a syringe. The sample

was then pumped back and forth to remove any air bubbles. The length of the plastic

tubing and the small surface area exposed to the atmosphere meant that

contamination of samples in D2O by atmospheric water was minimised. A single

spectrum was computed by Fourier transformation of 250 averaged interferograms for

background and sample and the software was programmed to record a spectrum every

60 minutes. The background spectrum was of pure water and air for experiments in

H2O and D2O, respectively. Spectra recorded in H2O were manipulated using the

baseline and atmospheric correction functions in OPUS software. Spectra recorded in

D2O were manipulated by subtracting a spectrum of D2O only, which was first scaled to

match the absorbance at 2080–2740 cm−1 in sample spectra.

4.2.3 Spectroelectrochemical Experiments

To probe the effect of solution-phase GNF on the reversibility of the [Fe(CN)6]
3−/4−

redox couple, the IR absorption of the cyanide ligands was monitored during oxidation

and reduction using an in situ technique. ATR-FTIR spectra were recorded as detailed

in Section 4.2.2. An electrochemical cell (Figure 4.2) with a volume of 20 µl was used

with a Pt mesh working electrode situated 0.1–0.3 mm above the prism. A Pt sheet

counter and Ag/AgCl reference electrode were placed in a chamber separated from the

sample chamber by a Vycor frit. Working electrode potentials were set at 0 V for

reduction of [Fe(CN)6]
3− to [Fe(CN)6]

4− and +350 mV for oxidation of [Fe(CN)6]
4− to

[Fe(CN)6]
3−. IR difference spectra were constructed by recording a background

spectrum at one potential, then switching to the second potential and recording a

sample spectrum at specific time intervals.
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Figure 4.2 (a) Spectroelectrochemical setup used in this Chapter. (b) Schematic of the cell
viewed from the top.

4.3 Results and Discussion

4.3.1 The Effect of Solution pH

Figure 4.3(a) shows CVs for 0.5 × 10−3 M K3[Fe(CN)6] at a clean BDD electrode in

background electrolyte of 0.1 M pH 4.6 and 9.2 PBS. At the BDD electrode the peak

separation ΔEp remains constant at (65 ± 2) mV over the whole pH range examined

(pH 4.6–9.2) indicating close to reversible electron transfer kinetics. The E0’ of the

couple, taken as ½(Epa + Epc), shifts towards higher values with increasing pH, being

found at ca. 50 mV higher at pH 9.2 than at pH 4.6. The peak currents for oxidation and

reduction also decrease marginally over the same pH range. The [Fe(CN)6]
3−/4−

electron transfer process has been shown to be inhibited at oxygen-terminated BDD

surfaces when the oxygen termination is achieved by acid washing [12] or oxygen

plasma treatment [9]; when oxygen termination is introduced by alumina polishing, as

in this study, effectively reversible electron transfer kinetics are observed [9]. Figure

4.3(a) suggests a small degree of interaction of [Fe(CN)6]
3−/4− with the BDD surface,

which is possibly due to the presence of non-diamond-like carbon impurities in the

electrode. sp2-hybridised carbon is a common impurity in BDD electrodes, and on sp2-
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hybridised carbon such as glassy carbon, the [Fe(CN)6]
3−/4− redox reaction is thought to

proceed via an adsorbed intermediate [10] because the HET is affected by a

physisorbed molecular layer [6].

Figure 4.3(b) shows the response of 0.5 × 10−3 M K3[Fe(CN)6] at pH 4.6 and 9.2 at a

GNF-COOH modified electrode. The response at this electrode is found to be very

dependent on pH, particularly for pH < 8. Peak currents for both oxidation and

reduction decrease and ΔEp increases as the pH is lowered: at pH 7 ΔEp = 109 mV; pH

6 ΔEp = 120 mV; pH 5 ΔEp = 213 mV and pH 4.6 ΔEp = 250 mV. This indicates that

electron transfer becomes slower under these experimental conditions, which could be

attributed to a change in the nature of the redox molecule, an unfavourable interaction

with the electrode surface (or loss of a favourable interaction) or formation of an

adsorbed inhibiting layer on the electrode. The response doesn’t show a dependence

on time or potential, as it is observed immediately from the first CV scan and the

response does not get worse with cycling (currents rather increase marginally with

consecutive scans). This would indicate that the effect cannot be attributed to formation

of a surface film that deposits as a function of time or applied potential. However it

does not preclude the fast, spontaneous formation of an adsorbed layer, formed

independently of applied potential.

As detailed in the Introduction to this Chapter, [Fe(CN)6]
3−/4− has been reported to be

inhibited by deprotonated carboxylic acid moieties at carbon electrodes. Panzer and

Elving [13] reported decreased reversibility on freshly cleaved pyrolytic graphite

electrodes in more alkaline solution, but they also saw a shift to more negative

potentials with increasing pH for both reduction and oxidation peaks, which was

explained by the acid-anion equilibria involving ferrocyanic and ferricyanic acids. What

is observed here is the opposite: the more protonated the GNF are, the more

unfavourable the interaction is with the negatively charged redox species. No shift
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attributable to the acid-anion equilibrium is observed here. In fact, E0’ shifts positively

with increasing pH, the opposite of what Panzer and Elving reported.

Figure 4.3(c) shows the response of the GNF-amide modified electrode towards 0.5 ×

10−3 M K3[Fe(CN)6] in 0.1 M pH 4.6 and pH 9.2 PBS. For this electrode there is no pH

dependence on the voltammetric response and the electron transfer kinetics appear

only slightly less reversible than at clean BDD (ΔEp = (70 ± 1) mV at 50 mV s−1) over

pH range 4.6–9.2. In fact the response is less dependent on pH than at a clean BDD

electrode. Thus it is apparent that carbonyl, amide or amine functionalities have little

influence on the electrochemical response of [Fe(CN)6]
3−/4− at GNF-modified

electrodes. The observed inhibition of current at the GNF-COOH electrode can

therefore be attributed specifically to the presence of the acid functionalities.

We estimate from titration of the GNF-COOH (Section 3.3.4) that the COOH edge

groups are fully deprotonated at pH higher than 8, hence we might expect the

[Fe(CN)6]
3−/4− redox reaction to be inhibited at more alkaline pH. However we observe

relatively reversible electrochemistry at pH 7 and above, and at pH 9.2 (where all of the

COOH will be deprotonated and negatively charged) the response is identical to that at

a clean BDD electrode. Therefore an electrostatic argument for the observed behaviour

is clearly inappropriate in this case. Study of the [Fe(CN)6]
3−/4− redox couple is made

still more difficult due to its complex solution chemistry, in particular its preference for

ion-pairing with solution cations [1-3] and propensity to lose ligands and form

aggregates that are intermediates to Prussian Blue film deposition [15-18]. Additionally

acid/base equilibria involving protonation of the nitrogen of the cyanide ligands

becomes important over some pH ranges (pKa of H[Fe(CN)6]
3− is ca. 4.2 [19]).
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Figure 4.3 Cyclic voltammograms of 0.5 × 10
−3

M K3[Fe(CN)6] recorded in 0.1 M PBS. Working
electrode: (a) BDD; (b) BDD modified with GNF-COOH; (c) BDD modified with GNF-amide.

Solution pH 4.6 (black, blue, light blue); 9.2 (red, orange, pink). Scan rate 50 mV s
−1

. First scans
shown. Adapted from [14].
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Due to the differing bonding environments of the COOH groups and electrostatic and

hydrogen-bonding interactions between neighbouring groups,

protonation/deprotonation takes place over a wide pH range, as shown by the titration

curve in Figure 3.5. We see slower kinetics at the GNF-COOH modified electrode at

pH < 8, coinciding with the pH range where GNF-COOH are involved in dynamic

protonation equilibria. The instability of [Fe(CN)6]
3−/4− in these conditions may be due to

the environment within the diffusion layer surrounding the GNF, where some of the

carboxylic acid groups may be acidic enough to protonate the redox molecule,

promoting cyanide ligand loss in the form of HCN and allowing deposition of films

similar in nature to Prussian Blue [20]. Solutions of [Fe(CN)6]
3− at pH 3.6 have been

reported to have different UV-Vis spectral features to those at higher pH (indicating

protonation or ligand loss) and to develop blue precipitates on standing [21]. Although

our solution pH values of ≥ 4.6 would not be considered acidic enough to cause 

decomposition of [Fe(CN)6]
3−, a higher concentration of protons may be present close

to the electrode surface due to the high density of carboxylic acid functionalities.

4.3.2 The Effect of Background Electrolyte Concentration

To determine whether a cation dependence is seen at clean BDD, and whether

modifying the electrode with GNF changes the response, cyclic voltammograms of

[Fe(CN)6]
3−/4− were recorded in electrolyte solutions of different concentrations. In these

experiments the background electrolyte was KCl so the solutions are not buffered, but

are all in the pH range 5-6. Figure 4.4 shows CVs at clean BDD, GNF-COOH and

GNF-amide with 0.5 × 10−3 M K3[Fe(CN)6] in 1 M (a), 0.1 M (b) and 0.01 M KCl (c).

Increasing the concentration of the supporting electrolyte causes a shift in E0’ to more

positive potentials for all electrodes studied here, confirming that the electrolyte plays a

role in the redox equilibrium. At high ionic strength (1 M KCl) the CV response at all

three electrodes is reversible, but at 0.1 M KCl currents at the GNF-COOH electrode

are much reduced and ΔEp is significantly increased. In 0.01 M supporting electrolyte
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the responses at clean BDD and GNF-amide modified electrodes are still reversible but

the CV at the GNF-COOH electrode shows significant inhibition. The response appears

sigmoidal, resembling the CV expected at an array of microelectrodes, or response

through pinholes of an electrode partially covered in insulating material. Calculated

values of ΔEp are listed in Table 4.1.

Table 4.1: Calculated values of peak potential separation ΔEp in various concentrations of
supporting electrolyte KCl.

Electrode

ΔEp / mV

0.01 M KCl 0.1 M KCl 1 M KCl

BDD only 74 ± 6 69 ± 2 75 ± 1

GNF-COOH Unable to calculate 137 ± 27 92 ± 6

GNF-amide 88 ± 3 69 ± 1 68 ± 1

The results are qualitatively the same in other supporting electrolytes of the same

concentration (see Appendix 1). The pH of 0.01 M KCl is around 5, so the experiment

was repeated in 0.01 M KCl solution, the pH of which was brought up to 8.5 with KOH

(see Appendix 1). The rise in pH improved the kinetics of the redox reaction at GNF-

COOH modified BDD, giving ΔEp = (231 ± 21) mV.

At low ionic strength the electrostatic interaction between the electrode and the redox

probe will be enhanced as screening by solution ions in the double layer is less

effective. These conditions seem to amplify the inhibiting effect of the COOH groups on

the [Fe(CN)6]
3−/4− electrochemistry, particularly at lower pH. Additionally the stability of

the [Fe(CN)6]
3−/4− species may also be affected by the low ionic strength conditions as

ion-pairing with K+ will be less effective at lower cation concentration.
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Figure 4.4 Cyclic voltammograms of 0.5 × 10
−3

M K3[Fe(CN)6] recorded in different
concentrations of KCl: (a) 1 M; (b) 0.1 M; (c) 0.01 M. Working electrode: BDD (black); BDD

modified with GNF-COOH (red); BDD modified with GNF-amide (blue). Scan rate 50 mV s
−1

.
First scans shown. Adapted from [14].
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Beriet and Pletcher [2] suggested the decomposition of [Fe(CN)6]
3−/4− on a platinum

electrode surface to form a blocking species. Other groups have found evidence of

[Fe(CN)6]
3−/4− adsorption onto platinum electrodes as a Prussian Blue film that inhibits

electron transfer [22], although Prussian Blue itself is electroactive [23]. Excess free

CN− in the electrolyte solution prevents [Fe(CN)6]
3−/4− from chemisorbing on Pt surface

by occupying chemisorption sites and thus prevents [Fe(CN)6]
3−/4− decomposition [17,

18]. The inhibiting effect of adsorbed species on the electrode surface was observed to

grow gradually stronger as the adsorption proceeded [22], whereas in the experiments

conducted in this study the effect is seen immediately, and is at its strongest in the first

cycle.

Although it is difficult to provide a definitive explanation, it is known that [Fe(CN)6]
3−/4−

can be unstable in solution, particularly at low ionic strength and low pH. Cyanide

ligand loss and subsequent adsorption/decomposition of ferrocyano-species onto metal

and carbon electrodes are well documented [2, 15-17, 22-24]. The [Fe(CN)6]
3−/4− redox

reaction is believed to take place via activated ion-paired complexes such as

K2[Fe(CN)6]
2−/1−. If these ion-pair complexes cannot form, for example at low ionic

strength, then the electron transfer rate is much slower [1]. The electrochemical

response of [Fe(CN)6]
3−/4− in the presence of GNF-COOH at pH < 7 suggests a lack of

stability of the ion-paired redox species and hence sluggish electron transfer kinetics.

At low ionic strength the response is consistent with a spontaneous deposition of

blocking species on the electrode surface, indicating the real lack of stability of the

redox molecule in these solution conditions.

In the previous Section we discovered that the presence of COOH groups at the

electrode greatly inhibits the [Fe(CN)6]
3−/4− redox reaction at lower pH. The effect is

exacerbated in low ionic strength solutions, as [Fe(CN)6]
3− is considerably less stable in

solution in the absence of ion-pairing to K+. Interestingly, when experiments with the

GNF-COOH are repeated with [Ru(CN)6]
3−/4− as the redox couple the CV response is
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found to be independent of pH (see Appendix 1). The process appears reversible over

the pH range 4.5–9.2 with no evidence of the inhibition and proposed surface film

formation seen for [Fe(CN)6]
3−/4−. This would suggest that a mechanism requiring

specific interaction between the COOH groups and the cyanide ligands of the redox

species can be ruled out and it is more likely the complex solution chemistry of

[Fe(CN)6]
3−/4− that results in the observed response.

4.3.3 Cyclic Voltammetric Studies of [Fe(CN)6]
3−/4− Redox Couple in

the Presence of GNF-COOH in Solution

To explore further our previous observations that the [Fe(CN)6]
3−/4− species are

unstable in the solution environment surrounding the GNF, cyclic voltammetry was

performed with both [Fe(CN)6]
3− and GNF present in solution. All CVs were recorded at

a freshly polished, clean BDD electrode. The experiment was also carried out with the

[Ru(CN)6]
3−/4− redox species in solution for comparison. It can be seen from Figure 4.5

that presence of GNF in solution influences both redox reactions, but the extent to

which this happens differs greatly. In the case of [Ru(CN)6]
3−/4−, the presence of GNF in

solution leads to a small increase in peak separation and a small decrease in peak

height. In the case of [Fe(CN)6]
3−/4−, on the other hand, the peak height is drastically

reduced and the voltammogram has a sigmoidal shape, indicative of electrode

blocking. This is the same response as we obtained when COOH-terminated GNF

were immobilised directly on the electrode surface (Figure 4.4(b)). The decrease in

current observed for the [Ru(CN)6]
3−/4− couple we attribute to a small lowering of the

effective diffusion coefficient of the probe due to the large GNF particles dispersed in

the solution. We would expect a similar inhibition for [Fe(CN)6]
3−/4−; however these

results indicate that GNF have a profound effect on the electron transfer process of this

species, rather than simply blocking diffusion. As discovered in Sections 4.3.1 and

4.3.2 it is specifically the COOH edge groups which affect the [Fe(CN)6]
3−/4− in this way,

suggesting a protonation process may be responsible for these observations.
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Figure 4.5 Cyclic voltammograms of 0.5 × 10
−3

M K3[Fe(CN)6] (dashed blue); 0.5 × 10
−3

M
K3[Fe(CN)6] and 34 μg ml

−1
GNF (solid blue); 0.5 × 10

−3
M K4[Ru(CN)6] (dashed red); 0.5 × 10

−3

M K4[Ru(CN)6] and 34 μg ml
−1

 GNF (solid red); 34 μg ml
−1

GNF only (black). Working electrode:
BDD. Supporting electrolyte: 10

−3
M KCl. Scan rate: 50 mV s

−1
. First scans shown. Reproduced

from [11].

4.3.4 Isotope Effect of H2O and D2O on [Fe(CN)6]
3−/4− Redox Couple

at GNF-COOH Modified Electrode

Having established the importance of the acidic functionalities in electron transfer

process for [Fe(CN)6]
3−/4−, CV experiments were carried out in low ionic strength

(0.01 M KCl) solutions with GNF immobilised on the electrode surface and either H2O

or D2O as the solvent. The results are presented in Figure 4.6. When H2O is used as

the solvent, the CV shows significant inhibition in the first cycle. The response

improves slightly during repeated cycling, but the 10th cycle still shows significant

irreversibility of the redox reaction. In D2O, the first cycle shows inhibited electron

transfer, but the response improves during repeated cycling with increase in peak

heights and decrease in peak separation. By the tenth scan, the response in D2O is

essentially reversible.
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Figure 4.6 Cyclic voltammograms of 0.5 × 10
−3

M K3[Fe(CN)6] recorded at GNF-COOH
modified BDD in (a) H2O; (b) D2O. First scans (black) and 10th scans (red) shown. Supporting

electrolyte 0.01 M KCl. Scan rate 50 mV s
−1

. Adapted from [11].

When the GNF are surrounded with H2O molecules, the constant protonation and

deprotonation of the carboxylic acid edge groups does not lead to a change in the

chemical identity of the acid groups. However, if the H2O molecules are replaced by

D2O, the dynamic acid/base equilibrium will gradually lead to predominantly COOD

around the flake edges as the protons are exchanged and diffuse away from the

electrode surface. Therefore we propose that during the first cycles in D2O, the GNF

edges are still mostly decorated with COOH groups and these inhibit the redox
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reaction. However, as COOD groups begin to dominate, the redox reaction is allowed

to proceed uninhibited, leading to a near reversible CV by the 10th scan. The results

also suggest that if an electrode blocking species is responsible for the inhibited

electron transfer, it forms reversibly and can dissolve or desorb from the electrode

surface according to changes in the diffusion layer. Thus the redox reaction is able to

become more reversible with cycling in D2O as the concentration of protons at the

GNF-modified electrode surface decreases.

4.3.5 Spectroelectrochemical Studies of [Fe(CN)6]
3−/4−

The [Fe(CN)6]
3−/4− redox reaction can be conveniently monitored with ATR-FTIR

because the cyanide stretch is sensitive to the oxidation state of the iron centre.

[Fe(CN)6]
3− absorbs at 2116 cm−1, whereas in [Fe(CN)6]

4− the absorption frequency is

shifted to 2036 cm−1 and the extinction coefficient is four times larger.

ATR-FTIR coupled with in situ controlled potential experiments were performed for 1 ×

10−3 M K3[Fe(CN)6] in 0.01 M KCl. The sample was introduced to the in situ

electrochemical cell and a potential of 0 V was applied to drive the reduction of

[Fe(CN)6]
3− to [Fe(CN)6]

4−. The resulting IR spectrum shows a negative

[Fe(CN)6]
3− band and positive [Fe(CN)6]

4− band (solid line, Figure 4.7(a)). When the

intensity of the [Fe(CN)6]
4− band did not increase anymore, all [Fe(CN)6]

3− present in

the sample chamber was assumed to have been converted to [Fe(CN)6]
4−. The reaction

reached completion in about 2 minutes, as indicated by the intensity of the

[Fe(CN)6]
4− band. The height of the [Fe(CN)6]

4− band as a function of time is plotted in

Figure 4.7(b). The potential was then switched to +350 mV to oxidise [Fe(CN)6]
4−back

to [Fe(CN)6]
3−. The resulting IR spectrum shows a positive [Fe(CN)6]

3− band and

negative [Fe(CN)6]
4− band (dashed line, Figure 4.7(a)). As was the case for the

reduction, the negative [Fe(CN)6]
4− band reached full height after about 2 minutes,

indicating full conversion back to [Fe(CN)6]
3−.
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Figure 4.7 (a) Difference spectra of [Fe(CN)6]
3−

and [Fe(CN)6]
4−

. After reduction of [Fe(CN)6]
 3−

,
the IR spectrum shows a negative [Fe(CN)6]

3−
band and positive [Fe(CN)6]

4−
band (solid line).

Oxidation of [Fe(CN)6]
4−

results in a positive [Fe(CN)6]
3−

band and negative [Fe(CN)6]
4−

band
(dashed line). (b) Height of the [Fe(CN)6]

4−
CN stretch band at 2036 cm

−1
relative to the intensity

of absorption at full conversion as a function of time. Blue squares: 1 × 10
−3

M K3[Fe(CN)6]; red
squares: 1 × 10

−3
M K3[Fe(CN)6] and 3.2 μg ml

−1
of GNF. Electrolyte: 0.01 M KCl. Potentials:

0 V (reduction), +350 mV (oxidation). Reproduced from [11].

The [Fe(CN)6]
3− solution was then replaced by a solution containing 1 × 10−3 M

K3[Fe(CN)6] in 0.01 M KCl and 3.2 μg ml−1 of GNF. The concentration of acidic protons

from the GNF is estimated to be 22 μM and only a small fraction would be dissociated. 

Therefore the GNF did not significantly alter the pH of the solution. The experiment was

then repeated and a potential of 0 V applied. With the GNF present, the reaction
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proceeded much more slowly. After 2 min, the [Fe(CN)6]
4− band was only 40% of the

intensity expected for full conversion of [Fe(CN)6]
3− to [Fe(CN)6]

4−. Full conversion took

approximately 9 min, compared to 2 min for the same volume and concentration of the

control solution. The influence of GNF on the oxidation reaction was essentially the

same.

The observations reported here support the CV experiments described in above. The

presence of GNF clearly inhibits the reversibility of the [Fe(CN)6]
3−/4− redox couple.

Moreover, it was shown in Figure 4.5 that the observed decrease in current could not

be explained by diffusion effects alone. Therefore, the reason why the reaction takes

longer to complete with GNF in solution is likely to lie in the solution stability of the

redox species.

4.3.6 Stability of [Fe(CN)6]
3−/4− in the Presence of GNF-COOH

Beriet and Pletcher [2] made the observation that the poisoning of an electrode surface

by the [Fe(CN)6]
3−/4− redox couple required the presence of both Fe(II) and Fe(III)

species. We therefore used an equimolar solution of K3[Fe(CN)6] and K4[Fe(CN)6] in

H2O to probe their stability in solution in the absence of applied potential. To gauge the

impact of GNF on the stability of [Fe(CN)6]
3−/4−, a second solution was prepared, this

one also containing 30 μg ml−1 GNF. The concentration of GNF was high enough to

impart a brownish hue to the solution but low enough to not alter the pH significantly

(pH of both solutions was 6.5 ± 0.1).
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Figure 4.8 Infrared spectra of 2 × 10
−3

M K3[Fe(CN)6] and 2 × 10
−3

M K4[Fe(CN)6] in H2O
at t = 0 h (solid blue) and at t = 24 h (dashed blue); with 30 μg ml

−1
GNF at t = 0 h (solid red)

and at t = 24 h (dashed red). Spectra are offset for clarity. Reproduced from [11].

The IR spectrum of both samples initially shows two peaks; the [Fe(CN)6]
4− CN stretch

at 2036 cm−1 and the [Fe(CN)6]
3− CN stretch at 2116 cm−1 (Figure 4.8). No peaks are

detected in the 1700–1200 cm−1 region that could be associated with GNF, although

the concentration of flakes is too low for this purpose. Over time, a third peak begins to

emerge in both samples. In the control solution, this peak at 2069 cm−1 is detectable

above the noise after about 13 h, whereas with GNF in solution, the intensity of this

third peak surpasses that of the [Fe(CN)6]
3− peak after 3 h. Mixing the GNF sample by

pumping gently with a syringe back and forth caused a decrease in the intensity of the

peak at 2069 cm−1.

As described in Section 4.3.4, the identity of solvent has a marked influence on the

reversibility of the [Fe(CN)6]
3−/4− redox couple. To further explore this, stability

experiments were repeated in D2O as shown in Figure 4.9. In H2O, a new band

appeared in between the two cyanide stretch bands after a couple of hours. In D2O, no

new band is seen after four hours whereas in H2O, the new band at that point was

already comparable in size to the [Fe(CN)6]
4− stretch. After 24 hours in D2O the new
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band did become evident, but its appearance is accompanied with a H2O band due to

H2O contamination from atmospheric moisture, leading to the conclusion that the

presence of appreciable concentration of protons is necessary for the

decomposition/precipitation reaction to proceed.

Figure 4.9 ATR-FTIR spectra of 2 × 10
−3

M K3[Fe(CN)6] and 2 × 10
−3

M K4[Fe(CN)6] with
30 μg ml

−1
GNF In H2O at t = 0 h (solid red) and t = 4 h (dashed red), in D2O at t = 0 h (solid

blue) and t = 4 h (dashed blue). Spectra are offset for clarity. Reproduced from [11].

The substitution of deuterium for hydrogen in a water molecule has little effect on the

molecular dimensions defined by bond length and bond angle, but the O–D bond is

slightly stronger than the O–H bond. The difference in bond strength leads to a smaller

dissociation constant for D2O than H2O, making H2O a fivefold stronger acid [25]. Liquid

D2O is more viscous than liquid H2O and has a slower rate of molecular reorientations

and translations [26], leading to the conclusion that there is more structural order in

D2O due to a higher degree of hydrogen bonding [27]. This can be attributed to lower

intermolecular vibrational frequencies caused by isotopic substitution but also the

greater strength of hydrogen bonding in D2O than in H2O [27]. Additionally, protons are

able to diffuse rapidly in water via the Grotthuss mechanism [28]. It has recently been

demonstrated that the mechanism is strongly influenced by the local hydration structure

of the proton and involves the concerted motion of several protons [29]. The
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reorganisation and rotation of molecules involved in the Grotthuss mechanism are

slower in D2O than in H2O, making D+ transport in heavy water less efficient than

proton transport in H2O. Thus the instability of [Fe(CN)6]
3−/4− in the presence of GNF

appears to be exacerbated by the readily available H+ in the localised acidic conditions

in the region of the carboxylic acid edge groups. Increased stability in D2O can be

attributed either to the increased strength of the O–D bond (making D+ less available)

or slower diffusion of D+ from the GNF to [Fe(CN)6]
3−/4−.

4.3.6.1 Identity of decomposition product

The new IR absorption band observed in Figure 4.8 is very high in intensity compared

to the other two CN stretch bands. Given that the [Fe(CN)6]
4− and [Fe(CN)6]

3− bands

are not greatly diminished, it is clear that the new cyano species cannot be present in

high concentration. The intensity of the new band may then be due to either a species

present in low concentration with a high extinction coefficient, or the accumulation of a

species in the region near the ATR prism. A new species with a high extinction

coefficient is unlikely, as the most plausible solution species candidate that absorbs in

this region is free cyanide, the absorption coefficient of which is very small compared to

the bound form [30]. The most likely explanation is the accumulation of a non-soluble

species at the surface of the internal reflection element, which in the cell geometry is at

the bottom of the cell. This would also explain why the intensity of the other CN stretch

bands does not change significantly, since the amount of precipitate does not need to

be large in order to give an appreciable signal. UV–Vis spectra taken in situ with the

same solution (see Appendix 1) do not offer evidence of the formation of a coloured

species, but it is important to bear in mind that the UV–Vis probes the bulk solution

(where the overall concentration of this new species is low) whereas ATR-FTIR only

reaches a few microns at the bottom of the cell (where the species accumulates).

The best-known hexacyanoferrate complex is Prussian Blue, which absorbs in the

region of 2070–2100 cm−1 depending on the whether the Fe3+ is hydrolysed (lower
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cm−1) or not (higher cm−1) [31] and it could be envisaged to accumulate at the bottom of

the cell by precipitation, although the UV–Vis data does not offer direct evidence of

Prussian Blue. Other well-known related compounds are Prussian White (all ferrous),

which absorbs between 2080–2060 cm−1 and Prussian Yellow/Everitt’s Salt (all ferric),

absorbing near 2175 cm−1. During the reduction of [Fe(CN)6]
3− to [Fe(CN)6]

4− an

adsorbed intermediate has been reported that absorbs between 2070–2080 cm−1 [32].

Similarly, an adsorbed species on Pt has been observed during potential cycling that

gives an IR band 2090–2070 cm−1 and inhibits ET, concluded to be a (unnamed)

colourless soluble (i.e. containing K+) mixed-valency compound [22]. Hence although

we have clearly detected a decomposition product formed in the presence of COOH-

terminated GNF, we cannot be absolutely certain of its identity.

4.4 Conclusion

Above, we have described how the presence of GNF influences the

[Fe(CN)6]
3−/4− redox system. It was determined that it is specifically the acidic groups

around the edges of GNF that are responsible for the irreversible behaviour of the

[Fe(CN)6]
3−/4− redox couple and therefore we have explored further the influence of

protons on this redox reaction. We showed that the acid groups at GNF-COOH

severely inhibit the redox reaction of [Fe(CN)6]
3−/4− in acidic solution when more acid

groups are expected to be protonated; therefore, electrostatic repulsion cannot be used

to explain the effect of GNF-COOH on this redox couple.

Although the solutions used in this study at pH ≥ 4.6 would not be considered acidic 

enough to cause decomposition of [Fe(CN)6]
3−, the high density of COOH groups on

the GNF may lead to localised acidic conditions, promoted by the ready availability of

protons at the edges of the flakes. Thus there are several mechanisms by which the

very acidic local environment of the COOH-GNF could inhibit electron transfer,

including disruption to the ion paired activated species required for fast electron
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transfer, protonation of CN ligands, ligand loss or formation of insoluble decomposition

products.

When deuterated water is substituted for H2O, the presence of GNF has much less

influence on the [Fe(CN)6]
3−/4− redox reaction. Consecutive cycles in D2O saw the

voltammetric response of [Fe(CN)6]
3−/4− quickly return to near reversible. IR

spectroscopic studies also showed the [Fe(CN)6]
3−/4− species to be more stable in the

presence of GNF when dissolved in D2O rather than H2O.

The results described in this Chapter lead to the interpretation that the presence of

GNF in an aqueous solution of K3[Fe(CN)6] and K4[Fe(CN)6] promotes the

decomposition of [Fe(CN)6]
3− and/or [Fe(CN)6]

4−. The intense new IR absorption band

that emerges after only some hours indicates the formation of a non-soluble species.

However, it was not possible to determine the identity of the decomposition product

from the experimental results and further work would be needed to identify the new

species observed in this study.
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5 Potential-Induced Dissociation of Acid

Groups

5.1 Introduction

It is well-known that the pKa of an acid depends on the local environment. An obvious

example of this are enzymes where functional groups comprising the active site often

have very different pKa values due to charge interactions, such as ion pairing with

charged groups or ions and hydrogen bonding with other functional groups or water

molecules, and different polarity of the surrounding medium, such as being buried in

hydrophobic pockets of the enzyme. The pKa of the metal-bound water molecule in the

active site of histone deacetylase (HDAC) depends on the identity of the metal centre

and shifts from 10.0 in Co(II)-HDAC to 9.1 in Zn(II)-HDAC [1]. The imidazole group of a

histidine side chain is present in the active site of several enzymes and usually

hydrogen bonds with a negatively charged carboxylate, as is the case in myoglobin,
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where the pKa of the imidazole group is ca. 8 [2]. If the imidazole-carboxylate pair is

buried in a hydrophobic region, the pKa will be significantly higher, and hydrogen

bonding to an uncharged carbonyl lowers the pKa of histidine residues [1].

Due to the importance of self-assembled monolayers (SAMs) and functionalised

surfaces, the effect of surface-immobilisation on the pKa of a molecule has been

studied widely. Many different techniques have been employed, such as contact angle

titration [3], quartz crystal microbalance [4], and surface plasmon resonance

spectroscopy [5]. Sukenik’s group have used in situ infrared spectroscopy to study

siloxane-anchored carboxylic acid –terminated SAMs and reported an increase of ca. 2

units in the pKa of a surface-immobilised acid compared to that in solution (7.5

compared to 5.4) [6]. A later, more detailed analysis undertaken by the same group [7]

was able to distinguish between monomeric and oligomeric/dimeric groups in a SAM

and the pKa values were reported as 4.9 and 9.3, respectively.

In addition to interaction with the solvent and neighbouring molecules in the SAM itself,

the identity and concentration of solution species will also influence the association

constant. A Langmuir monolayer of NH2-terminated lipid at the air-water interface was

observed to have a pK strongly dependent on the ionic strength of the subphase, the

pK ranging from 5.1 to 10.5 as the ionic strength increased from 0 to 0.1 [8].

Carboxylic acid groups are present at many carbon materials, but they form only a

fraction of the functional groups, the identities of which are various and ill-defined,

especially in graphene oxide. Here we take advantage of the well-characterised nature

of the GNF, where carboxylic acid groups are the predominant oxygen-containing

moiety present and hence we are able to interrogate the behaviour of the carboxylic

acid groups in isolation.

The acid-terminated GNF were used to study the effect of applied potential on

protonation state of acid functionalities confined to an electrode surface. The GNF were
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immobilised onto an electrode surface and ATR-FTIR spectroscopy was used to

monitor how the population of carboxylic acid and carboxylate groups change in

response to an applied potential.

The presence of the COOH edge groups renders the GNF highly water-soluble,

although a few monolayers physisorb sufficiently strongly to an electrode surface to

allow CV investigations to be carried out. In this study an increased coverage of the

electrode surface was required, hence the GNF were complexed by the addition of

Ca2+ cations. This results in crosslinking of the GNF, forming an insoluble, disordered,

three-dimensional structure that can be immobilised onto an electrode surface and

remains intact during electrochemical cycling. The porous nature of this Ca2+-

complexed GNF results in a large surface area and hence increases the sensitivity of

the spectroelectrochemical measurements. As not all of the edge groups are

complexed to Ca2+, a number are free to undergo protonation and deprotonation in

response to applied potential, as described in this study. The work presented in this

Chapter has been published in [9].

5.2 Experimental Methods

All aqueous solutions were prepared with doubly deionised water, taken from a Milli-Q

water purification system, with a resistivity of not less than 18.2 MΩ cm at 25 °C. 

In situ spectroelectrochemical experiments were performed using a Bruker Tensor 27

spectrometer (Bruker, UK) fitted with a room temperature DLaTGS detector at 4 cm−1

resolution and a diamond crystal as the internal reflection element. The potential was

controlled with a Palmsens Emstat2 potentiostat (Palmsens, NL) running PSTrace

(v3.0) software. An electrochemical cell with a volume of 2 ml was positioned over the

ATR element. The electrodes were as detailed in Section 3.2.5.
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3.3 × 10−3 g of dry acid-terminated GNF was used to prepare GNF-Ca precipitate.

Further details of the method can be found in Section 3.2.1. In Section 3.3.4, the

number of acidic protons was estimated to be 7 × 10−3 mol per gram of GNF. After

washing, the GNF-Ca precipitate was suspended in 8.3 × 10−4 l of water and 4 × 10−6 l

of the aqueous precipitate suspension was drop-coated onto the electrode in all

spectroelectrochemical experiments. The amount of GNF-Ca on the electrode is

estimated at (1.8 ± 0.4) × 10−5 g, assuming full complexation and one Ca2+ per two

carboxylate groups.

Spectroelectrochemical experiments were carried out in background electrolyte

solutions of different pH in the range 3.0 to 9.2. The solutions were prepared by mixing

different proportions of KH2PO4, K2HPO4, H3PO4, Na2SO4, H2SO4, HCl, KCl, KOH and

NaOH. The pH of the electrolyte was checked with a pH meter.

IR difference spectra were constructed by recording a background spectrum at one

potential, then switching to the second potential and recording a sample spectrum at

specific time intervals. The potentials used throughout were −0.5 V and +1.0 V. Three 

full potential cycles (+1 V followed by −0.5 V) were recorded to assess the 

reproducibility of the response. A single spectrum was computed by Fourier

transformation of 100 averaged interferograms for background and sample and the

software was programmed to record a spectrum every 170 seconds. One potential step

was 720 seconds in duration, during which time four sample spectra and one

background spectrum were recorded. After the initial sample spectrum, the subsequent

three spectra were consistently of similar intensity, indicating that the changes upon

polarisation stabilised after about three minutes and remained stable for at least

another 10. These three spectra from each potential step were processed using the

atmospheric compensation function of OPUS software and averaged.

The GNF-Ca modified electrode was located above the diamond internal reflectance

element prism of an ATR-FTIR spectrometer as shown in Figure 5.1. The thickness of
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the GNF-Ca layer was not determined but the insertion of the electrode into the

electrochemical cell resulted in a fairly rapid swelling of the layer as water penetrated

the pores, resulting in good contact of the GNF-Ca with the internal reflection element

(see Section 5.6).

Figure 5.1 Experimental setup in in situ spectroelectrochemical experiments. Adapted from [9]

5.2.1 Construction of Calibration Curves

For the sulphate calibration curve, 2 ml of aqueous K2SO4 at different concentrations

was placed in the electrochemical cell positioned over the internal reflection element.

IR spectra were recorded with the clean ATR element as background. For the

carboxylate group calibration curve, acetic acid solutions of different concentrations

were prepared and the pH was adjusted with potassium hydroxide to deprotonate all

acid groups. A background of the clean ATR prism was collected and 1 μl of each 

solution was then pipetted onto the prism and allowed to dry before recording a sample

spectrum. The sulphate bands and carboxylate stretches were fitted with Gaussian

peak shapes and the peak areas were plotted against either the molarity of the solution

or the number of moles in each sample. Each measurement was repeated three times

and the results were plotted with error bars representing one standard deviation. The

data points were fitted with a linear equation, the intercept of which was fixed to zero to
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ensure physically meaningful estimations of small numbers of moles from the

calibration curve.

5.3 Estimating the Distance between the Electrode Surface

and the ATR Internal Reflection Element

In the experimental setup, the working electrode surface is located close above the

ATR prism, trapping a small amount of solution. The setup can therefore be considered

as a thin-layer cell and the special conditions of diffusion can be exploited in estimating

the distance between the electrode surface and the internal reflection element [10].

When the thickness of solution is less than about 50 µm, diffusion can homogenise the

solution continuously so that concentration gradients do not exist. Provided that the

potential scan rates are slow enough to maintain a homogeneous solution, mass

transfer effects can be ignored. Theoretical cyclic voltammetric responses in a thin-

layer cell will therefore show identical peak potentials for the forward and reverse

scans, and peak currents that depend linearly on the scan rate. The peak current is

� � = � � � � � � � �
∗/4 � � (5.1)

where n is the number of electrons transferred, F the Faraday constant, ν the scan

rate, V the volume of the thin layer, � �
∗ the initial concentration of species O, R the gas

constant and T the temperature. Ferrocenemethanol (FcMeOH) was chosen as the

redox probe as it is well known to undergo a reversible, one-electron, outer-sphere

redox reaction. The volume of the thin-layer cell is modelled as a cylinder with

dimensions A × h, where A is the area of the BDD with radius 1.5 mm and h is the

distance to be determined. To eliminate height differences resulting from the ATR

prism not being exactly flush with the base plate, a glass cover slip (diameter 15 mm)

was placed at the bottom of the cell. From six CVs, with scan rates between 5 and 17

mV s−1, the volume was calculated to be (122 ± 4) × 10−9 l, giving h ca. 17 µm. The
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GNF-Ca layer thickness is assumed to be equal to h (for evidence see Section 5.6).

The peak currents for oxidation and reduction at each scan rate are listed in Table 5.1

along with the thin layer cell volumes calculated from Equation (5.1) and the

corresponding distance h between the IRE and the electrode surface.

Figure 5.2 Cyclic voltammograms of 1.13 × 10
−3

M FcMeOH in 0.1 M NaCl in IR setup. (a)
Black line: BDD positioned 5 mm above ATR prism. Red line: BDD positioned against ATR
prism, creating thin-layer conditions. Scan rate 5 mV s

−1
. (b) CVs recorded in the thin-layer

geometry with scan rates 5, 8 10, 12, 14 and 17 mV s
−1

. Reproduced from [9].
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Table 5.1: Scan rates, peak currents for forward and backward scans, calculated volumes of
the thin-layer cell and distance h between electrode and IRE. Adapted from [9].

ν / mV s−1 ip / μA V / 10−9 l h / μm

5 0.65 120 17.0

5 −0.67 123 17.4

8 1.06 123 17.4

8 −1.08 125 17.7

10 1.33 123 17.4

10 −1.37 127 17.9

12 1.58 122 17.2

12 −1.64 126 17.9

14 1.73 114 16.2

14 −1.77 117 16.5

17 2.15 117 16.6

17 −2.18 119 16.8

5.4 Penetration Depth of IR Evanescent Wave

In the attenuated total reflection mode, the infrared beam is incident at a crystal made

of a material with a high refractive index such as diamond. The sample is placed in

contact with the crystal on the other side of the infrared beam. At angles above the so-

called critical angle, total reflection of the light occurs, and an evanescent wave forms

that extends into the sample. The penetration depth is the distance where the

amplitude of the electric field falls to 1/e of its value at the surface and is given by

� � =
�

2 � (� �
� sin� � − � �

� )� / � (5.2)

where λ is wavelength, θ is the angle of incidence of the IR beam and n1 and n2 are the

refractive indices of the crystal and the sample, respectively. The volume of the

evanescent wave can be used to compare sample absorbance in ATR mode to that in

transmission mode and hence gain quantitative information about the sample [11]. This

volume, known as the effective penetration, de, is unique for parallel and perpendicular

polarisation and they are given by:
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de for an unpolarised beam is given by

� � =
� � � + � � ∥

2
(5.5)

Taking diamond as the crystal, pure water as the sample and θ = 45°, values of dp and

de were calculated at different wavenumbers and listed in Table 5.2.

Table 5.2: Penetration depth dp and the effective penetration de calculated at different
wavenumbers. Values of n1 were found in ref [12] and values of n2 in ref [13]. Reproduced from

[9].

n1 n2 � � / cm−1 dp / μm de / µm

2.38 1.22 1000 1.37 2.03

2.38 1.33 1400 1.10 1.91

2.38 1.33 1670 0.92 1.59

2.38 1.33 2000 0.77 1.34

2.38 1.35 2500 0.63 1.13

2.38 1.43 3000 0.60 1.20

The penetration depths were calculated above using pure water as the sample. The

refractive index of water will depend on the amount of dissolved ions and n2 will

therefore be slightly different for an electrolyte solution. Berlind’s group have measured

the effect of ion concentration on refractive indices of fluids [14] at wavelengths in the

range 0.93-5.93 eV, and their results can be used to estimate the change in dp at

wavelengths relevant to this study. They found that at 0.93 eV (7500 cm−1) n changed

by 0.01 units for every 1 M change in ion concentration, which translates to a maximum

increase in dp of 2% when the ionic strength changes from 0 to 1 M. Similar estimates

can be made based on data reported in [15] and [16].
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5.5 Proposed Mechanism for Potential-Induced

Deprotonation of Acid Edge Groups

Figure 5.3 Difference spectra of BDD modified with GNF-Ca in 0.1 M NaCl electrolyte at pH 7.
Initial application of +1 V, background spectrum recorded without applied potential (light blue);
spectrum after subsequent application of −0.5 V (black); spectrum after subsequent application
of +1 V (red). Arrows on top spectrum indicate direction of spectral features relative to baseline

as a guide to the eye. Reproduced from [9].

Using the in situ ATR-FTIR cell shown in Figure 5.1, the effect of applied potential on

the acid GNF-Ca edge groups was investigated in 0.1 M NaCl electrolyte at pH 7. A

positive potential of 1.0 V was first applied and changes to the IR spectrum relative to a

background spectrum measured, as shown by the difference spectrum in Figure 5.3

(light blue). The background was a spectrum of the modified electrode equilibrated in

the same electrolyte for 50 min with no applied potential. It can be seen that the initial

application of positive potential results in very weak features in the spectrum, indicating

that only a small change is taking place in the setup. The spectrum recorded at 1.0 V

acted as the background for the subsequent spectrum recorded with applied potential
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of −0.5 V (Figure 5.3, black). The spectrum now shows decreases in absorbance

(losses) of peaks at 1760 cm−1 and 1635 cm−1 attributed to weakly hydrogen-bonded

monomeric C=O of the carboxylic acid and a water bending mode respectively.

Increases in absorbance (gains) are observed at 1580 cm−1, 1430 cm−1 and 1340 cm−1

attributed to carboxylate stretches. We attribute the changes to deprotonation of

carboxylic acid functionalities on application of a negative potential. Subsequent

application of 1.0 V (with the −0.5 V spectrum acting as the background) gave a mirror-

image response (Figure 5.3, red) with gains of C=O and water modes and losses in

carboxylates.

This set of spectra show that the initial application of a positive potential does not result

in much change in the protonation state of the GNF-Ca edge groups and that

application of −0.5 V is required to induce the first deprotonation step. 

Previous studies of the protonation state of carboxylic acid groups as a function of

applied potential can be divided into two categories: those who observe (as we do) that

a negative potential results in deprotonation [17-20] and studies who observe the

opposite, that protonation takes place at negative potentials [21-25]. The latter studies

describe an electric-field mechanism, where the acid head-groups are within close

enough proximity to the electrode surface to respond to changes to the electrode

potential and the negative applied potential drives protonation. This was explained by

the relationship between pKa(app) and surface potential φ given in Equation (5.6): 

pKa(app) = pKa −
� �

� . � � �
(5.6)

Equation (5.6) therefore predicts that when a negative electrode potential is applied (φ 

is negative), a positive shift in pKa(app) will take place. This will result in protonation of

any deprotonated acids.
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As the opposite trend is observed here, another mechanism must be operational in this

case. We rationalise our observations using a mechanism that considers deprotonation

to be driven by electrolyte ion migration [17-20]. In NaCl electrolyte at negative applied

potential Na+ ions will migrate towards the electrode, while Cl− ions will be repelled.

While the pKa of the GNF-COOH groups is defined by the position of equilibrium in

Equation (5.7), it has been shown that the apparent pKa, pKa(app), of an acid in an

electrolyte solution is additionally dependent on the local activity of cations (aM+) and

the equilibrium constant (Kas) for cation association with the deprotonated acid shown

in Equation (5.7) [17].

GNF-COOH + H2O ⇌ GNF-COO− + H3O
+ (5.7)

GNF-COO− + M+ ⇌ GNF-COO−M+ (5.8)

Hence the observed pKa(app) is given by Equation (5.9)2:

pKa(app) = pKa + pKas − log(aM+) (5.9)

where Kas is the equilibrium constant for the association between conjugate base and

solution cations, M+, and aM+ is the cation activity. Thus when a negative electrode

potential is applied, the local Na+ activity increases, resulting in a negative shift in

pKa(app) of the acid. pKa(app) can then be substituted into Equation (3.3):

pH = pKa(app) + log10�
[� � ]

[� � ]
� (5.10)

If pKa(app) is lowered sufficiently relative to the pH of the solution, then deprotonation

of the acid groups will take place, as is observe here. pH titration studies described in

Section 3.3.4 showed that between pH 3 and pH 8 the GNF acid groups are found in a

range of protonation states with no single defined pKa. Therefore, as the experiments in

2 For derivation of Equation (5.9) see Appendix 2.

.
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0.1 M NaCl are within this intermediate pH range (pH 7), a small perturbation in a � �

could result in a sufficiently negative shift in pKa(app) of some of the acid groups to

induce deprotonation, as indicated by the spectral changes in Figure 5.3. Figure 5.4

illustrates the proposed mechanism graphically.

Figure 5.4 Potential-induced changes in cation activity in the electrode-electrolyte interfacial
region drive protonation and deprotonation of acidic surface groups.

The reason for different reported behaviour of electrode-immobilised acids seems to be

related to the distance between the acid groups and the underlying electrode. Acids

located closer to the electrode (e.g. on short chain SAMs) are under a greater influence

of the electric field and therefore respond as predicted by Equation (5.6). A mixture of

behaviours is reported for longer chain SAMs and more disordered systems. The acids

respond either to the change in surface potential of the electrode, or to the change in

cation activity (as we describe) depending on how closely they are bound to the

electrode and on the local environment. For example, acid groups buried within

hydrophobic alkyl chains of SAMs respond to the electrode field, while acids further

from the electrode and in contact with solution are more likely to respond to changes in

solution conditions than changes to surface potential.
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5.6 Evidence of Electrolyte Ion Migration

To test the above hypothesis and gain evidence of electric field driven ion migration,

experiments were repeated using Na2SO4 and K2SO4 electrolytes. The sulphate anion

is strongly IR active, thus allowing us to monitor both the protonation/deprotonation of

the surface acid groups and the sulphate anion concentration at the

electrode/electrolyte interface simultaneously.

IR spectra were first recorded during equilibration of the modified electrode in a

sulphate electrolyte. This is shown in Figure 5.5 where the black line represents the IR

spectrum of the modified electrode in 0.1 M K2SO4 immediately after insertion, the red

line after 5 minutes’ equilibration and blue line after 35 minutes’ equilibration. The

absorbance bands arising from the carboxylate are seen at 1575 cm−1 (νas(COO−)) and

1420 and 1350 cm−1 (νs(COO−)), and the ν(C=O) of the protonated carboxylic acid is

clearly visible at 1720 cm−1. The increase in the intensity of these bands suggests that

the GNF layer is swelling as water penetrates the structure, resulting in good contact of

the GNF with the IRE as mentioned in Section 5.2. The water bending mode at 1640

cm−1 increases with time, indicating an interaction between water molecules and GNF-

Ca. A small SO4
2− absorbance band at 1100 cm−1 suggests that the sulphate

concentration is slightly higher at the surface than in the bulk solution. Because the

absorption band appears at the same wavenumber as the solution species and does

not split into several bands, it can be concluded that there is no change in the

symmetry of the anion and the hydration shell of SO4
2− is retained.
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Figure 5.5 GNF-Ca modified electrode immersed in 2 ml of 0.1 M K2SO4 electrolyte in
spectroelectrochemical setup after 0 minutes (black line), 5 minutes (red line) and 35 minutes

(blue line). Background: electrolyte only. Reproduced from [9].

This supports the hypothesis that application of electrode potential induces electrolyte

ion migration and hence changes in anion concentration are seen in the interfacial

region above the ATR crystal. Although the Na+ cation is IR inactive, it can be assumed

that it also migrates in response to the electrode field in the opposite direction to the

sulphate and hence local changes in the cation activity could lead to deprotonation as

described above.

Difference spectra were also recorded relative to electrode equilibrated for 50 min

without applied potential. The background spectrum was collected before any

application of potential, and all subsequent spectra were recorded relative to that

background. The potential step duration was kept at 720 seconds and four sample

spectra were recorded during the initial 600 seconds in order to keep all other

experimental parameters as similar as possible to all other experiments reported.



5 Potential-induced dissociation of acid groups

165

Figure 5.6 Difference spectra of BDD modified with GNF-Ca in 0.1 M Na2SO4 pH 7.
Background recorded at the beginning of experiment before the application of potential.
Potentials: +1 V (light blue); −0.5 V (black); +1 V (red); −0.5 V (blue); +1 V (orange). The 

sulphate band at 1100 cm
−1

is highlighted in green. Reproduced from [9].

The initial application of +1 V (Figure 5.6, light blue) causes only a small increase in

the sulphate band compared to the equilibrium absorbance, whereas applications of

−0.5 V (black, blue) result in a large negative-going band, indicating a loss of SO4
2−

from the electrode surface at negative potentials. Further applications of +1 V (red,

orange) cause the sulphate band region to return to zero absorbance relative to the

background.
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Figure 5.6 shows that a measureable change in the local activity of the electrolyte ions

takes place in response to the electric field at the electrode. This supports the

hypothesis that application of electrode potential induces electrolyte ion migration and

hence changes in anion concentration are seen in the interfacial region above the ATR

crystal.

It is evident from Figure 5.6 that only −0.5 V and not +1.0 V results in a change in the 

sulphate band. It was determined from Figure 5.3 that a negative potential was

necessary for deprotonation of acid groups to occur and that the initial spectrum

recorded at +1.0 V was nearly featureless. The experimental results presented in

Figure 5.6 and Figure 5.3 can be rationalised by considering the increase in

concentration of sulphate at the electrode surface compared to bulk solution during

equilibration as shown in Figure 5.5. Because the concentration of SO4
2− is already

higher than in the bulk solution prior to applying a potential, a positive potential of +1 V

forces the anions to migrate against a concentration gradient and hence only a minor

increase is observed (Figure 5.6, light blue). When a negative potential is applied,

SO4
2− ions are repelled away from the electrode towards a region of lower

concentration, resulting in a large negative sulphate band in the IR difference spectrum

(Figure 5.6, black).

Similarly, we can assume that cations have been depleted from the electrode surface

during equilibration, so upon application of a positive potential the cations migrate

against a concentration gradient, resulting in little change in concentration at the

electrode and therefore only a small number of carboxylate groups can be observed to

undergo protonation as seen in Figure 5.3 (light blue). Upon application of a negative

potential, a larger change in the cation concentration occurs that in turn leads to a

larger number of carboxylic acids to deprotonate.
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Figure 5.7 Difference spectra in different concentrations of supporting electrolyte Na2SO4 at pH
7. BDD modified with GNF-Ca in 0.1 M: application of −0.5 V (black); application of +1 V (red). 

BDD modified with GNF-Ca in 1×10
−3

M: application of −0.5 V (orange); application of +1 V 
(blue). A background spectrum was collected at each potential immediately prior to switching

the applied potential. Reproduced from [9].

It was then hypothesised that lowering the concentration of the supporting electrolyte,

the activity change would be smaller and consequently the protonation of carboxylate

groups would be suppressed. The experiment was therefore repeated in different

concentrations of Na2SO4 electrolyte, and the results are presented in Figure 5.7.

In 0.1 M Na2SO4 (black and red) identical spectral changes to those seen in NaCl were

observed on application of potential: negative potential resulted in increase in

carboxylate and decrease in C=O (deprotonation) and positive potential resulted in

decrease in carboxylate and increase in C=O (protonation). The feature at 1100 cm−1

arises from νas(SO4
2−) of the solution-phase sulphate anion and can be seen to

decrease when a negative potential is applied.
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When the concentration of Na2SO4 was lowered to 1×10−3 M, the potential-induced

changes in the sulphate band become too small to detect, as shown in the orange and

blue curves in Figure 5.7. Some protonation/deprotonation of the GNF-Ca acid groups

is still observed; however, the spectral response is significantly less intense than

observed in 0.1 M electrolyte. As was shown in Section 5.4, some of the intensity

decrease can be attributed to a change in solution reflective index at lower ionic

strength; however it is unlikely that a decrease in IR penetration depth of less than 2%

would lead to the extent of signal suppression seen in Figure 5.7. The ionic strength

dependence of the spectral response therefore supports the hypothesis that the

deprotonation is driven by changes to the local cation activity on the application of

potential. As described by Equation (5.9), for deprotonation to be observed, the local

activity of M+ must increase enough to lower pKa(app) of acid groups enough to drive

proton loss at the pH of the solution [18]. At lower electrolyte concentration, only a

small local increase in cation activity can occur; so fewer acid groups will have their

pKa(app) lowered enough to induce dissociation. Therefore, the spectral features

observed in 1×10−3 M Na2SO4 (orange and blue curves) are considerably weaker than

in 0.1 M Na2SO4 (black and red curves), as fewer acid groups have a sufficiently low

pKa to deprotonate under these conditions.

5.7 Quantifying Changes in Ion Activity

In the previous Section, we showed that electric field driven changes in the sulphate IR

band allows the indirect monitoring of cation activity at the electrode. In order to

quantify the cation activity, the same indirect approach is adopted. Peak areas of

sulphate bands in the difference spectra are determined by peak fitting and the activity

change of SO4
2− at the electrode surface is found using a calibration curve. The activity

change of the monovalent cation is then estimated from stoichiometry as 2×∆aSO�
� � .
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Figure 5.8 (a) Infrared spectra of aqueous solutions of K2SO4 at different concentrations. The
pH of all solutions was ca. 7. Inset: Magnification of the SO4

2−
absorption bands. (b) Peak fit of

the sulphate absorption band from 0.075 M K2SO4 spectrum. (c) Peak areas from Fig 1.1
plotted against concentration of K2SO4 and a linear fit of data points. Error bars represent one

standard deviation. Reproduced from [9].
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Figure 5.8(a) shows IR spectra of different concentrations of aqueous K2SO4 and the

inset shows the sulphate absorption band at 1100 cm−1. In Figure 5.8(b) the peak

fitting is illustrated for 0.075 M solution. The peak areas were then plotted against

concentration and the data points were fitted with a linear regression line (Figure

5.8(c)). The intercept was fixed to zero to ensure physically meaningful estimations of

small numbers of moles from the calibration curve.

Difference spectra recorded at equilibrated state and under potential control in 0.1 M

K2SO4 electrolyte (pH 7) were fitted with Gaussian peaks and the linear fit equation

was used to calculate the change in sulphate ion concentration at the electrode from

the sulphate peak area. From Figure 5.5 the activity increase at the electrode surface

at equilibrated state was found to be 7.6 × 10−3 M and from three different experiments

it was determined that ∆aSO4
� � changes by (3.5 ± 0.4) × 10−3 M when the potential is

changed from +1 V to −0.5 V. ∆aM+ was therefore estimated to be 1.53 × 10−2 M at

equilibrated state and (7.0 ± 0.6) × 10−3 M on application of −0.5 V. Table 5.3 lists the

peak areas and corresponding activity changes.

Table 5.3: Peak areas from difference spectra obtained at different potentials and the calculated
activity change in sulphate ion at the electrode surface. Reproduced from [9].

E / V Conditions Peak area ∆aSO4
� � / M ∆aM+ / M

Equilibration 0.1 M K2SO4 with O2 0.090 0.0076 0.0153

1 0.1 M K2SO4 with O2 0.041 0.0035 0.0069

−0.5 0.1 M K2SO4 with O2 −0.041 0.0035 0.0069

1 0.1 M K2SO4 with O2 0.046 0.0039 0.0078

−0.5 0.1 M K2SO4 with O2 −0.043 0.0036 0.0073

1 0.1 M K2SO4 no O2 0.034 0.0029 0.0058

−0.5 0.1 M K2SO4 no O2 −0.044 0.0037 0.0074

As was discussed in Section 5.5, the initial application of +1 V leads to very weak

changes in the IR spectra. The reason behind this observation was presented in

Section 5.6, where it was shown that a preconcentration of sulphate occurs at the
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electrode surface during equilibration. We have successfully quantified that

preconcentration and found it to be larger than the subsequent electric field driven

migratory loss of sulphate on application of −0.5 V. Our calculations are therefore 

consistent with our observation that the initial application of a positive potential does

not induce large changes in IR bands arising from the protonation of carboxylates.

5.8 Ruling Out pH Change at Interface

Seeing protonation and deprotonation of the acid groups suggests that there might be

a pH change occurring at the interface that drives the acid association. Especially at

negative potential there are several reactions that can lead to an increase in the pH,

such as oxygen reduction and hydrogen evolution. Experiments were therefore

conducted to investigate the possibility of such reactions.

Cyclic voltammetry was performed in oxygenated and deoxygenated background

electrolyte as shown in Figure 5.9(a), and IR difference spectra under potential control

were recorded in the same electrolyte conditions (Figure 5.10). The presence of

oxygen leads to a small increase in cathodic current attributed to oxygen reduction at

the modified electrode compared to deoxygenated solution Figure 5.9. However, the

effect of deoxygenating the electrolyte has no significant impact on the difference

spectra recorded while applying potentials (Figure 5.10). This suggests that a pH

change at the electrode surface due to oxygen reduction can be discounted as the

cause of the spectral features.

We observed in Figure 5.7 that the spectral changes were almost completely

suppressed when the background electrolyte concentration was lowered while the pH

was held constant. Significant changes in the protonation state of the acid groups are

seen when the electrolyte concentration is 0.1 M, but as the concentration is lowered to

10−3 M, the changes become barely detectable. Figure 5.9(b) shows cyclic

voltammetry in the same background electrolyte concentrations 0.1 M and 10−3 M. CV
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response in these different ionic strength solutions is within variation of repeated

experiments under the same conditions, indicating that additional redox chemistry that

could result in pH change (O2, H+ or water reduction) does not proceed at a

significantly different rate at lower ionic strength. As the spectral response (Figure 5.7)

is very different in lower ionic strength solution, we can conclude that ion activity rather

than pH change or redox chemistry must be responsible for the observed changes.

Figure 5.9 (a) Cyclic voltammograms in 0.1 M PBS at pH 7 with and without oxygen present in
solution. Clean BDD with O2 (black); BDD modified with GNF-Ca with O2 (blue); BDD modified
with GNF-Ca without O2 (red). (b) Cyclic voltammograms in different ionic strength solutions.

BDD modified with GNF-Ca in 1 × 10
−3

M PBS at pH 7 (red); in 0.1 M PBS at pH 7 (blue).
Reproduced from [9].
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Figure 5.10 Difference spectra of BDD modified with GNF-Ca in 0.1 M K2SO4 pH 3.5.
Application of −0.5 V (black); application of +1 V (red). Difference spectra under same 

conditions but electrolyte deoxygenated with argon for 20 minutes. Application of −0.5 V (blue); 
application of +1 V (orange). Reproduced from [9].

5.9 Investigating the Effect of Electrolyte Cation

Different supporting electrolytes were also compared to see whether the identity of the

cation would have an effect on the potential-dependent acid ionisation. Difference

spectra recorded in both 0.1 M Na2SO4 and 0.1 M K2SO4 at pH 7 (Figure 5.11) show

that both K+ and Na+ cause nearly identical changes to the protonation state of the

electrode-immobilised acid groups. The sulphate bands are of equal size, suggesting

that the local increase in cation activity is very similar for both K+ and Na+.
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Figure 5.11 Difference spectra of BDD modified with GNF-Ca in 0.1 M K2SO4 pH 7; application
of −0.5 V (black); subsequent application of +1 V (red). Difference spectra of BDD modified with 
GNF-Ca in 0.1 M Na2SO4 pH 6.8; application of −0.5 V (blue); subsequent application of +1 V 

(orange). Reproduced from [9].

Experiments were then repeated in an electrolyte solution of 0.1 M CaCl2 at pH 3.5

(Figure 5.12, blue and orange), where the presence of Ca2+ results in essentially

featureless difference spectra at both positive and negative potential. Ca2+ in excess

will bind strongly to any previously non-complexed carboxylate groups in the GNF-Ca

structure and hence suppresses the reversible potential-dependent protonation

observed in NaCl electrolyte. This suggests that the spectral changes observed in NaCl

must be attributed to protonation and deprotonation of non-complexed edge groups

within the GNF-Ca assembly. This assignment is supported by the observation that the

electrode-immobilised precipitate appears intact at the end of the experiment, so it is

clear most of the interlinking Ca2+ complexation in unaffected by the application of

potential. As GNF becomes water-soluble when not complexed, the precipitate would
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not be present at the end of the experiment if application of potential removed the

bound Ca2+.

Figure 5.12 Difference spectra of BDD modified with GNF-Ca in 0.1 M NaCl electrolyte at pH
3.5. Application of −0.5 V (black); subsequent application of +1 V (red).Difference spectra of 
BDD modified with GNF-Ca in 0.1 M CaCl2 pH 3.5. Application of −0.5 V (blue); subsequent 

application of +1 V (orange).

5.10 Estimating the Number of Acid Groups Undergoing

Potential-Induced Changes

The amount of GNF-Ca on the electrode surface is estimated to be 1.8 × 10−5 g and

the number of COOH groups 7 × 10−3 mol per gram of GNF. From this we can estimate

the total number of both protonated and deprotonated COOH groups present on the

electrode as 1.8 × 10−5 g × 7 × 10−3 mol g−1 = 1.26 × 10−7 mol, and XPS measurements

have allowed us to quantify the fraction of carboxylate groups in GNF-Ca that remain
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non-complexed and therefore available to contribute to the potential-dependent

spectral features. It is likely that only a fraction of the non-complexed acid groups will

undergo deprotonation due to the modest potential applied in this study. To estimate

the number of non-complexed COO−/COOH groups at the electrode surface

undergoing potential-induced changes, the peak areas in potential difference spectra

were compared with those of a simple carboxylic acid (acetic acid). Because the acid

groups are bound to the surface, a calibration curve of an aqueous acid at different

concentrations was deemed inapplicable and hence a calibration curve was

constructed using varying amounts of a dried deprotonated acetic acid (acetate)

deposited on the ATR prism to mimic a surface layer. A representative peak fit is

shown in Figure 5.13(a) and the resulting calibration curves in Figure 5.13(b)-(c) for

the asymmetric and symmetric stretches, respectively.

Because the number of groups undergoing changes is estimated based on peak areas

in IR spectra, the result is dependent on the distance to the IRE. The dry potassium

acetate film is very thin (thinner than the penetration depth calculated in Section 5.4)

and it can therefore be assumed that the signal represents the total sample amount.

However, when IR spectra are recorded of the thick GNF-Ca layer at the electrode

surface, the signal isn’t a straightforward reflection of the total number of acidic groups

due to the exponential decay of the evanescent wave’s electric field.

We can estimate the number of groups dissociating under applied potential by

adjusting the peak areas in the difference spectra by the ratio of the effective

penetration depth, de (Section 5.4), and the thickness of the GNF-Ca film, h, which is

taken to be 17 µm as calculated in Section 5.3 [11]. The adjusted peak areas were

then compared to the calibration curve to estimate the number of carboxylate groups

lost and gained due to potential-induced protonation and deprotonation.
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Figure 5.13 (a) Peak fit of drop-coated potassium acetate film containing 5.38 × 10
−9

moles of
acetate groups. Experimental data (black), baseline (green), peak fits (red), cumulative peak fit

(blue). (b) Asymmetric stretch peak areas at 1565 cm
−1

plotted against number of acetate
groups and a linear fit of data points. (c) Symmetric stretch peak areas at 1415 cm

−1
plotted

against number of acetate groups and a linear fit of data points. Error bars represent one
standard deviation. Reproduced from [9].
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Figure 5.14 shows an example of peak fitted difference spectrum in 0.1 M K2SO4 pH 7.

Peaks used in estimating the number of carboxylate groups were the asymmetric peak

at 1570 cm−1 and the symmetric peak at 1430 cm−1, and spectra from three separate

experiments in 0.1 M K2SO4 pH 7 were evaluated, both with and without oxygen

present in solution. The average areas found from the difference spectra were 0.034

and 0.023 for the asymmetric and symmetric peaks, respectively. These were adjusted

by the ratio de/h, at each wavelength, giving adjusted peak areas of 0.241 and 0.215

for the asymmetric and symmetric peaks, respectively.

From the adjusted peak areas, the number of carboxylate groups changing protonation

state has been evaluated as (4 ± 2) × 10−8 mol using the linear regression lines in

Figure 5.13(b)–(c). The peak areas are listed in Table 5.4.

Figure 5.14 Peak fitted difference spectrum in 0.1 M K2SO4 pH 7 when applying −0.5 V to GNF-
Ca modified BDD. Experimental data (black), baseline (green), peak fits (red), cumulative peak

fit (blue). Reproduced from [9].
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Table 5.4: Carboxylate asymmetric and symmetric stretch peak areas from difference spectra
obtained at different potentials. Reproduced from [9].

E / V Conditions νas(COO−) peak area νs(COO−) peak area

1 0.1 M K2SO4 with O2 0.0326 0.0202

−0.5 0.1 M K2SO4 with O2 −0.0453 −0.0261 

1 0.1 M K2SO4 with O2 0.00965 0.00882

−0.5 0.1 M K2SO4 with O2 −0.0231 −0.0149 

1 0.1 M K2SO4 no O2 0.0582 0.0443

−0.5 0.1 M K2SO4 no O2 −0.0987 −0.0568 

Using Equation (5.9) and the modified Henderson-Hasselbalch equation (Equation

(5.10), we can calculate what percentage of the total number of GNF-COOH groups

this value of (1.5 ± 0.6) × 10−9 mol corresponds to. In our estimate of pKa(app) we

assume that the pKa of carboxylic acid groups is 3 and that the pKas of COOK is 0.5.

These values are estimates but the actual values do not affect the relative resulting

pKa(app) in switching to −0.5 V. As for the calculations in Section 5.7, it was assumed 

that aM+ changes from 0.2 M at equilibrium to 0.207 M when a negative potential is

applied. Although Equation (5.10) applies to concentrations (or activities) rather than

numbers of molecules we will still use it as an estimate of the ratio of deprotonated to

protonated groups. Using these values, the change in the number of COO− at −0.5 V 

compared to equilibrium is found to be +3.5%. Table 5.5 lists the values used in the

calculation.

Table 5.5: Values used to calculate change in the number of carboxylate groups at the
electrode surface when a potential is applied. Reproduced from [9].

E / V aM+
pKa(app) =

pKa + pKas − log(aM+) [COO−]/[COOH] =10(pH � pKa(app))

Equilibrium 0.2 4.20 399

−0.5 0.207 4.18 413

This calculated 3.5% increase in [COO−] at −0.5 V corresponds to (1.5 ± 0.6) × 10−9

mol of carboxylate, as determined from IR peak area. Because this number represents
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3.5% of non-complexed groups and the total number of COO−/COOH groups is

estimated to be 1.26 × 10−7 mol, (35 ± 13)% of all COO−/COOH groups remain non-

complexed. Clearly the error associated with this value is very large and cannot be

used to draw definitive conclusions about the degree of association of the acid groups.

In comparison, the percentage of carboxylic acid groups remaining non-complexed was

also calculated from XPS measurements in Section 3.3.2 and found to be (24 ± 6)%.

Considering that the spectroelectrochemical method included many steps of

calculations with a great number of assumptions and large uncertainties unavoidably

associated with many of the variables, the value is in reasonable agreement with the

value obtained by XPS measurements.

5.11 Predicting Potential-Dependent Changes in Solution

Species

Although this study was initially concerned with the surface-bound carboxylic acids of

the GNF electrode layer, electric field driven changes were observed in solution

species too. As demonstrated in Section 5.7, we were able to quantify changes in ion

activity as a consequence of applied potential. The quantification was performed from

experimental data at pH 7 where no protonation of sulphate was expected. The

intensity and shape of the sulphate bands in IR difference spectra changed when the

solution pH was lowered to 3.5. This led us to consider the pKa of the solution species

as a factor in the appearance of potential-dependent IR features as well as the

electrostatic migration of ions. Calculations were performed to predict the extent of

change in solution speciation coupled with activity change and the results were

compared with experimental difference spectra.
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5.11.1 Sulphate

IR spectroscopy of sulphate in aqueous solution has been carried out by Hug [26], who

lists the expected absorption frequencies of SO4
2− and HSO4

− species. Aqueous SO4
2−

is tetragonal with an IR inactive νs(S–O) at 980 cm−1 and triply degenerate IR active

νas(S–O) at around 1100 cm−1. Protonation to HSO4
− lowers the symmetry of the anion,

causing the symmetric stretch to become IR active around 900 cm−1. At the same time

the asymmetric stretch splits into two bands at around 1050 and 1200 cm−1. Hence IR

spectroscopy is an excellent technique to observe protonation of SO4
2− in situ.

The spectral response of the sulphate bands at different pH is compared in Figure

5.15. At pH 7, an intense sulphate band is seen corresponding to loss of SO4
2− from

the electrode surface at negative potential (pink line). On application of +1 V, the loss

seen at negative potential is reversed and the concentration of SO4
2− is restored to

equilibrium values (light blue). When the solution pH is lowered to 3.5, the sulphate

band shows the same trend in response to applied potential as at pH 7, although the

absorbance changes are much weaker and broader (blue, orange lines). At pH 3

(black, red lines) spectral changes for both GNF acid groups and solution sulphate are

much lower in intensity. For the acid groups this is unsurprising, as only a small

number of the most acidic groups can undergo deprotonation at this pH as very few

have a pKa of 3 or below.

Spectral changes in the sulphate region can be rationalised by considering predicted

trends in interfacial activities of solution species in response to changes in aM+ at the

electrode. Sulphuric acid is diprotic and undergoes two dissociations as shown in

Equations (5.11)-(5.12):
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H2SO4 + H2O ⇌ HSO4
− + H3O

+, pKa1 < 0
(5.11)

HSO4
− + H2O ⇌ SO4

2− + H3O
+, pKa2 = 1.92

(5.12)

pKa1 in Equation (5.11) is so low that HSO4
− cannot be protonated by any realistic

increase in aK+ . We will therefore limit our calculations to the dissociation shown in

Equation (5.12).

Figure 5.15 IR difference spectra of the GNF-Ca modified electrode interface in: 0.1 M pH 7
K2SO4, −0.5 V (pink), +1.0 V (light blue); 0.1 M pH 3.5 K2SO4, −0.5 V (blue), +1.0 V (orange); 

0.1 M pH 3 K2SO4, −0.5 V (black), +1.0 V (red). Reproduced from [9]. 
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Table 5.6: Predicted changes in activity of HSO4
− 

and SO4
2−

 on application of −0.5 V calculated 
from Equation (5.9). Reproduced from [9].

pH E / V aK+ / M
pKa(app)
HSO4

−
ΔaHSO4

� /

10−3 M

ΔaSO4
� � /

10−3 M

7 − 0.200 2.62 0 0

7 −0.5 0.207 2.60 0 0

3.5 − 0.198 2.62 0 0

3.5 −0.5 0.205 2.61 −0.35 +0.35

3 − 0.192 2.64 0 0

3 −0.5 0.199 2.62 −0.75 +0.75

Using the value for ΔaK+ of 7 × 10−3 M at −0.5 V, determined in section 5.7, Equation 

(5.9) can be used to calculate pKa(app) for HSO4
− with no applied potential and at −0.5

V. Changes in sulphate and HSO4
− activity (approximating to concentration), resulting

from the change in pKa(app), have been calculated at different pH using the modified

Henderson-Hasselbalch equation (Equation (5.10)). The predicted changes are

presented in Table 5.6, and detailed calculations can be found in Appendix 3.

At pH 7, SO4
2− activity is unperturbed by any change in pKa(app), hence the spectral

changes to the sulphate band result only from migration of the anion away from the

electrode at −0.5 V. At pH 3.5, as the solution pH is closer to pKa(app) values,

deprotonation of 0.4 × 10−3 M of HSO4
− is predicted at −0.5 V. Upon deprotonation of 

HSO4
−, a decrease in intensity is predicted over the spectral range spanning ca. 1200

to 900 cm−1; however, this will be concomitant with an increase in intensity centred at

1100 cm−1 as the sulphate activity is increased. Overall spectral changes in the

sulphate region are therefore predicted to be very weak at pH 3.5, due to this

cancelling effect, and broader than at pH 7 due to the contribution from HSO4
− which

exhibits bands over a wider wavenumber range than SO4
2−. This analysis broadly fits

with experimental results (Figure 5.15, blue), where a weaker and broader band is

observed in the sulphate region compared to pH 7 (Figure 5.15, pink). An overall loss

in intensity is still observed, as the above analysis ignores the electrostatic migration of
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both anionic species away from the electrode. This results in a larger observed loss in

spectral intensity for both species than predicted. The apparently smaller migratory loss

of sulphate compared to pH 7 can be explained by rapid replenishment of any expelled

SO4
2− by deprotonation of HSO4

− as equilibrium is restored.

The effect of the shift in pKa(app) for HSO4
− at −0.5 V is expected to be even more 

pronounced at pH 3, where the gain in SO4
2− and loss of HSO4

− is predicted to be

greater (Table 5.6). However, the experimental results show almost non-existent

spectral bands in the sulphate region (Figure 5.15, black), although a small gain of

sulphate can be observed at 1100 cm−1 along with small losses of HSO4
− at 1050 and

1200 cm−1. Again, we must also consider the electrostatic migration of anionic species

away from the electrode as well as deprotonation of HSO4
−. Overall, compared to pH 7

and 3.5, the greater gain in SO4
2− by deprotonation of HSO4

− predicted by calculations

is evident in the experimental spectra, as at higher pH the sulphate νas(S–O) decreases

at −0.5 V but at pH 3 we can see it increasing at negative potential (Figure 5.15,

black).

5.11.2 Phosphate

The analysis that was carried out with sulphate was also used to predict spectral

changes in 0.1 M phosphate solutions at −0.5 V. Phosphoric acid has three 

dissociation constants as shown in Equations (5.13)-(5.15):

H3PO4
0 + H2O ⇌ H2PO4

− + H3O
+, pKa1 = 2.15 (5.13)

H2PO4
− + H2O ⇌ HPO4

2− + H3O
+, pKa2 = 7.2 (5.14)

HPO4
2− + H2O ⇌ PO4

3−, pKa3 = 12.6
(5.15)

Both pKa1 and pKa2 values are in the range where we can expect to observe

deprotonation under our experimental conditions.



5 Potential-induced dissociation of acid groups

185

The number and intensity of infrared absorption bands associated with each species

depends on the symmetry of the ion. Aqueous HPO4
2− presents an IR active νs(P–O) at

ca. 850 cm−1 and the νas(P–O) vibration is split into two bands at 1080 cm−1 and 990

cm−1. Protonation to H2PO4
− reduces the symmetry of the anion and leads to further

splitting of νas(P–O) into three bands located at around 1160, 1075 and 940 cm−1, with

νs(P–O) appearing at ca. 870 cm−1. The fully protonated H3PO4
0 species shows two

νas(P–O) bands at 1180 and 1005 cm−1 together with νs(P–O) vibration present at 890

cm−1. IR spectra of phosphate solutions at different pH are presented by Tejedor-

Tejedor and Anderson [27] and Arai and Sparks [28].

The effect of potential on both GNF acid groups and solution phosphate species was

studied at pH 3, 7 and 9. The experimental spectra obtained under these conditions are

shown in Figure 5.16. At pH 3, losses are observed at 1005 and 1180 cm−1 on

application of −0.5 V (black line) and these are assigned to νas(P–O) and ν(P=O),

respectively, of H3PO4
0. Concurrently, gains corresponding to H2PO4

− species are seen

at 940 and 1155 cm−1 arising from the νas(P–O) vibrations and 1077 cm−1 arising from

νs(P–O). At pH 9 and −0.5 V, the stretching modes of H2PO4
− decrease while gains are

seen at 1078 and 990 cm−1 that are assigned to νas(P–O) and νs(P–O), respectively, of

HPO4
2−. The spectral response at pH 7 is very similar to that obtained at pH 9.
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Figure 5.16 Difference spectra of BDD modified with GNF-Ca in 0.1 M KH2PO4/K2HPO4

electrolytes of different pH: pH 3 at +1 V (red) and −0.5 V (black); pH 7 at +1 V (orange) and
−0.5 V (blue); pH 9 at +1 V (light blue) and −0 5 V (pink). Reproduced from [9]. 

Table 5.7: Changes in activity of H3PO4, H2PO4
− 

and HPO4
2−

 on application of −0.5 V calculated 
from Equation (5.9). Reproduced from [9].

pH aK+ / M E / V pKa(app)
ΔaH3PO4

/ 10−3 M

ΔaH2PO4
�

/ 10−3 M

ΔaHPO4
� �

/ 10−3 M

3 0.080 − 3.22 0 0 0

3 0.087 −0.5 3.18 −2.0 +2.0 0

7 0.139 − 8.07 0 0 0

7 0.146 −0.5 8.05 0 −0.36 +0.36

9 0.200 − 7.91 0 0 0

9 0.207 −0.5 7.89 0 −0.23 +0.23

Table 5.7 shows the calculated changes in activities for H3PO4, H2PO4
− and HPO4

2− at

pH 3, 7 and 9. Detailed calculations can be found in Appendix 4. At pH 3, our

calculations predict that 2 × 10−3 M of phosphoric acid deprotonates to form H2PO4
− at

−0.5 V. We therefore expect to see significant losses in spectral intensity for H3PO4

species at 1172, 1005 and 889 cm−1, with gains at 1159, 1077, 940 and 875 cm−1 for
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H2PO4
−. This is broadly observed in the experimental spectrum (Figure 5.16, black),

although as some gain bands are in similar positions to losses, they cancel each other

out. However, a particularly strong absorption loss is seen at 1005 cm−1 for H3PO4,

along with a gain at 1077 cm−1 for H2PO4
− as predicted. At both pH 7 and 9, H2PO4

− is

predicted to undergo deprotonation to give HPO4
2−. Experimentally, at pH 7 and 9 clear

gains are observed at 1078 and 990 cm−1 corresponding to increased HPO4
2−. The

apparent splitting of the 1078 cm−1 band is due to simultaneous decrease in

absorbance at 1077 cm−1, which along with losses at 940 and 1155 cm−1 indicates

concomitant loss of H2PO4
−, exactly as predicted.

The consequential generation of excess protons in this process explains why the

intensity changes for the carbonyl and carboxylate bands in phosphate electrolyte are

anomalously weak at pH 7. The acid edge groups of the GNF span a range of pKa

values from 3 to 8, and in pH 7 solution a decrease in the pKa(app) should lead to

deprotonation of a substantial number of these, as observed in chloride and sulphate

electrolytes. However, in phosphate the local concentration of protons is much higher

than in KCl and K2SO4 under the same conditions, due to the simultaneous potential-

induced deprotonation of H2PO4
−. Hence the GNF acid dissociation equilibrium will

strongly favour the protonated species under these conditions and the reversible

deprotonation is subsequently suppressed with resulting low intensity changes in

absorbance observed.

Figure 5.16 illustrates the effect of solution pH on the spectral features arising from the

GNF acid groups with applied negative potential. At pH 3.5 (Figure 5.16, blue and

orange) the trend of deprotonation at negative potential and protonation at positive

potential is the same as that found at pH 7, as shown in Figure 5.3. Similar spectral

changes are observed over a wide pH range from 3.5 to ca. 8; however, the ratio of the

carbonyl bands to the carboxylate bands is pH-dependent, as is the spectral intensity.

Different spectral behaviour is observed below pH 3.5 and above pH 8. At pH 9.2
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(Figure 5.16, light blue and pink) the spectral features corresponding to carboxylic acid

and carboxylates are very weak, although the trend is the same as observed at lower

pH. At pH 3 (black and red) the carboxylate bands at ca. 1585, 1420 and 1360 cm−1

are weaker than observed at pH 3.5 and above, while the carbonyl band at ca. 1750

cm−1 is of similar intensity. Although there is still a loss of the carbonyl band at 1750

cm−1 on applying a negative potential, instead of a large increase in the carboxylate

features it is instead accompanied with a gain in absorption at 1720 cm−1.

The pH dependence of the response can be understood by considering the pKa of the

GNF edge groups. In Section 3.3.4 we found that these acid groups to undergo

protonation over a wide range of pH from 3.5 to 8, indicating a range of pKa values due

to the different local environments of the COOH functionalities. The spectral data

therefore confirms that over this pH range the GNF readily undergoes deprotonation on

application of a negative potential, as the increase in cation activity under these

conditions lowers the apparent pKa of the acid functionalities enough to induce

detectable loss of protons. At pH 9.2 very little deprotonation is observed, as the

majority of the acid groups have a pKa of < 8 and are therefore already deprotonated

before the potential is applied. Likewise, at pH 3 little deprotonation of the acid groups

is seen on application of negative potential, in this case because the pKa of the COOH

groups is > 3 so deprotonation is thermodynamically disfavoured. However, there is a

very clear shift in the wavenumber for the C=O stretch of the acid groups on application

of negative potential. There is a loss of absorbance at 1750 cm−1 assigned to

monomeric weakly hydrogen bonded carbonyl and a gain at 1720 cm−1, at a

wavenumber consistent with increased hydrogen-bonding to the C=O moiety.

5.12 Conclusion

In this Chapter we have shown, using in situ IR spectroelectrochemistry, that a

negative electrode potential results in deprotonation of electrode-immobilised
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carboxylic acid GNF edge groups. We also observe deprotonation of solution H3PO4,

H2PO4
− and HSO4

− close to the electrode on application of −0.5 V. We attribute both 

findings to a decrease in the apparent pKa of the acids in response to a local increase

in cation activity at the electrode at negative potential. This observation implies that

speciation of acids near a biased electrode surface can differ significantly from that in

bulk solution and this can be driven purely by cation migration in the absence of

adsorption, redox chemistry or pH change. Although pKa shifts for electrode-adsorbed

species have been reported previously, here we show these cannot entirely be

attributed to thermodynamic effects of surface immobilisation, as they are also

observed for solution electrolyte ions.

The change in ion activity at the surface of the electrode was shown for the IR active,

negatively charged SO4
2−. Although monoatomic cations such as K+ and Na+ are IR

inactive and therefore cannot be observed in the difference spectra, it can be assumed

that positively charged particles migrate in the electric field in the opposite direction to

the negatively charged SO4
2−.

It was shown in Section 3.3.4 that the COOH edge groups of non-complexed GNF

exhibit a wide range of pKa values. Despite all of the edge groups being chemically

identical, they occupy a range of different sites and their high density means that pKa is

strongly influenced by neighbouring groups. In spectroelectrochemical experiments at

solution pH values ranging from 3.5 to 8, significant deprotonation of GNF acid groups

can be observed, consistent with pKa values of the GNF acid edge groups determined

from titration studies.

For solution-phase species with well-defined pKa values, changes in interfacial

speciation on application of negative potential could be predicted. This result supports

the proposed mechanism and shows that deprotonation in the interfacial region is

driven by the lowering of effective pKa by the increased cation activity.
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Increases and decreases in the water bending mode at 1635 cm−1 are observed in all

difference spectra, but currently it is unclear what induces these changes. Potential-

induced change in the hydrogen-bonding environment of the carbonyl group is also

apparent under various experimental conditions. The mechanism is currently unknown

but may be related to the ion concentration or the applied electric field at the electrode.

These aspects of the work require further investigation.
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6 Immobilisation of GNF on Electrode Surface

6.1 Introduction

In Chapters 3–5 GNF were immobilised on BDD electrodes by drop-coating from an

aqueous suspension. This method, widely used in research to achieve electrode

modification and surface immobilisation, is quick and facile but offers little control over

the order and orientation of the immobilised layer. Additionally, when acid-terminated

GNF are used, the high solubility of the flakes in water means that most of the drop-

coated material is removed in the rinsing step. Therefore we estimate that only a few

monolayers remain on the electrode, although it has not been possible to ascertain the

degree of coverage. It is unlikely that drop-coating results in an ordered layer uniformly

covering the area onto which the drop is deposited. Rather, the GNF are randomly

oriented in a disordered layer on the electrode surface, leaving areas of the underlying

electrode uncovered.

GNF-Ca was also drop-coated onto the electrode surface from an aqueous

suspension. The insoluble nature of the GNF complexed with divalent cations means
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that a thicker layer of immobilised material was achieved on the electrode surface

compared to non-complexed GNF-COOH and GNF-amide.

In this Chapter, we explore two different ways of immobilising GNF onto a surface. The

first method is direct attachment of GNF decorated with thiol groups (GNF-thiol) onto a

gold substrate. STM is employed to image the surfaces after modification. For STM

imaging it was desirable to deposit isolated GNF on the substrate. In order to achieve a

good separation of GNF and to reduce the probability of GNF stacking, either very

dilute solutions were drop-coated onto the substrate or more concentrated suspensions

were spin-coated to achieve a sub-monolayer coverage.

The second approach utilises a small thiol linker molecule that forms a SAM on a gold

substrate and to which GNF can then be attached. Amide bond formation by

carboxylate groups and amines is a widely used reaction that is catalysed by

carbodiimides. We have GNF terminated with carboxylic functionalities (GNF-COOH)

that can be reacted with amine-terminated cysteamine SAMs to graft GNFs onto the

surface. We also have GNF-amide with –(C=O)NH(CH2)2NH2 moieties that can react

with carboxylic acid end groups in a cysteine SAM. Both routes were explored in an

attempt to immobilise GNF onto the substrate via covalent attachment. Similar

methodology has been reported previously by Rahman [1], who attached carbon

nanotubes decorated with carboxylic acid groups onto a 1-aminoundecanethiol SAM on

gold.

A ferrocene derivative is used as an electrochemically active tag to confirm successful

modification of the surface by CV and DPV. GNFs are tagged with ferrocene

derivatives by two different methods: (a) Amine-terminated GNF are reacted with

ferrocene carboxaldehyde via the formation of an imine, which is subsequently reduced

to a secondary amine bond. The result is a covalent bond between GNF and ferrocene.

(b) Deprotonated GNF-COOH and ferrocene carboxylic acid are incubated with CaCl2,
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resulting in an electrostatic interaction. Scheme 6.1 and Scheme 6.2 depict the

molecular structures of the target materials.

Scheme 6.1 (a) Cystamine dihydrochloride; (b) cysteamine SAM formed by cystamine on gold;
(c) GNF-COOH attached onto cysteamine SAM on gold; ((d) ferrocene carboxylic acid attached

onto Au-cysteamine-GNF-COOH.
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Scheme 6.2 (a) Cysteine molecule; (b) cysteine SAM on gold; (c) GNF-amide attached onto
cysteine SAM on gold; (d) ferrocene carboxaldehyde attached onto Au-cysteine-GNF-amide.

XPS analysis is carried out on the surfaces to assess the outcome of the attachment.

Survey spectra are acquired to determine the elements present in the sample, and

high-resolution spectra are then acquired of the relevant regions. The N1s region can

be used to ascertain the presence of nitrogen in the samples and will therefore confirm,

alongside a peak in the S2p region, the successful formation of a self-assembled
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monolayer. The C1s region will be used to compare the different sample preparations

and the number of components in each peak fit is determined by our knowledge of the

sample composition. In cysteamine SAM (Scheme 6.1(b)), carbon exists in two distinct

chemical environments, –C–C–N and –C–C–S, with very similar C1s binding energies

and therefore they will be fitted with one peak. When GNF-COOH is attached to the

SAM as shown in Scheme 6.1(c) three new carbons in different chemical environments

are introduced: sp2-hybridised carbon, N–C=O and –C–COOH. In cysteine SAM

(Scheme 6.2(b)) we find carbon in three different environments: –C–C–N, –C–C–S and

–C–COOH. The first two will again be fitted with one peak. Upon attachment of GNF-

amide (Scheme 6.2(c)) sp2-hybridised carbon and N–C=O are introduced. The peak

ratios are also expected to change when GNF are grafted onto the surface as the

number of –C–C–N bonds increases and the number of –C–COOH decreases. The

exact ratios will depend on several factors: the number of GNF particles successfully

attached; the size of the particles; the number of edge groups present in a single

particle; and the number of bonds formed per particle. Relevant C1s photoelectron

binding energies are listed in Table 6.1.

Table 6.1: XPS binding energies of some carbon species.

Bonding type BE / eV References

sp2 284.3-284.8 [2-4]

sp3 284.4-285.2 [4-6]

C–S, C–C–N 286.1-286.6 [7-9]

N–C=O 287.8-288.2 [7, 9, 10]

COOH 288.3-289.9 [8, 11, 12]

The high-resolution N1s region can in some cases aid in determining sample

composition. However, although XPS spectra of GNF-amide ([13], supporting

information) shows two distinct peak components for nitrogen corresponding to amine

and amide, some reports have found amine and amide functionalities at such similar

binding energies that they can’t be resolved [7, 14]. Generally both amine and amide
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peaks have binding energies in the range of 399.5 to 400.5 eV ([15] and references

therein).

6.1.1 Thiol-Functionalised GNF

GNF functionalised with a thiol group have been synthesised from GNF-COOH [13]

that can be directly attached onto a gold surface utilising the strong gold–sulphur bond.

A cartoon of GNF-thiol is presented in Scheme 6.3. The basal plane is significantly

larger than depicted here.

Scheme 6.3 Schematic depiction of edge-thiolated GNF. The image is not to scale; the
aromatic region at the core of the flakes is significantly larger than is depicted here.

Infrared spectroscopy of GNF-thiol (Figure 6.1) shows an amide band at ca. 1660

cm−1; N-H stretches at 3350 and 3450 cm−1 arising from the amine and amide

functionalities; and C-H stretches at 2850 and 2920 cm−1. These bands show that the

majority of COOH groups have been converted to amides in the reaction with ethylene

diamine, but some acid groups remain as evidenced by a small feature at 1715 cm−1.
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Figure 6.1 Infrared spectrum of GNF-thiol.

Liu et al. have reported immobilisation of single-walled carbon nanotubes (SWCNTs)

onto Au(111) [16] via adsorption through thiol functionalities located at the open ends

of the CNTs. Atomic force microscopy (AFM) imaging showed needle-like protrusions

compatible with carbon nanotubes on the substrate and the density of the features

increased with prolonged adsorption times. The substrates were stable to

ultrasonication, strongly indicating chemisorption had taken place. By this method

ordered, perpendicularly oriented CNT structures were achieved.

A similar approach was adopted by Minati et a. [17] who studied the chemisorption of

thiol-functionalised multi-walled CNTs (MWCNTs) on gold. They commented on the

issue of CNT aggregation in suspension that impeded the growth of an order SAM on

the gold substrate. The dimensions of the CNTs were established by AFM as 40–160

nm (length) and 40–80 nm (diameter). The length dimension was found to be shorter

than expected and it was hypothesised that shorter CNTs are preferentially adsorbed.

In this work, STM will be used to image GNF-thiol chemisorbed onto Au(111)

substrates. GNF can bond with the Au surface atoms through one or more thiol groups

and thus the orientation can range from vertical to horizontal. If the flakes bond through

several thiol groups located around the edge and arrange horizontally on the substrate,
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we would expect the height of features in STM images to be close to the theoretical

thickness of the sp2-hybridised carbon network of 0.34 nm [18]. Although most STM

studies focus on pristine graphene grown directly on the substrate [19-21], Huang et al.

have reported STM images of nanographene platelets deposited onto HOPG of 0.4 nm

thickness [22]. If the GNF only form one bond with the substrate and arrange vertically,

STM images would show a height in the region of 30 nm.

6.1.2 Electrochemistry of Ferrocene Derivatives

Ferrocene is a commonly used redox probe in non-aqueous systems. It is a neutral

molecule consisting of an iron centre in the 2+ oxidation state sandwiched between two

cyclopentadienyl ligands. Ferrocene undergoes a reversible one-electron oxidation to

form the positively charged ferrocenium ion. Due to its reversibility and low oxidation

potential, ferrocene is used as a standard in electrochemistry as Fc+/Fc = 0.64 V vs.

SHE. Electron-withdrawing substitutes, such as carboxylic acid and aldehyde, on the

cyclopentadienyl rings shift E0′ for the couple in the positive direction.  

Ferrocene carboxaldehyde (FcCHO) is sparingly water-soluble and has therefore been

mostly studied in non-aqueous systems. Abeed’s group have reported reversible ET

kinetics for FcCHO in DMSO and acetonitrile, with half-wave potential 0.75 V vs.

Ag/AgCl [23]. Sharp et al. modified a Pt electrode with amine groups and anchored

FcCHO molecules onto the surface [24]. The modified electrode exhibited reversible

kinetics typical of surface-bound redox species.

Ferrocene carboxylic acid (FcCOOH) is more water-soluble than ferrocene and has

been studied in aqueous systems. McCormack et al. [25] reported Ep values for the

deprotonated form in pH 9.2 PBS as 0.39 and 0.29 V vs. Ag/AgCl for oxidation and

reduction, respectively. Raoof’s group [26] constructed a FcCOOH-modified carbon

paste electrode that presented redox peaks at 0.38 and 0.27 V vs. Ag/AgCl in pH 7

PBS.
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6.2 Experimental Methods

All aqueous solutions were prepared with doubly deionised water, taken from a Milli-Q

water purification system, with a resistivity of not less than 18.2 MΩ cm at 25 °C. 

6.2.1 Substrate Preparation

To study the self-assembled monolayers with XPS, fluorine-doped tin oxide (FTO)

glass (Sigma-Aldrich, US) was used as the substrate. The glass was cut into 7×7 mm

squares, cleaned with a mild detergent and then rinsed thoroughly with deionised water

and ethanol. After cleaning, Au was deposited onto the substrate with a sputter coater

(Emscope UK). For the deposition, argon pressure was 0.1 Torr, deposition current 40

mA and coating time 90 seconds.

In order to characterise the SAMs electrochemically, they were deposited onto

commercial Au electrodes (BASi, US) according to the protocol described by Long et

al. [27] with some modifications to the method. The electrodes were first polished using

successively finer grades of alumina suspension down to 0.05 μm, rinsed thoroughly 

with ultrapure water after each step and dried using an ambient air flow. After

mechanical polishing, electrochemical cleaning step was performed in 0.5 M H2SO4 by

first holding the electrode at 2 V for 5 seconds and then switching to −0.32 V for 10 

seconds. Then, 20 CV scans were run in 0.5 M H2SO4 between −0.26 V and 1.55 V at 

scan rate 4 V s−1. In a fresh electrolyte solution, another 4 scans were run in the same

potential range at scan rate 0.1 V s−1. The electrodes were rinsed thoroughly with water

and ethanol.

For STM studies, an atomically smooth substrate was needed. For this purpose,

evaporated Au on Mica (Georg Albert PVD, Germany) was used. To further improve

the flatness of the gold surface, flame annealing was performed by placing the
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substrate onto a quartz plate and systematically sweeping back and forth with a

propane flame for ca. 1 minute.

6.2.2 SAM Deposition

Three different types of SAM were deposited: two different thiols, ʟ-cysteine and 

cystamine, were purchased from Sigma-Aldrich and used as received. Solution

concentrations of 5 × 10−3 M (ʟ-cysteine) and 2.5 × 10−3 M (cystamine) in degassed

ethanol and deposition times of ca. 20 hours were employed. GNF-thiol were dispersed

in water and deposited onto flame annealed Au substrates by either drop-coating or

spin-coating. The drop-coating technique involved placing 15 µl of GNF-thiol solution

onto the substrate for ca. 1 hour and then rinsing the substrate thoroughly with copious

amounts of deionised water. Spin-coating was performed with a Laurell Technologies

WS-650 spin-coater (US) from suspensions of concentrations varying from 8 to 124 μg 

ml−1. The suspension was dispensed using a glass pipette in droplets of ca. 1 ml. The

solution concentration, rotating speed and number of drops were varied in search of

optimal deposition conditions.

6.2.3 Attaching GNF onto SAM

The reaction between a carboxylic acid and an amine to form an amide was exploited

to covalently attach GNF onto a SAM. The reaction is catalysed by carbodiimides [28,

29] and coupling efficiency can be enhanced by using N-hydroxysulfosuccinimide

(sulfo-NHS) [30]. The reaction mechanism is depicted in Scheme 6.4.

The general procedure was adapted from [31]. To activate the GNF acid groups, 0.4

mg of 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC, Sigma-Aldrich, US) and

1.1 mg sulfo-NHS (Santa Cruz Biotechnology, US) were added to 1 ml of 0.1 mg ml−1

GNF-COOH, mixed well and left to react for 15 minutes. The cystamine-modified

electrode was then immersed in the activated GNF-COOH solution for at least two
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hours, after which the electrode was removed from solution and rinsed thoroughly.

Alternatively, to modify the cysteine acid end groups, the cysteine-modified electrode

was immersed in 1 ml of 0.01 M pH 6 PBS containing EDC and sulfo-NHS for 15

minutes. The activated electrode was then removed and immersed in a suspension of

GNF-amide in H2O or GNF-amide-FcCHO in ethanol for two hours before rinsing

thoroughly.

Scheme 6.4 Reaction scheme illustrating activation of carboxylate with EDC and formation of
reaction intermediate after addition of sulfo-NHS. Adapted from [32].
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6.2.4 Labelling GNFs with Ferrocene Derivatives

To label GNF-amide with ferrocene carboxaldehyde (FcCHO), GNF-amide were

suspended in 10 × 10−3 M pH 7 PBS at an approximate concentration of 100 μg ml−1,

and the pH was adjusted to ca. 9.3 with 5 weight% K2CO3 solution. In a separate vial,

0.0185 g ferrocene carboxaldehyde (FcCHO) was dissolved in 0.5 ml

dimethylformamide (DMF). The FcCHO solution was added to the GNF suspension

and incubated for 30 minutes. 0.0011 g sodium borohydride (NaBH4) was then added

and the solution incubated for a further 10 minutes, after which the pH was adjusted to

7.3 by adding 0.1 M HCl. The precipitate was centrifuged, washed 4 times and re-

suspended in 500 μl ethanol. 

To label GNF-COOH with ferrocene carboxylic acid (FcCOOH), 10 × 10−3 M FcCOOH

was prepared and the acid groups were deprotonated with dilute KOH. 20 μl of dilute 

KOH solution (pH 9) was pipetted onto the modified electrode surface to deprotonate

all GNF-COOH. 30 μl of FcCOO− was then added and the solutions were allowed to

mix for 5 minutes before adding 30 μl of 0.02 M CaCl2. The electrode was incubated for

approximately 7 hours and then rinsed thoroughly.

6.2.5 X-ray Photoelectron Spectroscopy

XPS was carried out on a Thermo Scientific K-Alpha spectrometer equipped with a

monochromated Al Kα (hv = 1486.6 eV) X-ray source. All survey scans were scanned 3

times with a resolution of 1 eV, 400 μm spot size and 50 ms dwell time. All elemental 

regions were scanned 10 times with a resolution of 0.1 eV, 400 μm spot size and 50 

ms dwell time. Elemental composition ratios were calculated from survey spectra using

the element library function and the deconvolution of peaks was conducted using the

quantification function in CasaXPS software. For background subtraction a Shirley

background was used. The C1s region is best fitted with GL(30) line shape due to the

wide natural line widths of the peaks [33]. The full width at half maximum (FWHM) of



6 Immobilisation of GNF on Electrode Surface

205

the main C–C peak was constrained to between 1 and 1.6 eV and all other peaks were

constrained to have the same shape and FWHM as the main C–C peak. All peaks

were then optimised using a Gaussian-Lorentzian sum function and an iterative least-

squares optimisation algorithm.

6.2.6 Scanning Tunnelling Microscopy

STM imaging was carried out using an Agilent 5500 scanning probe microscope

(Agilent Technologies, US) in constant current mode. Lengths of platinum-iridium wire

(Goodfellow, UK) were used as the probe and manually cut at one end to make sharp

tips. The bias voltage and tunnelling current were varied to achieve the best possible

resolution.

6.2.7 Electrochemical Experiments

A 1.6 mm diameter polycrystalline gold disk sealed in polychlorotrifluoroethylene

(PCTFE) (BASi, US) was used as the working electrode. For DPV the following

parameters were used: equilibration time 3 s; modulation time 0.05 s; interval time 0.5

s; step potential 0.0051 V; modulation amplitude 0.02502 V. All other experimental

details are described in Section 3.2.5.

6.3 Results and Discussion

6.3.1 Thiol-Functionalised GNF

The survey spectra of unmodified Au and Au+GNF-thiol are presented in Figure 6.2(a),

and the elemental composition detected from the survey spectra are collated in Table

6.2. In unmodified Au, only gold and carbon are detected in the survey spectra,

whereas in Au+GNF-thiol the overall ratio of gold has decreased and oxygen and

sulphur are present in high enough concentrations to be detected. Nitrogen was not
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detected in the survey spectra of either sample, but the high resolution spectrum of the

N1s region of Au+GNF-thiol (Figure 6.2(b), red) showed clear, albeit small peaks at

399.7 and 401.7 eV assigned to nitrogen in amine and amide, in agreement with the

expected functional groups present in the sample. No nitrogen peaks were present in

unmodified Au (Figure 6.2(b), black).

Figure 6.2 (a) Survey spectra of unmodified Au (black) and Au+GNF-thiol (red). (b) High-
resolution spectrum of the N1s region of unmodified Au (black) and Au+GNF-thiol (red). Spectra

are offset for clarity.

Table 6.2: Elemental composition calculated from peak areas in survey spectra in Figure 6.2.

Sample Name Position / eV Atomic%

Unmodified Au
Au4d 336.1 55.5

C1s 285.1 44.5

Au+GNF-thiol

C1s 286.1 48.7

O1s 534.1 25.8

Au4d 336.1 21.8

S2p 162.1 3.7

The high resolution spectra of the C1s regions are compared in Figure 6.3. The

spectrum of unmodified Au in Figure 6.3(a) can be fitted with three peaks at 284.3,

286.2 and 288.4 eV. These binding energies are typical of adventitious carbon, which

is found on the surface of most samples that have been exposed to air [34]. The high
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resolution spectrum of the Au+GNF-thiol C1s region is shown in Figure 6.3(b) and

shows that there is a distinct difference in the composition of surface carbon in the two

samples. The spectrum of Au+GNF-thiol has been fitted with four peaks at 284.7,

286.6, 287.8 and 289.3 eV. The binding energies of these peaks are very similar to

those found in unmodified Au, but the ratios of peak areas are different, indicating that

the surface has been modified. In addition to aromatic carbon on the GNF basal plane,

we expect to see carbon in three other environments in a 1:1:1 ratio: C-S, C-N and N-

C=O. The peak at 284.7 eV is assigned to C-C carbon and contains contributions of

both sp2 and sp3-hybridised carbon found in GNF and adventitious carbon. The peak at

286.6 eV is attributed to both C-S and C-N carbon, and 287.8 eV is assigned to N-

C=O. There is a small peak at 289.3 eV attributed to COOH functionalities remaining at

the GNF-thiol edge after incomplete functionalisation of GNF-COOH. The ratio of peak

areas at 286.6 eV and 287.8 eV is approximately 2:1, in agreement with our predicted

composition and peak assignment, indicating successful deposition of GNF-thiol on the

substrate. The peak parameters are summarised in Table 6.3.
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Figure 6.3 High-resolution XPS spectra of the C1s region of (a) Au and (b) Au+GNF-thiol.
Experimental data is shown in black, background in green, peak fits in red and the cumulative

peak fit in blue.

Table 6.3: Peak parameters from peak fit of C1s spectra in Figure 6.3.

Sample Name Position / eV FWHM / eV Line shape %area

Unmodified Au

C–C 284.4 1.600 GL(30) 79.8

C–O 286.2 1.600 GL(30) 7.0

COOH 288.2 1.600 GL(30) 13.2

Au+GNF-thiol

C–C 284.7 1.560 GL(30) 51.6

C–N, C–S 286.6 1.560 GL(30) 31.1

N–C=O 287.8 1.560 GL(30) 13.1

COOH 289.3 1.560 GL(30) 4.2
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6.3.1.1 STM

Having established that GNF-thiol can be successfully deposited onto a gold substrate,

the next step was to image them to see how they are oriented on the surface. For this

purpose, STM was used. Gold evaporated on mica was chosen as substrate for these

experiments because STM provides an extremely high resolution in the z direction and

therefore it is important to use a flat substrate with small height differences. Two

different deposition methods were attempted: spin-coating and drop-coating. It was

hypothesised that spin-coating would reduce the chance of contamination due to

shorter deposition time and because it is a one-step process with no need for a rinsing

step. On the other hand it has been reported that adsorption kinetics of thiol-

functionalised CNTs chemisorbing onto a gold substrate are very slow [16] and it is

reasonable to assume that the same would apply to GNFs. Drop-coating would provide

more time for sulphur-gold bonds to form, thereby allowing the use of a more dilute

suspension that would reduce the possibility of particle agglomeration.

Spin-coated samples

Figure 6.4 shows STM images of a clean Au(111) surface (a) and GNF-thiol spin-

coated onto Au(111) (b). The suspension concentration was 72 μg ml−1 and 10 drops

were applied onto a surface rotating at 5000 rpm. The clean Au(111) surface is

smooth, with terraces spanning over 100 nm. The herringbone reconstruction [35] can

be discerned, indicating a well-prepared substrate. After spin-coating the GNF-thiol

suspension onto the substrate, GNF are observed in the STM image as bright spots.

To determine whether the flakes adsorb preferentially on edge sites, dislocations in the

reconstruction or other defect sites, a lower coverage of the surface is necessary. This

can be achieved by lowering the concentration of the GNF suspension or by reducing

the number of drops applied onto the substrate.
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Figure 6.4 STM images of (a) clean Au(111); (b) GNF-thiol spin-coated onto Au(111).
Suspension concentration 72 μg ml

−1
.

In Figure 6.5(a)–(b), different concentrations of suspension are compared. Both

suspensions were spin-coated by applying one drop onto a substrate rotating at 2000

rpm. Figure 6.5(a) shows an image of 8 μg ml−1 GNF-thiol spin-coated onto Au(111)

substrate. Only a few features are visible in the image. In Figure 6.5(b) a high

concentration of 124 μg ml−1 GNF-thiol was used to spin-coat onto the substrate. In this

image many more bright spots are observed. A clear correlation between the

concentration of spin-coated suspension and the number of bright spots in the image

confirms that it is GNF-thiol that is detected on the Au(111) substrate.

When low concentrations of GNF-thiol are used, the flakes are seen to preferentially

adsorb on or near the edge sites. We were not able to achieve high enough resolution

to see whether the adsorption sites coincided with dislocations in the surface

reconstruction.

Figure 6.5(c) and (d) show line profiles across a flake extracted from Figure 6.5(a) and

(b) as indicated with green lines. The profiles from both dilute and concentrated

suspension are similar, showing a rounded shape 15–20 nm in diameter and reaching

a height of 1–1.7 nm. The lateral size was consistently found to be less than 30 nm

which has been reported previously for acid-terminated flakes [13, 36]. This is
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surprising as the tip convolution effect usually causes features to seem larger in the xy

direction [37]. The height along z axis, although not a straightforward measurement of

the physical height, was also found to be greater than that observed in previous STM

studies of nanographene platelets (ca. 0.4 nm) [22].

The reason why the average particle size observed in STM images is smaller than

expected may be that smaller GNF particles are preferentially adsorbed onto Au(111).

Minati et al. reported of a discrepancy in the length distribution of thiol-CNTs after

preparation and after adsorption on a gold substrate [17]. AFM experiments showed

that on average CNTs adsorbed onto gold were shorter than the suspension they were

adsorbed from, suggesting preferential adsorption of shorter CNTs. A similar result was

arrived at by Wei et al. [38]. On the other hand, if the flakes are curved up in the middle

rather than lying flat on the substrate, the lateral dimension would be reduced and the

height would increase, as observed here. Being composed of a single-layer of carbon

atoms, GNF are expected to be very flexible and able to bend in order to optimise the

bond angle between the sulphur atom in the thiol group and the gold substrate. Such

bending has been reported in single-walled CNTs bound on gold [39] due to the

flexibility of the CNT and the preference to form Au-S bonds through multiple thiol

groups located at both ends of the CNT.

It is also possible that due to the fairly high concentration of the suspension and the

reduced water solubility of GNF-thiol compared to GNF-COOH, we might be seeing

particles stacking together, causing the increased height observed. The height profiles

in Figure 6.5(c)–(d) indicate that the particle height is greater when deposition is

performed from a solution of higher concentration.
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Figure 6.5 STM images of GNF-thiol spin-coated onto Au(111). Suspension concentration (a)
8 μg ml

−1
; (b) 124 μg ml

−1
. (c) Height profile from (a) along green line. (d) Height profile from (b)

along green line.



6 Immobilisation of GNF on Electrode Surface

213

Drop-coated samples

Drop-coating was also investigated as a method of depositing GNF onto Au substrate.

A control deposition was performed using only doubly ionised water and this is shown

in Figure 6.6. The Au(111) substrate has been well prepared, as indicated by the

herringbone reconstruction and terraces spanning several hundred nanometres, but

the appearance of brighter coloured areas suggests that at some point during the

deposition, the substrate has been contaminated.

Figure 6.6 (a) STM image of Au(111) substrate after drop-coating distilled water. (b) Height
profile from (a) along green line.

GNF-thiol were then drop-coated from a suspension at concentration 2 μg ml−1 and

imaged with STM (Figure 6.7). Again the Au(111) substrate is well prepared as we can

see the herringbone reconstruction of the surface. Bright features on the substrate that

are assigned to GNF-thiol particles can be discerned on the surface. A height profile

was taken across a flake along the green line in Figure 6.7(a) and is shown in Figure

6.7(b). The height of the flake is ca. 5 Å, which is very close to what was observed by

Huang et al. [22] and indicates that the particles are oriented horizontally on the

substrate and lying flat rather than bending. Therefore it seems likely that the particles

observed in Figure 6.5 were stacking together due to high concentration, forming few-

layer graphene flakes.
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Figure 6.7 (a) STM image of 2 μg ml−1 GNF-thiol drop-coated on Au(111). (b) Height profile 
from (a) along green line.

High resolution imaging of GNF

Attempts were made to image the honeycomb structure of the graphene basal plane

but these were unsuccessful. A few possible reasons for our inability to achieve a high

resolution image of a GNF are discussed next.

It is difficult to remove all water from GNF samples Therefore it is possible that, despite

the use of desiccant in the STM chamber, the GNF retain a layer of adsorbed water.

Water molecules can get dragged around by the tip and interfere with the imaging

process. The flakes themselves are mobile and may be easily moved around by the tip.

Lateral manipulation is widely used as a tool to relocate molecules and it was first

demonstrated by IBM researchers [40]. More recently, C60 molecules adsorbed on

Si(100)−2 × 1 have been observed to move around by the influence of the tip even 

under UHV conditions [37]. If we are experiencing the flakes being dragged around

then this would completely hinder any attempts to achieve good quality images.

Evidence of water molecules or graphene flakes being picked up by the tip was seen in

some STM images. When the image sharpness suddenly goes from good to poor in
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the middle of a raster line, it is indicative of the tip picking up something and dragging it

along as it moves over the sample.

The sharpness of the tip is a variable that will to a great extent determine the resolution

that is achieved. It is possible to cut tips by hand to a standard that allows atomic

resolution on for example HOPG. Although it is possible, it seems unlikely that we

never managed to get a good enough tip to see the honeycomb structure of graphene.

Evidence of contamination in the drop-coated sample was shown in Figure 6.6.

Contamination is another variable that will have a detrimental effect on the quality of

STM images.

6.3.2 GNF Attached onto SAM-functionalised Gold

GNF were covalently attached onto a SAM-functionalised Au substrate either with or

without an electrochemically active tag. First, the formation of a SAM on gold was

verified by XPS. Figure 6.8(a) shows high-resolution spectra of the S2p region. We

can see that there is no sulphur present in the bare gold substrate (black line), but a

peak appears in all subsequent samples, confirming successful formation of a SAM.

High-resolution spectra of the N1s region are presented in Figure 6.8(b). No nitrogen is

detected in the bare gold substrate as expected. When trying to determine whether the

GNF attachment onto SAM has been successful, we compare the shape of the peak. In

our case both Au+cysteine and Au+cysteine+GNF-amide are best fitted with just one

peak at ca. 400 eV and with FWHM of ca 3 eV. Irrespective of peak fitting, visual

inspection of the spectra suggests that going from Au+cysteine (red) to

Au+cysteine+GNF-amide (blue) the peak shifts to a higher binding energy, consistent

with inclusion of amide functionalities in the sample. Correspondingly, comparison of

Au+cysteamine (green) and Au+cysteamine+GNF-COOH (light blue) shows a shift to
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higher binding energy in line with conversion of some amine groups to amides upon

attachment of GNF-COOH.

Figure 6.8 High-resolution spectra of (a) S2p and (b) N1s regions. Au (black), Au+cysteine
(red), Au+cysteine+GNF-amide (blue), Au+cysteamine (green), Au+cysteamine+GNF-COOH

(light blue). Spectra are offset for clarity.

To corroborate the information gleaned from the N1s region spectra, high-resolution

spectra of the C1s region was examined. The results are presented in Figure 6.9 and

peak parameters are summarised in Table 6.4.
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Figure 6.9 Narrow scan XPS spectra of the C1s region. (a) Unmodified Au; (b) Au+cysteine; (c)
Au+cysteine+GNF-amide; (d) Au+cysteamine; (e) Au+cysteamine+GNF-COOH. Black squares:

experimental data; green: baseline; red: peak fits; blue: cumulative peak fit.
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Table 6.4: Peak parameters extracted from peak fits in Figure 6.9.

Sample Name
Position /

eV
FWHM /

eV
Line

shape
%Area

Unmodified Au

C–C 285.1 1.55 GL(30) 78.1

C–O 286.9 1.55 GL(30) 10.5

COOH 288.7 1.55 GL(30) 11.4

Au+cysteine

C–C 284.7 1.56 GL(30) 67.0

C–N, C–S 286.0 1.56 GL(30) 14.7

N–C=O 287.3 1.56 GL(30) 7.9

COOH 288.6 1.56 GL(30) 10.3

Au+cysteine+
GNF-amide

C–C 284.7 1.43 GL(30) 63.9

C–N, C–S 286.1 1.43 GL(30) 20.2

N–C=O 287.7 1.43 GL(30) 10.1

COOH 288.9 1.43 GL(30) 5.8

Au+cysteamine

C–C 284.7 1.60 GL(30) 75.0

C–O , C–N,
C–S

286.4 1.60 GL(30) 14.9

COOH 288.1 1.60 GL(30) 10.1

Au+cysteamine+
GNF-COOH

C–C 285.0 1.56 GL(30) 65.5

C–N, C–S 286.6 1.56 GL(30) 18.5

N–C=O 288.2 1.56 GL(30) 8.3

COOH 289.2 1.56 GL(30) 7.6

Comparison of the C1s region spectra of cysteine SAM and Au+cysteine+GNF-amide

shows small changes in the peak area ratios (Figure 6.9(b)-(c)). The amount of COOH

decreases and the amount of N–C=O increases, as expected when carboxylic acid

groups on the cysteine SAM are converted into amides upon reaction with the GNF.

The number of C–N groups increases as well upon GNF attachment due to the amine

groups on GNF.

C1s region of cysteamine SAM (Figure 6.9(d)) must be fitted with a COOH peak, even

though there aren’t any carboxylic acid groups in the sample. This is most likely due to

adventitious carbon being present in detectable amounts, interfering with the

quantification of the carbon functionalities and making it difficult to compare

Au+cysteamine and Au+cysteamine+GNF-COOH (Figure 6.9(e)) samples. However,

we do see that upon attachment of GNF-COOH a component for N–C=O functionalities
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appears, in agreement with the formation of a covalent bond between the SAM and

GNF. This indicates that we have successfully grafted GNF particles onto the

substrate.

Au+SAM+GNF samples were also tagged with an electrochemically active ferrocene

derivative (ferrocene carboxaldehyde or ferrocene carboxylic acid) for electrochemical

detection. First, in order to analyse the samples with XPS, they were prepared on thin

films of gold. Iron was not detected in the survey spectra, so high-resolution spectra of

the Fe2p region were collected for these samples. The results are presented in Figure

6.10.

Figure 6.10 Narrow scans of the Fe2p regions of Au+cysteamine+GNF-COOH (black) and
Au+cysteine+GNF-amide+FcCHO (red). Spectra are offset for clarity.

The presence of FcCOOH in Au+cysteamine+GNF-COOH is confirmed by the

appearance of peaks in the Fe2p region (Figure 6.10, black line). The spin-orbit

splitting of Fe2p is 13.1 eV, meaning that the 2p3/2 and 2p1/2 peaks are well resolved.

The experimental spectrum shows significant asymmetry to the features and if peak

fitting were attempted, it would be necessary to add two more components to the fit.

Additional components could arise from satellite features, but FcCOOH is a low-spin

compound and Fe2p spectra from low-spin compounds do not exhibit multiplet splitting.
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Barring spin crossover, satellite peaks can be ruled out as FcCOOH is a low-spin

compound with the iron centre in the 2+ oxidation state. Contamination seems unlikely

as no features are observed in the Fe2p spectrum of Au+cysteine+GNF-amide-FcCHO

(Figure 6.10, red line). We must therefore assume that some oxidation of the surface

has occurred and that we have Fe(III) species present in our sample. Fe(III)

compounds always contain unpaired electrons and will therefore show satellite

features. Peak fitting was not attempted as the complex multiplet structure and

overlapping binding energies [33] make Fe2p region problematic to fit.

The Fe2p region of Au+cysteine+GNF-amide-FcCHO does not show significant peaks

(Figure 6.10, red line), indicating that on this occasion the synthesis method has not

worked and that the procedure needs optimisation for successful attachment of FcCHO

onto GNF.

6.3.2.1 Electrochemical Studies of Au + SAM + GNF Assembly

The deposition method described above was repeated with a polycrystalline gold

electrode as substrate. Differential pulse voltammograms were recorded of

Au+cysteamine+GNF-COOH and Au+cysteamine+GNF-COOH+FcCOOH and the

results are compared in Figure 6.11(a). With only GNF attached onto the SAM (red

line), no voltammetric peaks are observed in the DPV. After FcCOOH attachment to

the assembly (blue line), clear voltammetric peaks can be seen at 0.33 and 0.34 V for

oxidation and reduction, respectively. The peak potentials are in agreement with E0′ of 

FcCOOH reported in literature [25, 26] and the very small peak separation indicates

reversible, fast kinetics.

Figure 6.11(b) shows DPV current traces of Au+cysteine and Au+cysteine+GNF-

amide+FcCHO. There are no voltammetric peaks present in the DPVs when the

working electrode is Au+cysteine (red curves). Upon GNF-amide+FcCHO attachment

(blue curves) the ferrocene tag can be detected as evidenced by voltammetric peaks
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centred at 0.2 V. The fast, reversible ET is not affected by being immobilised onto the

Au+cysteine+GNF-amide+FcCHO assembly as the peak separation between oxidation

and reduction peaks is very small.

Figure 6.11 Differential pulse voltammograms of (a) Au+cysteamine+GNF-COOH (red) and
Au+cysteamine+GNF-COOH+FcCOOH (blue); (b) Au+cysteine (red) and Au+cysteine+GNF-

amide+FcCHO (blue). Solid line: oxidation; line and symbols: reduction.

The differential pulse voltammograms presented in Figure 6.11 clearly indicate the

presence of Fc derivatives in both samples. However, the covalent nature of the bond

between ferrocene derivative and GNF in the Au+cysteine+GNF-amide+FcCHO
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assembly is considered more promising for initial studies and it was therefore

investigated further with cyclic voltammetry. A scan rate study was carried out, the

results of which are presented in Figure 6.12.

Figure 6.12(a) shows cyclic voltammograms of Au+cysteine+GNF-amide+FcCHO at

different scan rates. Clear voltammetric peaks can be seen in the CVs with Ep

independent of scan rate in the range studied here (50 mV–1 V s−1). Epa was found to

be 0.236 V and Epc 0.162 V, giving ΔEp = 75 mV. The theoretical value of ΔEp of

adsorbed species exhibiting fast, reversible kinetics is zero due to the absence of

diffusion. A non-zero ΔEp is usually found experimentally as some resistance is

introduced into the system by the solution and other components. In our case the

modification layer on the electrode may inhibit the electron transfer.

To further characterise the modification of the electrode, the peak currents extracted

from CVs in Figure 6.12(a) were plotted against the scan rate and fitted with a linear

regression line (Figure 6.12(b)). ipc (blue symbols) depends linearly on scan rate,

indicating absence of diffusion as expected of a surface-immobilised redox species.

However, the oxidation currents (red symbols) are less well fitted with a linear

regression line. To investigate this further, log ip was plotted against log ν and fitted 

with a linear regression line as shown in Figure 6.12(c). The reduction current fit (blue)

has a slope of 0.86, close to the theoretical value of 1 for a surface-confined redox

process. The slope of the oxidation current fit (red) is 0.62, closer to the theoretical

value of 0.5 for a diffusion-controlled redox species.
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Figure 6.12 (a) Cyclic voltammograms at Au+cysteine+GNF-amide+FcCHO in 0.1 M PBS pH 7;
scan rate 50 (black), 100 (red), 250 (blue), 500 (green), 750 (light blue) and 1000 (pink) mV s

−1
;

5th scans shown; (b) ipa (red) and ipc (blue) plotted against ν; (c) log ipa (red) and log |ipc| (blue)
plotted against log ν. 
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The log-log plot presented in Figure 6.12(c) suggests poor immobilisation of the

reduced species onto the electrode surface. On the other hand, the oxidised species is

clearly confined to the surface. It is possible that the redox probe is physisorbed onto

the surface rather than covalently bonded onto the GNF. The oxidised species carries

positive charge and may therefore be more strongly adsorbed than the neutral reduced

FcCHO. A possible physisorption site is the basal plane of the graphene flakes via π–π 

interactions, although no evidence of physisorption of another ferrocene derivative,

ferrocenemethanol, onto GNF-COOH was found in experiments described in Section

3.3.7.

The amount of charge passed was calculated for each CV and converted to number of

moles of ferrocene groups at the electrode. The data is tabulated in Table 6.5.

Table 6.5: Peak currents found from cyclic voltammograms in Figure 6.12(b), amount of charge
q calculated by integrating peak areas under CV curve in Coulombs and corresponding number

of FcCHO molecules in moles.

ν 
/ V s−1

ipa

/ 10−9 A
q

/ 10−8 C
FcCHO

/ 10−13 mol
ipc

/ 10−9 A
q

/ 10−8 C
FcCHO

/ 10−13 mol

0.05 −6.24 −1.33 1.38 16.0 4.49 4.65

0.10 −10.2 −1.13 1.17 22.5 3.49 3.61

0.25 −24.4 −1.11 1.15 41.4 2.30 2.38

0.50 −46.9 −1.13 1.18 66.6 2.15 2.22

0.75 −60.0 −1.03 1.06 82.2 1.72 1.78

1.0 −78.4 −1.03  1.07 100 1.37 1.42

The number of moles of Fc groups calculated from the reduction peak decreases

slightly as the scan rate increases. When the corresponding number is calculated from

the oxidation peak, the values decrease rapidly. This supports the conclusion that the

covalent bond formation has failed and we are instead seeing physisorption onto the

GNF, where the positively charged FcCHO+ species is more tightly adsorbed than the

neutral FcCHO species.



6 Immobilisation of GNF on Electrode Surface

225

6.4 Conclusion

The majority of work presented in this thesis was conducted after immobilising GNF

onto the electrode surface by drop-coating, which is quick and convenient but offers

little control over the surface coverage and morphology of the drop-coated layer. In this

Chapter, different methods of attaching GNF onto electrodes were discussed.

Thiol-functionalised GNF have been successfully deposited onto gold substrate by self-

assembly and the chemisorption was verified by XPS. Individual GNF were imaged on

Au(111) substrate using STM, however, high resolution images proved elusive. A

significant amount of time was dedicated to STM imaging, and many hours were spent

varying the main imaging parameters, bias voltage and tunnelling current. Despite our

best efforts, we were unable to find settings that would have allowed us to image the

basal plane of a GNF with atomic resolution. Although not attempted in this work, STM

under UHV conditions or low temperature conditions could facilitate the imaging of

GNF.

Because the bulk of our STM experiments were directed towards imaging individual

flakes, only sub-monolayer coverages were investigated. At these very low coverages

GNF were found to preferentially adsorb on or near edge sites on Au(111) and lie flat

on the surface. This type of orientation would not necessarily be seen for higher

surface coverage. Further work would be needed to study self-assembly from higher

concentration or at longer deposition times to see how closely packed a GNF

monolayer would be and to determine the kinetics of adsorption.

GNF decorated with amide and COOH functionalities have also been deposited onto

Au by attachment onto a self-assembled monolayer of a short-chained thiol on a gold

substrate. Gold sputter-coated onto FTO glass was used for XPS studies and

polycrystalline gold electrodes for electrochemical experiments. Narrow scan C1s
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spectra indicated successful attachment and bond formation between the SAM end

groups and the GNF.

The SAM-GNF assembly was also tagged with an electrochemically active ferrocene

derivative. Narrow scan Fe2p spectra showed the presence of a ferrocene moiety in

Au+cysteamine+GNF-COOH+FcCOOH sample but not in Au+cysteine+GNF-

amide+FcCHO. Electrochemical experiments suggested the presence of ferrocene

moieties in both Au+cysteamine+GNF-COOH+FcCOOH and Au+cysteine+GNF-

amide+FcCHO samples, but in-depth analysis of cyclic voltammograms showed poor

immobilisation of FcCHO, indicating a lack of covalent bond formation. Further

optimisation of the deposition method is therefore needed in order to achieve covalent

attachment of ferrocene onto GNF.
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7 Concluding Remarks

This thesis set out to achieve three goals: to examine the effect of specific surface

functionalities present at carbon electrodes on common redox probes; to study the

potential-dependent dissociation of acidic surface functionalities; and to explore

different ways of attaching functionalised carbon nanomaterials onto a surface. In this

work graphene nanoflakes with well-defined edge functionalities were used as a novel

carbon nanomaterial. Characterisation of GNF has been reported before [1], but in this

thesis we have added to the existing knowledge of the acid-terminated GNF by

performing pH titration and in-situ monitoring of acid dissociation by infrared

spectroscopy. Complexation of GNF-COOH was also studied by using different

cations.
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7.1 Influence of GNF on the Electrochemistry of Redox

Probes

Oxidised carbon electrodes will present a range of surface oxygen functionalities;

hence it can be difficult to isolate the interaction of redox probes with a specific surface

moiety. The strength of this study are the well-characterised and uniform GNF that

enabled me to attribute changes in electrochemical response to specific functionalities.

The very high density of carboxylic acid groups of the GNF-COOH flakes and the

absence of other oxygen-containing functionalities allowed me to specifically

investigate the effect of these highly charged and acidic groups on the electrochemical

response of GNF.

The presence of an immobilised layer of GNF on the surface of a boron-doped

diamond electrode did not inhibit electron transfer of ferrocene methanol, a common

outer-sphere redox probe, irrespective of edge termination. When a proton-coupled

electron transfer reaction was examined, carboxylic acid –terminated GNF were found

to participate in the redox reaction by providing a non-solution proton source and sink.

A whole Chapter was devoted to the [Fe(CN)6]
3−/4− redox couple, which is often used in

electrochemical studies as a redox probe despite a large body of evidence showing

complex behaviour at electrodes and instability in solution. At BDD electrode, the

presence of COOH groups has been shown to have an adverse effect the electron

transfer kinetics of [Fe(CN)6]
3−/4− especially in alkaline solutions attributed to

electrostatic repulsion between negatively charged carboxylates and the negatively

charged redox species [2, 3]. The reversibility and electron transfer rate of the

[Fe(CN)6]
3−/4− redox system has been shown by others to depend on the concentration

and identity of cations in solution [4, 5]. Additionally, it is known that [Fe(CN)6]
3−/4− can

be unstable in solution of low ionic strength and low pH, and cyanide ligand loss and

subsequent decomposition and adsorption onto electrodes have been observed by
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several groups [5-11]. In this work it is shown that the acid groups at GNF-COOH

severely inhibit the redox reaction of [Fe(CN)6]
3−/4− in acidic solution when more acid

groups are expected to be protonated; therefore, electrostatic repulsion cannot be used

to explain the effect of GNF-COOH on this redox couple. By monitoring the stability of

[Fe(CN)6]
3−/4− in the presence of GNF, it is demonstrated that the acid-terminated flakes

accelerate the decomposition of the redox species.

7.2 Potential-Driven Deprotonation of Acid Groups

In Chapter 5, the effect of applied potential on carboxylic acid groups at the GNF edge

was studied. Numerous reports on the dissociation of self-assembled monolayers exist,

but the findings are contradictory. Some groups have reported deprotonation occurring

at positive applied potential in response to the electric field at the electrode [12-16],

whereas others have observed deprotonation at negative potentials in response to

changes in the apparent pKa of the acid groups due to changes in cation activity at the

electrode [17-20].

By complexing COOH-terminated GNF with divalent cations and immobilising them on

BDD, a large surface area electrode with a high concentration of acid groups was

constructed. The dissociation of carboxylic acid groups at the GNF edge was then

monitored in situ by combining potentiostatic control with infrared spectroscopy.

Deprotonation was observed on application of a negative potential of the surface-

immobilised acid groups as well as the supporting electrolyte. The deprotonation was

confirmed to stem from changes in the apparent pKa of all species near the electrode.

The observation of deprotonation of electrode-immobilised acids is not new; however,

in this thesis we have provided convincing evidence of the mechanism behind the

observed behaviour. There are few studies that can provide in situ measurement of

changes in interfacial speciation as a function of applied potential as has been done in
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this thesis. To the best of our knowledge, potential-induced deprotonation of solution

species has never previously been reported.

7.3 Immobilisation of GNF

In Chapter 6, different methods of attaching GNF onto a substrate are discussed. The

main immobilisation technique used in this work is drop-coating, which is quick and

convenient but offers little control over the surface coverage and morphology of the

drop-coated layer. To study the immobilisation of GNF onto a substrate in a more

controlled fashion, other techniques were used.

Firstly, thiol-terminated GNF were attached onto a gold substrate by self-assembly and

the successful attachment was confirmed by XPS. Sub-monolayer coverages were

used in order to be able to image the surface with scanning tunnelling microscopy. At

low coverages, the GNF were found to orientate horizontally on the surface and adsorb

preferentially onto step edges. Secondly, self-assembled monolayers on gold with

different head groups were utilised to attach GNF onto the substrate through covalent

bonding, and narrow scan C1s spectra indicated successful attachment and bond

formation between the SAM end groups and the GNF.

7.4 Future Work

It was not possible to determine the identity of the [Fe(CN)6]
3−/4− decomposition product

from the experimental results presented in this thesis. To identify the new species

observed in this study, a few techniques could be tried. UV-Vis in the total internal

reflection mode would allow further in situ characterisation of the precipitate by

discriminating between interfacial and solution species. If the precipitate can be

separated from the solution, X-ray diffraction (XRD) could be used to study the crystal

structure of the decomposition product.
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Although we were unable to achieve atomic resolution STM images of the GNF in this

study, the use of UHV conditions or low temperature conditions could facilitate the

imaging of GNF. Further work would also be useful to study self-assembly of thiol-

terminated GNF from higher concentration or at longer deposition times to see how

closely packed a GNF monolayer would be and to determine the kinetics of adsorption.

Additionally, scanning electron microscopy (SEM) imaging could be used to probe the

orientation on freestanding BDD discs.

Recent developments in the synthesis of functional graphene nanocomposites have led

to advances in electrochemical biosensing applications for graphene materials [21],

and this is an area in which potential use for GNF can be envisaged. Another field

where graphene is expected to be widely utilised is composite materials for energy

devices, for example to improve the mechanical stability of NiO [22] or polyaniline [23]

in supercapacitor electrodes; hence, GNF are a promising candidate for use in similar

applications.
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Appendix 1: Additional Figures for Chapter 4

Figure A1.1 Cyclic voltammograms of 0.5 × 10
−3

M K3[Fe(CN)6] at a BDD modified with GNF-
COOH in different concentrations of pH 5 PBS: 1 M (blue); 0.1 M (red); 0.01 M (black). Scan

rate 50 mV s
−1

. First scans shown.
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Figure A1.2 Cyclic voltammograms of 0.5 × 10
−3

M K4[Ru(CN)6] at (a) clean BDD; (b) BDD
modified with GNF-COOH. Supporting electrolyte: 0.1 M PBS at pH 6 (black), pH 7 (red), pH 8

(blue). Scan rate 50 mV s
−1

. First scans shown.
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Figure A1.3 Cyclic voltammograms of 0.5 × 10
−3

M K3[Fe(CN)6] at a BDD modified with GNF-
COOH in 0.01 M NaCl at pH 5 (black) and pH 8.4 (red). Scan rate 50 mV s

−1
. First scans

shown.

Figure A1.4 UV Vis spectra of 2 × 10
−3

M K3[Fe(CN)6] and 2 × 10
−3

M K4[Fe(CN)6] with
30 μg ml

−1
GNF in H2O at t = 0 h (black), t = 7 h (red) and t = 24 h (blue).
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Appendix 2: Derivation of Equation (5.9)

For an acid HA:

HA = H+ + A− (A.1)

K � =
a � � a � �

a � �
(A.2)

However, if excess cation M+ is present, this can associate with A− and change its

activity:

M+ + A− = MA (A.3)

K � � =
a � �

a � � a � �
(A.4)

From Equation (A.4):

a � � =
a � �

K � � 	a � � (A.5)

Substituting into Equation (A.5):

K � =
a � � a � �

a � � K � � a � � (A.6)

Taking logs:
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log Ka = log
a � � a � �

a � �
− log Kas − log a � � (A.7)

By definition, the first term in Equation (A.7) is pKa(app), i.e. the measured pKa when

the activity of M+ is not zero.

Therefore:

−pK � = −pK � (app) + pK � � − log a � �
(A.8)

Equation (A.8) then rearranges into Equation (5.9).
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Appendix 3: Calculation of the values presented

in Table 5.6

The asymmetric stretch of sulphate ion absorbs strongly in infrared around 1100 cm−1

and this band was found to decrease and increase with applied potential. This change

in the activity of sulphate ions, ΔaSO4
� � , at the electrode surface, due to electrostatic

migration effects on application of −0.5 V, was quantified with help of calibration 

experiments in Section 5.7 and it was found to be −3.5 × 10−3 M. Therefore, on

application of −0.5 V, it is expected that the change in the activity of potassium cations, 

ΔaK+, is 2 × ΔaSO4
� � = +7 × 10−3 M.

aK+  in the equilibrated state and on application of −0.5 V was calculated from the 

amount of K2SO4 used to prepare solutions at specific pH. pKa(app) values were

determined using Equation (5.9), and activity changes in sulphate species on

application of −0.5 V were then calculated using the modified Henderson-Hasselbalch 

equation (Equation (5.10)).

The following assumptions are made in the calculations: ΔaK+ is taken to be +7 × 10−3

M regardless of equilibrium concentration of K+; concentration is approximated with

activity; and the increased sulphate concentration at the interface due to pre-

concentration is neglected (it is clear from IR spectra in Figure 5.5 that aSO4
� � is higher

at the electrode interface than in the bulk solution).
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0.1 M pH 7 K2SO4 solution

K2SO4 is expected to dissociate fully, thus giving aK+ = 0.200 M at equilibrium. On

application of −0.5 V the activity of K+ increases to aK+ = 0.207 M. Using these activity

values, pKa(HSO4
−) = 1.92 and assuming pKas = 0, pKa(app) can be calculated using

Equation (5.9): pKa(app) = pKa + pKas – log(aK+).

At equilibrium: pKa(app) = 1.92 + 0 – log(0.200) = 2.619

At −0.5 V:  pKa(app) = 1.92 + 0 – log(0.207) = 2.604

To determine the speciation at a specific pH Equation (5.10) is used:

pH = pKa(app) + log([a
SO4

2� ]/[aHSO4
� ])

At equilibrium:
a

SO4
2�

aHSO4
�

=10pH	� 	pKa(app) = 24045

At −0.5 V:  
a

SO4
2�

aHSO4
�

=10pH	� 	pKa(app) = 24887

Therefore, for 0.1 M pH 7 solution on application of −0.5 V:  

Δa
SO4

2� = 0.1 M × � �
� � � � �

� � � � � � �
� − �

� � � � �

� � � � � � �
� �

Δa
SO4

2� = +0.14 × 10−6 M

The above calculation predicts that as a negative potential is applied, 0.14 × 10−6 M

HSO4
− will deprotonate and form SO4

2−. In experimental conditions this value is too

small to be detected and we can therefore expect to see no protonation of SO4
2− and

all changes in Δa
SO4

2� will result from migration effects.
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0.1 M pH 3.5 K2SO4 solution

pH 3.5 K2SO4 was prepared by combining 0.1 M H2SO4 and 0.1 M K2SO4. The final

concentrations were 0.0988 M K2SO4 and 0.0012 M H2SO4, giving 0.198 M K+.

Therefore, at equilibrium and 1.0 V: aK+ = 0.198 M

On application of −0.5 V:  aK+ = 0.205 M

Using Equation (5.9): pKa(app) = pKa + pKas – log(aK+):

At equilibrium: pKa(app) = 1.92 + 0 – log(0.198) = 2.623

At −0.5 V:  pKa(app) = 1.92 + 0 – log(0.205) = 2.608

Using pH = pKa(app) + log([a
SO4

2� ]/[aHSO4
� ]) to determine speciation:

At equilibrium:
a

SO4
2�

aHSO4
�

=10pH	� 	pKa(app) = 7.604

At −0.5 V:  
a

SO4
2�

aHSO4
�

=10pH	� 	pKa(app) = 7.870

Therefore, on application of −0.5 V:  Δa
SO4

2� = +0.355 × 10−3 M

From the calculation above, in 0.1 M K2SO4 solution at pH 3.5 and on application of

−0.5 V, we predict 0.36 × 10−3 M HSO4
− to deprotonate and form SO4

2−.
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0.1 M pH 3 K2SO4 solution

pH 3 K2SO4 solution was prepared by combining 0.1 M H2SO4 and 0.1 M K2SO4. The

final concentrations were 0.096 M K2SO4 and 0.004 M H2SO4, giving 0.192 M K+.

Therefore, at equilibrium and 1.0 V: aK+ = 0.192 M

On application of −0.5 V:  aK+ = 0.199 M

As above, Equation (5.9) is used to find pKa(app):

At equilibrium: pKa(app) = 2.637

At −0.5 V:  pKa(app) = 2.621

Using pH = pKa(app) + log([a
SO4

2� ]/[aHSO4
� ]) to determine speciation:

At equilibrium:
a

SO4
2�

aHSO4
�

=10pH	� 	pKa(app) = 2.405

At −0.5 V:  
a

SO4
2�

aHSO4
�

=10pH	� 	pKa(app) = 2.489

Therefore, at −0.5 V:  Δa
SO4

2� = +0.75 × 10−3 M

In 0.1 M K2SO4 solution at pH 3 and on application of −0.5 V, we expect to see 0.75 × 

10−3 M HSO4
− deprotonating to form SO4

2−.
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Appendix 4: Calculation of the values presented

in Table 5.7

Following the same methodology as in Appendix 3, changes in phosphate speciation

were calculated using the value of ΔaK+ determined in Section 5.7 (+7 × 10−3 M). aK+ in

the equilibrated state and on application of −0.5 V was calculated from the amounts of 

KH2PO4 and 0.1 M K2HPO4 used to prepare solutions at specific pH. pKa(app) values

were determined using Equation (5.9), and activity changes in sulphate species on

application of −0.5 V were then calculated using the modified Henderson-Hasselbalch 

equation (Equation (5.10)).

0.1 M pH 7 phosphate

pH 7 phosphate solution was prepared by combining 0.1 M KH2PO4 and 0.1 M K2HPO4

in approximately 1:1 ratio. Assuming that both KH2PO4 and K2HPO4 dissociate fully to

K+ and HPO4
−, the concentration of K+ in equilibrated state is calculated to be 0.15 M.

Therefore, at equilibrium and 1.0 V: aK+ = 0.150 M

On application of −0.5 V:  aK+ = 0.157 M

pKa(app) is calculated using Equation (5.9): pKa(app) = pKa + pKas – log(aK+ ) with

values pKa(H2PO4
−) = 7.2 and pKas = 0:
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At equilibrium and 1.0 V: pKa(app) = 8.033

On application of −0.5 V:  pKa(app) = 8.014

Using pH = pKa(app) + log([a
HPO4

2� ]/ [aH2PO4
� ]) to determine speciation:

At equilibrium and 1.0 V:
a

HPO4
2�

aH2PO
4
�

=10pH � pKa(app) = 0.092

At −0.5 V:  
a

HPO4
2�

aH2PO
4
�

=10pH � pKa(app) = 0.097

Therefore, on application of −0.5 V:  Δa
HPO4

2� = +0.36 × 10−3 M.

From the calculation above, in 0.1 M phosphate solution at pH 7 and on application of

−0.5 V, we predict 0.36 × 10−3 M H2PO4
− to deprotonate and form HPO4

2−.

0.1 M pH 9 phosphate

pH 9 phosphate solution was prepared from 0.1 M K2HPO4, which dissociates fully to

give 0.2 M K+ and 0.1 M HPO4
2−. Therefore, at equilibrium and 1.0 V we have aK+ =

0.200 M, and on application of −0.5 V we have aK+ = 0.207 M.

pKa(app) is calculated using Equation (5.9): pKa(app) = pKa + pKas – log(aK+ ) with

values pKa(H2PO4
−) = 7.2 and pKas = 0:

At equilibrium and 1.0 V: pKa(app) = 7.909

On application of −0.5 V: pKa(app) = 7.894

Using pH = pKa(app) + log([a
HPO4

2� ]/ [aH2PO4
� ]) to determine speciation:

At equilibrium:
a

HPO4
2�

aH2PO
4
�

=10pH � pKa(app) = 12.33
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At −0.5 V:  
a

HPO4
2�

aH2PO
4
�

=10pH � pKa(app) = 12.76

Corresponds to a Δa
HPO4

2� = +0.24 × 10−3 M

In 0.1 M phosphate solution at pH 9 and on application of −0.5 V, we expect to see 

0.24 × 10−3 M H2PO4
− deprotonating to form HPO4

2−.

0.1 M pH 3 phosphate

At pH 3, the phosphate will exist as H2PO4
− and H3PO4. The solution was prepared by

combining 0.1 M KH2PO4 and 0.1 M H3PO4 with final concentrations of 0.08 M KH2PO4

and 0.02 M H3PO4.

Therefore, at equilibrium and 1.0 V: aK+ = 0.08 M

On application of −0.5 V:  aK+ = 0.087 M

pKa(app) is calculated using Equation (5.9): pKa(app) = pKa + pKas – log(aK+ ) with

values pKa(H3PO4) = 2.12 and pKas = 0:

At equilibrium and 1.0 V: pKa(app) = 3.217

On application of −0.5 V:  pKa(app) = 3.180

Using pH = pKa(app) + log([aH2PO4
� ]/ [a

H3PO4
0]) to determine speciation:

At equilibrium:
aH2PO

4
�

a
H3PO

4
0

=10pH � pKa(app) = 0.092

At −0.5 V:  
aH2PO

4
�

a
H3PO

4
0

=10pH � pKa(app) = 0.097

Corresponds to a ΔaH2PO4
� = +2.0 × 10−3 M.
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From the calculation above, in 0.1 M phosphate solution at pH 3 and on application of

−0.5 V, we predict 2.0 × 10−3 M H3PO4 to deprotonate and form H2PO4
−.


