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Abstract

Background – The antenatal detection of facial dysmorphism using three-dimensional ultrasound

may raise the suspicion of an underlying genetic conditions but infrequently leads to a definitive

antenatal diagnosis. Despite advances in array and non invasive prenatal testing, not all genetic

conditions can be ascertained from such testing.

Objectives – The aim of this study was to investigate the feasibility of quantitative assessment of

fetal face features using prenatal three-dimensional ultrasound volumes and statistical shape

modelling.

Study design – Thirteen normal and seven abnormal stored three-dimensional ultrasound fetal face

volumes were analysed, at a median gestation of 29+4 weeks (25+0 – 36+1). The 20 three-dimensional

surface meshes generated were aligned and served as input for a statistical shape model, which

computed the mean three-dimensional face shape and three-dimensional shape variations using

Principal Component Analysis.

Results – Ten “shape modes” explained over 90% of the total shape variability in the population.

While the first mode accounted for overall size differences, the second highlighted shape feature

changes from an overall proportionate towards a more asymmetric face shape with wide prominent

forehead, and undersized, posteriorly positioned chin. Analysis of the Mahalanobis distance in PCA

shape space suggested differences between normal and abnormal fetuses (median and interquartile

range distance values 7.31±5.54 for the normal group versus 13.27±9.82 for the abnormal group)

(p=.056).

Conclusion – This feasibility study demonstrates that objective characterization and quantification

of fetal facial morphology is possible from three-dimensional ultrasound. This technique has the



potential to assist in utero diagnosis particularly of rare conditions where facial dysmorphology is a

feature.
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Introduction

Despite advances in invasive and non-invasive prenatal diagnostic and screening tests with the

advent of CGH array and non invasive prenatal testing, many genetic syndromes or chromosomal

abnormalities are still diagnosed only postnatally. In many cases of well phenotypically characterized

conditions, not all genetic mutations are known, for example prominent eyebrows and everted

nostrils with smooth philtrum may be present in Cornelia de Lange syndrome and depressed nasal

bridge and frontal bossing are common features of Apert syndrome. Hence definitive prenatal

diagnosis of these conditions is precluded unless targeted testing is performed and even then, the

diagnosis is not always positively made.

Recent reports have suggested that the antenatal detection of facial dysmorphisms using three-

dimensional ultrasound (3D US) can contribute in the identification of highly suggestive features or

lead to in utero diagnosis of abnormalities by targeting genetic tests (1-9). Dysmorphic fetuses may

show highly suggestive facial features or, conversely, the facial shape may be apparently normal but

associated with additional abnormal findings which may suggest a genetic diagnosis. Whatever the

condition, the accurate assessment of the fetal face and the diagnosis of facial abnormalities can be

challenging and remains subjective even for experienced investigators.

Due to the higher resolution and image quality of recently developed equipment, three-dimensional

and four-dimensional (4D) US, both in multiplanar and rendered views, currently act as adjunct to

standard 2D sonography for the visualization of fetal anatomy (10), thus representing a useful tool

for parental counselling (1,6,11).

Experience of 3D volumes acquired using computed tomography (CT) scan in children (12-16) has

demonstrated that it is possible to reliably and repeatedly represent volumes by landmarking



biologically homologous points. No studies have yet assessed the feasibility of a computational

approach for the antenatal analysis of the fetal facial shape. The aim of our study was to evaluate

the feasibility of quantitative assessment of 3D US facial volumes via Statistical Shape Modelling

(SSM) (17,18). We sought to investigate the feasibility of describing normal and abnormal facial

features objectively in order to distinguish dysmorphic facial fetuses from normal ones. If this were

achieved it would lead to the possibility of diagnosing genetic syndromes that manifest with

craniofacial dysmorphism.



Methods

Patient population and image acquisition

Patients who underwent 3D US scan for clinical purposes between January and June 2016 at two

tertiary Fetal Medicine Centres (Queen Charlotte’s and Chelsea Hospital, London, UK and University

Hospital of Parma, Italy) were considered for the study. Volumes from fetuses over 24 weeks of

gestation were considered where fetal position and lie, amniotic fluid volume, limbs attitude and

intra-amniotic floating cord allowed acquisition of good quality 3D US data. This was subjectively

defined on the basis of the clearness of the facial borders and absence of shadowing in the

multiplanar view – unobstructed “face on” view (19,20). Static 3D acquisition of the volume on

midsagittal view of the fetal face was undertaken with a low frequency probe (4-8 MHz) equipped

Voluson S8-E8 (General Electric Healthcare, London, United Kingdom and General Electric

Healthcare Milan, Italy); the volumes were acquired using the highest quality mode and the lowest

angle sweep, which allowed the inclusion of the whole facial surface from the forehead to the chin.

A 90° coronal view was obtained orienting the volumes along the x, y and z axis during the post-

acquisition processing and the oriented volume was stored in the machine as per normal clinical

practice. Anonymised volumes were exported in Cartesian coordinate format for further 3D image

processing. At this stage, cases were excluded when missing facial parts or due to unsatisfactory

definition of the facial borders secondary to shadowing or obstructed vision caused by the uterine

wall / intervening limbs / cord loops. Fetuses were labelled as “normal” or “abnormal” according to

the antenatal or postnatal diagnosis (Table 1).

Following a query to the National Research Ethics Service (“Developing ultrasound fetal facial

dysmorphology analysis based on 3D imaging datasets”), ethical approval for this technical feasibility

study using anonymised routinely collected volumes was determined as not necessary.



Image post-processing

An overview of the steps performed in this study for 3D US volume post-processing is provided in

Figure 1. Image elaboration included manual face segmentation and 3D reconstruction using Mimics

v17 (Materialise, Leuven, Belgium) to create computational surface meshes representing the 3D face

shapes. Meshes were cut in order to include the facial shape from the forehead to the chin using

three points located in the middle part of the lenses bilaterally and the internal border of the upper

alveolar ridge at the incisive foramen as landmarks for the sectional cutting plane.

The cut meshes were manually aligned (Rhinoceros 4.0 McNeel & Associates, Seattle, WA, USA) in a

common coordinate system using as references the midline point of the internal border of the upper

alveolar ridge at the level of the incisive foramen and a second midline point which was drawn at

the symmetry plane of the mesh at the top of the forehead (Figure 1).

Statistical Shape Modelling and Principal Component Analysis of facial shape features

SSM is an advanced statistical method applicable to a set of computational surface meshes, to study

complex 3D shape features (17,18,21,22). It allows building descriptive and predictive statistical

models based on 3D shape populations and thus extraction of “shape biomarkers” (23). Using the

non-parametetric Deformetrica SSM framework (24), we computed the 3D mean anatomical facial

shape or template based on the aligned surface meshes, with no need for landmarks or point-to-

point correspondence (Figure 2). The unique facial shape features of each subject are captured by

computing subject-specific transformations that deform the template shape towards each subject

shape (Figure 1). Each subject shape i is thus characterised by a multitude of deformation vectors ɸi

rather than by its actual 3D mesh surface (23,25,26,27).



All deformation vectors together can be combined in a deformation matrix D which constituted the

input for principal component analysis (PCA), a mathematical technique used to condense large

amount of 3D shape data into a smaller number of relevant variables, the “principal components”

or “shape modes”, without a reduction of the data itself (13,28). Shape modes, representing the key

shape features of the input population, can be visualised as shape deformation of the mean shape

and allow the application of conventional statistical testing on 3D shape data. The principal

contributors to facial shape variability (i.e. shape modes) in our cohort were computed in Matlab

(The Mathworks, Natick, MA) (26,29,30). Total shape variability was broken down into m shape

modes, each accounting for a certain percentage of the total variability (28).

In order to visualise dominant 3D fetal face features as derived by PCA, shape modes were visualised

in ParaView (31) as deformations of the computed template shape along the mode, from -3 standard

deviations (SD) to +3SD around the mean shape. Furthermore, shape modes were numerically

described by so-called “shape vectors” {fi,k}k=1…m (23,30,32) with each shape vector entry quantifying

how much of the shape features described by the respective shape mode is contained within a

subject’s shape.

The shape vector entries {fi,k} for each PCA shape mode k and subject i were computed. Differences

in shape vector distributions between normal and abnormal subjects were visualised and related to

3D facial features described by the respective shape mode. To provide a quantitative “abnormality

score” that takes into account all 3D facial features (parameterised as deformations of the template

shape in D), we computed the subject-specific Mahalanobis distance dMahal,i in the PCA shape space,

defined as (28):
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With Var({fi,m}) being the variance of the shape vector of the mth PCA shape mode. Distributional

differences in dMahal,i between the normal and abnormal group were assessed using non-parametric

Mann-Whitney U test, considering p<0.05 as statistically significant. Median and interquartile ranges

(IQR) are reported. All statistical tests were carried out using IBM SPSS Statistics v22 (SPSS Inc.,

Chicago, IL).



Results

Twenty-nine patients fulfilled the inclusion criteria of which 20 were suitable for further image

processing and were included in the SSM and PCA: the median gestational age at volume collection

was 29+4 weeks [25+0 – 36+1 weeks]. The normal group accounted for 13 fetuses (median gestation

at inclusion 30+0 weeks [25+0 – 36+1 weeks]), including 12 structurally normal fetuses and one case

of coarctation of the aorta and polyhydramnios in a fetus who had negative postnatal genetic testing.

Five fetuses considered as abnormal were affected by a genetic or chromosomal abnormality,

whereas the remaining abnormal cases consisted in 1 case of unilateral right-sided cleft lip, alveolar

ridge and palate, and 1 case of micrognathia (median gestation at inclusion 28+4 weeks [26+3 – 33+0]).

Table 1 summarises patient characteristics and gestational age at volume collection of all cases

whose surface meshes served as input for the SSM. From this cohort, anatomical mean face shape

was computed (Figure 2).

According to PCA results, m=10 shape modes accounted for over 90% of the shape variability in the

study group (Figure 3). Shape mode 1 found differences in overall facial size to be the most important

contributor to shape variability within the population, accounting for 53.1% of total shape variability

(Figure 4). Distributions of shape vector entries for shape mode 1 did not differ on visual assessment

between the normal and abnormal cases, implying that abnormal cases could not be determined

merely based on facial size differences.

Shape mode 2 accounted for 9.6% of shape variability (Figure 5). Within this shape mode, all but

one abnormal case (case 15, Table 1) were clustered together towards low, negative shape vector

values, while normal cases were predominantly grouped towards high, positive shape vector values

as quantified by median shape vector values of -2.95±115.9 (median±IQR) for the normal versus -

56.4±101.6 for the abnormal group.



Looking at the shape mode visualisation as deformation of the mean shape, PCA shape mode 2

described facial shape features relating to differences in proportion between the chin and the

forehead (Figure 6). High positive shape vector values corresponded to large, positive deformations

of the template towards +3SD, which showed a trend towards an equally prominent forehead and

chin region and appeared to be more representative for the “normal” shape. On the other hand,

negative values, representing template deformations towards -3SD, showed gradually more

prominent disproportion between the chin (increasingly smaller) and the forehead (increasingly

protruding), which were common key features of most of the “abnormal” cases.

No such clustering of shape vector entries between the two groups could be found in the remaining

8 PCA modes.

Regarding the abnormality score dMahal,i, abnormal cases generally showed higher distances in PCA

shape space as defined by m=10 PCA shape modes (Figure 7), with dMahal,i being 7.31±5.54

(median±IQR) for the normal group and 13.27±9.82 for the abnormal group (p=.056).



Discussion

In this paper we describe quantitative analysis of fetal facial morphology based on Cartesian volumes

acquired via 3D ultrasound, and our findings suggest that quantitative differences based on PCA may

differentiate between normal and abnormal facial morphology. Antenatal computed evaluation of

fetal facial shape is feasible and SSM visually captured and quantified facial shape features that may

help to distinguish between normal and abnormal fetuses.

The role of 3D US in the assessment of the fetal face has been previously described (1,6,11) and its

advantages over 2D US include the capability to offline reconstruct the acquired volume for further

analysis (9). Dysmorphisms have been associated with neurodevelopmental impairment in the

context of different genetic syndromes such as Apert, Cornelia de Lange, Costello, Noonan and

Goldenhar (4-8) though this is not invariably so, for example in the case of Treacher Collins and

Stickler Syndromes – both conditions having well characterised facial appearances. Where fetuses

are considered to be at risk they may be studied using 3D US however, this requires considerable

skill and experience, and most importantly is dependent on subjective assessment.

A standardised and objective approach using computed assessment of US fetal facial volumes would

allow a greater degree of confidence in antenatal diagnosis of genetic syndromes or chromosomal

abnormalities. Ideally, such an approach allowing quantitation of the degree of normality or

abnormality of the face, or even recognizing specific patterns associated with different syndromes,

could ultimately lead to non-invasive diagnosis based on the recognition of associated dysmorphic

features. We have not tested this latter hypothesis in this study.

Postnatal experiences in craniofacial imaging have seen computational representations of the

human face starting from CT-acquired volumes, which were analysed using geometric



morphometrics (14-16). However, CT is not suitable for prenatal assessment, and previous

morphometric techniques were based on landmarking, dependent on individual manual labelling of

the biological structures. In former studies on antenatal 3D US volumes, a semi-automated

technique, whose acronym was VOCAL (“Virtual Organ Computer-aided AnaLysis”), was described

for the estimation of the volume of the gestational sac in early pregnancy. Such obtained volumes

could be converted into shape vectors and computed by means of PCA as we have done in our study

(LEE, DETER). Differently from our experience, VOCAL technique lead to the rendering of volume

estimations volumes, whereas in our setting we aimed to reconstruct actual facial shapes. Our

approach, using a non-parametric SSM that does not require anatomical landmarks is independent

from subjective face feature evaluation and thus more reproducible.

In our study, the application of unsupervised PCA yielded promising results, which suggest that

disproportion in the facial areas in the vertical plane can distinguish normal and abnormal face

shapes. Normal cases were more likely to show more symmetric proportions between the forehead

and the chin, whereas the abnormal faces showed a wider, prominent forehead and undersized and

posteriorly positioned chin. Numerical shape vector results showed a clear clustering of normal and

abnormal cases with one outlying case (case 15, Table 1) within the abnormal group. This subject

presented with a rounded initial volume, which resulted in a small, round overall face shape with

shortened and less prominent forehead, but a larger chin region after performing cutting operations.

In fact, this face was so far outlying (i.e. very different from all the other abnormal cases and also

different from the normal cases) that we suspect this subject to mark the beginning of another,

abnormal population, which simply lacks members due to the small cohort size. This may be due to

the fact that we labelled cases as “abnormal”, regardless of their specific diagnosis. One could

imagine that subgroups within the “abnormal” group might exist that cluster together facial features



associated with one specific defect. Such a group may indeed be placed very far away from both the

normal and the abnormal cases contained in our patient cohort.

This was a feasibility study to describe the technique and establish whether it was possible to

quantify facial features from prenatal ultrasound. We did not intend to derive an algorithm for

differentiating normal from abnormal faces. Nevertheless, despite the small sample size and the fact

that our abnormal group was made up by fetuses of different and varied abnormalities, we found a

trend towards negative shape vector values compared to normal cases. It would be interesting to

test normal versus abnormal fetuses carrying all the same genetic abnormality in a larger cohort of

fetuses as we believe that condition specific vector patterns are likely to emerge.

Further, we computed the Mahalanobis distance dMahal,i in order to define one quantitative

“abnormality score” as a distance of one subject face shape in multi-dimensional PCA shape space

with regard to the rest of the population. Differences of borderline statistical significance were found

between normal and abnormal cases in terms of dMahal,i, with abnormal cases generally showing

higher values, implying greater distance from the normal face shape population. Hence we show

that fetal face features derived from 3D US assessment, can indeed be quantified and thus compared

between groups. Trends in both shape vectors and dMahal,i reveal potential of detecting abnormal

facial characteristics using these methods.

We are aware of the limitations of 3D US imaging in terms of reproducibility and quality of the

imaging. Fetal position, reduced amniotic fluid volume, maternal habitus and unfavourable

conditions may negatively affect the collection of the data. However, about two-thirds of the

routinely collected volumes in our cohort were suitable for data analysis and would be close to 100%

if repeat visits for ultrasound imaging were scheduled. We have not included volumes acquired from

fetuses aged less than 24 weeks given that volume acquisition and quality of the multiplanar and



the rendered images may be negatively affected by the smaller size of the fetus and active fetal

movements. Furthermore, we do not envisage this technique to be suitable on a routine basis.

Indeed, given the wide variation of facial shape features even within normal individuals (e.g.

depending upon ethnicity), it is likely that an unrestricted application of SSM and PCA would provide

a great amount of false positive results. Clinical use of the technique we have described would be

appropriate only in cases where a genetic syndrome is suspected but the actual etiology cannot be

diagnosed or suspected by additional tests, including non-targeted CGH array. Realistically, it seems

unlikely that such differential diagnosis process would be completed before 24 weeks of gestation.

Another limitation of this technique is the time required for post-processing, currently mostly

manually performed. In first instance, adjustment for size prior to processing could allow

implementing a strategy of automated alignment and would further standardise the technique. Over

the last decade, learning databases capable to automatically reconstruct complex shapes starting

from anatomical landmarks have been described (SCHEIRER, GHESU, CARNEIRO, SOFKA).

Nevertheless we believe that the use of automated techniques in such settings could lead to

inaccurate reconstruction of the actual 3D shape and, ultimately, “normalize” abnormal faces.

Additionally, other landmark points for referencing the cutting plane might perform better. Indeed,

shadowing from the alveolar ridge or the nasal septum may impair the labelling of the lower

reference point placed on the midline on the internal border of the upper alveolar ridge at the level

of the incisive foramen. Realistically, it is difficult to identify reproducible upper referencing points

other than the lenses of the eyes, whereas a new landmarking site, placed for example at the

external border of the lower alveolar ridge, might be more feasible.



Once processing steps such as segmentation, reconstruction, cutting and alignment become more

automated and robust, studies on larger cohorts may provide further basis for antenatal diagnosis

of genetic syndromes starting from 3D facial volumes.

Conventional genetic testing with karyotyping has been used in prenatal diagnosis since the 1960s

and allows the identification of aneuploidies as well as many structural rearrangements (33) but

cannot detect microscopic deletions or duplications. More recently introduced CGH array provides

higher resolution and capability to provide more diagnostic information however the clinical

significance of abnormal array results may be unknown and false negatives are still possible unless

targeted testing is undertaken (2). Another disadvantage of invasive genetic testing is represented

by the failure to obtain a result, which is more likely at advanced gestation (34). Computed

assessment of the fetal facial morphology could overcome the limitations of currently available tests

and represent a link between abnormal facial morphology and genetic testing.

In summary, this is the first study describing a combined approach using 3D US, SSM and PCA for the

antenatal assessment of biologic structures and for the quantitative assessment of fetal facial

morphology. Further improvement in the automation of the post-processing and testing on larger

cohorts of fetuses with specific conditions manifesting in dysmorphisms is required before any

practical implementation of such a technique. Nevertheless, results from this study are promising

and 3D US-based quantitative assessment of facial shape using SSM and PCA has the potential to

contribute to antenatal diagnosis of genetic and chromosomal abnormalities where facial

dysmorphism is a feature.
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Figures

Figure 1 – Overview of processing chain from reconstructed 3D US volumes over the manual

registration (alignment via defined landmarks) and cutting, mean shape (blue) and transformation

(ɸ) computation towards individual cases, principal component analysis (PCA) and final visualization

and quantitative assessment of shape modelling results. Shape modes thereby describe key 3D

shape features contributing to the overall facial shape variability, while shape vectors are their

numerical equivalents, describing shape features associated with a certain shape mode with respect

to an individual’s face shape.



Figure 2 –Computed mean (i.e. template) fetal face shape, based on all 20 faces reconstructed

from 3D US image data from different viewing angles. The 3D average face of normal and

abnormal cases shows a relatively symmetric and even face shape without any overly prominent

regions. By deforming the mean shape towards each individual’s face shape, all 3D facial features

are parameterised coherently in one common mathematical framework.



Figure 3 – Decomposition of the shape features and shape modes in the included population

according to Principal Component Analysis (PCA). The first shape mode accounted for 53.1% of

total shape variability; the second mode accounted for 9.6%. Ten modes accounted for over 90% of

shape variability.



Figure 4 – PCA shape mode 1 (a), visualized as deformation of the computed mean face shape along

the mode from -3 to +3 standard deviations (SD). Shape mode 1 thereby accounted mainly for size

differences between the included subjects. Respective subject-specific shape vector entries are

shown in (b), with large positive values relating to face features going towards +3SD and low negative

values going towards -3SD as shown in (a) and indicated at the y-axis. Both groups showed similar

distributions of shape vector entries, implying no substantial facial size differences between the two

groups.



Figure 5 – Shape vector distributions of PCA shape mode 2 in normal (blue, filled circles) and

abnormal (red, hollow circles) cases showing a clear clustering of normal cases towards larger,

positive shape vector values and of abnormal cases towards lower, negative shape vector values.

Blue face shapes indicate the extremes of PCA shape mode 2, thus showing face features associated

with positive and negative shape vector values, respectively. One face shape within the abnormal

group was clearly outlying (case number 15) as marked and shown.



Figure 6 – Three-dimensional visualization of PCA shape mode 2 from different viewing angles (a),

deforming the computed mean face shape towards shape features describing a more symmetric and

even overall face shape for normal cases (associated with higher, positive shape vector values

towards +3SD, Figure 5) and disproportion between the chin and a wider, protruding forehead for

the abnormal group (associated with lower, negative values towards -3SD). Surface distance maps

(b) quantifying local surface distances between the mean shape and the extremes of shape mode 2

as shown in (a) clarify, which facial regions are mostly affected by the shape mode 2 deformations.

Red, negative surface distances thereby describe outward deformation from the mean shape,

confirming protrusion and prominence of the forehead for abnormal cases.



Figure 7 – Mahalanobis distance was computed in order to quantify how distant each subject 3D

face shape is from the entire shape population. Of borderline statistical significance, median

distance for abnormal cases was higher, implying higher facial abnormality.



Tables

Table 1 – Gestational ages at time of 3D US scan and outcome diagnosis of the included cases.

Fetus Gestation

[weeks+days]

Outcome

1 25+0 Normal

2 26+6 Normal

3 27+1 Normal

4 27+1 Normal

5 28+4 Normal

6 29+0 Normal

7 30+0 Normal

8 31+1 Normal

9 32+5 Normal

10 33+0 Normal

11 34+0 Normal

12 35+0 Normal

13 36+1 Normal – Coarctation of the aorta, polyhydramnios

14 26+3 Abnormal (unilateral right-sided cleft lip, alveolar ridge

and palate)

15 27+2 Abnormal (consanguineous multiple malformations)

16 28+0 Abnormal (consanguineous multiple malformations)

17 29+1 Abnormal - Micrognathia

18 30+0 Abnormal - Noonan Syndrome

19 33+0 Abnormal - Trisomy 18

20 33+0 Abnormal - Trisomy 21


