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Abstract

Assume that M is a compact Riemannian manifold of bounded
geometry given by restrictions on its diameter, Ricci curvature and
injectivity radius. Assume we are given, with some error, the first
eigenvalues of the Laplacian A on M as well as the corresponding
eigenfunctions restricted on an open set in M. We then construct a
stable approximation to the manifold (M, g). Namely, we construct
a metric space and a Riemannian manifold which differ, in a proper
sense, just a little from M when the above data are given with a small
error. We give an explicit logarithmic stability estimate on how the
constructed manifold and the metric on it depend on the errors in
the given data. Moreover a similar stability estimate is derived for
the Gel'fand’s inverse problem. The proof is based on methods from
geometric convergence, a quantitative stability estimate for the unique
continuation and a new version of the geometric Boundary Control
method.

1 Introduction

1.1 Inverse interior spectral data

Let (M, g,p) be a pointed compact Riemannian manifold, that is, (M, g) is
a compact Riemannian manifold without boundary and p € M is a point
of the manifold. We denote by inj,,(p) the injectivity radius of (M, g) at p.
Also, by My, , where n € Z,, n > 2, a > 0, we denote the collection of all
pointed compact manifolds of dimension n such that inj,,(p) > a.
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Let A, be the Laplace operator on (M, ¢g), where we use the sign conven-
tion where —A, is a non-negative definite operator.

Let ¢;, 7 = 0,1,2,... be the complete sequence of L?*(M)-orthonormal
eigenfunctions of —A, and let A; be the corresponding eigenvalues. The
eigenvalues and the eigenfunctions are enumerated so that 0 = \g < A\ <
Ay < ... Note that ¢y(z) = vol (M)~*/2, where vol stands for the volume on
(M, g).

For ro > 0, let B(p,r9) C M be an open ball of radius ry centered at
p. When 79 < inj,,(p), in the ball B(p,ry) there are Riemannian normal
coordinates X : B(p,rg) — B(0,79), where B.(rg) = B.(0,79) C R™ is
the Euclidean ball of R™ of radius 7y, centered at zero. When there is no
danger of misunderstanding, we use the coordinate map X to identify the
metric ball B(p,ry) on the manifold and the Euclidean ball B.(r¢) on the
coordinate chart. Also, we identify the metric tensor g on B(p,79) C M
and the corresponding tensor X,g on B.(rg) C R™ and denote this metric
tensor by g(x) or g;;(z), © € Be.(rg). Also we identify the restrictions of
the eigenfunctions ¢, to B(p,1r9) C M with X,p; on B.(rg) C R™. We say
that a metric tensor gji(x) on B.(rg) is a Riemannian metric in normal
coordinates, if g;r(v)2/a" = |z> = 31 (¢7)%, @ € R", and g;(z)276F = 0,
if v-& =370 27 = 0.

Definition 1 Let (M,g,p) € M, . Then

(1) The pair, consisting of the ball (B(10), g|B.(ro)) on the Riemannian man-
ifold M and the sequence {(N\;, ¥j|B.(ro)); J =0,1,2,...} of eigenvalues and
eigenfunctions, is called the interior spectral data (ISD) of (M, g,p).

(it) The pair, consisting of the ball (Be(ro), 9|B.(ro)) and a finite collection
{N, ©ilBee))s 3 =0,1,2,...,Jo} of the Jo + 1 first eigenvalues and eigen-
functions, is called the finite interior spectral data (FISD) of (M, g,p).

In this paper we consider the problem of an approximate reconstruction of
(M, g, p) when we know only its FISD, namely, the first eigenvalues, A\; < !
with some small 6 € (0,1) and the values of ¢;| () of the corresponding
eigenfunctions ¢;. Furthermore, we assume that we know all these objects
with some error.

To formalise the above, let B be a collection of elements

D = ((Be(ro), ), {15, ¥ilB.(ro)) }i20 ) (1)



where B,(rg) is a ball of R™ with centre 0 and radius rg, h is a Riemannian
metric on B.(r¢) in normal coordinates, and the pairs (145, ¥;j|5.(r)) € R X
L*(B.(rg)) are such that 0 = pg < 1 < pg < .... Also, for Jy € N we define
a cut-off operator Pj, that maps the data element D of the form () to

Py (D) = ((Be(ro), h) . {(15: ¥ils.0)}7%0)

In particular, Py, maps the ISD of manifold (M, g) to the FISD of length Jy.
Let BJO = PJO(B).
We start with introducing a proper topology on the set B.

Definition 2 (Interior spectral topology.) Let 6 > 0. Fori = 1,2, consider
the collections

(Bt b L w1 ) € By

where Ji € Z, U{cc}.
We say that these two collection are d-close if the following vs valid: There

are disjoint intervals
I, = (ay,b,) C (=0, 61 +46), p=0,1,...,P,

such that

i) b, —a, <.

i) For any b, i = 1,2 with |yl < 67" there is p such that p € I,

ii) For p=0,n) = 1. For any p > 1, the total number n; of elements in
sets Ty = {j € Zy; ps € I} coincide, i.e. ny =n’ (= np).

iv) There is an orthogonal matriz O € O(n), defining a transformation O :
B(rg) = Be(ry), such that the metrics O,hy and hy are Lipschitz 0-close on

Be(r0), i.e., for any & = (£4,...,€") € R™, £ #£0,

(Ouhn) i () E76"
(ha)jr () E7E

1+ < <1456, (2)

v) For any p there is a unitary matriz



such that

||Ap . (O*\I];) - \Ill2)||(L2(Be(T’O),h2))np S 6’ (3)
HA;l ' ((0_1>*‘I’z2:) - ‘I’;H(LQ(Be(ro),hl))np <. (4)

Here, W is the vector-function {¥s}ieq;-

Above, [B]) can be written also as

( Z /L2(Be (o))

Remark 1 An appearance of the matrix O is due to the fact that Rieman-
nian normal coordinates associated with p are defined up to an orthogonal
transformation.

The appearance of the unitary matrices A, is due to the possibility of a
non-continuity of the eigenfunctions with respect to small perturbations of an
operator which has an eigenvalue of multiplicity higher than one. However,
in one considers clusters of eigenvalues, the Riesz projection onto the span
of eigenfunctions corresponding to all eigenvalues in a cluster of eigenvalues
is stable in small perturbations.

A more detailed analysis to eigenvalues and eigenvectors is presented in
[39]. In particular, consider a compact Riemannian manifold, an interval
I = [a,b] such that a,b ¢ o(—A,) and metric tensors g’ on the manifold M.
Let P, be the orthogonal projector, in L*(M, g), onto the space spanned the
eigenvectors of —A, corresponding to the eigenvalues in the interval /. Then
it follows from Theorems IV.3.16 and VI.5.12 of [39] that if ||¢' — g| r~()
goes to zero, then the eigenvalues of —A, converge to those of —A, and the
eigenprojectors satisfy ||Pry — Prgllr2(a,9)—12(0,9) — 0. This implies that
the ISD of (M, g’) converges to the ISD of (M, g).

1

(det(hQ(z)))%da;) <

2

](n,](e O z) @b()()

We note that in a more restricted context of Gelfand’s inverse problem
for a Schrodinger operator with simple spectrum in a domain in R™ a similar
topology was introduced by Alessandrini in [I]], [2] who studied stability of
the corresponding inverse problem.

1.2 Manifolds of bounded geometry and the main result

In the future we consider the following class of pointed manifolds.
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Definition 3 (Riemannian manifolds of bounded geometry). For any n €
Zi and R > 0, D > 0, ig > 0, M, ,(R, D,iy) consists of n-dimensional
pointed compact Riemannian manifolds (M, g, p) such that

3
i) Z IV? Ric(M, g)|| () < R,
=0
i1) diam (M, g) < D, (5)
iid) in(M, g) > o
Here Ric(M,gq) stands for the Ricci curvature of M, diam (M,gq) for the

diameter of M, and inj(M, g) for the injectivity radius of (M, g). At last, V
stands for the covariant derivative on (M, g).

Below we assume that ig > a so that M, ,(R, D,is) C Mj, . Then we can
compare ISD of any two manifolds M* € M,, ,(R, D, ig) using Definition
To proceed we recall the notion of the Gromov-Hausdorff distance.

Definition 4 (GH-topology). Let (X', d',p"), i = 1,2 be pointed compact
metric spaces. Then the pointed Gromov-Hausdorff distance

dog (XY, dY, pt), (X2, d?, p?)) is the infimum of all € > 0 such that there is a
metric space (Z,dz) and isometric embeddings i, : X' — Z and iy : X? — Z
which satisfy

dy (i (X1), 2(X?) <e,  dz(Li(p'), 2(p%)) <e.
Here dy denotes the Hausdorff distance in Z.

Our main result states a stability estimate for an approximate reconstruction
of a Riemannian manifold from its interior spectral data.

Theorem 1 Letn € Z.,, R,D,iy and ry € (O, min (%0, ﬁ)) be given. Let
(M, g,p) € M, ,(R, D,ig). Then there exists a constant 6* = 6*(n, R, D, i, 1)
such that, for all 6 with

0<d <6, (6)

the following is true:
We get a constant Cso = Cso(d,n, R, D, 1y, 70) and assume that we are given
a collection

((BE(TO)Lga) ) {(IUJ? SO?)7 ] = O> 1a 2> e JO}) thh JO Z CSOa
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that is 0-close to the interior spectral data ((B(p,70),9), {(N\;, ¢;); 7=10,1,2,...}),
of the operator —A, on (M, g,p).
Then we can construct a metric space (M*,d},) such that

CY43

(1 (1)) T !

deu(M, M*) <

The coefficients 6*, Cy3, Cyug, Cso are calculated in the proof.

The above inequality (7) combined with the sectional curvature bound
(I@) below and the solution of the geometric Whitney problem [28, Thm. 1,
Cor. 1.9] implies the following stable construction result for the manifold M
in the Lipschitz topology. Recall that the for C*-diffeomorphic manifolds M;
and M, the Lipschitz distance dp (M, Ms) is

F:M1—>M2

where the infimum is taken over bi-Lipschitz maps F' : M7 — M, and Lip(F)
is the Lipschitz-constant of the map F, see [32].

Corollary 1 There are uniform constants K,Cy > 1 satisfying the follow-
ing. Let (M,g,p) € M, ,(R, D, i), d > 0, and the metric space M* be as
in Theorem [ Using M* one can construct a smooth Riemannian manifold
(N, gn) that approzimates the original manifold (M, g) so that the following
holds:

The manifolds M and N are diffeomorphic and their Lipschitz distance sat-
1sfies the inequality

1\\—1/(72n
dL(M7 N) S COK1/30§/37 og — 043(],11 (lng)) 1/(72 046)7

where |Sec(N)| < CoK.
Moreover, the injectivity radius of the manifold N is such that

inj(N) > min{(CoK) ™2, (1 — Co K3/ Yinj(M)}.

Another consequence of ([7) is the following stability estimate for the solutions
of the interior spectral problem.



Corollary 2 Assume that MY and M® are two manifolds with M@ €
M,,,(R, D,ig,70), i = 1,2, and such that the ISD of MY and M® are
d—close with 6 € (0, exp(—e)].

Then,

C184

(In (I g))"/ e o

dGH(M(1)>M(2)) <

Notations: Here K is the uniform bound for the sectional curvature on
M,, ,(R, D, i), see (I3)).

Here and later we will use notations ¢, C, 4, etc. for the constants that
depend only on n, R, D, iy, and the radius ry. We call such constants uniform
constants. When the constants depend also on other parameters we will
indicate this dependence explicitly. Given a set A we denote by xa(-) its
characteristic function (except for the Appendix, where y4(:) is a smooth
cut-off).

1.3 Earlier results and outline of the paper

The Gel'fand inverse problem, formulated by I. M. Gel’fand in 50’s [31], is the
problem of determining the coefficients of a second order elliptic differential
operator in a domain {2 C R™ from the boundary spectral data, that is, the
eigenvalues and the boundary values of the eigenfunction of the operator. In
the geometric Gel’fand inverse problem, a Riemannian manifold with bound-
ary and a metric tensor on it need to be constructed from similar data. For
Neumann boundary value problem for the operator —A, on manifold M, the
boundary spectral data consists of the boundary dM, the eigenvalues \; and
the boundary values of the eigenfunction, ¢;|snr, j = 1,2,... The unique-
ness of the solution of the Gel’fand inverse problem has been considered in
[9, 1], [44], [45] 58] B7, 56]. The boundary spectral data is equivalent to the
Neumann-to-Dirichlet map for the wave equation or the heat equation on
the manifold (M, g), see [38]. The Gel'fand inverse problem on manifolds is
closely related to the geometric Calderon’s inverse problem [19] of determin-
ing the manifold (M, ¢g) when one is given the Neumann-to-Dirichlet map for
the elliptic operator —A,. In general setting, this problem is open but partial
results have been given e.g. in Euclidean domains in [7, 8, 42 55 (59, 63, 68|
and on manifolds in [26], 27, 33| (0] 511 [54].

To formulate properly stability of the inverse problems, let us consider
first the Gel'fand inverse on a bounded domain Q C R? with a smooth



boundary 92 and a conformally Euclidian metric g;x(z) = p(z)~2d;;. Here,
p(x) > 0 is a smooth real valued function. Then the problem has the form

<_ > plx)? (%) - >‘j) pi(z) =0, ing, (9)
au¢j|;9 =0.

The problem of determining p(x) from the boundary spectral data is ill-posed
in sense of Hadamard: The map from the boundary data to the coefficient
p(x) is not continuous so that small change in the data can lead to huge
errors in the reconstructed function p(x). Clearly this results in serious in-
stability when solving inverse problems numerically in various applications.
One way out of this fundamental difficulty is to assume a priori higher reg-
ularity of coefficients, that is a widely used trend in inverse problems for
isotropic equations, like ([@). This type of results is called conditional sta-
bility results. For example, assuming in (@) that p; and py are bounded in
some norm, max(||pillcn@) lp2llem@)) < co one can conclude that if the
boundary spectral data for p; and py are “close”, then [|p1 — pa/con(q) is small
with some k& < m (see e.g. [1I, B, 41l [65] etc).

For inverse problems for general metric this approach bears significant
difficulties. The reason is that the usual C* norm bounds of coefficients
are not invariant and thus this condition does not suit the invariance of
the problem with respect to diffeomorphisms. Moreover, if the structure of
the manifold M is not known a priori, the traditional approach is useless.
The way to overcome these difficulties is to impose a priori constrains in an
invariant form and consider a class of manifolds that satisfy a priori bounds
similar to (f]), for instance for curvature, second fundamental form, radii of
injectivity, etc. Under such kind of conditions, invariant stability results for
inverse problems have be proven in [0, 28, 37, 52 [65]. In particular, for the
Gel’fand inverse problem for manifolds with non-trivial topology, an abstract,
i.e., a non-quantitative stability result was proven in [6]. There, it was shown
that the convergence of the boundary spectral data implies the convergence of
the manifolds with respect to the Gromov-Hausdorff convergence. However,
this result was based on compactness arguments and it did not provide any
estimates. In this paper our aim is to improve this result and to give explicit
estimates for an analogous inverse problem.

In this paper we consider a Gel’fand inverse problem for manifolds without
boundary. Then, as explained above, instead of assuming that the boundary



and the boundary values of the eigenfunctions are known we assume that
we are given a small open ball U C M and the eigenfunctions ¢; are known
on this set. Similar type of formulation of the problem with measurements
on open sets have been considered in [22] 23] 24 34 46]. We show that the
ISD, that is, an open set U C M, the eigenvalues A; and the restrictions of
the eigenfunctions ¢;|y determine the whole manifold (M, g) in stable way.
Also, we quantify this stability by giving explicit inequalities under a priori
assumptions on the geometry of M. We emphasise that we assume that the
eigenfunctions are known only on an open subset U of M that may be chosen
to be arbitrarily small but still e.g. the topology of M is determined in a
stable way. We note that in spectral geometry a similar stability problem
was studied in [I3], 35, [36]. Here the authors assumed that the knowledge
of the heat kernel on the whole manifold, however, these data is equivalent
to knowing the eigenvalues and the eigenfunctions and the eigenfunctions on
the whole manifold.

We now turn to a brief description of the basic techniques utilised in this
paper. The fundamental method underlying the reconstruction procedure
is the Boundary Control (BC) method in its geometric version using the
distance functions, see [9, [12] [37]. To consider the uniqueness of the inverse
problem, one assumes that a complete set of interior spectral data [47] is
given, see also [46, [34] and references therein. Using these data one can
determine the image of the interior distance map

RM M — LOO(U()), RM(SL’) ="M,z
where Uy = B(p,19/25) C U = B(p,ry) and
rava(2) =du(x, z), for z € Up.

When Ry, (M) is equipped with the L*-distance, Ry;(M) is homeomorphic
to M. However, in the general case it is not isometric to M. To make
Ry (M) isometric to M, we need to do additional constructions for construct
an appropriate structure of Riemannian manifold on Ry, (M).

Although we deal with data on eigenvalues and eigenfunctions, the BC-
method applies to hyperbolic equations. The BC-method is based on two
tools: the Tataru-type Carleman estimates [66] 67], see also [16, 17, [53],
for the wave equation and the Blagovestchenskii identity [I5] that gives the
Fourier coefficients of the waves generated by sources supported in U xR, . A
combination of these makes it possible to construct the set of the Fourier coetf-
ficients of all functions supported in metric balls of an arbitrary radius R > 0



with centres in z € Uy, By(z, R). Similarly, we can find the set Fg C ¢? of
the Fourier coefficients of functions in L*(S) = {u € L*(M); supp (u) C S}.
Here S is a finite intersection of the slices B(zy, o) )\ B(z¢, ), of > a; > 0.
Here z;, £ = 1,...,0(77™), see [BH), form 7-net in Uy. In particular, the norm
of the closest element in Fg to the element (1,0,0,...) € £? is equal to the
norm of the projection of the zeroth eigenfunction, o(x) = vol™2(M) to
L?(S). By computing such norms we can evaluate the volume of S.

When the ISD or FIS is given with errors, we introduce in this paper a new
slicing method in the reconstruction of a manifold that is robust in presence
of errors. Moreover, we estimate the errors in the constructions by using a
quantitative version of Tataru’s unique continuation theorem. These give us
a discrete approximation R, to Ry (M) C L>®(Uy). We then show that the
Hausdorff distance dg(R., Ry (M)) is small, with a quantitative estimate of
this distance. At last, applying a properly modified result of [40], see also
[29], we obtain Theorem [

2 Geometric preliminaries

2.1 Properties of the manifolds of bounded geometry

Below, we define the norm of the space C*(M) invariantly by
k
f llexar = z%gg? IV f(@)]l,- (10)
]:

We use the notation C*(M; E) for the space of C*-smooth sections of a bundle
7 : E — M and often use the short hand notation C*(M; E) = C*(M) for
C*-smooth sections of E or tensors fields when the bundle E is clear from
the context. Below, we denote balls on manifold M by B(x,r) = By/(x,r).

Also, we define the Hélder spaces C*P(M) = CFH(M) and the Zyg-
mund spaces C¥(M) by interpolation [I4] of function spaces C*(M), that is,
C3(M) = [C*M(M),C*(M)]g, for s = Oky + (1 — 0)ky € Ry and 6 € (0,1).
Note that C*=VY(M) ¢ CE(M) c C*18(M) for 0 < B < 1.

We say that {z;; j = 1,2,...,J} C M is an e-net if, for every x € M,
there is z; such that d(z;,x) < e. Also, aset {y;;j =1,2,...,J} C M is
T-separated if d(y;,yx) > 7 when j # k. Note that a maximal 7-separated
set is a 7-net. Using e-nets one can define the Gromov-Hausdorff topology
as follows:
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Let € > 0 and consider pointed compact Riemannian manifolds (M?, g%, p'),
i =1,2. Let dgu((M*, g*,p'), (M?, g% p*)) be the infimum of those ¢ > 0
for which there are e-nets {z%; j =1,2,...,J(e)} € M’, such that =} = p,
and
‘dl(l’},I}J—dg(SL’?’xi” <€, juk: 1727"'7'](8)‘

Here d;(-,-) stands for the distance on (M*, g*).

The distance dgy ((M*, g, p'), (M2, g% p?)) is Lipschitz equivalent to the
distance dgm((M*, g, pt), (M?, g% p?)).

In the future we need the following facts about the structure of the
class M, ,(R, D, o) with respect to the GH-topology. These results can be
found in or immediately follow from [5, 21] with further improvements in [6].
Namely, the class M, ,(R, D, i) is precompact in GH-topology. Its closure,
M,, ,(R, D,iy) consists of pointed Riemannian manifolds (M, g,p) with g €
C2(M). Moreover, estimates (B) remain valid for (M, g,p) € M,, ,(R, D, ig).

Note that by [32], the class M, ,(R, D, o) is compact also in Lipschitz
topology, that is, for any sequence (M;,g,,p;) € M, ,(R,D,iy), j € Zs,
there is (M, g,p) € M, (R, D,ig) and a subsequence j, — oo and bi-
Lipschitz maps Fj, : (M;,, gj.,p;.) — (M, g,p) such that Lip(Fj,) — 1 and
Lip(F];l) — 1 as & — oo. Note this implies also a stronger convergence in
the C*-sense, see [5].

To achieve the desired smoothness of g, one needs to use some special
coordinates, e.g. harmonic coordinates. Note that, for any Cig > 1, there
is a uniform constant ry = ry(Cis, R, D,ig) € (0,4y) such that, for any
(M,g,p) € M, (R, D,ig) and x € M, there are harmonic coordinates in
B(x,rg), that we denote by X : B(z,ry) — R". Moreover, in these coordi-

nates, the metric tensor (g](.f))g"kzl = X.g, where the superindex H indicates
that we are in harmonic coordinates, satisfies

01_81[ S (gj(g)(x))?,kzl S 01817 xr € X(B(;L”',"H))’ (11)
H
Hgﬂ(k )HC;?(X(B(Z‘,T’H))) < Clg.

Therefore, using [5 2], with the terminology described in [60, Sec. 10.3.2],
we see that when (Mg, gx, px) € M, (R, D, i) and (My, gx, pr) — (M, g,p) in
the Gromov-Hausdorff topology as k — oo, then for all g € (0, 1) there are
C%P-smooth diffecomorphism F}, : M) — M such

F.(gx) — g in C* (M), as k — oco. (12)
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Considering the ordinary differential equations for geodesics in harmonic
coordinates, we see that, for all & € (0, 1), there is a uniform constant C,
such that the exponential map exp, : By, (0,2D) C T, M — M satisfies

|exp,||cs.a (B, s 0.20):00) < Ca (13)

Here, C**(Br,(0,2D); M) is the space of C*“smooth functions from the
ball By, (0,2D) C T,M to M, where the norm is defined using a suitable
partition of unity and harmonic coordinate neighbourhoods on M.

The inequality (L)) implies that the Riemannian curvature tensor, Riem,,,

is uniformly bounded in C3(M) C C**(M),
[Riemps|lcsary < Cho, (14)
and, in particular, its sectional curvature, Secy, satisfies
ISecarllcsary < K, (15)

where K is a uniform constant. Note that this inequality implies that there
is a uniform constant C'; > 1, such that for all (M, g,p) € M,, ,(R, D, iy) and
x € M, we have

Cohr" < vol(B(x,r)) < Cyr", 0<r<D. (16)

The class M, ,(R, D,io) consists of a finite number of diffeomorphic
classes of manifolds and there is ¢ = o (R, D, o) such that, if dgg (M, M?) <
o, then M*' and M? are diffecomorphic. Note that using Riemannian normal
coordinates decreases the smoothness of the metric tensor by 2, see e.g. [25].
Therefore, using [5] and [25], we see, that when (My, gi, pr) € M, (R, D, o)
and (My, gk, pr) — (M, g,p) in the Gromov-Hausdorff topology as k& — oo,
then in the Riemannian normal coordinates, centred at suitable points,

g,g") — g(") in 0275(36(7’)), r<TH. (17)

Here we denote by ¢(™ the metric tensor in normal coordinates.
In the following, we assume that

. io s
O<ro<min|{—, ——|, 18
o< min (2,2 (18)
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where K is the constant in (I3]). Then any ball B(z,7),r < rq is geodesically
convex, see e.g. [20, Thm. IX. 6.1] or [57].

Let (M,g,p) € M, (R, D,ig), and consider the normal coordinates X :
B(p, 7o) — Be(ro) C R™. Let (g§g>( 2) ey = Xgo @ = (z',...,2"). Then
using estimates for metric tensor in the Riemannian normal coordinates, see
[60], we see that there is a uniform constant Cy = Cy(f) > 1 such that

Cy ' < (g5 (@) leey < Ca 1, for @ € Be(ro), (19)

||(9gk )i k=1llc28(Bu(re)) < Co-

Therefore, when dealing with M,, ,(R, D, i), without loss of generality
we can take in (3] the L?-norm defined with respect to the Euclidian metric

(nM)\n

rather than the metric h = (g;,")} x_;-

We turn now to the spectral properties of manifolds in M, ,(R, D, i).
First, using Courant’s minmax principle, we see that, as dgy (Mg, M) — 0,
then ISD of M, tend to ISD of M in the sense of Definition 2 We note that
this is valid even under less restrictive conditions then (H), in particular those
that allow collapsing, as is shown in [30], [46].

Second, by the compactness of M, ,(R, D, i), we can, for any o > 0,
cover it by a finite number of balls, in the GH-metric, of radius . Using

Courant’s minmax principle, it then follows from the metric convergence
result (I2)) that there exists C3 > 1 such that, for any M € M,, ,(R, D, i),

Oyl < N\ (M) < Cs5*™, §=0,1,2,.... (20)

Note that estimate (20) remains valid under a much weaker assumption that
Ric(M, g) is bounded from below, see [13].

Third, instead of harmonic coordinates, we can use coordinates made of
the eigenfunctions ¢;. It turns out, cf. [12, [6], that in a neighbourhood of
any x € M there are ©;(1.z), - - ., Pjmne) Which form a C%-smooth coordinate
system. Moreover, by the compactness arguments, there are N € Z,, C >
1, r > 0 such that, for any M € M,, ,(R, D, i), x € M, we can take j(¢;z) <
N, ¢ =1,...,n and the metric tensor g in these coordinates satisfies (III).

Using the eigenpairs made of eigenvalues and the corresponding eigen-
functions, (A;, ¢;) of —A,, we introduce the Sobolev spaces H*(M), s € R,

(21)

Zm ) € HY(M) i and only if || |3 := > ()| f]* < oo,

J=0
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where (\) = (1 + \?)1/2,

Remark 2.1. Using the compactness and interpolation arguments, it follows
from ([9) that, instead of the L?(B(ry))-norm in condition iv) of definition
2l we can use a stronger, C*?(B(ry)), 8 < 1, and H*(B(ry)), s < 3, norms
in ([3)). However, we will not be using this fact.

Remark 2.2. Returning to CS-coordinates, we see from (20) that the above
definition of H*(M), —6 < s < 6, is equivalent to the standard definition that

uses the covariant derivatives of functions, with the equivalence constants
that are uniform for all (M, ¢,p) in M,, ,(R, D, ).

2.2 Distance coordinates

Proposition 1 For any f < 1, there are uniform constants 1y, py > 0,
Cy,Cs > 1, C5 = C5(B) > 1 such that, for any (M,g,p) € M, (R, D, i),
the following holds true: For T € (0,7) there is a mazximal T-separated
net in B(p,ro/4) with at most L — 1 points, where L = L(t) € Z,. Let
{z1,..., 2.1} C B(p,ro/4) be such a T-net. Then,

(i) For all x € M, there are n points zjy € Z, j(i) = j(isz), i =
1,2,...,n such that the map X : B(z, po) — R",

Xy (dy, zi), Ay, 22)), - - - AY, Zin)))

defines C*P-smooth coordinates in a ball B(x,po), that is, X : B(z,py) —
X(B(x,po)) is a C*P-smooth diffeomorphism and

DX || 2o Bwpo)) + DX | oo (x (B0 < Ch- (22)

Moreover, zj) can be chosen so that d(z, zj)) > 27%rg and the metric tensor
(9i4)7 j=1 = X«g in these coordinates satisfies

Cy'I < (9i(2))12y S Cul,  for z € X(B(x,p)), (23)
||gij||0275(X(B(:c,pO)) < Cs.

(ii) The map H : M — R¥™1 defined by H(z) = (d(z, zj))fz_ll satisfies

dey) (24)

S e —H)

forallx,y € M, x #y.
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Note that condition ([23) implies that B(X(z), po/v/C4) € X(B(x, py)) and
thus, after shifting the origin by X (z), we can speak about the covering of
M by a finite system of distance coordinate with images are of the form
B.(po/VCy).

Observe also that the parameters 7, pg, Cs, Cy, and Cg are uniform on
M,, ,(R, D, ip). Later, we will fix § = % and choose 7 to depend on R, D, i,
so that also parameters L = L(7) and C5 = C5() will depend on R, D, and
10.

Proof. (i) Recall that inj(M) > ry and let r; = 27'%, where 7y < 7/VK.
Below, we use the Sasaki metric on T'M.

Consider a point 2o € M and let py = po(zo) € B(p,3r0) be such that
{ = d(xg, po) > 167r1. Then B(po, 9r1) C B(p, 1r9).

Let N = B(po,9r1) \ B(po, 1) and M; = M \ B(p,9r1). We can consider
N as a layer that is glued to M; along the surface M. Recall that the C-
norm of the Ricci tensor Ricy, of M is bounded by a uniform constant and
the sectional curvature is bounded by the uniform constant K. Also, because
of the definition of r{, the second fundamental form of the surface X = 0M;
is bounded by a uniform constant. These observations imply that we can
below use the considerations in [40, Section 4], with minor modifications. In
fact, these minor modifications are simplifications in the sense that in this
paper the metric is smooth across ¥, and thus one does not need to consider
the intersection angle of geodesics and the surface ¥ as is done in [40)].

Let & € Sy, M be such that v,,¢(¢) = po and gy = Yupe(¢ — 5r1). Then
considering the shortest geodesics connecting zy to points in ball B(qq, 1),
and using the same arguments as in the proof of [40, Prop. 1|, with a = r;
so that B(qy,a) C N, we see that there is a uniform constant coy > 0
such that there are vy € S, M, ty > 107y that satisfy yo = Yugw(to) €
B(po, 6r1) \ B(po,4r1), d(xo, yo) = to, [to— ({ —5r1)| < r1, and the differential
of the map ¢+ exp, (¢) at (o = tovy satisfies

d
I L |,

1€ T M\O 171l

Let now ¢y = to—r; and Yo = Vao.vo (?0) € B(po, 7r1)\B(po, 3r1). Also, let Zo =

tovo and note that the geodesic 7, ., ([0, to]) from g to yo can be extended
to a distance minimizing geodesic 7,4, ([0, %o + 71]) that does not intersect
B(po, 2r1). Then the proof of [40, Lemma 4|, with minor modifications, yield

that is a uniform constant co9; € (0,71) such the following holds:

15



Let B := BTM((:BO,Z})),ngl) C TM be a ball with center (x, EO) e TM
and radius ceo1 and let N = B(pg,971) \ B(po,71). Then for all (z,tv) € B
where v € S, M and ¢t > 0, we have v, ,(t) € N, the geodesic 7, ,([0,t]) is
the unique shortest geodesics in M between its end points, and v, , ([0, t]) N
B(po, 1) = (). Moreover, there are uniform constants Cjg, Cs5; > 1 such that
the differential D, F'(x,w) = dexp,|, of the map

9

F:TM — M x M,
F(z,w) = (z,exp,(w))

satisfies
| D F (z,w)| < Cho, ||(DwF(:E,w))_1|| < Cs, forall (z,w) € B. (25)

Let k = min(ry, c201/Cs1) and V = {(z,w) € B: F(z,w) € B(xp, k) X
B(yo, k)}. Then B(yo, k) C B(po,8r1) \ B(po,r1) and the above yields that
the restriction of the map F' in V,

Fly :V — B(x, k) X B(Yo, k)

is a diffeomorphism.
The above yields that there is uniform constant 6; > 0 such that there
are w; € T, M, j=1,2,...,nso that (zo,w;) € V and

401 < ||lw; — wgl|y < 4ndy,  for j # K, (26)
and moreover, By ((zg, w;),8ndy) C V and
Brar((wo, wy),201) N Brar((o, wy), 201) = 0, for j # k. (27)
Let y; = exp,,(w;) € N and define 7 = 0,/(2C5;).Then,
B(zo,7T) x B(y;,7) C F(Bru((xo, w;),2601)). (28)

Moreover, then (23), [27), (28) and the definition of 7 yield that if 2" €
B(:Co,?) and y;- € B(yj,?), then

(«',y;) = F(a',0;), where 0; = s;m;, n; € SwM, 55 = |0;],
are such that (2/,0;) € Bry((xo,w;),201) CV, s; > 11,

10; — wjllg <2057 < 6y
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These and (20)) yield that ||0; — 6|, > 26, and ||[n; —nkll, > 2r7'0; for j # k.
Since Vd(-,y;)|w) = 1, we have

IVa(- . yp)ler = V(- yi)lwrllg > 20701, for j # k. (29)

In particular, this yields that if zy,...,2,1 € B(p,ro/4) is a T-net
then there are k(j,a2") € Z, for which 2. € B(y;,7). For such points
Y; = ZkGay € {21,.--,20-1) the inequalities (29) are valid, This proves
22) with pp = 7 and and 79 < 7 with some suitable uniform constant
Cs. Then, by using inverse function theorem and the C3#-smoothness of
the exponential map and its inverse, see ([[3]) and (23], to analyse the map
X(2') = (||eXp;}1(:L") l¢)j=1, we obtain the inequality (23)) with some constants
Cy and C5 = C5(f). This proves claim (i) holds when 75 < 7.

(ii) To start the proof, we observe that because of triangular inequality,
we have

[H(x) — H(y)| < (L — d(z,y). (30)

Next, we prove an opposite inequality to ([B0) with a uniform constant
when 7y is sufficiently small. To show it, assume that the claim is not
valid. Then for all £ € Z, there are 7, > 0, such that 7, < %, manifolds
(My, gk, i) € M, ,(R, D, ip), Ti-nets {z;‘C cJ=1,2,..., Ly} C Bug, (pr,70/4)
that define functions Hy, : My, — RE=1 Hy (y) = (das, (y, zf))f;ll, and points
Tk, Yr € My for which

lim | Hy(2x) — Hi.(yn)|

= 0. 31
k—oo  dpr, (Tk, Yk) (31)

Then, by [32], the class M,, ,(R, D, 1iy) is compact with respect to the Lips-
chitz topology and all elements in the class M, ,(R, D, iy) are compact mani-
folds. Thus we can assume, by choosing a subsequence if necessary, that there
are (M,g,p) € M, ,(R,D,io) and bi-Lipschitz maps Fj, : (Mg, gk, pr) —
(M, g,p) such that

1 . 1 o 1
dar(Fr(pr),p) < o Lip(F}) <1+ T Lip(F, ') <1+ T

Let now =y = Fy(zx), yr = Fr(yx), and 'zvf = Fk(zf) Again, by choosing a
subsequence if necessary, we can assume that r, — = and y, — vy as k — oo.
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Also, by using Cantor’s diagonalization argument, we can assume that for
all 7 € Z, we have limy_,, Zf =7z
First, we consider the case when = # v, so that

Jim de(xr, yx) = d(@,9) # 0, di(zr, yr) = dar, (Tr, Yr)- (32)

Then, for all ¢ € B(p,r9/4) and a sufficiently large k there is ¢, =
F; ' (q) € Bi(pr,70/2) := B, (pr, 70/2). Also, there is z¥ for which dy, (2%, ¢;) <
T, and hence

d(Zj,q) < dp(2* qk)+l<m+l<g

= 7 k — k— k
This shows that S = {Z; : j € Z,} is T-net in B(p, ro/4) for arbitrary 7 > 0,
that is, the set S is dense in B(p,ro/4). By 1), we have limy,_, o Hi(xg, yx) =

0. Hence for all j € Z,, we have
d(7,z;) — d(y, z;) = ]}i_)fgodk(ifk,zf) - dk(yk,zf) =0,
and as the set S is dense in By (p, ro/4), we see that
d(z,2) =d(y,2), forall Ze B(p,ro/4). (33)

Let p = p(Z,9) € Bu(p,27r1) C Bu(p, 370) be such that ¢, = d(Z,p) >
1671 and ¢, = d(y,p) > 16r1. Then B(p,r1) C B(p, iry). As in [6], we see
that if z € dB(p,r1) is a closest point of dB(p,r1) to z, then the shortest
curve from z to T is a normal geodesics. By [@B3), z € 0B(p,r) is also a
closest point of dB(p,r1) to y and the shortest curve from z to ¥ is a normal
geodesics. Moreover, then (33) implies that ¢, —ry = ¢, — 71, and

T = ’}/z,u(z)(s) = ga (34)

where s = ¢, —r; and v(z) is the exterior normal vector of 0B(p,r1) at z.
Now, equation (B4) is in contradiction with (82]). Hence, (82)) is not possible.
Second, we consider the case when = = , so that

Jimdy.(zx, yr) = d(7, y) = 0. (35)
Then for sufficiently large ko we have for all k& > ko that 7, < 7 and
dip(Tk, yx) < po. Then the inequality ([22) implies that (3] can not be valid.
This proves (ii).
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Finally we note that, if zy,...,2z,_1 is a maximal 7-separated net in
B(p,ro/4), then balls B(z;,7/2) are disjoint. Then, using ([I6]), we see that

L<Lr)<Crm " +1 (36)

with some uniform constant C7 > 0. This shows that L(7) can be chosen to
depend only on D, R, and 1.
O

The above considerations leading to ([86) bring about the following result

Lemma 1 There exist C13 > 0, C4 > 1 such that, the following hold true:
(1) Let v > 0. There exists a mazimal vy separated set xy, ..., TN in M
with

N(v) < N(y) =Cuy ", (37)

Moreover, the balls B(xy,47v) enjoy the finite intersection property with
constant C1y, that is, the number of balls having a non-empty intersection is
bounded by C14.

(1) Let v > 0. There exist points zi, ..., zn,(y) which form a mazimal -

separated net in B(p,ro/4) with Ni(v) < N(7), and the balls B(z, 47) enjoy
the finite intersection property with constant Cy.

Proof. It remains to prove the finite intersection property. It follows from
(I6)) if we take into the account that B(xy,4v) N B(z;,4v) = 0 if d(xy, z;) >
9v and B(zy,v/2) N B(x;,7v/2) = 0. O

3 Wave equation: estimates and unique con-
tinuation results

Let (M,g,p) € M,,,(R,D,ip). On the manifold ()M, g) we consider the
initial-value problem for the wave equation

O}w — Ayw =0in M x R, (38)

w|t:0 =, wt|t:0 =0,

and denote its solution by w = W (v).
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Our main interest lies in the case when v € HA, () Ay >0,

ey < Ag} (39)

and we assume in the following that 3/2 < s < 2.
Using the Fourier decomposition, we see that, if v € H*(M), then

Hi, (M) ={v e H*(M) : ]

w e C(R; H(M)) N CH(R; H*7H(M)) N C*(R; H* (M),

and
|w]| e, ms(vy)ner @ me-1 (a2 @y ms-2 )y < 3|0 e (ary-
Thus, if T < 2D, then
1wl -z < 6VT 0]l s ary < Collvllasan (40)

where

Cp =6(D), (D)=+/1+ D2 (41)

3.1 Unique continuation

Associated to the wave operator are the double cones of influence. To define
these, let V' C M be open, T' € R,. Denote by

LV, T):=VvV x (-1,T).
Then the double cone of influence is given by
DV, T) = {(t,x);d(z,V) +[t| < T} (42)

Note that, by Tataru’s uniqueness theorem [66], [67], if u is a solution to the
wave equation

Otu—Au=0, in M x (=T,T),

which satisfies u = 0 in I'(V,T'), then v = 0 in D(V,T). However, for our
purposes we need an explicit estimate which follows from Theorem 3.3 in
[17]. To formulate the results we introduce, for

0<vy<ry/l6, ro/d<T <2D, (43)

20



and z € M, the domains
I'=T0(2,T) = B(z,10/16) x (=T +1¢/16,T — r,/16), (44)

D=D(z,7,T)={(t,x): (T —d(x,2))*—t>>~* |t| <T —ry/16},
QUT) =M x (=T +1ry/16, T — ry/16).

Theorem 2 Let (M,g) € M, ,(R, D,ig). Let P = P(x,D) = 0? — A, be the
wave operator associated with M. Assume that w(t,z) =0 for all (t,z) € I
Then, for any 0 < 1, there is coos > 1, such that the following stability
estimate holds true:

[wll @y

Il g1 aer 0
n (1 (1)
( * IPwllz2 o)

|wl| 2D (z0,1)) < C206

Therefore, for any 0 < m <1,

m Wl g (e
||w||H17m(fD(zmT)) S 0206 o] (1)) — . (45)
(m (1 4 Ml oy ))
1Pwliz2oery)
Moreover there is cao5 = co05(n, R, D, ig, 70, T) such that
Co06 = Ca05€xP(Y~ ™),  Ca00 = H8(n + 1) + 1. (46)

Proof Theorem P follows from Theorem 3.3 in [I7] with ¢ = r,/16 and
D(z,7,T) = S(z,19/16,T,7). Using that w = 0 in I', the domain A in the
final equation of Theorem 3.3 can be changed into D(z,~,T"). Moreover, for
0 < 1, the function fy(a,b), a,b > 0,

a

a,b) = ———,
fola,) (In(1 + 2))°

(47)

increases when either a or b increases. Thus, we can change ||w||g1(q,) and
| Pw|| 20,y in Theorem 3.3 to |[w|| g1y and || Pw||r2qr)). Let us also note
that, although the results in [I7] are formulated for M C R", they can be
easily reformulated for an arbitrary compact Riemannian manifold. For the
calculation of (6] see the Appendix. Moreover, recall that the constants in
[17] explicitly depend on parameters ¢y, ¢o, c3 > 0 such that

alé]? < ¢ (@)&& < el g (@) lczaan < cs.
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Moreover, due to (), these constraints and the estimates in [I7] are uni-
formly valid on M, ,(R, D, iy). O

Our main interest will be an estimate for v(-) = w(0,-) in (B8)) in the
domain B(z,T—2v). To analyse it, we need the following trace-type theorem.

Proposition 2 For any a > 1/2 there exists Cy1(«) such that the following
holds true:
1. Letr >1y/16, z € M and w € H*((—v,7); L*(B(z,7))). Then

||w( ) 0) ||L2(B(z,r)) < Cll(a> fy—aHw||Ha((—’y,’y);L2(B(z,r))) (48>
< Cu(a) v Nlwll ae Bz x (—3m)-

2. Let T — 2y > ro/16, 2 € M. Then, since B(z,T — 2v) x (—v,7) C
D(z,7,T)

|w( -, 0)|| 2Bz r—2v)) < Cri(@) v *||wl| goD(zm.1))- (49)

Corollary 3 Assume ([@3) and let 0 € [1/2,1), e2 € (0, A;] andv € H3 (M).
Denote by w = W (v) the solution to initial-value problem (38) and assume
that,

HwHL2(B(27T0/16+’Y)><(—T+7‘0/167 T—ro/16)) < €2 (50)
Then, calling 3 = 0%/2 and defining £, := E1(g2; 0,7, As), we get
lvll2Bzr—2v)) < €1, (51)

Ay
where  E1(e2;0,7,As) = cane B’<52)

72W2Qnﬁ+7ASUS*SW])
and with Csy = Cso(0,n, R, D, ig,19) such that
c202(0,7) = 030(9)65327(7_(0200 0/2))- (53)

Proof. Let the cut-off function n(z) € C3(B(z,70/16 + v/2)) be equal
to one in B(z,1r9/16) and ||n|lciy < Cy7', i = 0,1,2. Then wy(z,t) =
(1 = n(z))w(z,t) vanishes in ' and we have (02 — A)w,(z,t) = F, where
F(z,t) = (Agn(z)) w(z,t) +2g(Vn(2), Vow(w, 1)) (54)
(Agn(@)) ((z)w(z,t) +29(Vn(z), Vo (i(z)w(,1)) .
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Here 7(x) € CZ(B(z,70/16 + 7)) is equal to one in B(z,7¢/16 + v/2) and
IMllciany < Cy~* 1=0,1,2.

The L?—norm of the first term in the right hand side of (54)) is bounded by
O~ 2¢,. To estimate the norm of the second term, observe that,

1w s (v (T4, 7—7)) < Cy° Ay,

where we have also used ([0). Since
|7W]| L2(0 (=0 16,770 /16)) < €2, (55)
by interpolation arguments, we see first that
|7W]| fr1 (A1 x (=T 470 /16, T—r0 /16)) < C“Y_lAi/sé‘%_l/s (56)

Since supp(Vn)Nsupp(V17) = 0, equations(BH), (G6) imply that the L?—norm
of the second term in right hand side of (54]) is estimated by Cv‘lAl/ sglml/s,
Since g9 < Ay, these yield

||F||L2(Mx(—T+r0/167T_TO/16)) < 07_21\;/86;_1/8‘
As s > 1, we have

Using growth properties of the function fp of form (1), it follows from The-
orem [2] that

_1A
il -2y < Cty pEyRE——TE (57)
(1n |1 qal ey 0] )
It follows from ([{9) with o = 1 — 6/2 and (51)) that,
cg/zA
||w,7(- 70)||L2(B(2,T—2'y)) < CCyy(a) 06 . (58)

B
~42-6/2 <ln [1 ALY 562—(3—1)/5D

Next define « = (1 — 8)s+ 8 > 1/2. Then by interpolation,

a)/s
B(z )X (=v,7)) ||77w||L2(B )X (=v,7))"

[nwll e B (—vm) <
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Using the fact that supp(n) C B(z,79/16 4+ v), we can apply @8] with r =
r0/16 + 7, the previous inequality and (50), to obtain

17w (-, 0)|| L2(ser—2v)) < Crr(@)y™ %ot (CpAy)*/ ey e~/
011(04)7”6_%2010?)/81\5

_ /6 .
<ln [1 i 7Ags—l)/s%—(s—l)/s])

Here at the last step we use the fact that X > In(1 4+ X) for X > 0, with
X — fyAgs—l)/s&j;(s—l)/s.

Recall that v(z) = wy,(x,0) + n(z)w(z,0). Comparing (E8) and ([BI), we
obtain equation (B2). The coefficient cy0e defined in (B3)) fulfills the inequality

(59)

Ca02 = 0011(04)0%270/2_2 + 011(a)020108_6)+5/87(6_1)5,

by using ([0) and a proper multiplicative coefficient C3y independent on ~.
OJ

Corollary 4 We define
s/(s—1)

Exer; 0,7, Ay) = A, ! » (60)
exp[<(m§7%/z)c3o(9)exp(7_”°°)) ]

and observe that Ey(e1; 0,7, As) = & (e1) with & given in (52).
In the following we can assume in (21) that:

0<e <A, (61)
We then assume in (20) that
g2 < &E(e1; 0,7, Ay). (62)
From the growth properties of Ey(e1) it follows that

Exler; 0,77, As) <e1, e €(0,A4]. (63)
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4 Computation of the projection

4.1 Approximate projections

Our ultimate goal is to approximately construct the values of the distance

functions from a variable point € M to all z,, £ = 1,2,..., N(0), defined
in Lemma /[l The main step to achieve that is to approximately compute the
Fourier coefficients of the functions of form yqv, where g is the characteristic
function of some special subdomains 2 C M and v has a finite Fourier
expansion. These subdomains (2 are defined using distances to L points
{#z1,...,20-1,2}, where i € {L,...,N(o)} is arbitrary. For ¢ € {L,L +
1,...,N(o)}, we denote

Ki={1,2,....L—1}u{i}
and define A® be the set of those o = (ag)fz(f ) € RV that satisfy conditions
ay = Ay, such that Ay € Z, and r¢/8 < oy < 2D, for { € K,
ap =0, for l ¢ K,. (64)

Next, we consider for a while a fixed index i € {L,..., N(0)}. To construct
subdomains €2, we start with more general observation sets I'(a), o € AW,

o) = |J Iz a0 = ). (65)
leK;
Then the corresponding double cone of influence is defined as
D(Oé) = U ,D(ng v, 0 — 7) (66)
leK;
where I'(zg, a0 — ), D(2¢,7, ap — ) are given by ([@4) with 7" = oy — 7. Let
hl) = (hg))é\f:(f) € R be such that

h(i) - 1, fort e K;,
£ 00, forl €K,
At last, for b € R, we define

M(a+ byh @) = | ) B(zr, o + ). (67)

leK;

We have the following volume estimate.
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Lemma 2 Leta € AV i=L,...,N(vy) and
A=Aloa,y)={x e M: dxz,0M(a+~vh)) < 47}, (68)
where v > 0. There is a uniform C14 > 0 such that

vol (A) S 014[/7.

Proof. Let d(x,0M (o + vh¥)) < 4~. Then, for some ¢ € {1...., L},

ap— 3y <d(x,z) < ay+ 57. (69)

Since ||d exp,, ||| is uniformly bounded on M, ,(R, D, io) for v € T, M, |v| <
2D, the volume of the set of the points satisfying (69) is uniformly bounded
by Ci4v. We obtain the claim by taking the union of these sets when the
index ¢ runs from 1 to L. OJ

Remark 2 It follows from the proof that OM,, is a closed set with vol (OM,,) =
0. Therefore, in the following we would not distinguish between vol(M,) and
vol (M) and similar type of objects occurring later.

Remark 3 We define b(s) as
b(s) =1/2 forn=2,3 and b(s) = s/n for 3 <s <2, n>4. (70)

By the Sobolev embedding H*(M) — C(M), for n € {2,3}, and H*(M) —
LY(M), ¢ = (2n)/(n — 2s) for n > 4. Note that the norm of this map is a
uniform constant as the embedding can be done in harmonic coordinates that
are defined in balls having a uniform radius. This, together with the volume
estimate

vol (B(z,T+~)\ B(z2, T —2v)) <c¢y, forT <2D, (71)

of Lemmald and the generalized Hélder inequality with ¢ > 1 such that ¢~ +

7= b imly that, with some (5) >0,

IXBGT\BGT—2) | L) 1V] La(ar)
()7 vl s any. (72)

IXBGT4\Ber—29) VlL2000) <
<
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Theorem 3 Let gy € (0,A;). There are vo(eo; s, As) and jo(go;7, s, As), with
the following properties:
Let v < vo(g0; 8, As). Assume that

Jo
u(zr) = Z%’%’(I) € Hi (M), jo = jo(co;, s, As)
=0

and the eigenvalues and restrictions of eigenfunctions of —Ag,
(>\]7 SOj|B(p,7‘o)) ) j :071727"'7.j07

be given. Then, for any i € {L,.. .,N(O’)} and o € AW it is possible to

determine the Fourier coefficients (d;)i2, d; = d;(a, i), such that

o(@) = Y- dys(a)

satisfies
v = Xar(a—2ynnullLzon < go (73)

Moreover v € Hiyo, (s 1ya,) (M), where

Ci6(s,7) = Cir(s)y ™" (74)

Remark 4 The critical values considered in Theorem [3, that is, the func-
tions vo(€o; s, As) and jo(e0;7, s, As) are defined later. Namely,

) o\ Vb o2
0lE0i 5 M) = BTy @) <A_> ST T0A, (75)
cf. (I00), where c(s) is given in ([Z2). As for jo, we have
AN™*
Jo(€0; 7, 8, As) = CaoClg(s,7)"* (:;) : (76)

cf. (88), where
€
&2 = 52 (fla 9777016(877)/&8) )
cf. (83). Here & is defined in (60), Cy in Lemma [ and Cig in Lemmal3

below.
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The rest of this section is devoted to the proof of Theorem [B which is
divided into several steps. B
In the subsections 4.2 [L.3land L4 below, we keep the index i € {L,..., N(0)}
fixed and omit marking the index when defining some new notations that de-
pend on i.

4.2 Cut-off estimates and finite dimensional projections

We start with a partition of unity associated with points {x1,..., 2N}
defined in Lemma [Tl

They determine a covering of M consisting of (27)-neighbourhoods of
these points, B(z¢,27), ¢ = 1,2,..., N(7). We construct next a partition of
unity using these neighbourhoods. To this end, using harmonic coordinates in
B(xg,2v) and C*-smooth bump-functions in these coordinates, we construct
the CS(M)-smooth functions ¢, : M — R, , such that

[ellorsan < cnpy P, k=012, 0<B8<;
N(v)

supp (1) C By, 27), Z Yo( (77)

Next we analyze a smooth cut-off of a function v € H3 (M) to M \ M(«
yh®).

Lemma 3 There exists

Ci6(s,7) = Ciz(s)y* (78)

with the following property: B
Let w € Hiy (M), i € {L,...,N(0)} and o € AY. There exists u, €

5%016(877)&(]\4) which satisfies

u(x),  forxz e M\ M(a+ 5yh?), (79)
ua(x) =0, for z € M(a +yh").

ug(z) = W(x)u(z), V(z)= > Y(). (80)

SUpPP (¥e)NM (a+yh(D)=0
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Then, due to the finite intersection property of supports of 1, see Lemma [Il
and (1), and calling ca30 = c230(K, n) the finite number of intersections,

||‘I’||ck+6(M) < ngock,m_(kw), k=0,1,2, 0<pB<1.

Since u € Hj (M), this implies the claimed properties of u, with an appro-
priate Cy7(s). O

We introduce sets of the finite-dimensional functions.

Definition 5 Let b = (bj)gozo € RUotD) and F*(b) be its Fourier coimage
Jo
Fr(b) = bjp; € L*(M).
=0

For a > 0 the class of Fourier coefficients Cj, s(a) is defined as

Jo
Cips(@) = {be RPN (14 X2)*|b;[* < a’}. (81)

Jj=0

Furthermore, if w = W (v) is the solution to the initial-value problem (38),
then, for ¢ € RUHD we denote

W(c) = W(F*(c)) € L*(M).
and, for any ¢, > 0, a € A’, we denote
Cjo.s(€x; a, @) = {c € Cjy s(a) = [W(F ()l 2wz < v VE € Ki}.
Observe that b € Cj, s(a) if and only if v = F*(b) satisfies

Fr(b) € Ha(M). (82)
In the future, we always assume that
€
€9 S 82 < fl7 97 Y CIG(S; 7)A8> ) (83>

see (60) for &,.
In particular, this implies that if u € Hg, (5 (M) and w = W(u)
satisfies

£
||wHL2(F(Zg,C|{g—’y)) S €2 S 82(317 07 v, 016(57 7)As)7 (84>
then, by Corollary Bl and (7)), we have for ¢ € K;

€1
[w(0, ) z2(Bzpae—29)) < T 1w (0, ) L2(v (a—2vyny) < €1 (85)

29



Lemma 4 Let P;, be the orthoprojection

Jo
Pjv = Z(% S0j>L2(M) Pjs
=0
and v € ”Hfé Cls(s,«/)As)(M)' There is Cyo(s) such that, for any o € A9, if
As n/s
Jo = jo(ea; v, As) = CaoCig(s,7)"* (E—) ; (86)
2
then
P <22
1Piov = vllizan < 5775 (87)

Proof. For v =) %

=0 bjj, we have

10 = vl Feny = D o> < A5 (Z P\j|s\bj|2> < |Ajol 7 Cg(s57)?A2.

J>jo Jj=0
Using (20) this implies that
| Pivo = olZaary < Cidio /™ Crals,7)° A2,
This inequality implies (87), if jo satisfies (86]) with
Cog = CB/247/5(2 D)™/, (88)
O

Observe, that the condition [|[W (F*(c))| 20 (z.00—v) < €x is equivalent to

<e, leK. (89

(Z ¢j cos(y/Ajt) g5 ()

D (zg,ap—) L2 (T (2¢,00—7))

Note, that if we know {(\;, g0j|B(p7m))}§°:0, condition (8J) can be directly
verified.
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Lemma 5 Let u € H3 (M) and u, be the function given by (80). Assume
that jo satisfies (868). Then,

1 1
Vg = Pjoua c F* (Cjo,s( 182; 5016(8;’}/)/\3,0()) . (90)

Proof. Since ua|ps(aryn@) = 0, then, by the finite speed of the wave propa-
gation, we have W (uq)|r(z,a,—y) = 0 for all £ € K;. In addition, by Lemma
H

€2
[vall 2t asynry < Ve — tallrzny < 12Dy (91)

Therefore, for any ¢ € K,

V 2D€2 1

IW (va) 0 e o0 220 (zr0 1) < 1@D)E S 1 (92)
Moreover, since for any s, [|va|lgsar = || Piottallpzary < 1tall s,
it follows from Lemma Bl that va € His o ooz )(M) O
2 ) S

4.3 Minimisation algorithm

Assume that we are given a = (aj);:o:l € RUoFD 50 that

Jo
u=TF"(a) =) ajp; € Hj (M)

J=0

Our next goal is to use FISD to find a vector b € Cj, s(Ci6(s,v)As) such that
F*(b) is close to X () F*(a). To achieve this goal we will use a minimisation
method. Let e satisfy

2

1
with g9 < —A,. (93)

€0
< =0
0<ersqoa 10

Let 5 satisfy (83) and let

U:=F"(C"), where C" =Cj,s(c2; Cig(s,7)As, ). (94)
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Definition 6 (i) A function v € U is called an ey-minimizer of the mini-
mazation problem

: _ 2
min £,(h),  where £,(0) = ||h = ul sy (95)
if v satisfies
||’U _u||L2(M) S Jmm—l—5A5€1, Jmm = }ILIEIZEHh_uHLZ(M) (96)

(ii) A vector b = (bj)gozo € C* is an e1-minimizer of the minimization problem

min £o(c),  where Lo(c) = llc = alfzoon, (97)

||b - QH%UOJA) < Jmin + 5As€1a Imin 1= CiIlf

C*

€— QH%@OH» (98)
Remark 5 Then b € C* satisfies (98) if and only if v = ;‘):0 bjp; satisfies
(98). Note that L,(c) = L,(F*(c)).

The problem of finding b € C* satisfying (O8] can be solved using the data
given in Theorem [ with j, satisfying (8]). Indeed, for given ¢ € C* and

Jo
h=F(c) =) cjp;(x),
§=0
we have
Jo
Whlpgaroxe = Y ¢ cos(v/Aj 1) 5l 5o (99)
§=0

Therefore, given {()\j,goj|3(p7m))}§°:0, we can evaluate ||[Wh||r2w(z,,a,—v)) for
all ¢ € K;. Hence, ¢ € C* if and only if it satisfies ([81]), with a = Cig(s, v)As,
and (B9) with e, = &,.
Summarizing the above, we can find b € C* satisfying ([@8) by solving a
minimization problem for the functional |lc — a2 ;.. with c € C*.

Next we assume that, in addition to e, satisfying (83]), ~ satisfies

| NCE)
< —_— 100
7S BLels) ) (A) ’ (100)

where b(s), ¢(s) are defined in (70), (72).

Now we are ready to consider the properties of the e;-minimizers.
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Lemma 6 Let u € H} (M) and assume that o satisfies (83), jo satisfies

(88) and v satisfies (100). Let U be defined in (94).
(1) For all h € U, we have

Ly(h) > ||u||iz(M(a—2~/h(i))) — 2061+ ||h - “Hiz(M\M(a_z»yMO)y (101)
(ii) The function v, defined by (90), (80) satisfies v, € U and

Lu(va) < ullZeargamsmnoy + 20682 + 263 + €F (102)
< ||u||i2(M(a_2,Yh(i))) + 2As<€1 + 38%

(iii) Moreover, v, is an £;—minimiser,
,Cu(l)a) S Jmm + 5A5€1. (103)

Proof. (i) We have, for h € U,

A — UH%?(M) = |lh— “||i2(M(a_2fyh(i))) +[[h - U||i2(M\M(a_2«,h(i)))
> (||u||L2(M(a—2'yh(i))) - ||h||L2(M(a—2’yh(i))))2 + [[h — U||iz(M\M(a_2»yh<i>))-

Due to definition (82)), ([@4)) and the condition (83)) it follows from (&4]),
B3) that [|h[| L2 (as(a—2yn)) < €1. Thus,

[ — U||%2(M) > ||u||%2(M(a—2fyh(i))) — 201 +ef + ||h - u”i2(M\M(a—2~/h(i)))v

which proves (I0I)).
(ii) Recall that we consider u € Hj} (M). We have

Vo = (U — Ug) + (Ug — Vo),

where u, is defined by (80) and v, by ([@0). Then, by ([@0), v, € U. Moreover,

lu— Ua”%?(M) = [lu— an”%2(M(a_2«/h(i))) + [Ju— Uoc||iz(M\M(a_2«,h(i)))(104)

< (HUHL?(M(a—z»yh(i))) + ||Uoc||L2(M(a—2~/h(i))))2 + [Ju — Ua||2L2(M\M(a_27h(i>))

2
2 -2 =
< ||U||L2(M(a—2~yh(“)) + 24, (2D)1/2 * ((2D>1/2>

20w = tall 2 an w2y + 2lta = vallzzanasa-29n0):
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where we use the fact that |[u||,2) < Ay and by (@10), ||UO‘||%2(M(04—2'yh(i)
2
(@liﬁ) . Observe, that by (79),

S

IN

2
||u||LQ(M(OH-S’yh(i))\M(a—}yh(i))) (105)
< (AL <t

2
e = vallZ2an arazano)

Here the last inequality follows from the volume estimate of Lemma 2] the
Sobolev embedding estimate (72) and (I00). Using ([@1]), we see that

2
2 €2
|t — UOZHL?(M\M(a—}yh(“)) < (W) ’

Since (2D) > 1, this inequality together with (I04]) and (I03]) yield the first
inequality in (I02)). To obtain the second inequality we use g5 < &1, see ([G3)).
(iii) The claims (i) and (ii) yield that

‘Cu(va) - Jmin = £u(va) - Iijﬂelgll ‘Cu(h)

IN

(HUHiz(M(a_},h(i))) +2Ae1 + 35%) - (HUHiz(M(a_z»yh(i))) - 2A551)
S 5A8€17
where the last inequality follows from (03). These yield (I03). As v, € U by

(i), the claim follows.
0J

Lemma 7 Let u € H} (M), &1 satisfies (93), 2 satisfies (83), jo satisfies
(88) and v satisfies {I00).

Let v* = ;‘):0 bjg; be any e1-minimizer of the minimization problem (93),

with b € Cj, s(e2; Ci6(7, 5)As, @0),. Then

[0 = X (arm(a—2mmo ) ll72n) < €6 (106)

Proof. Let v* € U be any e;-minimizer of the minimization problem (@3],
i.e., we have ||v* —u||%2(M) < Jmin+5Ase1. By Lemmal@] the function v, € U
and satisfies (I03])). Thus an e;-minimizer satisfies

[0 = ullZenn < v = ullZan + 50 (107)
S ||u||%2(M(a—2~/h(i))) + 7A551 + 35%
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On the other hand, since v* — u satisfies (I01]), (I07) implies that
10" = wllZoanasamaniny < 9Ase1 + 3¢, (108)

In addition, since v* € U, see ([O4), w* = W (v*) satisfies estimate (8J).
As ey satisfies (83), it follows from (&), (85) that

<el.

’|U*|M(a—2fyh(i)) |%2(M(a—2 R()
Yh(9))

Due to (@3)), this inequality together with (I08]), implies (I0G). O
Proof of Theorem Bl Assume that a := (aj);:‘)zo satisfies the hypothesis.

. . jo £ o . L
First we determine (b;);Z, so that v* = > 7" ;bjp;(x) is an e;-minimizer of

[@3) and v* € Y. Then we see from (I00) that
Jo
X0 @zmnys = Y _(a; = b)@sllz2qan) < go.

J=0

Thus, by setting d; = a; — b;, the function v(z) = S7° d;p;(z) satisfies

=0
equation ([73).
Finally, since u € H} (M) and v* € Hig, (s )a.) (M), we see that v = u—v* €
Hiacrs(sa,) (M). This proves Theorem Bl O

4.4 Finite interior spectral data with error

Above we have obtained the necessary conditions on the bounds 7(eo; s, As)
and jo(eo; 7, s, As), see (I00), (@F), (B6) and (83) for evaluation of parameters
~v and jp, in the case when there are no errors in FISD. Let us next consider
an approximate construction for the case when there is d-error, in the sense of
Definition 2], in FISD. So, let ¢ > 0 and assume that we are given (B (1), g%)
and a collection {(A}, ©J|B.r)); J = 0,1,2,..., Jo} that is d-close to FISD,
that is, to (Be(ro), 9) and {(A;, ¢jlB.(ro)); 7 =0,1,2,...}, where Jy € Z*.

We recall that in this subsection we keep i € {L,...,N(o)} fixed and
omit marking the index when defining some new notations that depend on 1.

First observe that, due to Weyl’s asymptotics (20), in order to achieve
(@), we would require

§ < C5ljg ™, (109)
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Next recall that, by Definition [2, there are intervals I, C R, p = 0,..., P
such that each interval I, contains n, eigenvalues \; and n, approximate
eigenvalues A]. Denote

P
Jo+1= ana Jo(€0; 7,8, As) < Jo < Cyo(0; 7, 8, As). (110)

p=0

Let ¢;, j =0,1,...,Jy, be the orthonormal set

Gi(x) = Y diypr(), if X €1, (111)

A€y

where A, € O(n,) is the matrix defined in Definition 2 item (v). Let E, =
AZt = Ar We use below the matrix E = diag (Ey, Es, ..., Ep) € O(Jy +1)

E = [ejil%—0: € = (Pr> @5) r2(an) (112)

and note that e = 0 if A\;, Ay do not lie in the same I,,.
Let b= (bo,by,...,bys,) € R*L then, for b= E(b) we have

Jo _ Jo
> bGi(r) =Y bigs(),
=0 =0
and ¢; is almost an eigenfunction, namely,
1885 + A&l r2an) < 0. (113)

As § < 1, we see easily that

Jo JO

ZO‘? + 5>S|aj‘2 < A? implies Z()\j>8|aj|2 < A2
Jj=0 =
o Jo

S 2 1 2 . . o s 5 )
Z(Aﬂ ja;|” < (51\5) implies Z()\j +0)%a;|? < A7 (114)
Jj=0 s

Theorem 4 Let 0 < gy < A;/10. Let also e, satisfy (93), v satisfy (I00),
eq satisfy (83) and jo satisfy (88). There is Cos > 0 such that, if

€9

§ <4 0, Ay) = Cas jo 2 (e237, 8, Ay) e
< 0(52777j07 ) 026']0 (62’7787 >C'16(/-}/78)‘A57

(115)
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then the following holds true:

Assume that a = (ap, ay, . . ., aj,)
Jo Jo
S8+ a P < A2 ule) = > 65(), (116)
Jj=0 §=0

and z1, . . ., {0y € B(p,ro/4) is a o—net. Let g°|p, () and (A2, 0% 5.(ro)) be
d-close, in the sense of Definition[d, to FISD g|p, v,y and (N, ¢;|B.tr)) of @
manifold (M, g,p) € M,, ,(R, D, 1).

Then, for any T'(a) of form (63) with o € AW, it is possible to determine
c= (c])j 0 ¢ = cj(a@), such that

Jo

v(@) =) Gei(), ¢ = (v @)z (117)
j=0

satisfies
|V = Xnr(a—2ynyull2an < o (118)

Proof. By ([I0) we have Jy > jo(e2;7, s, As), and, taking a; = 0 for j > Jo,
we will assume further that @ € R7*!,
For b € R7*! denote

w(z,t) Zb cos(/Aft) pi(z), x € Be(ro). (119)
Next, similar to (&), ([82), we introduce

Jo
€5, o(a) = {b e RV N (A 4 5)%[b,[* < a?}; (120)
7=0

Chy(exia, @) = b € €5 (a); W Ol 2ves ) < 0 £ € K.

Let b e C5,.5(Ci6(7,s)As) and w(z,t) be as follows
wa,t) = WE) = (W)@ 1), weM; h(x) =S bF ).  (121)
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Lemma 8 Let w® andw be defined by (119) and (IZ1) withb € C3,.s(Cie(s,7)As).
There is Cyr such that, if 0 satisfies (I113) with

1
Cog = —F—, 122
C O sciP Dy 122
then
a £2
|w — w"|| L2(B8 (ro)x (—2D,2D)) < S2D)" (123)
Proof. Recall that I, = (a,,b,) and let w, be
1
wp:§(ap+bp),p2 1; we=0, (124)
and J, ={j: A\; € I,}. Due to [20), for j € 7,
VA = V| S b [\ A = | < e, (125)
so that, for |t| < 2D,
| cos(y/wyt) —cos(y/AF t)| < 2D 6. (126)
Consider next the functions
P ~
0z t) = Y bicos (\pt) ¢i(x); x € Blporo);  (127)
p=1 j€Tp
P ~
Wz, t)=> Y bicos (\iwpt) i(x), x €M
p=1jeJp

As 6 < 1, we have |¢%]/12(Bs(r,)) < 2. Thus, using (I26), we obtain for
t| < 2D,

Jo
Hﬂja('vt) - wa(',t)Hiz(Bg(To)) < CJ() (Z b?) (52D2

=0

< C(@2D)*Jy Cig(r,5)A7 6% (128)
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Similarly, since (W@;)(z,t) = 3270 arjor(x) cos(vAx t), we have
|, 6) = w( Dl ez < NBC 1) = w1 z2ai) (129)

Jo
< C5(2D)? <Z'B§> < C(2D)2Cy4(, 5)?A262.

=0
Next, since by @) [|¢; — @llz2Bpr)) < 0, we have
P ~
Jw(- ) —w(, t)H%Z(B(me)) = | Z Z cos(y/wpt) b; (@? - %) ||2L2(B(p,ro))
p=1 k‘EJp
< Co Coy(,5) A2 (130)
Using (128)-(I30) together with (II0), we see that there is Cy7 > 0 such that
lw = wl| 7253 o) x 117y < Cor Jol€0, 75 8, As) 02(2D)° Oy, 5) A7, (131)

where at the last step we use that 6 < 1 and ([I0). Due to (II3]), equation
(I23) follows from (I31) taking into the account (122)).

U
It now follows from (II4)) and (I23]) that
1
B (5019, ) € C5u(Cuatrns) 1) (12

C ECj,,s(Crs(7, 8) As),

1 1 1
ECj, s (Zfz; 5016(% S)Asaa) CCh, s (552; Ci6(7, S)Asaa)

C ECjy (25 Crs(7, 8)As, ).

Consider the quadratic function £, : R — R,
Jo
Lz(@ =) & —a,P, (133)
=0

cf. [@7). As FE is an orthogonal matrix, we have for a = Fa and ¢ = Ec¢

La(c) = La(c). (134)
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Denote C* = 63075(%52; A, «) and let E € C” be a minimizer of £ in C*. Note
that now we do not anymore consider £;-minimizers, but exact minimizers
of Lz. Since C is a bounded and closed set in R”*! such minimizer exists.
This means that

Lz(b) = J° . .—man\c] a2 (135)

B ceca

Let b= E~'b and denote

7) = > bigi(w) = Y biei(a)

Next we follow the same steps as in the proof of Theorem [

First, we define a = (aq, ...,az) = E~'a and consider the function
Jo Jo
u(w) =Y ajpi(x) = 4;3()
=0 =0

Next we define the function u,(x) = V(z)u(x) where ¥ is given in (80).
Then, let ¢ = (cj)jozo, ¢j = (Uas @j) r2(ar), and by Lemmas @ and B, we have

~ 1 1
c=Fce ECJO s (482, As,Oé) C Cf;o,s (582,/\5,0() =C*

Using Lemma [0 (iii), we see then that

Jo < Lg(0) = La(€) < i + BAseL. (136)

man

However, b is a minimizer of £3 in C*. Thus,

L,(b) = ﬁ@(b) Iin < Imin + DNse1.

main

At last, since b € E_lcf}w(%ég, As ) C Cyys(e2; Ag, ), the above shows

that b = E‘lg is an e;-minimizer of £, in Cy, s(2; Ay, ). By Lemma [7] this
implies that v* satisfies (I06). Then, choosing d; = a; —b;, j =0,1,..., Jo,
we see that v = Z}Jio 0, satisfies (II18)). This proves Theorem [l O
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5 Construction of the approximate interior dis-
tance maps.

Below we consider several indexes i € {L,...,N(c)} and consider i as a
varying parameter.

5.1 Volume estimates

Our next goal is to approximately evaluate the volume of M (a). We have
the following result:

Lemma 9 There are uniform constants eo(n, R, D, ig, 1) > 0, C33 > 0, with
the following properties:

Let eg < eo(n, R, D,ig,70), v < Yo(€0, $), where vy is defined by (73) with
Ag =1, and 0 < do(e0,7, ), where 0y is defined by (113) with jo given by
the rhs of (78) with Ay = 1 and ey given by (83). Assume that we are given
(g“\Be(m); {)x?,goj|Be(m)};-]°:0), with Jy giwen by (II0), which are d—close to
FISD of M € M, (R, D, ).

Let also i = L,...,N(0), « € AD, see ([37) for N(o) and ([64) and
considerations thereafter for A® .

Then we can compute an approximate volume, vol®(M(«)), of the set

M («) so that

vol®(M () — vol (M(a))| < Caseo. (137)

Here M(«) is defined in (67) with b = 0.

Proof. Recall that
wo(z) = vol (M)™Y2, F(po) = (1,0,0,...), |lwolls =1 for s > 0. (138)

By our assumption the interval Iy = (ag, by) in Definition 2] contains only
the eigenvalue Ao = 0. Thus ¢§|s, () is a d-approximation of @o|p, (). It
then follows from (I€]), (I38) and Definition 2 (iii)—(v) that

Be(ro) 9*

(139)
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Recall that the eigenfunction pg(x) corresponding to the eigenvalue \g = 0
is the constant function ¢g(z) = vol (M)~"/2. Using Theorem l we evaluate
the Fourier coefficients (¢;)7L, of v(z) which satisfies ([I8) with u = . Let

Jo 1/2
Vol “(M(a)) = vol *(M) (ZE’?) (140)
j=0
Then, again using Theorem [ together with (I39]), and the volume estimate
of M due to (I6) we see that, with some uniform C' > 0,

[vol *(M (a)) — vol (M (a — 2yhD))| < C(ep + 6).

Since vol (M(a)) — vol (M(a — 2yh¥)) < Cv (cf. Lemma B), the above
inequality implies estimate (I37), if ¢g < eo(n, R, D, iy, ) with a uniform
constant Cs3. Here we use the fact that 6 < g, v < g9 for small g, see
(I15), (75) where we take into account that 2/b(s) > 1.

O

Next we show how to use FISD with errors to approximately find the
distances from various points x € M to points z € B(p, ro/4). The principal
tool to achieve this goal is to approximately find the volumes of subdomains
of M obtained by the slicing procedure. We use slicing related to a small
parameter 0 < o < 7/2 which will be chosen later so that if satisfies o = pyy
with py € Z,. _

Fori € {L,...,N(0)} and 8 € AYN(oN)! we use the notation M (3) for
domains defined in (7)) with « replaced by 5. We consider the intersection
of slices,

Mgy (B) ={z € M; d(z, ) € (B — 20), (Be +20)), L € Ki},  (141)
that can be written as

MGy (8) = () (B(ze, Be + 20) \ Blz, By — 20)).

leK;

To compute approximately vol (M(*Z) (8)), we write it as

Mg (B) = <ﬂ B(zz,ﬁg+2a)) N <ﬂ Bz, Be — 2‘7)6>

leK; leK;
_ <m B(ze,ﬁz+20)) : <U B(ze,ﬁe—%)) ,
€K; leK;
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where for Q C M, Q¢ = M \ Q.
Recall that o0 = pgy, where pg € Z,. Thus for ¢ € K; we have 3, + 20 =
A7y, where AT = Ay =+ 2po. Let us denote ai = ay & 2poyh”. Then

Mgy (B) = (ﬂ B(zg,a;)> N (U B(zg,oz[)> : (142)

EEKZ' ZEK@
To proceed, observe that, for any €2, Qc M ,
vol (2N Q°) = vol (QU Q) — vol (Q),
vol (2N Q) = vol (Q) + vol () — vol (QU Q),
vol ((Ql N Q) U ?z) — vol (2, U Q) + vol (€ U ) — vol (2, UQy U Q).

Thus, by induction,

vol (( M ) ﬂﬁc) =) vl (2,UQ) (143)

ZEKi ZGKI

— zn: vol (U UQ) + - + (—1)E Dol ((U Q@Ufl) — vol ().

(A0 =1 LeK;

Returning to ([142), we see that M () has form (I43) with Q, = B(z, o), 0=

Since, for any aq, s € A® we have

M(ay) UM(ag) = M(ayy,), where (ay,)e = max((aq)e, (a2)),

it follows that all terms in (I43) are of form vol (M (a)) for some o € A®.
Thus, using Lemmal[d] we can approximately compute each term of (I43]) with
error Cyzgg. Since there are 2L + 1 terms in (I43), we obtain the following
result.

Lemma 10 There exists e4(n, R, D, ig,79) > 0 with the following property:
Let 0 < e4 < e4(n, R, D,ig,10) and gq satisfies

1

Cs3(28 4+ 1) (144)

g < 05484, where C54 =
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Let 6 > 0 satisfy conditions of Lemmald and ((Be(r0), 9%), { (A}, #}|B.ro)); J =
0,1,...,Jo}) be d-close, in the sense of Definition[d, to the FISD ((B.(r0), g),
(s 3l.)s 4 = 0.1, 1) of some M € Moy (R, D o).

Leti € {L,...,N(0)} and B € AD N (oN)E. Then, for any o = pyy > 0,
it is possible to evaluate approximate volumes, vol“(M(*i) (B)), of the sets

M, (B) of form (141). Moreover,

vol (M) (B)) — vol (M;)(8))| < €. (145)

5.2 Distance functions approximation

We say that a function 7y, € C°(B(p,r9/4)) is an interior distance function
if there is x € M such that

ryv(2) = dy(z,2), forany z € B(p,ro/4).

Notice that from now on we denote the distance on M by d;;. Denoting such
ru(-) = raa(+), we have ry, € C%Y(B(p,10/4)) C L= (B(p,ro/4)).
The interior distance functions determine the interior distance map

Ry (M, g) = L*(B(p,0/4)),  Ru(x) =raa(").
We note that the map Rj; or, more precisely, its image
Ry (M) :=={rpa(-), x € M} C L>(B(p,r0/4)), (146)

may be used to reconstruct (M, g). Namely, in [43], [37] it was shown how
to reconstruct (N, g|y), where

N := M\ B(p,10/25). (147)
To this end we define
RON(N) = {r%N € L**(ON) : x € N}, (148)

where
rON(2) = dn(x, 2), for z € OB(p,r0/25)

and dy is the distance in N. Later, in section [6.1] we show that Ry (M)
or, more precisely, its approximation R*, determines an approximation to

RON(N).
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Note that, in general, the metric dy; induced on Ry (M) from (M, g) is
different from the metric do, induced from L>*(B(p,1¢/4)).

Our next goal is to construct a finite approximation R* to the set Ry (M).
To this end, we use the volume approximations described in the previous
subsection.

First, let us define for z, 2 € B(p,7¢/2) an approximative distance d*(z, z’)
to be the infimum of the lengths, with respect to the metric g¢, of all piecewise
smooth paths p : [0, 1] — B(p,ry) connecting z and z’. Assume that

0 < 0440'. (149)
Then Definition B] (iv) implies that
|d*(2,2") — dm(z, 2")| < Cyso. (150)

Let

{21, --azﬁ(g)} C B(p,ro/4), N(o) < Cizo™"

be a maximal o-separated net in B(p,ry/4) with respect to the distance
function d,, see [B7). Moreover, assuming 7 > o, let z1,...,2, 1 form a
T-net in B(p,r9/4) with respect to metric d,, see Lemma [Il

For any i € {L,..., N(o)} and 3 € RV(©) we define a truncation operation
T@ . RN@ 5 A0 by setting

TOB =5 = (B).7,
where 51 = S, 52 = fBa,..., BL—l = fr—1 and Bz = (i, and finally, ngz) =0
for ¢ ¢ K;. To proceed, observe that for any x € M \ B(p,3ry/8 + o) and
any { =1,...,N(o) there is §,(x) € Z such that

Be(x) — o < dp(x, z) < Be(x) + 0.
Then, (5, = f(x) satisfies
B(z,0) C B(z, Br + 20) \ B(z¢, B¢ — 20).

Note that by (I6), we have

1
g4 < ZC;lo—”. (151)
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Let B(z) = (ﬁg(x))év(f) € RY@). Then, for any i € {L, .'..,N(O')}, the

truncated element ﬁ(i:) (z) = TO(B(x)) € A defines M(’;)(ﬁ(l)(x)) such that

vol (M(*Z-)(ﬁ(i)(:c))) > 4ey, so that vol (M (BD(x))) >34 (152)

These suggest the following

Definition 7 Let 8 = (ﬁg)éz(f), Be € 0Zy and By > 1/8. We say that such
f is admissible, if for all i € {L,L + 1,...,N(0)} the truncated element
B =T (B) € AD satisfies

vol (M (BY)) > 3ey. (153)

We define the set B= {8 € UZJFN(U); B is admissible}.

Lemma 11 For any x € M \ B(p,3ro/8 + o), there exists an admissible
B= B Brp)) € oNN©) such that

|dM(x>Z€)_5€| SQUa €€{172a-"aﬁ(0)}'

Conwversely, there is Cog > 0 such that, if § = (ﬁl,...,ﬁﬁ(o)) is ad-
missible, then there is x € M \ B(p,3ro/8 — Caso) such that, for all €
{1,2,...,N(0)},

|Be — dar(, z0)| < Cago. (154)

Proof. The first statement follows from considerations before Definition [7]
On the other hand, assume that § = (ﬁg)évz(f ) € B. Then equations (I45)

and (I53) guarantee that, for any ¢ € {L,..., N(0)} the truncated element
BY = T () satisfies

vol (M (%)) > 2z, (155)

so that there is z; € M("Z.)(B(")), i€{L,...,N(0)}. Thus, |dy(z;,2) — Bi] <
20 and

|dpr (i, 20) — Bol < 20, foralll=1,2,... L.
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Moreover, in view of 24), for j,k € {L,...,N(o)},
dyi (5, 21) < Co|H (255 — H ()| < 4CV Lo
The above two equations prove (I54]) for any x = z; with

Cys = 4CsV'L + 3. (156)

Moreover, since {zz}évz(f) form a o—net in B(p, r/4), condition 5, > 3rq/8, { =
1,...,N(o), implies that = € M \ B(p, 3ro/8 — Caso).
O
Forany ¢ =1,..., N(U), let V, C B(p,ro/4) be the corresponding Voronoy
region, i.e. the set of points z € B(p,ry/4) for which z, is a closest point
among z, k=1,..., N(O’). Note that as z,, k =1,..., N(O’), form a o—net,

Vi C B(z,0). (157)

For any admissible § € B we associate a piecewise constant function

rg € L= (B(p,r0/4))
rg(z) =Py, forzeV, (=1,...,N(0). (158)

Let

RS ={rg(-): BeB}CL¥B(pro/4)).
Choose a o—net {z1,...,2n)} C B(p,7r9/2) by adding to z,.. () @
o—net in B(p,r9/2) \ B(p,70/4). Next we define

ri(2) = d*(xy, z), forz€eV, k=1,...,N'(o), £=1,...,N(0),
where d* is defined before (IZ0). Let

R ={rg(:): k=1,...,N'(0)} C L*(B(p,10/4)), and
R*=R.UR. (159)

Lemma 12 We have
dH(RM(M), R*) S 029(7, where ng = 2028 + 2045 + 1, (160)

where dg stands for the Hausdorff distance in L= (B(p,r0/4)), Cas is defined
in (I268) and Cys is determined in (120).
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Proof. By Lemma [ and equation (I57),
dp (R, Ry(M \ B(p,3r9/8))) < (2C5% + 1)o.
On the other hand, it follows from the definition (I59) and (I50) that

du(RZ, Ry(B(p,10/2))) < (2C45 + 1)0.

The above two inequalities imply (I60).

6 Proof of Theorem [ and Corollary

6.1 From interior distance functions to boundary dis-
tance functions

By standard estimates for the differential of the exponential map, see [60),
Ch. 6, Cor. 2.4| the diameter of the sphere OB(p, ), r < rg, is bounded

diam (0B(p,r)) < 7r- M <7r cosh(g) <10, (161)

VEr
where we use condition ([I8). Let N = M \ B(p,ry/25).

Lemma 13 Let x € M\ B(p,ro/4) and y € ON and z € 0B(p,19/4), let

fly,z,2) =dn(y, 2) + du(z, ), (162)

min x,Y; 1),
( ) 2168B(p7’0/4)f( y 1)

where dy and dy; are the distances in N and M, respectively. Then,

Proof. Clearly, as dy(z,2) < dn(z,x) and a shortest curve in N from y to
x intersects the sphere 0B(p,19/4), we see that dy(y,x) > f(y, ).

On the other hand let 2/ = argmin,(f(y,x;2)) and u([0, f(y, )] be the
corresponding union of the distance minimizing paths from y to 2z’ and from
2 to x for which the minimum in ([I62]) is achieved. Denote s; = dy(y, 2’) and
consider u([s1, f(y,x)]. We show next that u([s1, f(y,x)] C N. If this is not
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the case, there would exists s1 < sy < s3 < f(y,x) such that pu(sy), u(s3) €
8B(p> T0/4)7 :U“(SQ) € aB(TO/25) and ,U[Sg, f(ya ZL’)] cM \ B(p> T0/4)' Then7

1 1 1 1 1 1
8127“0(1—%), 52—8127“0(1—2—5)7 53—3227”0(1_2_5)’(164)

On the other hand, consider a curve £/([0,(]) which is parametrised by the
arclength and consists of the radial path from u(s3) to vy € 0B(r¢/25) fol-
lowed by a shortest path along 0B(r¢/25) from 3’ to y. Due to (I61) and

(I64),
AN A U NS B WSS S R O
=T0\%5 "1 25 "o\y " 25) =%

Taking the union of the path 1/([0,(]), connecting u(s3) to ¢/, and the path
w(ss, f(y,x)), connecting ¢y’ to =, we get a contradiction to definition (IG3)).

Thus, p([s1, f(y,2)]) C N, ie., dy(y,x) < f(y, ).
0

Next, using the already constructed set R*, see (I59) together with Lem-
mata [[2 and [[3, we construct a set R*(N) C L*(JN) which approximates
RON(N) defined (I4S).

Lemma 14 Let R* be the set given in (159), which satisfies (160) be given.
Then it defines a set R*(N) C L>®°(ON) such that

dp(RPN(N), R*(N)) < C350,  Cs5 = 2Ca9 + Cis. (165)
Here Cyg is defined in (160) and Cys is defined in (I150).
Note that here we assume that ¢ satisfies (II3)), o satisfies (I5I) with the

related equations for ey, €q, etc.

Proof The proof is based on the construction of R*(N') which satisfies (I65]).
Observe first that it follows from the proof of Lemma [[3 that, if x,y €
B(p7 T0/4) \ B(p7 T0/25) - N7 then
To 87’0
d < =4+ —
so that a shortest path in N connecting z and y lies in B(p, 7). Thus it
is possible, using (@), to construct an approximation 79V : 9N — R that
satisfies

||7°3N - 779?]\7||L°<>(8N) < Cys0, (166)
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cf. (I50). Denote R%:(N) = {ro; x € B(p,ro/4) \ B(p,70/25)}, then
di (R (B(p,0/4)), R(N)) < Ciso, (167)

for § < do, cf. construction of R% in subsection 5.2
Next, let

* * : To
= N > _
Re={reR": min(r(z)) 2 =}
For y,z € B(p,r0/4) \ B(p,70/25) denote by d% (y, z) the distance between y
and z in the metric g* along the curves lying in B(p,r¢/2) \ B(p,r0/25). For
each r € R} we define

PN e L®(ON): 7N(y)= inf  (d%(z,y)+ . (168
r (ON) = 7% (y) zeaé&,m/4>(N(z y)+r(z); (168)

RE(N)={/N(): r e R:}.
Then, with R*(N) = RL(N) U R: (N), we have that
du(RP™(N), R*(N)) < (Cys + 2Cx)o.

Here Cys0—error comes from an approximation of dy(y, 2), z € 0B(p,ro/4),
see ([IB0), and 2Cy90—error comes from approximating d/(z, ) and dy(y, 2)
in formula (IG3), see (I60). At last, we use again that ¢ satisfies the uni-
formly bound (I15). O

Recall that the metric tensor g on B(p,rg) is a representation of a met-
ric in Riemannian normal coordinates and the C?“norm of the metric is
uniformly bounded. Using the fundamental equations of the Riemannian ge-
ometry, [60, Ch. 2, Prop. 4.1 (3)], we have that the shape operator S of the
surface dB(p,r), r < ry, can be given in the Riemannian normal coordinates
centered at p in terms of the metric tensor as S = ¢g~'d,g, where v is the
unit normal vector of dB(p,r). Taking r = ry/25, we see that the C'*-norm
of the shape operator S of ON is uniformly bounded. Also, by (O8], the
boundary injectivity radius of (N, g|n) is bounded below by %io. As the sec-
tional curvature of M and the second fundamental form (that is equivalent to
the shape operator) of its submanifold ON are bounded, the Gauss-Codazzi
equations imply that the sectional curvature of 0NN is bounded. As the met-
ric tensor of M is bounded in normal coordinates in B(p, 1), we see that the
(n — 1)-dimensional volume of ON = 90B(p,19/25) is bounded from below by
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a uniform constant. Thus by Cheeger’s theorem, see [60, Ch. 10, Cor. 4.4],
the injectivity radius of ON is bounded from below by a uniform constant.

Summarising the above, the Ricci curvature of (N,g|y) is uniformly
bounded in C%, the second fundamental form of N is uniformly bounded in
CYe and the diameter and injectivity radii of N and ON, and the bound-
ary injectivity radius of (N, ON) are uniformly bounded. By [37], using the
knowledge of the set, R*(N) of approximate boundary distance functions,
which are Czs0—Hausdorff close to the set, RV (N) of the boundary dis-
tance functions of manifold (IV, g|x), one can construct on the set R*(N) a
new distance function dy, : R*(N) x R*(N) — Ry, such that

deu(N,dy), (R (N), dy)) < Cs6(Css50)*/3, (169)

with a uniform Csg > 0.

Having constructed (R*(N),d}) we can now construct an approximate
metric space (M*,d%,) which is Css(Cs50)/3— close to (M, dys). Indeed, let
x,y € N and u[0,1], [ = dp(x,y) be ashortest between x and y. If u[0,1] € N
then dy(z,y)) = dy(x,y). If, however, u[0,!] intersects with B(p,ro/25)
then, due to the convexity of B(p,r/25), there are 0 < s; < s5 < [ such that

w[0,s1] € N, pls1,s2] C B(p,ro/25), p[s2,l] C N.
Therefore, similar to Lemma [I3, we obtain
Corollary 5 Let x,y € N. Then
du (2, y) = (170)

min | dy(x,y), min dy(x,21) +d ,29) +d , .
i (dvton), | _min vl ) + (e, n) + )]

Next define, for 7V 79V € R*(N),
dy (Y, 79N = (171)

min ( d (7N, 79N), min TN (1) + d%(z1, 20) + TV (=
(drGE%F, | min () )+ 7 )

Using (I70) together with (I50), (I69) and (), we see that
dau((N,dy), (R*(N), diy) < (2056 4 1)(Cs50)30 if Cyso < (Cs50)/3(172)

o1



Here (N, dys) is the manifold N with the distance function inherited from M
and 6 < dy, cf. ([I67)).

Let us define the disjoint union M* = R*(N) U B(p,r9/25). Next we define
a metric dj,; on this set. To this end, consider first 7Y € R*(N), y €
B(p,r0/25). Recall, see the proof of Lemmall4] that the set R*(NV) is bijective
with RX U (B(p,r0/4) \ B(p,70/25)). In the case when 77V is obtained from

r € R, we define di,(7?N,y) = r(y). Moreover, in the case when 7V is

obtained from x € B(p,7o/4) \ B(p,70/25), we define d},; (77N, y) = d*(x,y).
At last, if z,y € B(p,10/25), we take dj,(z,y) = d*(x,y).

It follows from (I72) together with equations (I50), (@), (I60) and con-
siderations preceding Lemma [12] that

dau((M*, dyp), (M, dyr)) < (2C36 + 1)(Cz0) "%, (173)
Summarizing, we obtain

Lemma 15 Let R* satisfy (160) and M* = R*(N)UB(p,10/25) with metric
dys. Then,

dan (M, dy), (M*,d%y)) < Cro'S, Cup = (2056 + 1O (174)

6.2 Proof of Theorem [

To prove the statement of the Theorem, we collect all the previous es-
timates. The aim is to find the relation between the final error ¢ (i.e.
dar((M,dyr), (M*,d3,)) < €) and the initial error §. We proceed by fol-
lowing the chain of relations:

EF> 0> E4>E0 > E1 > Y > 9 > Jo H> 0. (175)

36
By ([I74)) we determine o = (CLM) and use it in (I51), (I44) and ([O3) with

A, =1 to calculate ¢y and 1 so that

Csa 36 72 : C§4
< —__ < Cype™ th Cy=———. 176
0= qocme 0 G S Cee™ with Co = ges mme (176)
To proceed with ~, it follows from (I00) that
v < Cuet™, Oy = (2Lc(s)) V(26D (177)
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Now use (I15), (€3), (€G), (60) and (ITT) to get

o (s 242204 2))
C b(s)( +2+s 1 2s
5 < 8061 (178)

- 1/ —e200
s n C30 LY/5 Cu —c200/b(s)
eXp [3—1 (1 + 23) (cj;9/2> 07D /5N P exp(—t5—e, )

i.e.
C39
5 < 1 G (179)
exp [Cgl g1 *exp(Cso e} 49)]
with
1 s n n sL/P n Cao \1/8
Co = 315 (1+5:)+3) =50+ 5) ()
% b(s) <S+s—1 +2s +2> T s +2s 2-%
Cy
e SRS (142)
Csp = Cn ™ Cao = £200 Cig = l(1 + 2 g) Cgo = CasCly :
g b(s)’ B b(s) o ek

We use the inequality x < exp(z) to bound from below the right hand side
of the estimate above to obtain, by calling Cys = max(Csg, Cs, Ca9,1/(2n)),
1

0 < — , (180)
exp [exp((Cgy' + Cs1 + Csa)ey C‘“")}

Notice that ([49) and (I09) are also satisfied, by substituting to Cgo the
quantity Css = min(Cj 'Cso, Cua/(C36C3,*™)). Assuming 0 < § < exp(—e),
we get

—1
(085 + 0811+ 082) S 81046, (181)
In (ln 3)

According to ([@3) with A; = 1, the condition £; < 1/1000 implies
d < Cyo, with Cys = min (exp(—e), 1 /exp[exp[10009 (Cgs! + Cy +C’82)]]>.

Finally by using (I76) and defining

(Cgs' + Csy1 + Ciy) !/ (72nCi6)

Caz = 1/(72n
g
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we obtain (). We also define 0* = Cy,. By ([[I0) we define Csg = [Csj0(c0; 7, s, 1)],
where [] denotes the integer part. Using (76) we get

C{L’Y/s E%(n-ﬁ-sfl)exp nC’81 5_048
+-n_“1 1 n\ -1
CZI s—1 sl /5(1+2S)

Csjo(c0;7,8,1) = C3Cq

exp <08251_C49> %82)

and then we substitute the £; obtained from (I8I]) (with equality sign) in
order to get the 0 dependency. This completes the proof of Theorem [II  [J

6.3 Proof of Corollary

Let § < 6" = Cyp and let the ISD of M®, i =1,2 be d—close.
Call e =: £(6) = Cy3/(In (In %))1/(7%046). Now define the set

D = ((B*(ro). g™, I, V1)

where the index (1) is related to the IDS of M. For J; sufficiently large
and by construction we see that the data D are d-close to the ISD of both
MW and M®. By Theorem [ the metric space (M*,d},) constructed with
these data is e—close to both (M® d®) i =1,2 i.e.

den((M*, dyp), (MY ,dV)) <e, (183)

where ¢ is given by the right hand side of (7). We then conclude by triangular
inequality, see [I8, Prop. 3.7.16], for any 0 < 0 < C)s,

dom(MD,dD), (M®,d®)) < 2¢ = 2C43/(In (In %))” (TnCie) —(184)

We now extend this estimate to the case 6 € (0,exp(—e)], when Cyy <
exp(—e). To this end, observe that the definition of the GH-topology and
(@) imply that, independently on 4,

By combining (I84]) and (I83), and comparing them in § = C)3, we obtain
the inequality () with

D

CS4 = 2max<1,m

>C43 = max (26’437 D(ln (ln CL))I/(?%LC%))
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7 Appendix

7.1 Calculation of ¢y in Theorem

In the following section we will not follow the notations of the article, since

all is derived from calculations done in [17].

Let o € [1/3,1), and T, ¢,y be defined as in Assumption A5, [I7]. We define

the following Gevrey function as the smooth cut-off (see [61], Ex 1.4.9 for
definition):

Yi(t) = x(1+t)x(1 — ), with x(s) = exp(—s=71) for s > 0, x(s) =0 for s < 0.
One can slightly modify the definition such that y; = 1 in a ball By C R,

x1 = 0 outside the ball By, and 0 < y; < 1. Observe that y; € Gé/a(R)

since:
1

—

D% (0)] < coxelf s, with cox = O(1), exx = O(3

). (186)
Furthermore, define x;(v) := x1(v/d), v € RM. Hence, F,_cxs(v) = 6™ Fyssexa(v)
for ¢ € C, and calling cox = 1/(eMecix)® we get

(187)
[ Fooexs(v)] < 0 eoxexp(6Hp, (ImC) — caxd*|Re¢|*) - Vol(supp(x1), dv).
Product: For v € By(RM),

|D'{X1(U)X2(U)\ < COX,ICOX,ImaX{CIX,laClX,2}(maX{ClX,17ClX,2})|R‘|f<0||RVa-

We also recall and improve the coefficients in Lemma 2.1, [I7], for L? and
H™:

Clor = €3 (%FG) a(clln); ) § (acll%,)i ’ (188)

(m+1)

(I+m) o
(050106)%
|A(BrDo/ 1) f(1 — A(Do/p))v]l1 < crose” " |[vsupps) llm -

cios = c1o7(1 + | DY flco) + cror
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In our application we are interested in the v and (1 — a) dependency of
the geometric parameters, since both quantities tend to zero. We link these
coefficients with the following assumption:

,r.(n+1) . ]_

N 5= (1—a)~r"Tasa—1, (189)

1
al =3 that implies o'/

with N = ¢179 and r defined in the following Table 1. From now on ~ means
"up to a coefficient independent of v or (1 — «)". Consequently, for x; and
c1x defined above, we get

1 1

/ " 2
C ~ ~ 0 ~ C 0 ~ C .
1X 1—a 758(n+1)’ |X1|C (%0) 1X5 |X1|C (Q0) 1X

We now consider the hyperbolic surfaces defined in Remark A.1. of [I7] and
we calculate the corresponding Table A.3. in [I7] (see also Table in [I6]).
The lower indexes of the coefficients and the formulas in brecket correspond
to the ones used in [17, [16].
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Table 1

Name Order w.r.t. v and (1 — «)
C ~ |7 (4.7)-[17]
1 ~ 7 (4.7)-[17]
dist{0Qg, QI~ | +* (4.12)-[17]
e ~ |1 (48)-[17
dy(z, 2) €| [6,T—~] (inT\ cylinder)
|Ordly | ~|1  (46)-[17
Cs > |1
M <1
T 1
My 2| GP =
M > | My = 1
A 2 maX{Mb €, 02} = L4
®o > | et
Pum <|e
Ry < mm{l,y ) )\} 7
Cr ~ | ¢ty + C2 = )\3 = 7T
€100 > |1
— 1 _ 12
€0 < | omyEn = » =) 1
. e} \2C? 1 T . A
Ry < | min {Rh (I-Frter/N) “er <c2TMl(1+>\2)> » Vi CT(HAQHQ(HA)) }’
= min{y",7%,7%, 7%,y 7*"} =+
o > | erRy = 4°
2 2
7 > | My (4 erRa)” + 2o, (1+ (A+ erB)) + lalo,) ) = 5o
R < R2 — ,y20
) <|crR3 =+
)\Zcsz
r < (2 58
= | Gorermd) ~
el
> IXlICO(Qo) 1,7 |X/1|CO(90) Ay
Co,T > | VM (1+T)+ s (183 = (|X | co(Q0) +T) ~ o
X7 X1l R oo
€133 > X1T0c;<290) + x CO(QO)( 14+ X+ CTR2 + HLT%) = 7%0<|X,1/‘CO(QO) +
‘Xi‘00(90)>
.y4

o7



We are now ready to calculate the coefficients used in the proof of Th.1.2
(resp. Th.3.3) in [I7] (see the next Table 2 and the calculations below). First
we split each smooth localizer in time and space (see Remark 2.8 (4) in [17]):

W) = bR,

with b(t) = xa(t) € Gé/a(R) and b(z) € C2(R"). Consequently the functions
fi(y), fg( ) f3(y) (see (2.21) in [17]) can be written as: f(y) = f(t)f(z), with
7(t) = Dby +(£) + Doby (1)+;1(6) and f(x) = D.Dyby1(2)+ Dyy 1 () +
A o A Y AT Rt

1422 rie) (1 A(22)) syl < 14 () Durn (1 - A(22)) syl

14

+||A<3D0)f(t)<1 _ A(€O>)(Do + Dy + D(F@)0)lo < cr0501526Xp(—Cro60”)

with ¢j0s calculated as in ([I88)) with 51 = 3,m = 3,¢3 = (1/2)cox. Moreover,

Cl62,; = 2Ci62,j—1 + C153C164 + C155j—1| — Pabj_1 + h*(2) Dy bj_1|co
+01070152(1 + n2|gkr|00 + |h5|00) + c155,j-1|2Dobj 1|1 + cis2¢i108
+c155,5-1/Do(2Dobj—1)|co + c1s2¢107
+0155,j—1|2n9kerbj—1|Cl + 01520108n2|9kr|01

+0155,j—1|D (2gkerb] 1)|CO + 01070152n2|9kr|cl

|b//|0

1b'13

N2\ 2 , s v
~ 2ci62,j-1 + ( rle) 1‘72 + s -1 (14 g7 ]er + [h°le )<| T|O +

r

Nch kr s C%X
+ . cios(1 + (9" e 4 |R¥co) ~ cie2,5-1 + 0155’j_1—r2
N263 c?
~ 1X 1X
C154,j = Ci62,5 + C153C107 ~ Ci62,5 T 2 R" ~ C162,5 ™~ C155,5—1— 5 2

4 2 Nejx 4
C116 ~ 7Y Cis4, 748 .

By applying Lemma 2.6 in [I7] with ¢y = c¢i52, cp = 153, €4 = Ci54,, OLE
obtains:

3 v/ C116 N2

C1s5, = C150(Cls2; C153, C154,5) ~ Crx 13 46+58 20155g 1
v 7
1 Cl/a c /o
. 1/a  1/a €106 __ 106 56a+58(n+1)(a+1)+28
188c131 3c131 3c131

o8

2

r2

)+



R B
Recalling that o = 0 = 1/2, we get ci59 = 015%%1(17“) > 1 and cy60:

1 PwCE) —[56a + 58(n 4+ 1)(ar + 1) + 28]
€159 ™~ ( 56a+58(n+1)(a+1)+28> ’ - exp( o~ 58(nt1) 111(7))7
v Y
VleoN o1
ciss = Neciss, v + 3N cizicis2 (1 + | lc >C156/(1 )~ N01310152C%g2)
1

Cle0 = (ln(l + 66159))1/2 + 2120150 ~ cysg < exp( ), Co00 = 58(n+ 1) + 2

70200
To obtain cep we proceed as in Remark 3.8. of [I7], by repeating the previous
calculations for different sets of translated hyperbolic surfaces. We get cops ~
160, up to a multiple of 7, the lower bound of the injectivity radius. We call

co05 the multiplicative constant that includes all the geometric parameters
T7 7;07 D7 To, R7 n.
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Table 2

Name | Value Name | Value
_ — 13
Cax = C102 = oo )® €119 dcix ~ Yy
/ 1" p+1 2 2 2 14 4
C118 L+ |¢'|o(1+ Ra) +5n[¢" |0, Ry + | ciua cirlglenlxale(1 + [@'|go/6* +
" 2 2 1 4
|0"lo(1+ R3) +0(2+ R;) ~ 55 0" [20/8%) ~ ot
2 2 3,-3/53 c
ais | arllfée + DB/ + |an | S
6
/12 2 Cix
|X1|(j0/(S ) ~ 78~31+48~5'
2 56-a
C122 Sir C123 ’th;X
1 8I(1/a) 1/2 iy
c 25C193 ~ C c 199 —tt—— ~
128 305123 123 110 122( [ac}ég(aclgg)l/a]) PEEEE;
. 5 .
56 56-ac—48
. YT 3 1
C109 I'Illl'l( 65/36 0128/2 1) ~ ch? C130 %(E) ~ VW
6 165312608 165v/eod a. 1 e
C131 maX<16 \/§7 c123 132 ) C135 rCox 4130 c(iYX
Tx
756'04730
R l o )( . 750»&-@ L
C137 min (3 (01025 \/—1) + | G132 min(cizs, C137)  ~ T
C
239)7 Lc1020” (573¢130)%) ~
48 -«
2l (o1
"oy C130
T
| N~ e
=~ — - 4 \1 c
cur | caxRY = (ecix)*R” B 2+ () ~ % (2.11)
/2
~ 1 R~ ~ n+1 s ( 1 1 1
c e [ R eox (ST =
106 B C?X 107 0X (ﬁ <a> a(c117)1/a> (aZ106)
R”ch
cisa1 | 1+ cior ~ R'cix C155,1 | max(ciza, C136) =
< 6 6
2.5.58(n—2) Cix\ _ Cix
ma’X(CIX,}/ ( 2)7 7%80) - »)&80
[0 N
C153 1 + 2N(1 + n2|ng|Co + | ¢159 2(1_|_N TC ) ~ ilx
S |b,|CO |b”|CO
|h ‘C;)(T + =5 + (V-
1% 2.2
1) M0y ~ Medx
T T
/r.(X
cie21 | 1 C117 (r/2)® (601X ™~ oy
T
o o ro 38 r 8 1 ecix 1/2ecix(3%4) «
C165 e/ (3%4) ~ gz ~ €164 _COX(§F<E> al/al(r/2)) % (/2)
3/2
C1X
3/2 v
c 44/ 1b'[o
cior | Ci6a ~ 7175 C108 <0107 + 1077(a01()6)3/a> <1 + -+
17
b

o 4 “""‘0)(1+ v |o) ~ G
3 ro
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