
GPU AcceleratedINtensities MPI (GAIN-MPI): A new
method of computing Einstein-A coefficients

Ahmed F. Al-Refaie,a, Sergei N. Yurchenkoa, Jonathan Tennysona

aDepartment of Physics& Astronomy, University College London, Gower Street, London
WC1E 6BT, United Kingdom

Abstract

Calculating dipole transition intensities or the related Einstein A coefficients can
dominate the computer usage for large line lists [of transitions such as those being
computed to model radiative transport through hot atmospheres. An algorithm
for the efficient computation of line strengths is presented based on the use of
the half-linestrength. This is implemented on GPUs, are shown to give up to a
thousandfold speed-up compared to calculations on conventional computers. This
algorithm is implemented in the program GAIN which was developed as part of
the TROVE nuclear motion program, but can be adapted for use by other similar
programs in a straightforward fashion.

Key words: rotation-vibration spectra, transition probabilities, intensities

Program summary

Program title: GAIN-MPI
Catalogue number:
Program summary URL:
Program obtainable from:CPC Program Library, Queen’s University, Belfast, N.
Ireland
Licensing provisions:Standard CPC licence.
No. of lines in distributed program, including test data, etc.: 14 703
No. of bytes in distributed program, including test data, etc.: 55 998 083
Distribution format: tar.gz
Programming language:C++ 99, CUDA C and Fortran 95.

✩This paper and its associated computer program are available via the Computer Physics Com-
munication homepage on ScienceDirect

Email addresses:ahmed.al-refaie.12@ucl.ac.uk (Ahmed F. Al-Refaie),
s.yurchenko@ucl.ac.uk (Sergei N. Yurchenko),j.tennyson@ucl.ac.uk (Jonathan
Tennyson)

Preprint submitted to Computer Physics Communications December 26, 2016

Computer:Any personal computer but specifically designed to run on a system
hosting nVidia GPUs.
Operating system:Linux.
Has the code been vectorized or parallelized?:Parallelized and GPU-enabled.
Memory required to execute:Minimum memory required to load dipole matrix,
typically ≈ 1-6 GB
Nature of physical problem:Computation of linestrengths using GPU hardware
Solution method: Split the linestrength into smaller blocks and compute them in
the GPU in parallel
Restrictions on the complexity of the problem:The current version is restricted to
separable rovibrational basis sets
Unusual features of the program:Can be extended by user supplied concrete C++

classes for the MPI version
Typical running time:Case dependent. The test runs provided take seconds to a
few minutes on a normal PC.

1. Introduction

The calculation of rotation-vibration energy levels and wavefunctions for poly-
atomic molecules by direct solution of the Schrödinger equation for a given poten-
tial energy surface is now a standard procedure. There are a number of computer
programs designed for these studies including Jensen’s MORBID [1], Schwenke’s
VTET [2], DVR3D due to Tennysonet al. [3], WAVR4 due to Kozinet al. [4],
TROVE due to Yurchenkoet al. [5, 6], AM developed by Pavlyuchko and
co-workers [7, 8], the MULTIMODE package developed by Carter, Bowman and
co-workers [9–13], GENIUSH due to Matyuset al. [14] as well as DRV*6 and
related codes by Mladenovic [15–17]. Carrington and co-workers [18–25] and
others [26–30] have worked extensively on improving the methodology for ob-
taining variational solutions to these nuclear motion problems. In addition there
are more specialised methods such as the code DOPI [31], which uses anharmonic
force fields, and solution strategies based on the use of vibrational self-consistent
field (VSCF) [32], vibrational perturbation theory [32] and multi-configuration
time-dependent Hartree (MCTDH) approach [33]. All these approaches are capa-
ble of yielding extensive and accurate sets of vibration-rotation energy levels and
wavefunctions for a given potential energy surface.

Increasingly these wavefunctions are being used to computetransition intensi-
ties which, in favourable circumstances, can be obtained with an accuracy compet-
itive with experiment [34–38]. Of particular concern here is the use of first prin-
ciples nuclear motion methods to obtain extensive lists of Einstein-A coefficients.
Such lists can be huge: for example recent studies on hot methane vibration-

2

rotation spectra have produced extensive line lists [39–42] some of which contain
many billions of transitions. Similarly large line lists have recently been produced
as part of the ExoMol project [43] for NH3 [44], PH3 [45], H2CO [46], H2O2

[47] and SO3 [48]. Such large line lists are required for models of high tempera-
ture bodies [49]. Although computing the vibration-rotation wavefunctions neces-
sary for calculating such line lists represents a challenge, the actual calculation of
the transition dipoles or Einstein-A coefficients generally dominates the computer
time usage. Indeed the amount of computer time required for these computations
has led to difficulties in completing these lists and proposals for drastically re-
ducing them [50]. Here we show that graphical processor units (GPUs) can be
deployed to break this bottleneck and greatly speed-up the computation of these
huge line lists. Indeed the procedures developed here have proved key to success-
ful computation of several of the line lists cited above [45–48]. The present paper
gives the methodology used to significantly speed up the computation of transi-
tion dipoles (or linestrengths) and provides a code, GAIN-MPI (GPU Accelerated
INtensities MPI), which provides an implementation of thismethodology. Illus-
trations are given showing that this speed-up can indeed be very significant.

2. Method

The Einstein-A coefficient for a particular transition from theinitial statei to
thefinal statef is given by:

Ai f =
8π4ν̃3i f

3h
(2Ji + 1)

∑

A=X,Y,Z

|〈Ψ f |µ̄A|Ψi〉|2, (1)

whereJi is the rotational quantum number for the initial state,h is Planck’s con-
stant,ν̃i f is the transition wavenumber between upper stateE f and lower stateEi

(hcν̃i f = E f − Ei), Ψ f andΨi represent the eigenfunctions of the final and initial
states respectively, ¯µA is the electronically averaged component of the dipole mo-
ment along the space-fixed (s) axisA = X,Y,Z (see also Yurchenko et al. [51]).
From this the absolute absorption intensity is determined by:

I (f ← i) =
Ai f

8πc
gns(2Jf + 1)

exp
(

− Ei

kT

)

Q(T) ν̃2i f

[

1− exp

(−c2ν̃i f

T

)]

, (2)

wherec2 is the second radiation constant,T the absolute temperature andgns is
the nuclear spin statistical weight factor.Q is the partition function.

Computing the transition intensity requires computation ofthe Einstein-A co-
efficient given by Eq. (1), which is actually proportional to theline strengthS(f ←

3

i) of a transition as given by [51]:

S(f ← i) =
∑

λ′,λ

∑

A=X,Y,Z

|〈Ψ f
λ′ |µ̄A|,Ψi

λ〉|2 (3)

whereΨ f
λ′ andΨi

λ
are different ro-vibrational states with associated energiesE′

and E, respectively. It is often more practical to evaluate the linestrength us-
ing spherical tensor representations instead of the Cartesian representation of the
dipole moment expressed in terms of the molecule-fixed (m) components as given
by Bunker and Jensen [52]:

µ1,σ
s =

1
∑

σ′=−1

[

D(1)
σ,σ′(φ, θ, χ)

]∗
µ1,σ′

m , (4)

where

µ1,±1
m =

∓µX − iµY√
2
, µ1,0

m = µZ. (5)

Now Eq. (3) becomes:

S(f ← i) =
∑

λ′,λ

∑1
σ=−1

∣

∣

∣〈Ψ f
λ′ |µ̄

1,σ
s |Ψi

λ
〉
∣

∣

∣

2
. (6)

S(f ← i) =
∑

λ′,λ

∑1
σ=−1

∣

∣

∣

∑1
σ′=−1〈Ψ

f
λ′ |[D1

σ,σ′]
∗µ̄1,σ′

m |Ψi
λ
〉
∣

∣

∣

2
. (7)

In the variational method, the wavefunctionsΨ f andΨi are generally represented
as a linear combination of products of the vibrational and rotational basis func-
tions obtained for a given combination of the rotational angular momentumJ and
irreducible representationΓ:

ΨJ,Γ
n =

∑

v,k

cJ,Γ,n
v,k φv|J, k,m〉, (8)

whereφv is a vibrational basis function,|J, k,m〉 is the rigid rotor function where
n is the ‘running’ number andcJ,Γ

v,k are coefficients obtained by solving the nuclear
motion problem. The molecular-fixed dipole moment components depend only
on the vibrational coordinates and theD(1)

σ,σ′ is dependent on the rotational (Euler)
coordinates, therefore substituting the wavefunction of Eq. (8) into Eq. (7) and
employing Clebsch-Gordan algebra to evaluate the rotational part gives [52]

S(f ← i) = gns(2J′ + 1)(2J + 1)×

×

∣

∣

∣

∣

∣

∣

∣

∑

ν′,k′

∑

ν,k

1
∑

σ′=−1

(−1)k[cJ′,Γ′, f
v′,k′]∗cJ,Γ,i

v,k

(

J 1 J′

k σ′ −k′

)

〈φv′ |µ̄1,σ′
m |φv〉

∣

∣

∣

∣

∣

∣

∣

2

,
(9)

4

wheregns is due to the nuclear spin degeneracy of the internal wavefunction. From
the 3j-symbols theJ selection rules for transitions are:

∆J = 0,±1, J + J′ ≥ 1 (10)

which are supplemented by the symmetry selection rules [52]

Γ′ ⊗ Γ ∈ Γ∗. (11)

where the product of symmetriesΓ andΓ′ must contain the symmetry of the dipole
operatorΓ∗. For individual matrix elements, the non-zero elements areconstrained
by the relation:

∆k = σ′ = 0,±1, (12)

which effectively eliminates the summation overσ′ in Eq. (9).
There are two properties we can exploit. The first arises as all ro-vibrational

wavefunctions in Eq. (8) possess the same ‘primitive’ vibrational basis functions
φv. Therefore we can precompute and store all matrix elements of the dipole
moment components〈φv′ |µ̄m

1,σ′ |φv〉, which will be referred to asµσ
′

v,v′. Secondly,
the 3j-symbols can be effectively precomputed as well producing another matrix
FJ,k
∆J,∆k. With this our linestrength simplifies to:

S(f ← i) = gns(2J′ + 1)(2J + 1)

∣

∣

∣

∣

∣

∣

∣

∑

v′,k′

∑

v,k

(−1)k[cJ′,Γ′, f
v′,k′]∗cJ,Γ,i

v,k FJ,k
∆J,∆kµ

∆k
v′,v

∣

∣

∣

∣

∣

∣

∣

2

(13)

with the variational coefficients as the only varying quantity. However this is an
O(N2) operation whereN is the size of the ro-vibrational basis set, and evaluating
it for each of the possibly billions of transitions with basis set sizes that could
reach millions is cumbersome and inefficient. Therefore a two-step strategy is
developed. First, the transition is projected onto the lower state wavefunction
Ψ

J,Γ
i :

sJ′,Γ′

v′,k′ (← i) =
∑

v,k

cJ,Γ,i
v,K (−1)kFJ,k

∆J,∆kµ
∆k
v′,v (14)

wheresJ′,Γ
v′,k′(← i) is a vector that represents a ‘half’ transition from a lowerstatei

to any state withJ′,Γ′. This is referred to as thehalf linestrengthand is anO(N2)
operation. A transition to any stateΨJ′,Γ′

f that satisfies Eqs. (10) and (11) can then
be completed by performing a dot-product:

S(f ← i) = gns(2J′ + 1)(2J + 1)

∣

∣

∣

∣

∣

∣

∣

∑

v′,k′

[cJ′,Γ′, f
v′,k′]∗sJ′,Γ′

v′,k′ (← i)

∣

∣

∣

∣

∣

∣

∣

2

, (15)

5

which is anO(N) operation. This two step procedure has many advantages. When
computing transitions up to a maximum wavenumberνmax, the maximum energy
of lower statesEi

max is determined by the relation:

Ei
max = E f

max− νmax, (16)

whereE f
max is the maximum upper state energy. Because of thisNi < N f , where

Ni andN f are the numbers of lower and upper states respectively. Additionally
this has the consequenceNt ≫ Ni whereNt is the number of transitions. From
this, the majority of the work is performed by the cheaper andfaster dot product
in Eq. (15) instead of the more expensive Eq. (14). This two step method is the
methodology used in the variational nuclear motion code TROVE [5].

3. TROVE

TROVE’s input is controlled by keywords and makes use of Stone’s input
parser [53]. Computing a transition requires modifying a TROVE input file to
include an intensity block with the keywords given in Table 1. An example of the
intensity part of the TROVE input file is given in Figure 1. Thedipole matrix ele-
mentsµ∆k

v′,v are precomputed and stored in a checkpoint file, this is only done once
in the entire TROVE pipeline and is read into memory for everytransition run.
At each run the matrixFJ,k

∆J,∆k for a specifiedJ range is computed and stored in
memory, while the eigenvalues and quantum number assignments of states for all
J in the range required are loaded and sorted by energy. The transition calculation
occurs by looping through each lower state eigenvectorsΨJ,Γ,i within the corre-
sponding lower state energy range and computing all possible half-linestrengths.
For each lower stateJ,Γ, i all half-linestrengths (see Eq. (13)) are computed for
eachJ′ andΓ within the upper energy range that satisfy the selection rules given
by Eqs. (10) and (11). OpenMP is utilized during these half-linestrength com-
putations independently working onk′ andv′ amongst available cores. The sum
in Eq. (13) is restricted to|k − k′| ≤ 1 and is also a subject of the the expansion
coefficient threshold condition

|cJ,Γ,i
v,K | ≤ Cthresh,

with Cthreshof about 1×10−12−1×10−16. After this stage, a nested loop for upper
state eigenvectorsΨJ′,Γ′, f is executed for for energies and frequencies within the
ranges requested, where the appropriate matrixsJ′,Γ′

v′,k′ (← i) is selected for the dot
product in Eq. (15). The dot-product is evaluated using the vendor specific BLAS
[54] sub-routine library. In order to reduce the input/output (I/O) the required
eigenvectors are batched into RAM. Since transitions from different lower states

6

MEM 64 gb

SYMGROUP C2V(M)

(Other inputs)

INTENSITY

absorption

THRESH_INTES 1e-40

THRESH_LINE 1e-40

THRESH_COEFF 1e-40

temperature 1000.0

QSTAT 33314.25

GNS 1.0 1.0 3.0 3.0

ZPE 5773.228049563373

selection 1 1 2 2

J, 8,9

freq-window -0.001, 10000.0

energy low -0.001, 8000.00, upper -0.00, 18000.0

END

(Other inputs)

Figure 1: An example TROVE input with only relevant keywords(Stone’s input parser [53] is
used) for computing intensities for the H2CO molecule

7

Table 1: Keywords used in a TROVE input file (see Stone’s inputparser [53].

Keyword Comment
mem Total memory in Gb
symgroup Molecular symmetry group
intensity Beginning of intensity block
absorption Required keyword
threshline Smallest linestrength to output
threshintens Smallest absolute intensity to output
threshcoeff = Cthresh, used to skip below threshold|cJ,Γ

v,K |’s in Eq. (14)
temperature Temperature of calculation
qstat Partition functionQ
gns Nuclear statistical weight
selection Symmetry selection rules
J J range of calculation
zpe Zero point energy
Freq-window Frequency range of calculation
energy low: Ei min,max —upper: E f min,max
end end of intensity block
() Comments

J,Γ, i are independent, the intensity calculations can be split into independent sub-
ranges forE(i)

n ≤ Ei ≤ E(i)
n+1 and run in parallel over different nodes.

The main two factors that dictate the completion time of intensity calculations
are (i) the total number of transitions (controlled via the keywords in Table 1) and
(ii) the size of the basis set.

The size of a particular basis setdJ is given by:

dJ = (2J + 1)dvib, (17)

wheredvib is the size of the corresponding vibrational basis. Therefore asJ in-
creases the problem size increases. The time scaling for thehalf-linestrength is
O(d2

J) and for the dot-product,O(dJ). For large basis sets, the most significant
bottleneck comes from the half-linestrength evaluation itself. For example, basis
sets of around≈ 106 can take between 30 seconds to 10 minutes per lower state
to complete with typically thousands of lower states per selected intensity run, es-
pecially for higher excitations. Table 2 shows typical half-linestrength times for a
number of molecules as well as the total time spent performing this preprocessing
step in the most demanding cases. Heavier molecules incur a greater burden at
this step with SO3 requiring over a month of wall-clock time.

Additionally there is an issue with the linestrength completion step in terms
of the load-balancing; It is difficult to predict whether it is more efficient to use

8

Table 2: Times in wallclock seconds for computing a single half-linestrength for H2CO, PH3 and
SO3 taken from the AYTY [46], SAlTY [45] and UYT2 [48] hot line lists calculations, respec-
tively. The last row gives the total time in hours to compute half-linestrengths for the most dense
J↔ J′ with ≈4000 lower states.

J H2CO PH3 SO3

10 3.46 13.84 13.84
20 7.43 29.72 131.87
30 11.30 45.20 263.01
40 16.32 65.28 381.05
50 21.25 85.01 512.19
60 25.89 103.57 625.15
70 30.07 120.27 828.25
DenseJ Total Time (hours) 12.56 33.02 920.28

all cores for a single upper state filtering, eigenvector inflation and dot product
computation or to perform multiple of these simultaneouslywith each given a
single core.

However accelerators such as graphics processing units (GPU) are especially
suited for highly parallel work such as the half-linestrength calculation as well as
allowing for a more asynchronous work distribution betweenthe CPU and GPU
for parallel filtering, inflation of eigenvectors and the computation of dot products.

4. Using GPU architecture for intensity calculations

This section describes the terminology related to GPUs and features exploited
in the program. The terminology and devices are based on the Compute Unified
Device Architecture (CUDA). GPUs contain multiple streaming multiprocessors
(SM) each a physical core used in execution, a register spaceand a small user-
managed cache (32KB) calledshared memory. There is also a large on-board
memory (1-12 GB) accessible by all SMs calledglobal memory. A CPU issues
commands to be executed by GPUs by calling routines known askernels.

The hierarchy of memory is that registers are extremely fast(a few cycles) with
the scope of a single thread, the shared memory is moderatelyfast (10-20 cycles)
with the scope of the thread block and the global memory is slow (400 cycles) with
the scope of the entire GPU. Each thread can read and write to the global memory
and these persist across multiple kernels whilst shared andregister memory are
lost. Global memory reads can be improved by ensuring ordered access (memory
coalescing).

It should be noted that the quoted term ‘CUDA cores’ is not analogous to the
physical cores of a CPU. Instead they are more closely relatedits SIMD (Sin-
gle Instruction Multiple Data) width. These can be considered as ’coupled’ cores

9

to the physical core and can perform multiple mathematical operations simultane-
ously if the work given in predictable orvectorizable. A typical CPU has an SIMD
width of around 128 bits or 4 floats. For a four core CPU this means the equiv-
alent of 16 ‘CUDA’ cores. GPUs rely on SIMD to a high degree to achieve the
high number of ‘CUDA cores’. A Tesla K20 GPU has 13 SMs with eachhaving
a SIMD width of 6144 bits or 192 floats giving a total CUDA core count of 2496.
In a sense, there are only small number of true cores in a GPU but their ability to
perform vectorizable computations is significantly augmented. The disadvantage
is that work that contains conditions (e.g. if statements) are difficult to vectorize
and the large SIMD width comes at the cost of lower clock speedand a smaller
and weaker cache that means random memory access is slower and the user must
manually manage a portion of the cache in order to achieve high performance.

All performance characteristics shown below are with the I/O time removed
and using the eigenvectors and dipole moments from the AYTY linelist calcula-
tions [46] unless otherwise stated. The AYTY line list has vibrational basis set
size ofdvib =7 642 and a maximumJ at 70 giving a maximum basis set size of
dJ =1 077 522. The system used in measuring performance is the Emerald CfI
cluster and comprises of 12 cores (two 2.50 GHz six-cores Intel Xeon E5-2640
processors) connected via NUMA with 8 nVidia Tesla M2090 GPUs attached
(Fermi architecture).

5. Cache and Reduce Kernal

A naive kernel which we label as theBaselinewas produced that implements
Eq. (14) exactly as TROVE’s implementation. The primitive basis function, 3j-
symbols and dipole matrices are put into the GPU’s global memory and each
required eigenvector is transferred into the GPU’s global memory before calcu-
lation. Figure 2 shows the performance gain from the Baselinekernel against
dimensions (different basis set sizes). Here we see that the GPU gives us a free
speedup at smaller basis sets but becomes significantly lessefficient at higher di-
mensions with only a 10 % speedup at best. The reason for this is the sheer number
of global reads for quantum numbers and coefficients required in Eqs. (14). Addi-
tionally, conditional statements are used to determine which dipole co-ordinate is
accessed and to take advantage of the sparsity of eigenvectors to skip calculation.
Both of these play to the disadvantage of the architecture of the GPU. Therefore
a re-factoring in the overall methodology was required. Firstly, thek, v elements
of the eigen-coefficientscJ,Γ,n

v,k (i.e. how the ro-vibrational basis functions are ar-
ranged in theJ,Γ basis set) can be rearranged by grouping them by the samev,
i.e. effectively creating (2J+1) blocks. Eq. (14) can also be decomposed into two

10

further steps. The first is a caching step:

KJ′,Γ′,k,∆k
v′,k′ =

∑

v

cJ′,Γ′

v,k F∆J,∆kµ
∆k
v′,v , (18)

whereKJ′,Γ′,k,∆k
v′,k′ as the half-linestrength belonging to a specifick block is intro-

duced for a specific∆k. The second is a ‘reducing’ step:

sJ′,Γ′

k′,v′ (← i) =
2J+1
∑

k

(KJ′,Γ′,k,−1
v′,k′ + KJ′,Γ′,k,0

v′,k′ + KJ′,Γ′,k,1
v′,k′) (19)

In Eq. (18), all threads are guaranteed the samecJ,Γ
v,k andF∆J,∆k making them easily

cached into the faster shared memory during computation andthe value fork is
implicitly based on which block is being executed. Therefore the only global
memory reads required are thev indices andµ∆k

v′,v matrices. The dipole reading is
further coalesced as all threads will read around the same area of memory. The
conditionals for determining the dipole co-ordinate were removed by transforming
them into an easily calculated integer index and the threshold eigen-coefficient
Cthreshis not applied, removing the sparsity advantage but improving the routine’s
vectorization.

This kernel will be referred to as theCR Kernal(Cache and Reduce Kernal).
The kernel is called (2J′ + 1) times in order to complete and each call is able
to be performed simultaneously, to a degree, by using multiple streams as they
are each independent of each other. Figure 3 compares the efficiency of theCR
Kernal to that of CPU andBaselineshowing a substantial improvement with up
to 30× speed-up from the CPU call time. TheCR Kernalcan complete the half-
linestrength in less than a second for the largest basis set and speed-ups gained
from this kernel increase with the growing basis set size. This comes entirely
from the reduced global memory reads, utilization of the fast shared memory and
data re-use.

5.1. Large dipole matrices

For the formaldehyde molecule used for the AYTY hot linelist, the size of the
vibrational basis set isdvib = 7642. This gives a dipole moment matrix of size
7462× 7462× 3 which requires≈ 1.2 GB using double precision. This fits easily
into the M2090 or K20 GPU’s global memory. However the linelists computed
for molecules such as PH3 and SO3 requiredvib of 14386 and 15948 respectively.
For the PH3 case this gives a dipole of memory size 4.6 GB which only barely fits
into the M2090 memory. However the SO3 calculations require≈ 5.8 GB to store
which is infeasible both for the M2090 and K20 GPUs. The easiest solution would
be to utilize the larger memory K40 and K80 GPUs to perform thecomputation

11

200000 400000 600000 800000 1000000
Basis set size

1

1.5

2

2.5

3

3.5

4

4.5

5

S
pe

ed
-u

p
(C

P
U

/G
P

U
)

Figure 2: A plot showing the speedup (CPU time/ GPU time) of calculating the half-linestrength
against basis set dimension when directly implementing Eq.(14) to CUDA.

12

200000 400000 600000 800000 1000000
Basis-set size

0.2

1

5

25

E
xe

cu
tio

n
tim

e
(s

) CPU
Baseline
CR

Figure 3: Average half-linestrength call time in seconds ona logarithmic scale against the CPU
(TROVE), the Baseline kernel and the Cache and Reduce (CR) kernel.

13

k'=1-J'

k'=-J'

k'=J'

...

Figure 4: A visual representation of blocking the dipole matrix elements withp = 4, the colours
and arrows show how each matrix block relates thek-blocks in stateΨ′

but this would limit larger and heavier molecules to specificmodels of nVidia
GPUs. Another possible solution (adopted here) that provides flexibility is to
partition the dipole moment matrix into blocks that can fit into GPU memory and
call a modified version of the CR kernel for each dipole moment block. The
dipole matrix elements depend onv andv′. Each thread requires allv′ to complete
a particulark′ andφv′, the matrix is therefore partitioned byv into p number of
blocks. The structure ofΨ′ is such that eachv′ of the dipole matrix is applicable to
everyk′ block and is shown in Fig. 4. A matrix block is transferred into the GPU
and calls a block-CR kernel for eachk. The block-CR kernel is almost exactly the
same as the CR kernel only it spawns threads forv which exist in the matrix block.
This is repeated for each matrix block in order to complete the half-linestrength.

Figure 5 shows how the speedup gain from using this strategy varies over
differing blocking (p) values. Overall, there is a performance reduction with in-
creasing block-size with a 2× reduction forp = 2 and 3× for p = 3. This makes
sense as we effectively need to call the kernelp multiple times to complete the
half-linestrength as given by block-CR. Such blocking methodis more beneficial
for more difficult molecules such as SO3. Figure 6 uses the basis sets and vectors
from the SO3 hot linelist obtained by Underwood et al. [48]. As the dipolematrix
elements are too large to fit in the M2090 memory, only partitioned dipoles are

14

220000 440000 660000 880000 1100000
Basis set Size

0

4

8

12

16

20

24

28

32
S

pe
ed

up

Baseline
CR
2-block CR
3-block CR

Figure 5: Performance characteristics of the CR kernel withvarying values for the blocking pa-
rameterp.

shown. Here the speed-up given is significant and the change in speed-up between
p values vary by only≈ 20− 30%. This is because of the basis set that can easily
saturate the GPU with work even after splitting.

Overall, the half-linestrength calculations with the CR kernel is up to 70×
faster than that with the CPU-only version and is especially suited for more dif-
ficult molecules, as the limitation of the vibrational basisset on the linelist com-
pletion time is reduced. This may encourage the use of largerbasis sets which
provide more accurate line positions via improved convergence of energies and
larger wavenumber and energy (and thus temperature) ranges. Indeed this has al-
ready been done for methane where the use of GAIN has allowed the computation
of a significantly extended line list [42].

In order to assess the efficiency of the blocking CR, it is worth comparing to
an ideal situation where where entire dipole matrix can fit into memory for the
case of large SO3 linelist calculations. Towards this we have acquired access to a
K80 GPU with an identical setup to the M2090. The 12 GB of memory provided
by the K80 gives us the ability to assess how the non-blockingCR compares to the

15

1000000 1500000 2000000 2500000 3000000
Basis-set size

20

30

40

50

60

70

80

90

S
pe

ed
up

2-block CR
3-block CR
4-block CR

Figure 6: Performance characteristics of the CR kernel withvarying values forp using basis sets
from the SO3 calculations.

16

2000000 2250000 2500000 2750000
Basis-set size

850

900

950

1000

1050
S

pe
ed

-u
p

Figure 7: Speed-up (CPU time/ GPU time) achieved with the non-blocking CR on a K80 for the
SO3 linelist calculations.

blocking CR. Figure 7 shows the speedup with the non-blocking CRkernel on the
K80: For the largest cases presented, we can achieve a substantial performance
increase with a 1000× speed-up comparing to the pure CPU TROVE calculations
and a 10× increase from the 2-block CR. The latter is attributed to the reduced
number of CR calls and the lack of stalling due to dipole matrixtransfers. How-
ever the scaling of the algorithm is consistent for both withonly a≈ 50% increase
in execution time when the basis set size is doubled comparedto the CPU version
which increases by≈ 100%

6. GAIN

GPU AcceleratedINtensities (GAIN) is a set of functions that compute tran-
sitions rapidly using the CR kernels and the cuBLAS [55] implementation of the
dot-product. The usage of the CR and non-blocking CR kernels are determined
automatically by collecting GPU data and the dipole size at run-time. Addition-
ally the code is asynchronous and allows for the CPU to work whilst the GPU is

17

31 32 33 34 35 36 37 38 39
J

0

10

20

30

40

50

60

70

80
S

pe
ed

up

1 GPU
2 GPU
4 GPU
6 GPU

Figure 8: ’Effective’ linestrength performance increase with varying GPU setups for GAIN using
the AYTY H2O2 line list. The speed ups are in comparison to TROVE with IO time removed.

computing. GAIN is also compatible with OpenMP, by passing in the total num-
ber of cores, it can perform up to 10 dot products in parallel on a single GPU. It
also has multi GPU support and will detect available GPU sockets and distribute
them evenly across all cores. This can effectively speed up the dot-product step.
Figure 8 shows the ‘effective’ speed-up of the dot product performance on the
AYTY line list. As a single linestrength completion time does not change for each
GPU, it is not a true ’algorithmic’ speed-up. However withN GPUs we can com-
pute 10× N linestrengths simultaneously thus ‘effectively’ increasing throughput
by 10× N.

GAIN has been successfully integrated into TROVE with very few modifica-
tions to the overall intensity calculation subroutine. It should be straightforward
to implement GAIN in other codes that use uncoupled vibration-rotation basis sets
of the form given by Eq. (8). However, GAIN will require some adaptation for
use with codes which employ coupled vibration-rotation basis sets, which are nec-
essary to allow for the correct treatment of molecules whosevibrational motion
can go from bent to linear geometries [56].

18

7. GAIN-MPI

GAIN-MPI is an extension of GAIN and is a hybrid OpenMP+MPI+CUDA
C code that allows for the usage of a higher number of GPUs compared to GAINs
single node setups. It allows for the mass production of transitions. In its default
form, it operates on TROVE wavefunctions and utilizes the same input files as
TROVE, more specifically the intensity input blocks seen in Fig. 1 and keywords
in Table 1. GAIN-MPI supports all symmetries that TROVE supports, this is be-
cause it uses TROVE’s symmetry FORTRAN files. Therefore upgrading to newer
symmetries implemented in TROVE is a simple case of replacing the relevant
FORTRAN files in GAIN.

Each process will read the input, load basis sets, states andif necessary, split
the dipole moment matrix into the necessary number of blocksto fit into the GPU,
after which the eigenvectors are distributed to a particular rank through the rela-
tion:

Rank= i modNprocs, (20)

where i is a state counting number andNprocs is the total number of MPI pro-
cesses. Eigenvectors are cached into RAM until the memory foreach process is
exhausted, after which all further eigenvectors can be accessed from storage. Each
process will read an initial state and determine whether it satisfies the filtering
rules given by the input file and whether the state belongs to that particular rank.
The process to which the state belongs performs the necessary half-linestrength
calculations and broadcasts the results to all processes. Each process then loops
through all states and performs the dot-products on those that satisfy the energy
thresholds, selection rules and Eq. (20). Figure 9 visuallydescribes this process.
This approach to distributing states and eigenvectors ensures that all ranks per-
form work within a given wavenumber range. Additionally, with enough MPI
processes, I/O reads can be eliminated. Figure 10 shows completion time for the
PH3 linelist calculations atJ = 20. Each process has 6 GB of memory and the
required total memory to store all eigenvectors is≈ 140 GB. When 30 processes
are utilized, I/O is completely eliminated and completion time takes less than an
hour. A sample output is given in Table 3.

7.1. Usage

GAIN-MPI relies on being supplied TROVE checkpoint files to perform cal-
culations. These checkpoint files store various outputs that can be reused in the
TROVE pipeline including the dipole matrix elements and eigenpairs. The ones
relevant to GAIN are described in Table 4. The checkpoint files required for all in-
tensity calculations are the dipole matrix elements and theJ = 0 eigen checkpoint
files.

19

Figure 9: Flow chart depicting GAIN execution.s id refers to the state running number,n procs
the total number of MPI processes andrank the current MPI processes rank

20

0 5 10 15 20 25 30 35 40
N

0

10

20

30

40

50

60

70

C
om

pl
et

io
n

T
im

e
(h

ou
rs

)

Figure 10: Completion time forJ = 21,22, E symmetry with≈ 500,000,000 transitions for PH3

againstN MPI processes. AtN = 30, I/O is effectively eliminated as all eigenvectors are stored in
memory.

21

Table 3: A sample default output produced by GAIN-MPI

vi f nf Jf Γ f ni Ji Γi Af i

1174.246109 1 1 1 ← 1 1 2 3.56497232E-01
1259.379381 2 1 1 ← 1 1 2 1.39442514E+00
1498.358225 2 0 1 ← 1 1 2 8.78353658E-01
1744.075964 3 0 1 ← 1 1 2 3.53440984E+01
2423.803319 3 1 1 ← 1 1 2 4.69999134E-05
2494.949157 5 0 1 ← 1 1 2 5.71096415E-01
2674.487145 4 1 1 ← 1 1 2 2.35255805E-01
2781.132468 6 0 1 ← 1 1 2 5.86996598E+01
2852.641762 6 1 1 ← 1 1 2 4.42291961E+01
2914.123444 7 1 1 ← 1 1 2 2.37305983E-02

vi f : Transition wavenumber in cm−1

nf : Upper state counting number
Jf : Upper state rotational excitationJ
Γ f : Upper state symmetry number
ni: Lower state counting number
Ji: Lower state rotational excitationJ
Γi: Lower state symmetry number
Af i: Einstein-A coefficient in s−1.

Table 4: Checkpoint files

Checkpoint file Comment
j0 extfield.chk Dipole moment matrix elements
j0eigendescrJ Γ.chk Contains eigenvalues for states withJ and symmetryΓ
j0eigenvectorsJ Γ.chk Contains eigenvectors for states withJ and symmetryΓ
j0eigenquantaJ.chk Describes the basis set for states withJ

22

All J andΓ specified in an input file require their relevant ‘descr’, ‘vectors’
and ‘quanta’ checkpoint files in order to run the calculation. Included in the sup-
plementary material are checkpoint files based on the H2CO AYTY [46] linelist
up to J = 5 with inputs to generate transitions up to 4000 cm-1. This range in-
cludes all bands available in the HITRAN database [57] for comparison. The line
positions of the transitions will be of lower quality than those given in the AYTY
line list as a significantly reduced basis set and operator expansion is used order
to reduce the size of the checkpoint files. Additionally included are tje documen-
tation and the input files needed to regenerate the checkpoint files supplied and
the intensities using TROVE. Note that TROVE itself is freely available from the
CCPForge program repository (https://ccpforge.cse.rl.ac.uk/).

Running GAIN-MPI without arguments provides the help output:

Usage: ./GAIN-MPI_KEPLER.x <input file> [options]

Options:

-h,--help Show this help message

-o,--output FILENAME Output linestrengths to files with format FILENAME__[MPI rank]__.out

-i,--compute-intensity Compute absolute intensities in cm/molecule

-f,--full-linestrength Output all linestrength components

The output is piped to stdout unless the-o flag is set in which case it is output to a file
for each MPI rankn with the additional suffix __n__.out. This is used if the MPI library
does not produce thread-safe output. Additionally the absolute intensities incm/molecule
can be computed from the Einstein-A coefficients if an additional-i argument is supplied
and is concatenated after the default output. Lastly the full linestrengths forthe transition
can also be output if the argument-f is supplied and will be the very last output in the
line.

GAIN-MPI is configured to attach each MPI process to a node of GPUs. This can be
done through theNUM_GPUS environment variable,OMP_NUM_THREADS environment vari-
able and the mpirun processes per node options flag (i.e-perhost or -ppn depending on
the MPI library). TheNUM_GPUS variable can be set to -1 for GAIN to detect all GPUs or
> 0 to use a specific number of GPUs. Thememkeyword in the input file must be set to
the total available to each MPI rank. An MPI process must have exclusiveuse of the GPUs
and the GPUs cannot be shared between GAIN-MPI processes. Exclusive hosts, whereby
each job is given an entire node, will have the -ppn flag set to 1,OMP_NUM_THREADS set to
the total core count,NUM_GPUS set to -1 andmemset to the total memory of a single host.
Slot based hosts, those that share nodes amongst other users, will have the-ppn flag set
to 1,OMP_NUM_THREADS set to 1,NUM_GPUS set to 1 andmemset to the memory per core.
Examples and a help file describing full usage is provided.

GAIN-MPI has been used to produce the SAlTY PH3 [45], AYTY H 2CO [46] and
hot SO3 [48] linelists as efficiently as possible. Recently its has been used to complete
the 1.4 billion transitions for the room temperature H2O2 linelist [58]. Here completing
all transitions only took 5-6 hours on a single GPU so an approach was used whereby

23

multiple complete linelists with different parameters where prototyped and produced and
the most suitable one selected for publication. This approach would be infeasible using
the CPU version.

7.2. Extending GAIN-MPI

The main.cpp source handles the MPI management through classes. Included are
number of abstract classes that can be inherited to interface with this code without dealing
with the specific MPI communication. All classes inherit from aBaseProcess class that
tracks MPI rank and process count. The classes that inherit from this are theBasisSet
class providing the quantum numbers needed by GAIN. The abstractStates class that
handles the energies and filtering of states, the abstractEigenvector class that contains
functions to load eigenvectors across MPI processes and finally anOutput class. Addi-
tionally there are the GPU based classes withGpuManager which exclusively deals with
a single assigned GPU and theMultiGpuManager that manages multipleGpuManager
classes and distributes work as well as interfaces with the main program. Thesupple-
mentary material contains concrete versions of these classes specific to TROVE with the
TROVEprefix.

8. Conclusions

A new code has been implemented to compliment the TROVE software suite. The
code accelerates the standard TROVE implementation by 10− 1000 times with larger
speedups favouring more difficult problems. This is accomplished by refactoring the half-
linestrength code to exploit features of the basis set and utilising all threadsto perform
maximal amount of work. A multi-GPU implementation allows for the multiple evalua-
tion of transitions with minimal communication, this exhibits a strong scaling behaviour
and allows for larger portions of the line list to be computed with fewer CPU hours and
within wall-time limitations. This code, along with improvements to diagonalization li-
braries and other algorithmic developments [59], will contribute to pushing theExoMol
Project towards bigger and more difficult molecules. Future work will look into imple-
menting a version of this code on the Intel Xeon Phi and a version utilising OpenCL
instead of CUDA.

Acknowledgements

This work was supported by the European Research Council under Advanced Inves-
tigator Project 267219 and the COST action MOLIM (CM1405). The work presented
here made use of the Emerald High Performance Computing facility provided viathe
Centre for Innovation (CfI). The CfI is formed from the universities ofBristol, Oxford,
Southampton and UCL in partnership with STFC Rutherford Appleton Laboratory.

24

References

[1] P. Jensen, A new morse oscillator-rigid bender internal dynamics (MORBID)
hamiltonian for triatomic-molecules, J. Mol. Spectrosc. 128 (1988) 478–501, doi:
10.1016/0022-2852(88)90164-6.

[2] D. W. Schwenke, Variational calculations of rovibrational energy levels and transi-
tion intensities for tetratomic molecules, J. Phys. Chem. 100 (1996) 2867–2884.

[3] J. Tennyson, M. A. Kostin, P. Barletta, G. J. Harris, O. L. Polyansky, J. Raman-
lal, N. F. Zobov, DVR3D: a program suite for the calculation of rotation-vibration
spectra of triatomic molecules, Comput. Phys. Commun. 163 (2004) 85–116.

[4] I. N. Kozin, M. M. Law, J. Tennyson, J. M. Hutson, New vibration-rotation code for
tetraatomic molecules WAVR4, Comput. Phys. Commun. 163 (2004) 117–131.

[5] S. N. Yurchenko, W. Thiel, P. Jensen, Theoretical ROVibrationalEnergies
(TROVE): A robust numerical approach to the calculation of rovibrational en-
ergies for polyatomic molecules, J. Mol. Spectrosc. 245 (2007) 126–140, doi:
10.1016/j.jms.2007.07.009.

[6] A. Yachmenev, S. N. Yurchenko, Automatic differentiation method for numeri-
cal construction of the rotational-vibrational Hamiltonian as a power series inthe
curvilinear internal coordinates using the Eckart frame, J. Chem. Phys.143 (2015)
014105, doi:10.1063/1.4923039.

[7] L. A. Gribov, A. I. Pavlyuchko, Variational Methods for Solving Anharmonic Prob-
lems in the Theory of Vibrational Spectra of Molecules, Nauka, Moscow, (in Rus-
sian), 1998.

[8] A. I. Pavlyuchko, S. N. Yurchenko, J. Tennyson, A hybrid variation-perturbation
method for calculating rovibrational energy levels of a polyatomic molecules, Mol.
Phys. 113 (2015) 1559–1575, doi:10.1080/00268976.2014.992485.

[9] S. Carter, J. M. Bowman, The adiabatic rotation approximation for rovibrational
energies of many-mode systems: Description and tests of the method, J. Chem.
Phys. 108 (1998) 4397–4404.

[10] S. Carter, J. M. Bowman, N. C. Handy, Extensions and tests of “multimodes’: a
code to obtain accurate vibration/rotation energies of many-mode molecules, Theor.
Chem. Acc. 100 (1998) 191–198, doi:10.1007/s002140050379.

[11] S. Carter, A. R. Sharma, J. M. Bowman, P. Rosmus, R. Tarroni, Calcula-
tions of rovibrational energies and dipole transition intensities for polyatomic
molecules using MULTIMODE, J. Chem. Phys. 131 (2009) 224106, doi:
http://dx.doi.org/10.1063/1.3266577.

25

[12] J. M. Bowman, S. Carter, X. C. Huang, MULTIMODE: a code to calculate rovi-
brational energies of polyatomic molecules, Intern. J. Quantum Chem. 22 (2003)
533–549, doi:10.1080/0144235031000124163.

[13] N. C. Handy, S. Carter, Large vibrational variational calculationsusing ‘multimode’
and an iterative diagonalization technique, Mol. Phys. 102 (2004) 2201–2205, doi:
10.1080/00268970410001728870.

[14] E. Mátyus, G. Czaḱo, A. G. Cśasźar, Toward black-box-type full- and reduced-
dimensional variational (ro)vibrational computations, J. Chem. Phys. 130(2009)
134112, doi:10.1063/1.3076742.

[15] M. Mladenovic, Rovibrational Hamiltonians for general polyatomic molecules in
spherical polar parametrization. I. Orthogonal representations, J. Chem. Phys. 112
(2000) 1070–1081.

[16] M. Mladenovic, Discrete variable approaches to tetratomic molecules Part I:
DVR(6) and DVR(3)+DGB methods, Spectra Chimica Acta A 58 (2002) 795–807,
doi:10.1016/S1386-1425(01)00669-2.

[17] M. Mladenovic, Discrete variable approaches to tetratomic molecules Part II: ap-
plication to H2O2 and H2CO, Spectra Chimica Acta A 58 (2002) 809–824, doi:
10.1016/S1386-1425(01)00670-9.

[18] H. Wei, T. Carrington, Discrete variable representations of complicated
kinetic energy operators, J. Chem. Phys. 101 (1994) 1343–1360, doi:
http://dx.doi.org/10.1063/1.467827.

[19] P. Sarkar, N. Poulin, T. Carrington, Calculating rovibrational energy levels of a tri-
atomic molecule with a simple Lanczos method, J. Chem. Phys. 110 (1999) 10269–
10274, doi:10.1063/1.478960.

[20] J. C. Light, T. Carrington, Discrete-variable representations andtheir utilization,
Adv. Chem. Phys. 114 (2000) 263–310, doi:10.1002/9780470141731.ch4.

[21] X.-G. Wang, T. Carrington, Jr., Using a nondirect product discrete variable rep-
resentation for angular coordinates to compute vibrational levels of polyatomic
molecules, J. Chem. Phys. 128 (2008) 194109, doi:10.1063/1.2918498.

[22] X.-G. Wang, T. Carrington, Jr., A discrete variable representationmethod for study-
ing the rovibrational quantum dynamics of molecules with more than three atoms,
J. Chem. Phys. 130 (2009) 094101, doi:10.1063/1.3077130.

[23] X.-G. Wang, T. Carrington, Jr., Computing rovibrational levels of methane with
curvilinear internal vibrational coordinates and an Eckart frame, J. Chem. Phys. 138
(2013) 104106, doi:10.1063/1.4793474.

26

[24] G. Avila, T. Carrington, Jr., A multi-dimensional Smolyak collocation methodin
curvilinear coordinates for computing vibrational spectra, J. Chem. Phys. 143 (2015)
214108, doi:10.1063/1.4936294.

[25] T. Carrington, Jr., Two new methods for computing vibrational energy levels, Can.
J. Phys. 93 (2015) 589–593, doi:10.1139/cjc-2014-0590.

[26] D. Lauvergnat, A. Nauts, Exact numerical computation of a kinetic energy op-
erator in curvilinear coordinates, J. Chem. Phys. 116 (2002) 8560–8570, doi:
10.1063/1.1469019.

[27] H. G. Yu, J. T. Muckerman, A general variational algorithm to calculate vibrational
energy levels of tetraatomic molecules, J. Mol. Spectrosc. 214 (2002) 11–20, doi:
10.1006/jmsp.2002.8569.

[28] H. Guo, Recursive Solutions to Large Eigenproblems in Molecular Spec-
troscopy and Reaction Dynamics, Rev. Comput. Chem. 25 (2007) 285–347, doi:
10.1002/9780470189078.ch7.

[29] F. Gatti, C. Iung, Exact and constrained kinetic energy operatorsfor poly-
atomic molecules: The polyspherical approach, Phys. Rep. 484 (2009)1–69, doi:
10.1016/j.physrep.2009.05.003.

[30] A. V. Nikitin, M. Rey, V. G. Tyuterev, An efficient method for energy levels calcula-
tion using full symmetry and exact kinetic energy operator: Tetrahedral molecules,
J. Chem. Phys. 142 (2015) 094118, doi:http://dx.doi.org/10.1063/1.4913520.

[31] G. Czaḱo, T. Furtenbacher, A. G. Csásźar, V. Szalay, Variational vibrational calcula-
tions using high-order anharmonic force fields, Mol. Phys. 102 (2004)2411–2423,
doi:10.1080/0026897042000274991.

[32] J. Bloino, A VPT2 Route to Near-Infrared Spectroscopy: The Role of Mechani-
cal and Electrical Anharmonicity, J. Phys. Chem. A 119 (2015) 5269–5287, doi:
10.1021/jp509985u.

[33] K. Sadri, D. Lauvergnat, F. Gatti, H.-D. Meyer, Rovibrational spectroscopy us-
ing a kinetic energy operator in Eckart frame and the multi-configuration time-
dependent Hartree (MCTDH) approach, J. Chem. Phys. 141 (2014)114101, doi:
10.1063/1.4895557.

[34] L. Lodi, J. Tennyson, O. L. Polyansky, A global, high accuracyab initio dipole
moment surface for the electronic ground state of the water molecule, J. Chem.
Phys. 135 (2011) 034113.

[35] M. Grechko, O. Aseev, T. R. Rizzo, N. F. Zobov, L. Lodi, J. Tennyson, O. L. Polyan-
sky, O. V. Boyarkin, Stark coefficients for highly excited rovibrational states of H2O,
J. Chem. Phys. 136 (2012) 244308.

27

[36] A. Petrignani, M. Berg, A. Wolf, I. I. Mizus, O. L. Polyansky, J.Tennyson, N. F.
Zobov, M. Pavanello, L. Adamowicz, Visible intensities of the triatomic hydro-
gen ion from experiment and theory, J. Chem. Phys. 141 (2014) 241104, doi:
10.1063/1.4904440.

[37] O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. F. Zobov, J. T. Hodges, J. Ten-
nyson, High accuracy CO2 line intensities determined from theory and experiment,
Phys. Rev. Lett. 114 (2015) 243001, doi:10.1103/PhysRevLett.114.243001.

[38] E. Zak, J. Tennyson, O. L. Polyansky, L. Lodi, S. A. Tashkun, V. I. Perevalov, A
room temperature CO2 line list with ab initio computed intensities, J. Quant. Spec-
trosc. Radiat. Transf. 177 (2016) 31–42, doi:10.1016/j.jqsrt.2015.12.022.

[39] R. Warmbier, R. Schneider, A. R. Sharma, B. J. Braams, J. M. Bowman, P. H.
Hauschildt, Ab initio modeling of molecular IR spectra of astrophysical interest:
application to CH4, Astron. Astrophys. 495 (2009) 655–661, doi:10.1051/0004-
6361:200810983.

[40] S. N. Yurchenko, J. Tennyson, ExoMol line lists IV: The rotation-vibration spectrum
of methane up to 1500 K, Mon. Not. R. Astron. Soc. 440 (2014) 1649–1661.

[41] M. Rey, A. V. Nikitin, V. G. Tyuterev, THEORETICAL HOT METHANELINE
LISTS UP TO T=2000 K FOR ASTROPHYSICAL APPLICATIONS, Astrophys.
J. 789 (2014) 2, doi:10.1088/0004-637X/789/1/2.

[42] S. N. Yurchenko, J. Tennyson, D. S. Amundsen, A hybrid line listfor CH4 and hot
methane continuum , Astron. Astrophys. .

[43] J. Tennyson, S. N. Yurchenko, ExoMol: molecular line lists for exoplanet and other
atmospheres, Mon. Not. R. Astron. Soc. 425 (2012) 21–33, doi:10.1111/j.1365-
2966.2012.21440.x.

[44] S. N. Yurchenko, R. J. Barber, J. Tennyson, A variationally computed hot line list
for NH3, Mon. Not. R. Astron. Soc. 413 (2011) 1828–1834, doi:10.1111/j.1365-
2966.2011.18261.x.

[45] C. Sousa-Silva, A. F. Al-Refaie, J. Tennyson, S. N. Yurchenko, ExoMol line lists
VIII: A Hot Line List for Phosphine, Mon. Not. R. Astron. Soc. 446 (2015) 2337–
2347, doi:10.1093/mnras/stu2246.

[46] A. F. Al-Refaie, S. N. Yurchenko, A. Yachmenev, J. Tennyson, ExoMol line lists IX:
A variationally computed line-list for hot formaldehyde, Mon. Not. R. Astron. Soc.
448 (2015) 1704–1714, doi:10.1093/mnras/stv091.

[47] A. F. Al-Refaie, O. L. Polyansky, R. I., Ovsyannikov, J. Tennyson, S. N. Yurchenko,
ExoMol line lists XV: A hot line-list for hydrogen peroxide, Mon. Not. R. Astron.
Soc. 461 (2016) 1012–1022, doi:10.1093/mnras/stw1295.

28

[48] D. S. Underwood, J. Tennyson, S. N. Yurchenko, S. Clausen, A. Fateev, ExoMol line
lists XVII: A line list for hot SO3, Mon. Not. R. Astron. Soc. 462 (2016) 4300–4313,
doi:10.1093/mnras/stw1828.

[49] S. N. Yurchenko, J. Tennyson, J. Bailey, M. D. J. Hollis, G. Tinetti, Spectrum of hot
methane in astronomical objects using a comprehensive computed line list, Proc.
Nat. Acad. Sci. 111 (2014) 9379–9383, doi:10.1073/pnas.1324219111.

[50] A. I. Pavlyuchko, S. N. Yurchenko, J. Tennyson, A hybrid variation-perturbation
calculation of the ro-vibrational spectrum of nitric acid, J. Chem. Phys. 142 (2015)
094309, doi:10.1063/1.4913741.

[51] S. N. Yurchenko, W. Thiel, M. Carvajal, H. Lin, P. Jensen, Rotation-vibration mo-
tion of pyramidal XY3 molecules described in the Eckart frame: The calculation
of intensities with application to NH3, Adv. Quant. Chem. 48 (2005) 209–238, doi:
10.1016/S0065-3276(05)48014-4.

[52] P. R. Bunker, P. Jensen, Molecular Symmetry and Spectroscopy,NRC Research
Press, Ottawa, 2 edn., 1998.

[53] A. J. Stone, input.F90[U+0097] a Fortran90 module for parsing text input, see
http://www-stone.ch.cam.ac.uk/programs/, 2005.

[54] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Her-
oux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, R. C. Whaley,
An Updated Set of Basic Linear Algebra Subprograms (BLAS), ACM Transactions
on Mathematical Software 28 (2001) 135–151.

[55] nVidia, CUBLAS Library User Guide, nVidia, v5.0 edn., URL
http://docs.nvidia.com/cublas/index.html, 2012.

[56] J. Tennyson, B. T. Sutcliffe, The ab initio calculation of the vibrational-rotational
spectrum of triatomic systems in the close-coupling approach, with KCN and H2Ne
as examples, J. Chem. Phys. 77 (1982) 4061–4072, doi:10.1063/1.444316.

[57] L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath,
M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A.
Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R.
Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart,
A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C.J.
Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V.
Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H.
Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev,
G. Wagner, TheHITRAN2012 molecular spectroscopic database, J. Quant. Spec-
trosc. Radiat. Transf. 130 (2013) 4 – 50, doi:10.1016/jqsrt.2013.07.002.

29

[58] A. F. Al-Refaie, R. I. Ovsyannikov, O. L. Polyansky, S. N. Yurchenko, J. Tennyson,
A variationally calculated room temperature line-list for H2O2, J. Mol. Spectrosc.
318 (2015) 84–90, doi:10.1016/j.jms.2015.10.004.

[59] J. Tennyson, S. N. Yurchenko, The ExoMol project: Softwarefor comput-
ing molecular line lists, Intern. J. Quantum Chem. 117 (2017) 92–103, doi:
10.1002/qua.25190.

30

