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Introduction 

Bio-electrical impedance  (BI) techniques are non-invasive, safe and easy to use compared with other methods for body composition (BC) 

assessment (1). The conventional approach assumes that height-adjusted impedance is proportional to total body water, which can be used to 

calculate lean and fat mass. However, the clinical validity of this approach is compromised in individuals characterised by abnormal fluid status 

and/or body disproportion. For instance, in children with severe acute malnutrition (SAM), oedema greatly reduces the accuracy of BI estimates 

(2). To circumvent the challenges in sick individuals, the use of raw BI values alone or in combination (vector analysis or BIVA), has been 

suggested (3). 

In adult patients with chronic cardiac failure phase angle (PA) was associated with lower haemoglobin, poor cardiac function and renal failure; 

more importantly, those with PA <4.4 degree were at higher risk of death (4). Values of reactance (Xc) and PA are presumed to indicate 

“cellular health” (5), which in itself is poorly defined. Similarly,  patients with oedema show increments in resistance (R) in association with loss 

of oedema (6).  Based on a review of the literature regarding the clinical relevance and applicability of raw BI values, PA was identified as a 

prognostic marker while BIVA has been recommended as a screening tool to identify patients with impaired functional status (7). 

The clinical usefulness of the  innovate approaches that can potentially  replace the assumption-dependent and error-prone equations is well 

documented, though data is still scare in clinical nutrition in childhood  (8). However, evidence is lacking regarding the biological correlates of 

BI parameters in sick individuals. Consequently, it is difficult to interpret cross-sectional or serial BI data, and this hinders utilization of the 

innovative methods. In this study, we examined the relationship between BI parameters and markers of electrolyte homeostasis, liver function 

and inflammation, and anthropometry in children hospitalized with SAM.  These parameters are commonly used, combined with clinical 

examination, to assess disease progress, treatment outcome or identify patients at high risk of death early. 



Methods  

Study setting and subjects 

The study was conducted in the Nutrition Rehabilitation Unit (NRU) of Jimma University Specialized Hospital, Ethiopia, from November 20010 

to September 2011. The authors have previously published data from this site (2). Eligible children were those 6-60 months old admitted with 

SAM, defined as MUAC <11·0 cm or weight-for-height (WFH) <70% of NCHS growth reference median and/or nutritional oedema. Children 

with life-threatening illness like shock or sever respiratory distress or who were readmitted with SAM were excluded.  

Data collection 

Children were weighed with minimal clothing to the nearest 10 g using a pediatric scale (Tanita BD 815 MA, Tokyo, Japan). For children less 

than 2 years or those not able to stand, length was measured to the nearest 0·1 cm using a length board (SECA 416, Hamburg, Germany). In 

children older than 2 years of age, 0·5 cm was subtracted if they were not able to stand. In older children, height was measured to the nearest 0·1 

cm using a free-standing stadiometer (SECA 214, Hamburg, Germany). MUAC was measured to the nearest 0·1 cm using a strip (SECA 2012, 

Hamburg, Germany). Pitting oedema was checked by gentle pressure with the thumb on the feet for 3-5 seconds.  

BI parameters i.e. impedance in Ohm, R in Ohm, Xc in Ohm and PAin degrees were measured at 50 kHz using a Quadscan 4000 analyser 

(Bodystat, UK) as described previously (9). It emitted 200 Micro Amps root mean square of alternating current. In brief, self-adhesive 

disposable electrodes were attached at the right hand and foot, injecting leads were connected to the electrodes just behind the finger and toe and 

the measuring leads were then connected to the electrodes on the right wrist and right ankle. Measurements were taken in triplicate 5 minutes 

apart, with children supine and limbs abducted. 

Healthy children of 6-60 months old (WFH and height-for-age within ± 2SD of WHO growth standard) were recruited among vaccination 

attendees and children in day-care centre. The BI parameters in this group were measured with both equipment and protocol as for the SAM 

children. Two research nurses collected the data. 

In the patients, venous blood was collected into dry tube and EDTA tube for separation of serum and hemoglobin determination, respectively. 

Serum was separated within an hour and kept at -80°C for later blood chemistry analysis.  Serum phosphate (P), Ca, Mg, Na, K and Cl were 



measured (Abbott Diagnostics, ref no 2P32-11 and 2P32-50) at International Clinical Laboratory (ISO 15189, Testing Laboratory No. M0221). 

Architect C4000 system (Abbott Diagnostics, USA) was used to measure P (Abbott Diagnostics, ref no 7D71-20&7D70-30), Mg (Randox 

Laboratories, UK, ref no MG531), Ca (Abbott Diagnostics, Ref no 3L79-31), albumin ( Abbott Diagnostics, ref no 7D53-20) and bilirubin 

(Abbott Diagnostics, ref no 6L45-20 and 6L45-40) in serum. An automated Humastar 80 analyser (Human Diagnostics, Wiesbaden, Germany) 

was used to measure α1-acid glucoprotein (AGP) (code Q0326, DAKO Denmark A/S, Glostrup, Denmark) and alkaline phosphatase (Human 

diagnostics ref no 12117) in serum. Hemoglobin was measured from whole blood samples collected in EDTA tubes using HemoCue® (Hb 

201+, Ängelholm, Sweden). 

Reference ranges for the age group of children in the study provided by the laboratories were: P (1.1–2.0 mmol/L), Ca (2.2-2.7 mmol/L ), Mg 

(0.70-0.95 mmol/L), albumin (38-54 g/L ), Na (138-145 mmol/L) ,  K (3.4-4.7  mmol/L),  Cl (98-113 mmol/) and alkaline phosphatase (<400 

U/L). The reference value for AGP (0.5-1.2 g/L) was not age-specific.  

 

Written informed consent was obtained from caretakers or parents. Research Ethical Review Committee of Jimma University approved the 

study. All measurements were done after commencement of standard management and within 24 hours of admission.  

Statistics and data handling 

Data were double-entered into EpiData version 3·1 (EpiData Association, Odense, Denmark) and analyzed with Stata/IC 12·1 (StataCorp, 

Texas, USA). WHO growth standard based anthropometric z-scores were calculated using Stata. R and Xc were indexed to height by division 

(R/H and Xc/H respectively). Continuous data were presented as mean ± standard deviation; categorical data were presented as n (%). Two-

sample t-tests and chi-square test were used to compare SAM and healthy children. Correlation between continuous independent and dependent 

variables was assessed using Pearson’s correlation coefficient.          

The dependent variables were R/H and Xc/H, and unadjusted PA. Results of Z and R were similar and hence only results for R were shown. The 

following covariates were included in the final model: anthropometric indices, age, sex, MUAC, and serum AGP, Na, K, P, Ca, Mg, Cl, 

bilirubin, albumin, alkaline phosphatase and haemoglobin. To test if the relationship of serum albumin and BI varies with oedema, 2-way 



interaction term (albumin## oedema) was included in the model. Variance inflation factors to check for multi-collinearity between independent 

variables. Final models were established using forward selection after comparing models by likelihood ratio test. 

 



 

Results 

Of 55 children with SAM, the mean±SD age was 36±24 month, and 60% were males and 72.7% had nutritional oedema (Table 1), and the 80 

healthy reference children had mean±SD age of 28±15 month and 47.5 % were males. The reference children were younger than the SAM 

children. Oedematous children were older (p=0.04) and heavier (p<0.001) than the non-oedematous children. Moreover, the oedematous 

children were less stunted than the non-oedematous children (p=0.01).  

The children with SAM had lower Xc and PA (p<0.001) than the healthy children, whereas R was comparable between the two groups (Table 2). 

In children with SAM, presence of oedema was associated with lower R and Xc (p<0.01) but not with PA. 

As is shown in Table 3, oedematous children had lower serum albumin, K and alkaline phosphatase than non-oedematous children (p<0.02). 

However, serum phosphorus, calcium, magnesium, sodium, chloride, haemoglobin and AGP did not differ by oedema. R was negatively 

correlated with age, oedema, MUAC, HAZ, WAZ and WHZ while Xc was negatively correlated with age, oedema, HAZ and WAZ (Table 4). 

PA was positively correlated only with MUAC (p<0.05).  

Among serum biochemical markers presented in Tables 5, only serum albumin correlated with both R and Xc. Haemoglobin and phosphate 

levels correlated only with Xc. Of note, PA correlated with none of these markers.  

Table 6 provides the independent predictors of bio-electrical impedance among children with SAM. After adjustment for all the covariates 

oedematous children had lower R (B = -486, 95%CI-888, -85), Xc (B = -29.3, 95%CI -41.1, -17.6) and PA (B= -0.86, 95%CI -1.3, -0.42) 

compared with non-oedematous children with SAM. Additionally, R decreased with WHZ (B = -125.6, 95%CI -184.2, -67.0) but increased with 

albumin level (Coeff. = 16, 95%CI 7, 25). Despite the mean serum albumin in oedematous children being only half that of non-oedematous 

SAM children, no interaction was found between albumin and oedema for all dependent variables (data not shown). Xc was higher with 

increasing calcium (B = 18.5, 95%CI 3.6, 33.5) and Chloride (B = 1.1, 95%CI 0.2, 1.9). PA increased with MUAC (B = 0.26, 95%CI 0.13, 

0.38).  



 

Discussion 

This study provides new data on the association of BI parameters with anthropometric and biochemical markers of nutritional status. All three BI 

parameters (R, Xc and PA) were divergent between SAM children and healthy children. Among SAM children nutritional oedema was an 

independent factor for the divergence in R and Xc. We found that R decreased with WHZ and PA increased with MUAC. In contrast, Xc did not 

relate with physical parameters but increased with Ca and Cl levels. All the three BI parameters were lower in the presence of oedema. Of note, 

serum albumin did not influence the relationship between R and oedema.  

Unlike conventional biochemical markers of nutritional status, BI is a blend of three highly interrelated components (R, Xc and PA). Though the 

physical basis of variability in BI parameters requires further theoretical development, particularly in disease states, the components are 

presumed to be influenced by, and hence reflect variability in, differing biological aspects. 

In this study R/H correlated with oedema, WHZ and serum albumin level. Because fat tissue behaves as a non-conductor, electrical current 

traverses the body against the resistance by lean tissue (9). In lean tissue, resistance is inversely related to its fraction of hydration and the 

concentration of electrolytes in the fluid (10). Thus, difference in lean tissue mass (healthy>non-oedematous SAM) and lean mass hydration 

(oedematous SAM>healthy>non-oedematous) can explain the indirect relationship of R with both oedema and WHZ (11,12). There are no 

published data on the composition of nutritional oedema. But the fact that albumin level had direct correlation with R may reflect the 

contribution of albumin to plasma colloid and osmotic pressure (13).  

Interestingly, no correlation was found between R and both serum Na and Cl; the two main determinants of serum osmolality.  Moreover, serum 

albumin did not influence the relationship of oedema with R. These finding demonstrate the complexity of the mechanism of nutritional oedema 

(14,15).  

Based on physio-electrical principles, Xc is considered to be influenced by integrity of the cell, in particular the membrane. In this study the 

healthy children had the highest Xc and oedematous SAM children the lowest. This pattern may demonstrate that cellular integrity is perturbed 

in SAM, but is also worse in oedematous SAM. Among children with critical illness, Xc/H was better than R/H in predicting evolution for septic 

shock and organ dysfunction (16). Of note, there is evidence relating cell membrane abnormality and leakage with nutritional oedema (17). The 



stronger relationship of Xc with biochemical  parameters  than with anthropometric parameters substantiates that  Xc reflects physiological more 

than physical abnormalities (18). In Bangladeshi children with SAM, case fatality was three fold higher in children with  hypocalcaemia (19). In 

severe diseases, chloride is considered to play a role beyond  plasma tonicity (20); its serum level in critically sick patients is correlated with 

survival (21). Albumin has strong inverse relationship with severity of illness, but we did not find any correlation between albumin level and Xc 

(22).  

Generally, serum alanine aminotransferase, bilirubin, alkaline phosphatase and albumin are taken as markers of liver damage or dysfunction 

(23).  In this study, the mean values of albumin and alkaline phosphatase were abnormal and also differed by oedema. Though fatty liver is 

frequently reported in SAM patients (24), there are mixed result regarding its  markers. In malnourished pig models, serum alanine 

aminotransferase and bilirubin were increased, and liver showed evidence of  increased triglyceride content (25). However, serum albumin was 

increased in the same pigs. In adults with chronic hepatitis C,  phase angle was positively correlated with lean body mass while it was negatively 

correlated with serum high density lipoprotein (26). But only lean body mass was related when adjusted for age and sex, which was similar with 

our finding of positive correlation between PA and MUAC. 

The inflammatory marker serum AGP was found to be equally elevated in the oedematous and non-oedematous SAM children. In this study 

children were enrolled soon after admission, and hence the elevated inflammatory markers may indicate ongoing inflammatory process which in 

most SAM children can be presumed to be related to infection. The small sample size, exclusion of severely ill children and absence of 

systematic assessment for infection were major limitation of this study. Moreover, it would have been invaluable to evaluate the short-term 

longitudinal relationship between the BI parameters and the other nutritional markers.  

This study demonstrated that R and PA correlated strongly with anthropometric parameters irrespective of the biochemical profile whereas Xc 

had strong relation with physiological markers. Normally serum albumin is used as marker of nutritional status as well as prognostic indicator in 

severs illnesses. Thus, its positive association with R indicates that in children with SAM (with or without oedema), R can be used to monitor 

nutritional recovery. It is possible to examine if R cut-off can be used to categorize children with SAM according to their serum albumin level. 
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Table 1. Anthropometry, age and sex by oedema of children hospitalized with severe acute malnutrition and healthy children without 

malnutrition 

 Healthy  

reference 

 n = 80 

Severe acute 

malnutrition 

 n =55  

 

 

p 

Severe acute malnutrition  

 

P 
Oedematous 

n = 40 

Non-oedematous 

n = 15 

Male sex 38 (47.5)1 33 (60.0) 0.15 22 (55.0) 11 (73.6) 0.21 

Age, mon 28±15 36±24 0.02 35±24 27±18 0.04 

Growth, z-score        

Height-for-age -0.8± 0.9 -3.4± 1.7 <0.001 -3.0±1.6 -4.4±1.5 0.01 

Weight-for-age -0.3±0.9 -3.5±1.4 <0.001 -3.0±1.2 -4.9±0.8 <0.001 

Weight-for-height  0.1± 0.9 -2.4± 1.7 <0.001 -1.9±1.5 -3.9±0.7 <0.001 

Mid-upper arm circumference, cm 14.9±1.3 11.0±1.6  <0.001 11.6±1.6 9.7±0.8 <0.001 

1Data in cell are mean ± SD or n (%), Chi-square, unpaired t-test  



Table 2. Bio-electrical impedance values by oedema of children hospitalized with severe acute malnutrition and healthy children without 

malnutrition 

 Healthy 

children 

 n=80 

Severe acute 

malnutrition 

 n=55 

 

p 

Severe acute malnutrition  

p Oedematous 

n=40 

Non-oedematous 

n=15 

Resistance, Ohm1 839±1182 825±270 0.66 725±234 1091±155 <0.001 

Reactance, Ohm  57±11 33±17 <0.001 29±14 46±16 <0.001 

Phase angle, degree 3.8±0.7 2.2±0.7 <0.001 2.1±0.6 2.4±0.8 0.12 

Resistance index  1005±196 1042±393 0.48 882±314 1471±224 <0.001 

Reactance index 67±8 43±23 <0.001 36±19 63±23 <0.001 

1 Bio-electrical impedance values were at 50 kHz, index = value/height in m, 2 Data in cell are mean ± SD 
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Table 3. Serum levels of electrolytes, haemoglobin, acute phase protein and markers of liver 1 

function by oedema of children hospitalized with severe acute malnutrition  2 

 Severe acute malnutrition  

 Oedematous Non-oedematous  

 n mean ± SD n mean ± SD P1 

Phosphate , mmol/L 39 0.86± 0.3 13 1.0 ± 0.4 0.18 

Calcium, mmol/L  38 1.9 ± 0.3 13 1.9 ± 0.6 0.78 

Magnesium, mmol/L 39 0.9 ± 0.2 13 0.9 ± 0.3 0.63 

Sodium, mmol/L 40 135.7 ± 6.3 15 134.5 ± 8.0 0.57 

Chloride, mmol/L 40 110.9 ± 5.8 15 108.9 ± 7.5 0.29 

Potassium, mmol/L  40 3.8 ± 0.8 15 4.8 ± 2.3 0.02 

Albumin, g/L 39 13 ± 6.7 12 21 ± 9.0 <0.001 

Alkaline phosphatase, U/L 33 347 ± 106 18 531 ± 412 0.02 

Bilirubin, mg/dl  33 13.1 ± 10.5 12 16.2 ± 10.5 0.41 

Alanine aminotransferase, U/L 33 44 ± 21 18 38 ± 29 0.40 

Haemoglobin, gm/dl 36 9.8 ± 2.2 22 10.0 ± 1.7 0.24 

α1-acid glycoprotein, g/L 33 2.9 ± 0.7 15 2.7 ± 1.0 0.72 

1 Unpaired t-test  3 

 4 

 5 

 6 

 7 

8 
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Table 4.Correlations between anthropometry, age, sex and bio-electrical impedance indices 9 

of children hospitalized with severe acute malnutrition  10 

 Resistance1   Reactance1  Phase angle 

Age, mon -0.45*** -0.42*** -0.18 

Sex  0.11 0.02 0.001 

Oedematous  -0.67*** -0.52*** 0.22 

Mid-upper arm circumference, cm -0.34* -0.10 0.31* 

Height-for-age z score -0.37* -0.35** -0.25 

Weight-for-age z score -0.64*** -0.37** -0.03 

Weight-for-height z score -0.58*** -0.22 0.19 

1Bio-electrical impedance values were measured at 50 kHz and resistance and reactance were 11 

indexed as value /height in m; Pearson’s correlation coefficient *<0.05, **<0.01, ***<0.001 12 

13 
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Table 5 Correlations between serum electrolyte level, haemoglobin, markers of liver function 14 

and bio-electrical impedance indices of children hospitalized with severe acute malnutrition  15 

1 Bio-electrical impedance values were measured at 50 kHz and resistance and reactance 16 

were indexed as value /height in m; Pearson’s correlation coefficient, *<0.05, **<0.001;   17 

18 

 Resistance/H1   Reactance/H1  Phase angle 

Phosphate,   mmol/L 0.18 0.33* 0.22 

Calcium,   mmol/L 0.21 0.23 0.14 

Magnesium,   mmol/L 0.27 0.26 0.08 

Sodium,   mmol/L -0.05 0.17 0.17 

Chloride,  mmol/L -0.08 0.20 0.13 

Potassium,  mmol/L 0.24 0.16 0.11 

Albumin, g/L 0.59** 0.41** 0.19 

Alkaline phosphatase,  U/L 0.27 0.12 0.01 

Bilirubin, mg/dl 0.27 0.22 0.05 

Alanine aminotransferase,  U/L -0.28 -0.01 0.16 

Haemoglobin, gm/dl 0.20 0.30* 0.26 

Alpha-1-acid glycoprotein, g/L -0.13 0.10 0.21 
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 19 

Table 6. Independent correlates of bio-electrical impedance indices in children hospitalized with severe 20 

acute malnutrition      21 

  Coefficient (95%CI) P R 2 

Resistance index1 Oedematous -247 (-442, -54) 0.014 0.66 

 Albumin, mg/dl 16 (7, 25) <0.001  

 Weight-for-height Z score -88 (-134, -40) 0.001  

Reactance index Oedematous -29.3 (-41.1, -17.6) <0.001 0.38 

 Serum calcium  18.5 (3.6, 33.5) 0.016  

 Serum chlorine  1.1 (0.2, 1.9) 0.016  

Phase angle Oedematous -0.86 (-1.3, -0.42) 0.001 0.30 

 Mid-arm circumference, cm 0.26 (0.13, 0.38) <0.001  
1 Bio-electrical impedance values were at 50 kHz, index = value/height in m. Model was 22 

adjusted for anthropometric indices, age, sex, mid-arm circumference, and serum α1-acid 23 

glycoprotein, Na+, K+, P, Ca+, Mg+, Cl-, bilirubin, albumin, alkaline phosphatase and 24 

haemoglobin. No interaction between albumin and oedema.  25 

 26 

 27 


