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Key points  24	

1. Recurrent intronic mutations that create probable MYB, ETS1, and RUNX1 binding 25	

sites occur at the LMO2 promoter in some T-ALL patients 26	

2. CRISPR/Cas9-mediated disruption of the mutant MYB site in PF-382 cells markedly 27	

downregulates LMO2 expression.  28	

 29	

Abstract 30	

Somatic mutations within non-coding genomic regions that aberrantly activate oncogenes 31	

have remained poorly characterized. Here we describe recurrent activating intronic mutations 32	

of LMO2, a prominent oncogene in T-cell acute lymphoblastic leukemia (T-ALL). 33	

Heterozygous mutations were identified in PF-382 and DU.528 T-ALL cell lines, in addition 34	

to 3.7% (6/160) of pediatric and 5.5% (9/163) of adult T-ALL patient samples. The majority 35	

of indels harbour putative de novo MYB, ETS1 or RUNX1 consensus binding sites. Analysis 36	

of 5’-capped RNA transcripts in mutant cell lines identified the usage of an intermediate 37	

promoter site, with consequential monoallelic LMO2 overexpression. CRISPR/Cas9-38	

mediated disruption of the mutant allele in PF-382 cells markedly downregulated LMO2 39	

expression, establishing clear causality between the mutation and oncogene dysregulation. 40	

Furthermore, the spectrum of CRISPR/Cas9-derived mutations provide important insights 41	

into the interconnected contributions of functional transcription factor binding. Finally, these 42	

mutations occur in the same intron as retroviral integration sites in gene therapy induced T-43	

ALL, suggesting that such events occur at preferential sites in the non-coding genome. 44	

  45	
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Introduction 46	

 47	

LIM-domain-only protein 2 (LMO2) plays a crucial bridging role in the formation of a large 48	

multimeric transcriptional complex, that includes TAL1, LDB1, GATA, RUNX1, ETS1 and 49	

MYB1. In mice, Lmo2 is progressively silenced after the early T-cell progenitor (ETP) stage 50	

of thymic development, and leads to T-cell acute lymphoblastic leukemia (T-ALL) when 51	

overexpressed in transgenic models 2-4. In human thymi, LMO2 is similarly downregulated 52	

after commitment to the T cell lineage as indicated by DNA microarray analyses5. 53	

Overexpression of LMO2 in human hematopoietic stem cells also leads exclusively to pre-54	

leukemic alterations in thymocytes and T cells, but not in other lineages6. Reported 55	

mechanisms of aberrant LMO2 expression in human T-ALL include i) recurrent 56	

chromosomal translocations, such as t(11;14)(p13;q11) and t(7;11)(q35;p13); ii) cryptic 57	

deletions of an upstream negative regulatory region, as in del(11)(p12p13); and iii) retroviral 58	

insertional mutagenesis at the LMO2 locus during gene therapy7-11. While approximately 59	

50% of T-ALL patients overexpress LMO2, only about 10% of patients have a detectable 60	

cytogenetic lesion12. Notably, many of these patients will overexpress LMO2 from a single 61	

allele, a feature reminiscent of TAL1 overexpressing T-ALL cases driven by small somatic 62	

indel mutations that create binding sites for MYB, generating a neomorphic enhancer13,14.	We 63	

thus hypothesized that cis-acting mechanisms may account for T-ALL cases with monoallelic 64	

LMO2 expression that lack abnormalities of the LMO2 locus15,16.  65	

66	
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Methods 67	

 68	

Detailed methods are described in the supplementary section. Chromatin 69	

immunoprecipitation (ChIP)-sequencing was performed on T-ALL cell lines following 70	

immunoprecipitation with antibodies against MYB and acetylated H3K27 (H3K27ac). 71	

Analysis of Motif Enrichment (AME) was used to confirm enrichment of MYB motifs in the 72	

MYB ChIP-seq data (Table S1 and S2). LMO2 mRNA levels were quantified by qRT-PCR. 73	

Mutation screening of primary T-ALL samples was achieved by denaturing HPLC of LMO2 74	

intron 1 PCR products. Luciferase reporter constructs, consisting of 469 bp PCR products 75	

inserted upstream of a SV40 promoter and firefly luciferase gene, were electroporated into 76	

Jurkat cells. CRISPR/Cas9 genome editing was used to target the LMO2 intron 1 mutations in 77	

the PF-382 T-ALL cell line.  78	

  79	
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Results and Discussion 80	

 81	

To test this hypothesis, we first assessed LMO2 expression by quantitative RT-PCR (qRT-82	

PCR) in several T-ALL cell lines arrested at different stages of thymic differentiation. The 83	

ETP-like T-ALL cell line Loucy expressed LMO2 at levels significantly higher than the more 84	

mature T-ALL cell lines (DND-41, ALL-SIL, Jurkat), reflecting physiological expression of 85	

LMO2 at the ETP stage of thymic development (Figure 1A). The TAL1-positive cell lines 86	

DU.528 and PF-382 both exhibited upregulated LMO2 expression, yet crucially have no 87	

reported chromosomal lesions affecting this locus (Figure 1A)17,18. In contrast to Loucy cells, 88	

aberrant H3K27ac marks, indicative of active chromatin, were identified prior to and 89	

encompassing the non-coding exon 2 of the LMO2 gene by ChIP-seq in PF-382 and DU.528 90	

T-ALL cell lines (Figure 1B and S1). Sequencing across these peaks revealed a heterozygous 91	

20bp duplication in PF-382 cells and a heterozygous 1bp deletion in DU.528 cells, located 92	

close to a region recently described as an intermediate promoter for reasons that were not 93	

then apparent (Figure 1B)19. Notably, the mutations were not described as normal germline 94	

variants in dbSNP. In silico analysis of the reference sequence identified a high confidence 95	

primary MYB binding motif (AACCGTT) that was duplicated in the PF-382 cell line, while 96	

the single bp deletion in DU.528 cells creates a CAACCGC sequence that closely resembles 97	

a secondary MYB binding motif (Figure 1B; Table S3 and S4).  98	

 99	

To assess whether the mutations form aberrant sites of MYB binding, we performed ChIP-100	

seq for MYB and analyzed peaks of MYB enrichment at the LMO2 locus. There was a 101	

complete absence of MYB binding at the intermediate promoter in cells that were wild-type 102	

at this locus, suggesting that the presence of the single native MYB motif in itself is 103	

insufficient to recruit MYB. In contrast, both PF-382 and DU.528 cells that harbor dual MYB 104	
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motifs displayed precisely aligned MYB binding at the mutation site (Figure 1B). To 105	

determine whether the mutations affected promoter usage, we performed 5’RACE in LMO2 106	

mutant and wild-type cell lines using a common primer in exon 6 capable of capturing the 107	

transcription start site (TSS) of all LMO2 isoforms. While the majority (73%) of 5’ capped 108	

transcripts in Loucy cells originated from the proximal promoter, both PF-382 and DU.528 109	

cells demonstrated preferential usage of the recently-described intermediate promoter (75% 110	

and 67% of transcripts respectively; Figure 1C). 111	

 112	

Our observations were not limited to T-ALL cell lines as heterozygous mutations at LMO2 113	

intron 1 were detected in diagnostic samples from 3.7% (6/160) of pediatric and 5.5% (9/163) 114	

of adult T-ALL patients (Figure 1D). Absence of the mutations in 7 available patient-115	

matched remission samples confirmed that they were somatic (Figure S2). Notably, the 116	

mutations were densely distributed around highly conserved native ETS1, MYB and GATA 117	

motifs (Figure S3). Including the cell lines, seven mutations introduced an additional MYB 118	

site, resulting in two MYB motifs spaced 10 or 20 bp apart, equivalent to one or two helical 119	

coils of DNA respectively (Figure 1E). Three mutations created potential binding sites for 120	

both MYB and ETS1, three formed potential ETS1 sites, and three produced potential new 121	

RUNX1 binding sites (Figure 1E; Table S3 and S4). Given NOTCH and TAL1 have been 122	

shown to collaborate with LMO2 to promote leukemogenesis in murine models of T-ALL, it 123	

is noteworthy that of the 15 patients with LMO2 promoter mutations, 7 had NOTCH-1 124	

mutations and 8 had TAL1 activating lesions, including two with TAL1-enhancer mutations 125	

(both creating new MYB motifs; Table S5) 21,22. Such collaboration between TAL1, LMO2 126	

and NOTCH-1 has also been described in gene therapy-induced T-ALL, including one patient 127	

that harbored both a retroviral integration upstream of LMO2 and an episomal reintegration at 128	

the TAL1 locus 9,13,23.  129	
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 130	

To ascertain whether LMO2 promoter mutations in T-ALL led to aberrant expression 131	

compared to its matched thymic counterpart, we assessed LMO2 expression by qRT-PCR in 132	

thymic subsets sorted for different levels of thymic differentiation5. Validating earlier reports 133	

using microarrays, LMO2 expression was highest in the most immature, pre-commitment 134	

stages of T cell development, and expressed at low levels from the double-negative (DN) 135	

stage onwards, when thymocytes have undergone biallelic TCR-γ rearrangement (Figure 136	

2A)5. To determine the level of differentiation arrest of the 15 mutant patient samples, we 137	

analyzed the TCR-γ locus by q-PCR (Figure S4); twelve of the 15 samples (including 5 of the 138	

6 patients with available RNA) had biallelic TCR-γ deletion (Figure S4; Table S5), indicating 139	

maturation arrest occurred after the pro-T-cell stage of differentiation, and that the majority 140	

of patients were not of the ETP-ALL phenotype. Thus, compared to their physiological 141	

counterpart, those patients with RNA available for LMO2 qRT-PCR, exhibited aberrant 142	

LMO2 overexpression (Figure 2A; P<0.002 vs DN and DP subsets). Although we were 143	

unable to confirm LMO2 overexpression in all mutant samples due to availability of RNA, all 144	

classes of mutation (additional MYB, ETS1, RUNX1 or MYB+ETS1 sites) were represented 145	

in the 6 patients with LMO2 overexpression. Exploiting a heterozygous germline SNP 146	

(rs3740617), DU.528 cells and 3 of 4 informative patient samples displayed skewed allelic 147	

expression of LMO2 (Figure 2B). The observation of biallelic expression in sample A1 148	

suggests a potential lesion on the second allele that remains undefined. Consistent with their 149	

cis-activating potential, ≥96% of reads from MYB ChIP-seq performed in DU.528 and PF-150	

382 cells aligned to the mutant rather than wild-type allele (Figure 2C and S5). Furthermore, 151	

the gain-of-function nature of the mutations was confirmed by luciferase reporter assays 152	

conducted in Jurkat cells where all mutations markedly activated luciferase activity compared 153	

to the wild-type sequence (Figure 2D and S6A).  154	
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 155	

To assess causality between the mutations and LMO2 dysregulation, we used CRISPR/Cas9 156	

genome-editing with a guide RNA designed to target the duplicated MYB site in PF-382 cells 157	

(Figure S6B). Crucially, clone 4F11 that had a single T>C substitution disrupting the MYB 158	

binding site, and clone 1A8 where the mutant allele had been reverted to wild-type, resulted 159	

in the most dramatic downregulation of LMO2 (Figure 2E, 2F and S7). Interestingly, two 160	

clones (4H12 and 6D4) that increased the distance between the native and the mutant MYB 161	

sites resulted in a marked reduction in LMO2 expression, supporting the hypothesis that 162	

MYB binding is augmented when additional motifs are orientated on the same side of the 163	

DNA helix24. This was further validated by the lack of reduction in LMO2 expression in a 164	

clone (5F10) where the sequence between the two MYB sites was altered but the spacing 165	

distance was unchanged.  166	

 167	
In conclusion, we identified and functionally validated a novel recurrent mutation hotspot 168	

occurring in a non-coding site that drives LMO2 overexpression from a neomorphic promoter 169	

in a substantial proportion of both adult and pediatric T-ALL patients. Remarkably, the 170	

mutations create potential binding sites for MYB, ETS1 or RUNX1, all of which are 171	

members of a highly oncogenic TAL1-LMO2 complex in T-ALL, indicating that LMO2 is a 172	

component of an autoregulatory self-sustaining positive feedback loop in these cells, 173	

analogous to autoregulation of TAL1 we recently described in Jurkat cells14,25. To prove the 174	

newly formed ETS1 and RUNX1 sites are sufficient to drive LMO2 expression, we attempted 175	

but ultimately were unable to knockin these mutations in vitro. Thus, the oncogenic potential 176	

of these particular mutations are an area of ongoing study. It has remained obscure as to 177	

exactly how various members of the TAL1 complex orient themselves on DNA with regards 178	

spacing, orientation and order of motifs, so called syntax26. Thus, identification of gain-of-179	

function non-coding mutations that have been selected for during tumorigenesis in vivo, 180	
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offers important insights into the optimal DNA syntax required for nucleation of such multi-181	

protein transcription factor complexes. For instance, it may become apparent why a single 182	

MYB binding site is sufficient to drive expression from certain loci, such as at the TAL1 183	

enhancer, while others require dual MYB motifs. Lastly, we note that these mutations occur 184	

within the same intron as retroviral integration sites described in two cases of gene therapy-185	

induced T-ALL (Figure S8)23,27. This raises the possibility that formation of aberrant 186	

promoters and enhancers, either by mutation or retroviral insertion, occur at preferred, rather 187	

than random sites in the non-coding genome.  188	

  189	
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Figure Legends 305	

 306	

Figure 1: LMO2 intron 1 mutations in pediatric and adult human T-cell acute 307	

lymphoblastic leukemia (T-ALL). (a) LMO2 expression as determined by qRT-PCR in 308	

LMO2 translocated T-ALL cell lines – KOPT-K1 and P12-Ichikawa, and non-translocated T-309	

ALL cell lines, DU.528, PF-382, Loucy, DND41, Jurkat and ALL-SIL. (b) ChIP-Seq tracks 310	

at the LMO2 locus for MYB and H3K27ac in PF-382, DU.528, Loucy and Jurkat T-ALL cell 311	

lines. Y-axis values are reads per bin per million mapped reads (RPM). Below, mutations are 312	

shown as identified by Sanger sequencing of PF-382 and DU.528 DNA, with inserted 313	

sequences shown in red, and MYB motifs underlined. The position weight matrices (PWM) 314	

for the primary and secondary MYB binding sites are from UniPROBE28. (c) Pie chart 315	

summarising the percentage of LMO2 transcripts identified by 5’RACE that start from the 316	

distal, intermediate and proximal promoters, for the PF-382, DU.528 and Loucy T-ALL cell 317	

lines. A total of 20, 21 and 22 LMO2 transcripts was examined respectively for PF-382, 318	

DU.528 and Loucy T-ALL cell lines. (d) Pie chart summarising mutation recurrence within 319	

pediatric and adult human T-ALL cohorts. (e) Indels mapped to the LMO2 intron 1 mutation 320	

hotspot, labelled with the associated de novo consensus site as aligned to the UniPROBE or 321	

HOCOMOCO PWMs, where MYB, ETS1 and RUNX1 sites are marked as a triangle, square 322	

and diamond respectively. Below, motif analysis of the region shows the native binding sites 323	

for members of the TAL1 complex including, RUNX1, E-box (for TAL1 binding), ETS1, 324	

MYB and GATA.  325	

 326	

Figure 2: LMO2 intron 1 indels are predominantly monoallelically activating and 327	

CRISPR/Cas9 mediated knockout of the PF-382 mutant allele downregulates LMO2 328	

expression (a) LMO2 expression as determined by qRT-PCR in human sorted thymic 329	
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subsets, primary patient samples with LMO2 intron 1 indels, and the wild-type Jurkat cell 330	

line. P<0.002 for samples A1, A2, A3, A9, and P6, vs DN and DP by two-tailed t test. 331	

Primary patient samples were assessed for the absence of bi-allelic TCR-g deletion (ABD), of 332	

which patient sample A4 (orange bar) exhibited ABD, whilst all other patients were non-333	

ABD. (b) The informative SNP, rs3740617 was amplified in 4 patient samples and the 334	

DU.528 cell line from both gDNA and cDNA templates to infer monoallelic expression. To 335	

do this, if one chromatogram peak is detected at a heterozygous SNP within the cDNA, the 336	

expression can be interpreted as coming from one allele (c) Quantification of the number of 337	

reads mapped to the wild type (WT) or mutant (MUT) allele where 54 of 56 reads, and 85 of 338	

85 reads mapped to the mutant alleles for DU.528 and PF-382 respectively (d) Firefly 339	

luciferase activity following renilla and no-insert vector normalisation for patient-derived 340	

indels. Data shown is from ≥3 independent experiments performed in triplicate. Values 341	

shown are mean ± SD and p-values (where p≤ 0.05 is denoted by *) were calculated by a 342	

two-tailed Student’s t-test. (e) The yellow highlighted sequence is the target region for the 343	

CRISPR/Cas9 guide RNA. Aligned sequences are from CRISPR/Cas9-edited PF-382 single 344	

cell clones showing the associated genomic edits generated. Red sequences are inserted 345	

sequences, blue are altered, and dashes represent deleted bases. Underlined region shows the 346	

presence of the native and mutant MYB binding sites. (f) Gene expression of LMO2 for each 347	

PF-382 clone, as determined by qRT-PCR. Data is expressed as fold change relative to the 348	

mean expression of the unedited clones in arbitrary units (AU). Clones are labelled as 349	

“unedited”, where CRISPR/Cas9 did not edit region targeted by the guide RNA, and “edited” 350	

where successfully targeting led to the formation of an indel. 351	

 352	
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Activation	of	the	LMO2	oncogene	through	a	somatically	acquired	

neomorphic	promoter	in	T-Cell	Acute	Lymphoblastic	Leukemia.	

	

Supplemental	Material	and	Methods,	Figures	and	Tables	for	Rahman et al. 	

	

Supplemental	Material	and	Methods		

 

ChIP-Seq of T-ALL cell lines.  

ChIP was performed as described by Lee et al. previously with a few adjustments 1. 

Suspension cultures were grown to a density of ~1-10 million cells/ml prior to 

crosslinking, and adherent cell lines were crosslinked directly on the culture vessel. 

Crosslinking was performed for 10-15 min at room temperature by the addition of 

one-tenth of the volume of 11% formaldehyde solution (11% formaldehyde, 50 mM 

HEPES pH 7.3, 100 mM NaCl, 1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0) to the 

growth media followed by 5 min quenching with 125 mM glycine or 1M Tris pH7.5. 

Cells were washed twice with PBS, then the supernatant was aspirated and the cell 

pellet was flash frozen in liquid nitrogen. Frozen crosslinked cells were stored at 

−80°C. 100µl of Protein G Dynabeads (Life Technologies) were blocked with 0.5% 

BSA (w/v) in PBS. Magnetic beads were bound with 10 µg of anti-H3K27Ac 

antibody (Abcam ab4729). Additional antibodies used included anti-MYB (Abcam 

ab45150). Nuclei were isolated as previously described (Lee et al., 2006), and 

sonicated in lysis buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 2 mM EDTA pH 

8.0, 0.1% SDS, and 1% Triton X-100) on a Misonix 3000 sonicator for 10 cycles at 

30s each on ice (18-21 W) with 60 s on ice between cycles. Sonicated lysates were 
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cleared once by centrifugation and incubated overnight at 4°C with magnetic beads 

bound with antibody to enrich for DNA fragments bound by the indicated factor. 

Beads were washed with wash buffer A (50 mM HEPES-KOH pH7.9, 140 mM NaCl, 

1 mM EDTA pH 8.0, 0.1% Na-Deoxycholate, 1% Triton X-100, 0.1% SDS), B (50 

mM HEPES-KOH pH7.9, 500 mM NaCl, 1 mM EDTA pH 8.0, 0.1% Na-

Deoxycholate, 1% Triton X-100, 0.1% SDS), C (20 mM Tris-HCl pH8.0, 250 mM 

LiCl, 1 mM EDTA pH 8.0, 0.5% Na-Deoxycholate, 0.5% IGEPAL C-630 0.1% SDS) 

and D (TE with 50 mM NaCl) sequentially. DNA was eluted in elution buffer (50 

mM Tris-HCL pH 8.0, 10 mM EDTA, 1% SDS). Cross-links were reversed 

overnight. RNA and protein were digested using RNase A and Proteinase K, 

respectively and DNA was purified with phenol chloroform extraction and ethanol 

precipitation. Additional cell line-specific details in the ChIP protocol are available 

upon request. Purified ChIP DNA was used to prepare Illumina multiplexed 

sequencing libraries. Libraries for Illumina sequencing were prepared following the 

Illumina TruSeq DNA Sample Preparation v2 kit. Amplified libraries were size-

selected using a 2% gel cassette in the Pippin Prep system from Sage Science set to 

capture fragments between 200 and 400 bp. Libraries were quantified by qPCR using 

the KAPA Biosystems Illumina Library Quantification kit according to kit protocols. 

Libraries were sequenced on the Illumina HiSeq 2500 for 40 bases in single read 

mode. Reads were aligned to the hg19 revision of the human reference genome using 

bowtie with parameters –best –k 2 –m 2 –sam and –l set to read length 37 2 . Read 

pileup in 50bp bins was determined using MACS with parameters –w –S –space=50 –

shiftsize=200 –nomodel 49 3. WIG file output from MACS was visualized in the 
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UCSC genome browser 50 4. ChIP-Seq data has been submitted to GEO, accession 

number pending.  

 

Allelic ChIP quantification  

To quantify binding of proteins to different alleles, we aligned ChIP-Seq reads for 

MYB to custom small reference genomes for the reference sequence and mutant 

sequence at the known genomic loci.  Bowtie was used to align reads with parameters 

–best –chunkmbs 256 –l 40 –strata –m 1 –n 0 –S to minimize mismatches with the 

small custom reference genomes.  Reads that mapped with these parameters to these 

references were counted and plotted.  Small custom genomes are listed below.   

DU528: 

AAAAAAAGAAGTCGGCAGGAAGCAGCCTCTTCAACCGCAAAGAAACCGT

TAGAATCCATCCCTGCGCCCTGA 

DU528 REF: 

AAAAAAAGAAGTCGGCAGGAAGCAGCCTCTTCAACCAGCAAAGAAACCG

TTAGAATCCATCCCTGCGCCCTGA 

 

PF382: 

CAGGAAGCAGCCTCTTCAACCAGCAAAGAAACCGTTTAACCAGCAAAGA

AACCGTTAGAATCCATCCCTGCGCCCT 

PF382 REF:  

CAGGAAGCAGCCTCTTCAACCAGCAAAGAAACCGTTAGAATCCATCCCTG

CGCCCT 
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Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). 

For primary samples and cell lines, total RNA was extracted with a RNeasy Mini Kit 

(Qiagen) as per manufacturer’s protocol and concentrations were measured on a 

Nanodrop 1000 spectrophotometer (Thermo Scientific). For two-step qRT-PCR, 

cDNA was synthesised initially with the Omniscript RT Kit (Qiagen) and 200 ng 

input RNA was used for each reaction. For the sorted thymic subsets, cDNA was 

provided by our collaborators where the methods for thymocyte isolation, RNA 

extraction, and cDNA synthesis have been described previously 5. All qPCR reactions 

used FastStart Universal SYBR Green Master (ROX) mix as per manufacturer’s 

protocol and samples were run on a Mastercycler epgradient S thermocycler 

(Eppendorf). Primer pairs for LMO2 were 5’- ATTGGGGACCGCTACTTCCT -3’ 

(forward) and 5’- TCTTGCCCAAAAAGCCTGAGAT-3’ (reverse). Primer pairs for 

the housekeeping gene GAPDH were 5’ - TGCACCACCAACTGCTTAGC -3’ 

(forward) and 5’ - GGCATGGACTGTGGTCATGAG – 3’ (reverse). LMO2 

expression was considered as absent if no signal was detected after 40 cycles of PCR 

amplification. Normalised expression ratios were calculated by the efficiency-

corrected ∆Ct method whilst using GAPDH as the endogenous reference mRNA as 

described at length by Bookout et al 6.  

 

Characterization of transcript start position by rapid amplification of cDNA to the 

5’ end (5’RACE) 

Amplification of mature LMO2 transcripts to the 5’ end in PF-382, DU.528 and 

Loucy cell lines was achieved by using the SMARTer RACE 5’3’ Kit (Clontech) as 
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per manufacturer’s guidelines. Briefly, a gene-specific primer (GSP) was designed 

against the final exon of LMO2 to capture all isoforms, appended with a 15 bp overlap 

sequence to the 5’ end to allow for cloning. The following GSP was used for the 

reaction: 5’-GATTACGCCAAGCTTCCCTTACCCCACCCTCAAACCCCCA-3’. 

First, RACE-ready cDNA was synthesised with SMARTScribe Reverse Transcriptase 

coupled with a proprietary 5’ specific SMARTer II A oligonucleotide. Then, RACE-

ready cDNA was used as the template for RACE PCR reactions run with 10X 

Universal Primer Short, and the aforementioned 5’ GSP. RACE products were cloned 

into the pRACE vector and used to transform Stellar Competant Cells. Colonies 

picked and plasmid DNA was isolated by QIAprep Spin Miniprep Kit (Qiagen). 

Isolated DNA was analysed by Sanger sequencing off an M13 primer and mapped to 

the LMO2 locus by using the UCSC blat tool to determine the transcript start 

positions.  

 

Mutation screening at LMO2 intron 1 by denaturing high-performance liquid 

chromatography (dHPLC). 

Genomic DNA extracts were amplified by PCR with Phusion High-Fidelity PCR 

Master Mix and HF Buffer (New England Biolabs, UK) as per manufacturer’s 

instructions. Primers were designed against LMO2 intron 1 giving a total amplicon 

size of 204 base pairs. The primer pairs used were 5’-

CAGGCGGGTGTCCTTGATA-3’ (forward) and 5’-	

ACACCAGTCCTGTTCATTTGG-3’ (reverse). Final PCR products were denatured 

and allowed to re-anneal through a step-wise cooling program to allow for the 

formation of a heteroduplex for those samples with mutations. All products were then 
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analyzed on the WAVE dHPLC equipment (Transgenomic, UK) and samples with 

positive chromatograms were subject to Sanger sequencing. Large and complex indels 

were confirmed by TOPO cloning and sequencing.    

 

Allelic discrimination via SNP analysis.  

RNA samples were subjected to on-column DNase treatment (Qiagen) prior to cDNA 

synthesis with the Omniscript RT Kit (Qiagen). First, genomic DNA was amplified 

by PCR to ensure amplification of the rs3740617 SNP (T/C) within LMO2 with the 

following primers 5’- GTCCTTCTGTCACCTTGAAGTG -3’ (forward) and 5’ – 

TATGCCAGATCCAAATGCCAG- 3’ (reverse). Samples that were informative i.e. 

heterozygous for the SNP, were then analyzed at the sample position by PCR with a 

paired cDNA template and were called monoallelic if only one of the two possible 

bases were observed at the SNP position.  

 

Motif analysis 

Patient and cell line-derived mutant sequences were analyzed using UniPROBE, a 

database generated through universal protein binding microarray (PBM) technology7. 

For patients P1, A1 and A6, where no motif was identified in UniPROBE, sequences 

were analyzed in Tfbind8. Note binding data for RUNX1 is not included in the 

UniPROBE database. To test whether potential motifs would reach significance when 

tested against multiple databases, P and E values were generated using Tomtom; E 

values <10 are considered to meet the match threshold when accounting for multiple 

testing9. 
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Luciferase reporter constructs and assays.  

Genomic DNA extracts were amplified by PCR with Phusion High-Fidelity PCR 

Master Mix and HF Buffer (New England Biolabs, UK) as per manufacturer’s 

instructions, using primers flanking the mutation hotspot, giving an approximate 469 

base pairs product, depending on the size of the indel. Primers used were as follows 

5’- TATATAGGTACCCACTTGCTTTCTCAGACCGG-3’ (forward) and 5’- 

TATATACTCGAGCCTGCCTCTCCACTAGCTAC-3’ (reverse) both of which 

included the restriction enzymes sites for KpnI and XhoI respectively. PCR products 

were cloned into the pGL3-promoter vector (Promega – E1761) into a multi clonal 

site upstream of a SV40 promoter and the firefly luciferase gene. For the luciferase 

assay, a total of 1x106 Jurkat cells were resuspended in 100 µL of Ingenio 

Electroporation Solution (Mirus) along with 1.5 µg of pGL3-promoter vector 

containing each respective cloned insert and 250 ng of renilla control plasmid (pTK). 

Cells were electroporated on the D-23 program (Amaxa) and allowed to recover for 

48 hours in 1000 µL RPMI supplemented with 10% FCS and incubated at under 

standard tissue culture conditions (37ºC and 5% CO2). Cells were harvested and 

luciferase activity was assessed using the Dual-Glo Luciferase Assay System 

(Promega – E2920) in triplicate. Firefly luciferase activity was normalised to renilla 

luciferase and data shown was the ratio relative to the no-insert (empty) vector. 

 

Retroviral transduction of PF-382 with LMO1 

We anticipated that loss of LMO2 expression through successful genome editing of 

the aberrant promoter would result in loss of cell viability and inability to expand 
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single cell clones. We thus expressed LMO1 in PF-382 cells through retroviral 

infection, given it can replace LMO2 in the LMO-TAL1 complex. LMO1 was 

amplified from PCS2-LMO1 (a gift from Takaomi Sanda) by PCR with Phusion 

High-Fidelity PCR Master Mix and HF Buffer (NEB) as per manufacturer’s 

instructions. Primers were designed to include digest sites for restriction enzymes 

BglII on the forward sequence (BglII-LMO1-F), and EcoRI-HF on the reverse 

(EcoRI-LMO1-R). The primer pairs used were BglII-LMO1-F 5’-

TATATAGATCTGCCACCATGATGGTGCTGGACAAGG 

AGGACGGCGTG - 3’ and EcorI-LMO1-R 5’-

ATATAGAATTCTTACTGAACTTGGG 

ATTCAAAGGTGCCATTGAGC. - 3’ The PCR product was digested with BglII and 

EcoRI-HF and cloned into the corresponding digest sites of MSCV-puro plasmid. The 

retrovirus was generated in human embryonic kidney 293T (HEK293T) cells, which 

were chemically transfected with 18µl of FUGENE and 222µl of OPTIMEM 

supplemented with 4 µg of MSCV-LMO1-puromycin, 2µg of VSVG (pMD2.G) and 

4µg of pMD.MLV. The mixture was added dropwise to the HEK293T cells. After 48 

hours, the retrovirus was collected by harvesting the culture medium and concentrated 

by using an Amicon filter (Milipore) as per manufacturer’s instructions. PF-382 cells 

were infected with the MSCV-LMO1-puromycin retrovirus, by resuspending 1x106 

cells in 3 ml of the aforementioned viral media along with polybrene at 8 µg/ml and 

transferred to a 24-well culture plate. The plate was centrifuged at 2,500g for 1.5 

hours at 37°C and incubated overnight to assist in the infection process. The next day, 

cells were centrifuged, the viral media aspirated off and resuspended in fresh RPMI. 
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PF-382 cells constitutively expressing LMO1 were then selected by puromycin after 

48 hours at a concentration of 2 µg/ml.  

 

CRISPR/Cas9 genome editing of PF-382 

Knock out of the LMO2 intron 1 mutation in the PF-382 LMO1 positive cell line was 

achieved by using CRISPR/Cas9 genome editing technology. Guide RNAs were 

designed against the PF-382 mutation by using the CRISPR design tool 

(http://crispr.mit.edu)	 10. Two guides were annealed and cloned into the BbsI sites 

found within the pX330-U6-Chimeric_BB-CBh-hSpCas9 plasmid (Addgene plasmid 

# 42230)11. The guides used are as follows: guide#1-up 5’-

CACCGATTCTAACGGTTTCTTTGC-3’ and guide#1-down 5’-

AAACGCAAAGAAACCGTTAGAATC-3’. Single cells were sorted by exploiting a 

BFP selectivity marker within the pX330 plasmid by fluorescent activated cell sorting 

into 96 well plates, and incubated under standard tissue culture conditions (37ºC and 

5% CO2) in RPMI supplemented with 10% FCS. Once single cells had grown into 

colonies, gDNA was extracted by using the QuickExtract DNA Extraction solution 

(Epicentre) as per manufacturer’s instructions and clones were screened for mutations 

by Sanger sequencing. 

	
Identification of TCR-g biallelic deletion and characterisation of genetic mutations 

in primary T-ALL samples.  

 

Absence of Biallelic Deletion (ABD) at the T cell receptor gamma (TCR-g) gene 

locus was determined for all the patients using genomic DNA from diagnostic 
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samples followed by qPCR. Notably, ABD is concomitant with early thymic 

progenitors that would not have rearranged the TCR-g locus. Determination of ABD 

by this method has been previously outlined, and the same primers were used in the 

present study 12. All qPCR reactions were set up in triplicate with FastStart Universal 

SYBR Green Master (ROX) mix as per manufacturer’s protocol and samples were 

run on a Mastercycler epgradient S thermocycler (Eppendorf). Mean Ct values were 

calculated and reactions were repeated if the standard deviation of the reference gene 

ANLN Ct values was greater than 0.5. 

 

FBXW7 and NOTCH1 mutations were identified by PCR followed by denaturing 

high-performance liquid chromatography or Sanger sequencing. The following 

genomic regions of NOTCH1 were amplified for mutation analysis: HD-N (exon 26), 

HD-C (exon 27), and PEST domains (exon 34). For FBXW7 the WD40 domain 

(exons 9, 10 and 12) were amplified for mutation screening. These methods including 

the primers used have been described previously 13.  

 

SIL-TAL1 deletions were detected primarily by PCR of genomic DNA with the 

forward primer Sildb.F 5’-AAGGGGAGCTAGTGGGAGAAA-3’ coupled with 

reverse primer Tal1db1-R 5’-AGAGCCTGTCGCCAAGAA-3’ yielding a 300 bp 

product when the deletion is present. A secondary form was detected by using the 

aforementioned Sildb.F primer with the reverse primer Tal1db2-R 5’-

TTGTAAAATGGGGAGATAATGTCGAC-3’ giving a 359 bp product when the 

deletion is present. Both PCRs have been described previously 14.  
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Supplementary Figure 1. Input ChIP-Seq controls for PF-382, DU.528, Loucy 
and Jurkat T-ALL cell lines. Control tracks for data presented in Fig. 1, b. Y-axis 
values are reads per bin per million mapped reads (RPM).  
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Supplementary Figure 2. Representative examples of presentation and remission 
gDNA at LMO2 intron 1 mutational hotspot as analyzed by dHPLC and Sanger 
sequencing (a) Comparison of dHPLC traces following PCR of presentation gDNA 
and patient-matched remission gDNA at the LMO2 intron 1 locus, hg19, chr11: 
33,903,787 – 33,903,584. Jurkat is shown as the negative control with elution time 
along the x-axis. Mutant heteroduplexes are labelled with a red arrow (b) Sequence 
trace comparison of the LMO2 intron 1 mutation observed in patient A6 at 
presentation and remission.  
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Supplementary Figure 3. The ETS1, GATA and MYB binding sequences at the 
LMO2 intron 1 mutation hotspot are highly conserved in vertebrates. To scale 
schematic of the LMO2 intron 1 locus showing binding sites for the TAL1 complex 
aligned to the conservation score from 100 vertebrates as determined by PhyloP using 
the UCSC genome browser. 
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Supplementary Figure 4. Absence of biallelic deletion at TCR-g (ABD) by qPCR 
for primary T-ALL samples. Fold change was calculated using the comparative 
delta Ct method using gDNA from HEK293T cells (that do not have rearrangement at 
the TCRg locus) as a calibrator. ABD and non-ABD status was assigned if fold 
change was above 0.5 and less than 0.25 respectively. Samples with a fold change 
between 0.25 and 0.5 were assigned an indeterminate ABD status.  
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Supplementary Figure 5. Selected allele-specific ChIP-Seq mapped reads ChIP-
seq reads mapped to mutant allele in the DU.528 cell line to the wild type (WT) or 
mutant (MUT) allele.  
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Supplementary Figure 6. Schematic showing the design of the luciferase reporter 
and the workflow of CRISPR/Cas9 experiments. (a) Schematic of the luciferase 
reporter construct, which includes a 469 bp stretch across the mutational hotspot of 
LMO2 intron 1 inserted upstream of a minimal SV40 promoter and the luciferase 
gene. (b) PF-382 cells were first retrovirally infected to stably express the closely 
related LMO1 gene, to counteract the possibility of cell death following knockout of 
the LMO2 intron 1 mutation. Following single cell sorting and expansion, clones were 
screened for mutations by Sanger sequencing.  
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Supplementary Figure 7. Gel electrophoresis of the LMO2 Intron 1 hotspot in 
PF-382 CRISPR/Cas9-edited clones. Gel electrophoresis following PCR of the 
LMO2 intron 1 region using gDNA isolated from Jurkat, PF-382 and PF-382 
CRISPR/Cas9 edited clones, 1F10, 3H7, 5C11, 4H12, 6D4, 4F11, 1A8 and 5F10.  
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Supplementary Figure 8. Retroviral integration sites in gene therapy-induced T-
ALL about LMO2 as reported by Braun et al. and Hacein-Bey-Abina et al15,16. 
Schematic demonstrating the integration sites following patient treatment with 
WASP-expressing retroviral vectors for the treatment of Wiskott-Aldrich Syndrome 
(Patient WAS#) and MFG-γc (encoding the IL2R common gamma chain) for severe 
combined immunodeficiency (Patient P4). All are plotted in relation to the hotspot of 
somatic mutation within LMO2 intron 1.		
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RANK	 JURKAT	 DU.528	 PF-382	 Loucy	
1.	 UP00092_2	Myb_secondary	

4.35e-61	
UP00080_1	
Gata5_primary	1.80e-12	

UP00081_2	
Mybl1_secondary	4.90e-
37	

UP00081_2	
Mybl1_secondary		3.12e-
09	

2.	 UP00081_2	
Mybl1_secondary		
3.72e-53	

UP00100_1	
Gata6_primary	9.05e-12	

UP00092_2	
Myb_secondary		9.42e-32	

UP00002_1	Sp4_primary	
1.27e-07	

3.	 UP00081_1	Mybl1_primary	
5.56e-20	

UP00092_1	Myb_primary		
7.18e-08	

UP00279_1	Rsc30	1.25e-
12	

UP00013_1	
Gabpa_primary	4.83e-06	

4.	 UP00092_1	Myb_primary	
8.70e-17	

UP00287_1	Gat1		
1.22e-07	

UP00000_2	
Smad3_secondary	2.25e-
11	

UP00092_2	
Myb_secondary	7.96e-06	

5.	 UP00002_1	Sp4_primary	
1.09e-15	

UP00092_2	
Myb_secondary			
2.15e-07	

UP00081_1	
Mybl1_primary		
8.15e-11	

UP00080_1	
Gata5_primary	0.00044	

6.	 UP00000_2	
Smad3_secondary		
2.91e-12	

UP00347_1	Gzf3		
2.28e-07	

UP00099_1	Ascl2_primary		
3.07e-09	

UP00021_1	
Zfp281_primary	0.00061	

7.	 UP00093_1	Klf7_primary	
3.66e-12	

UP00081_2	
Mybl1_secondary		
3.81e-07	

UP00065_2	
Zfp161_secondary	2.53e-
08	

UP00100_1	
Gata6_primary	0.00074	

8.	 UP00065_2	
Zfp161_secondary		
1.17e-08	

UP00081_1	
Mybl1_primary		
2.62e-06	

UP00043_2	
Bcl6b_secondary	3.19e-08	

UP00081_1	
Mybl1_primary	0.0034	

9.	 UP00279_1	Rsc30		
1.82e-08	

UP00318_1	Gln3		
4.75e-06	

UP00092_1	Myb_primary			
6.08e-08		

UP00093_1	Klf7_primary	
0.0061	

10.	 UP00043_2	
Bcl6b_secondary		
2.81e-08	

UP00032_1	
Gata3_primary	0.00025	

UP00002_1	Sp4_primary		
1.64e-07		

UP00033_2	
Zfp410_secondary	
	0.013	

	
	
Supplementary	 Table	 S1.	 AME (Analysis of Motif Enrichment) performed for 
MYB ChIP-seq data from T-ALL cell lines17. Most enriched motif IDs are shown 
together with a P value with Bonferroni correction for multiple testing (number of 
motifs x number of thresholds tested).  
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CHROM START END NAME TRANFORMED_P RANK ACTUAL_P 

       PF382_MYB       
chr11 33903044 33904242 MACS_peak_3088 2204.93 1044 3.21E-221 
chr11 33912852 33914188 MACS_peak_3089 1560.04 1784 9.91E-157 
chr11 33914910 33916135 MACS_peak_3090 758.37 4238 1.46E-76 

DU528_MYB       
chr11 33902372 33904415 MACS_peak_3512 3213.47 16 4.496e-322 
chr11 33914670 33916188 MACS_peak_3515 2025.57 2021 2.77E-203 
chr11 33906426 33907585 MACS_peak_3513 574.45 7133 3.59E-58 
chr11 33913001 33914127 MACS_peak_3514 118.1 19885 1.55E-12 

Loucy_MYB       
chr11 33914613 33917117 MACS_peak_3673 2435.96 2519 2.54E-244 
chr11 33912252 33914417 MACS_peak_3672 726.99 7903 2.00E-73 

Jurkat_MYB       
chr11 33914880 33916121 MACS_peak_5137 857.99 7978 1.59E-86 
chr11 33913049 33913949 MACS_peak_5136 194.25 21862 3.76E-20 

PF382_H3K27ac       
chr11 33902008 33907187 MACS_peak_2953 3100 95 0 
chr11 33912047 33916915 MACS_peak_2954 991.12 3533 7.73E-100 

DU528_H3K27ac       
chr11 33899100 33909513 MACS_peak_3076 3100 191 0 
chr11 33910575 33918245 MACS_peak_3077 2484.48 1946 3.56E-249 

Loucy_H3K27ac       
chr11 33912047 33918539 MACS_peak_2487 3100 80 0 
chr11 33918606 33919909 MACS_peak_2488 135.59 11908 2.76E-14 

Jurkat_H3K27ac       
 
Supplementary	Table	S2.	ChIP-Seq	peak	calling.	Peaks	were	defined	using	MACS	3	with	parameters	--keep-dup=auto	-p	1e-9	
and	input	control,	and	peaks	between	chr11	33870000	and	33920000	are	reported.	
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Mutation 
Start Co-
ordinate 
(hg19, 
chr11) 

Sample Type Mutation Mutant sequence WT sequence TF binding site 

33,903,641 P1 Pediatric GTGGGGCTC 
9 bp ins 

CCCTGATGCCAA 
12 bp del 

GTTAGAATCCATCCCTGCGGT
GGGGCTCAGTTCCGCCT 

GTTAGAATCCATCCCTGCGCC
CTGATGCCAAAGTTCCGCCT 

RUNX1 

33,903,656 P2 Pediatric AC 
2 bp ins 

GAATCCATCCCTG 
13 bp del 

GAAACCGTTAACCGCCCTGAT
GCCAAAG 

CAGCCTCTTCAACCAGCAAAG
AAACCGTTAGAATCCATCCCTG

CGCCCTGATGCCAAAG 

MYB 
(secondary motif) 

33,903,672 P3 Pediatric A 
1 bp del 

CTTCAACCGCAAAGAAACCGT
TAGAATCCATCCCTGCGCCCT

GATG 

CTCTTCAACCAGCAAAGAAAC
CGTTAGAATCCATCCCTGCGC

CCTGATG 

MYB 
(secondary motif) 

33,903,672 P4 Pediatric A 
1 bp del 

CTTCAACCGCAAAGAAACCGT
TAGAATCCATCCCTGCGCCCT

GATG 

CTCTTCAACCAGCAAAGAAAC
CGTTAGAATCCATCCCTGCGC

CCTGATG 

MYB 
(secondary motif) 

33,903,672 P5 Pediatric A 
1 bp del 

CTTCAACCGCAAAGAAACCGT
TAGAATCCATCCCTGCGCCCT

GATG 

CTCTTCAACCAGCAAAGAAAC
CGTTAGAATCCATCCCTGCGC

CCTGATG 

MYB 
(secondary motif) 

33,903,670 P6 Adult G 
1 bp del 

CCTCTTCAACCACAAAGAAAC
CGTTAG 

CCTCTTCAACCAGCAAAGAAA
CCGTTAG 

RUNX1 

33,903,672 C1 Cell Line 
DU.528 

A 
1 bp del 

GAAGCAGCCTCTTCAACCGCA
AAGAAACCGTTAGAATCCATC

CCT 

GGCAGGAAGCAGCCTCTTCAA
CCAGCAAAGAAACCGTTAGAA

TCCATCCCT 

MYB 
(secondary motif) 
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Table cont… 

Mutation 
Start Co-
ordinate 
(hg19, 
chr11) 

Sample Type Mutation Mutant sequence WT sequence TF binding site 

33,903,676 C2 Cell Line 
PF-382 

AACCAGCAAAGAA
ACCGTTT 
20 bp ins 

AGCAGCCTCTTCAACCAGCAA
AGAAACCGTTTAACCAGCAAA
GAAACCGTTAGAATCCATCCC

T 

AGCAGCCTCTTCAACCAGCAA
AGAAACCGTTAGAATCCATCC

CT 

MYB 
(primary motif) 

33,903,639 A1 Adult C>G 
1 bp substitution 

T 
1 bp del 

CCATCCCTGCGCCGGATGCC
AAAGTTCCGCCTGCC 

CCATCCCTGCGCCCTGATGCC
AAAGTTCCGCCTGCC 

ETS1 

33,903,672 A2 Adult A 
1 bp del 

CTTCAACCGCAAAGAAACCGT
TAGAATCCATCCCTGCGCCCT

GATG 

CTCTTCAACCAGCAAAGAAAC
CGTTAGAATCCATCCCTGCGC

CCTGATG 

MYB 
(secondary motif) 

33,903,724 A3 Adult GAAGAATAAGAAG
AAAAAAAAAAGAA
GTCGGCAGGAAG
CAGCCTCTTCAAC
CAGCAAAGAAACC

GTTA 
68 bp ins 

TTCACATTCACAAGCTGGGCT
GGTAAGTGAAGAATAAGAAGA
AAAAAAAAAGAAGTCGGCAGG
AAGCAGCCTCTTCAACCAGCA

AAGAAACCGTTAGAAGAA 

TTCACATTCACAAGCTGGGCT
GGTAAGTGAAGAA 

ETS1 
MYB 

(primary motif) 

Table cont… 
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Table S3. Mutations identified in primary T-ALL samples and cell lines, PF-382, and DU.528. Mutation start points are given as 
hg19 co-ordinates, and the nature of the indels are described. Underlined sequences show the consensus sites for the transcription 
factors (TF) that were identified by in silico analysis. 
 

Mutation 
Start Co-
ordinate 
(hg19, 
chr11) 

Sample Type Mutation Mutant sequence WT sequence TF binding site 

33,903,724 A4 Adult GAAGAATAAGAAG
AAAAAAAAAAGAA
GTCGGCAGGAAG
CAGCCTCTTCAAC
CAGCAAAGAAACC

GTTAGAATC 
73 bp ins 

AAGCTGGGCTGGTAAGTGAAG
AATAAGAAGAAAAAAAAAAGA
AGTCGGCAGGAAGCAGCCTC
TTCAACCAGCAAAGAAACCGT
TAGAATCGAAGAATAAGAAGA

AAAAAAAAAG 

AAGCTGGGCTGGTAAGTGAAG
AATAAGAAGAAAAAAAAAAG 

ETS1 
MYB 

(primary motif) 

33,903,671 A5 Adult A>C 
1 bp substitution 

GCAGCCTCTTCAACCCGCAAA
GAAA 

GCAGCCTCTTCAACCAGCAAA
GAAA 

UNKNOWN 

33,903,670 A6 Adult 
 

G 
1 bp del 

CCTCTTCAACCACAAAGAAAC
CGTTAG 

CCTCTTCAACCAGCAAAGAAA
CCGTTAGAATCCATCCCTG 

RUNX1 

33,903,637 A7 Adult T>G 
1 bp substitution 

CATCCCTGCGCCCGGATGCC
AAAGTTC 

CATCCCTGCGCCCTGATGCCA
AAGTTCCG 

ETS1 

33,903,885 
 

A8 
1st 

mutation 

Adult A>G 
1 bp substitution 

ACTCAGAGGGATAGGAGATTT
GCAAA 

ACTCAGAGGGATAAGAGATTT
GCAAAGCGTGAGACA 

Unknown 

33,903,637 A8 
2nd 

mutation 

Adult T>G 
1 bp substitution 

CATCCCTGCGCCCGGATGCC
AAAGTTC 

CATCCCTGCGCCCTGATGCCA
AAGTTCCG 

ETS1 

33,903,640 A9 Adult TAAGAAGAAAAAA
AAAAGAAGTCGGC
AGGAAGCAGCCTC
TTCAACCAGCAAA
GAAACCGTTAGAA
TCCATCCCTGCG 

77 bp ins 

CCCTGCGTAAGAAGAAAAAAA
AAAGAAGTCGGCAGGAAGCA
GCCTCTTCAACCAGCAAAGAA
ACCGTTAGAATCCATCCCTGC

GCCTGATT 

CCCTGCGCCCTGATGCCAAAG
TTCCGCCTGCCCCACCCGTCA

CGCTATCAAGGACACCC 

ETS1 
MYB 

(primary motif) 
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Table Cont…. 
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Table cont…. 
 

 
Table S4. Motif analysis of patient and cell line-derived mutations. Sequences containing mutations from Table S2 were 
interrogated using UniPROBE. Note RUNX1 is not included in the UniPROBE database, thus sequences were also analyzed using 
Tfbind for samples P1, P6 and A6 where no match was identified with UniPROBE. The closer the UniPROBE enrichment scores (E.S.) 
to the top scoring Kmer, the more significant the alignment. The Tfbind significance threshold score for RUNX1 is >0.83. Statistics for 
motif alignment using Tomtom are also shown, where E values <10 are considered to meet the match threshold accounting for multiple 
testing.	
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Sample 

Age Sex Presenting 
WCC  

(x109 / L) 

Extramedullary 
disease 

ABD of TCR-g 
by qPCR 

NOTCH FBXW7 MuTE 
 

SIL-TAL 
deletion 

P1 7 M 104 - Non-ABD HD-N WT WT* Positive 
P2 16 M 33.2 - Non-ABD HD-N WD40 WT* Positive 
P3 9 M 248 - Indeterminate WT WT Mutant  Negative 
P4 10 M 157 - Non-ABD HD-C WT WT Negative 
P5 16 M 313 - Indeterminate WT WT WT* Negative 
P6 15 M 320 - Non-ABD WT WT WT	 Positive	
A1 53 F 47 Mediastinal	mass Non-ABD WT WT WT Positive 
A2 31 M 56	 No	 Non-ABD HD-N WT Mutant	 Negative	
A3 27 M 53	 Spleen/nodes	 Non-ABD PEST WT WT	 Negative	
A4 25 M 147	 No	 ABD WT WT WT	 Negative	
A5 24 M 264	 No	 Non-ABD WT WT WT	 Positive	
A6 21 M 400	 Mediastinal	mass	 Non-ABD HD-N WT WT Negative 
A7 34 M 	 UNK	 Non-ABD WT WT WT	 Positive	
A8 22 M 140	 Mediastinal	mass	 Non-ABD WT WT WT Negative 
A9 17 M 354	 NO	 Non-ABD HD-N;PEST ND WT Negative 

 
Table S5. Clinical and genetic features of primary T-ALL samples. Mutation screening for samples marked with an * was achieved 
by dHPLC analysis. For all other samples mutation screening was achieved by Sanger sequencing. MuTE: mutation of the TAL1 
enhancer (Mansour et al., 2014). ABD: Absence of biallelic TCR gamma deletion.  
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