## SUPPLEMENTARY INFORMATION

## Ice-core evidence of earliest extensive copper metallurgy in the Andes 2700 years ago

A. Eichler<sup>1,2</sup>\*, G. Gramlich<sup>1,2,3</sup>, T. Kellerhals<sup>1,2</sup>, L. Tobler<sup>1,2</sup>, Th. Rehren<sup>4</sup>, and M. Schwikowski<sup>1,2,3</sup>

<sup>1</sup> Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

<sup>2</sup> Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern,

Switzerland

<sup>3</sup> Department for Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

<sup>4</sup> UCL Institute of Archaeology, 31-34 Gordon Square, London WC1H 0PY, UK

\*Corresponding author:

e-mail: anja.eichler@psi.ch, phone: +41 56 310 2077, fax: +41 56 310 4435



**Supplementary Figure S1:** Comparison of CuEF records deduced using different lithogenic elements (Ce-dark green, La-light green, Nd-yellow). CuEFs are shown as 50 yr medians. The dashed lines represent the background level from mineral dust input of EF=1.6 (mean+ $2\sigma$  level of the period 4500-2000 BC). Only CuEFs exceeding the background level in at least two consecutive data points are considered to be anthropogenic Cu pollution from extensive Cu metallurgy.